PHYSICAL REVIEW A VOLUME 54, NUMBER 2 AUGUST 1996
Trapped ions as vibrational beam splitters: SU2) states in a two-dimensional ion trap
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A scheme for preparing vibrational $2) states of motion in a two-dimensional ion trap is described. These
anticorrelated two-mode states are formally equivalent to the output photon states of a losgksatSiter-
ometer with number-state inputs. Nontrivial statistics such as the binomial distribution and the discrete “arc-
sine” distribution can be generated in the vibrational states of trapped ions, and detected by measuring the
population inversion of the ion driven by a laser field along a specific diredi®t050-29476)03308-3

PACS numbeis): 42.50.Dv, 42.50.VK, 32.80.Pj

Recent developments in the cooling and trapping ionslescribed by the annihilatiofcreation operatorsa (a')
[1-4] have opened a new research realm for both atomiandb (b") defined in theX andY directions, respectively.
physics and quantum optics. Theoretically, an ion confinedi\ccordingly, the position operators are given by
in an electromagnetic trap is equivalent to a particle moving A o A A
in a harmonic potential in which the center-of-mdssm) x=(2vM)""{a+a'], y=(2vM)"¥b+b", (1)
motion of the ion is quantized as a harmonic oscillator.

When the internal atomic states of the trapped ion are excitetfere we have assumed that1.

or deexcited by the classical laser driving field, the vibra- USing the Schwinger representatifv]

tional states of the c.m. motion are changed, as the atomic
stimulated absorption or emission processes are always ac-
companied by momentum exchange of the driving field. For
the most general case, the Sdlinger equation of this

model is described by a set of linear differential equation i i
that couple the probability amplitudes for the different Vibraﬁstcfrci)tlalgévzsﬂlﬁtetg:e%%-rgr?gﬁlalzr?&koisﬁ?agﬁjac;}n \?viigt?

_tlona_\l stateg5]. However, if the vibrating amplitude pf the is the common eigenstate of the angular-momentum opera-
ion is much smaller than the laser wavelength, i.e., the

Lamb-Dicke limit is satisfied, and the driving field is tuned (©rSJ> andJs with

to one of the vibrational sidebands of the atomic transition, 32|. Y=iG+ D))
then this model can be simplified to a form similar to the Lpr=1 Lpp,
Jaynes-Cummings mod&ICM) [5—-7] except that the quan- N
tized radiation field is replaced by the quantized c.m. motion Jal o) = peljs ), (3)
of the ion. As the vibrational mode in the ion trap does not ; A 1.
couple to the external optical modes, the dissipative effecth;’c'f:e;f |_ |2(<nx+t}':]]é) S?;‘tde{;__ 2§”f>(<) rnr:y;h orthogonal basis
inevitable from cavity damping in the optical regime can, o (2'+1I)L-(;r]nlensional Hilli:)/ért SDACEL: 9

now be significantly suppressed. This prominent feature thus ] PacR2j+1,
leads to the possibility of realizing some cavity QED experi- i

J,=(@'b+abh/2, J,=(a’b—abhya,

J;=(a'a-b'b)/2, and 32=32+32+32, 2

ments without using an optical cavity. There have been sev- 2 i), jl=1,

eral schemes proposed recently following this approach to mw==]

produce nonclassical vibrational states inside an ion trap. For 4
example, Fock states can be prepared by methods involving Ny =6y,

quantum jumpg 8], adiabatic passagEd], trapping states ) i
[10], or a sequence of Rabi pulses driving the iof11]. Thus, an arbitrary two-mode field state can be expressed as

Coherent states of motion can be produced from the vacuum o o - i

by a spatially uniform classical driving field or by a “mov- _ _ T

ing standing wave’'T11]. Using bichromatic Raman excita- |F>—n§=:0 m§=:O an|n,m)—2]§=:0 M;j Fiallidr )
tion of the ion, one is able to produce squeezed states of

motion inside the trapl1-13. In particular, quantum super- where the summation oveij 2ndicates that the sum includes
positions of two microscopically distinguishable statdee  both integer and half-integer values jof

Schralinger cat statgsof the trapped ions can also be pre-  Consider the following transformation defined by the op-

pared[14—16. eratorU( 6) = ex] &(ath—ab"):

In this paper, we describe how to prepare and observe the R A R
anticorrelated two-mode SP) vibrational states by using R a) cos¥ sind\ [a ay
trapped ions. Consider a two-level ion of médsmoving in U o) plU@=| —sing cowllbl=lb.]

a two-dimensiona(2D) isotropic harmonic potential charac- o
terized by the trap frequency. The vibrational quanta are (6)
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which is equivalent to a rotation of the coordinate system orjj,u), can be expressed as a linear combination of the
the X-Y plane with angled. According to Eq.(1), we then  pseudo-angular-momentum states observed along the direc-
have tions of theX,-Y, axes, i.e.,

5)-

We denotdj,u) as the pseudo-angular-momentum state j '
excited along the originaK-Y axes, which can be easily = E 'DJ)\M(COSZH)H,)\)g, (8
prepared by exciting the ion with a sequence of Rabi A=l
pulses, as illustrated in Refl1]. According to the transfor-

mation in Eq.(6), the statgj,u), in the X,-Y, direction is WhereDi\#(cosm) is the matrix element of the rotation op-

X

y

cos®  sind J_

| 1im)o= 2 110 e Ni10CO)

—sind cos

juu>0!

defined as erator U(6). However, as the total quantum number is a
(ahi*tuptyi-~ conserved quantity for the Fock statds,,ny), and
[j,pm)o=—"—= : [0), Imy,my), in different directions, we may let
VU + ) (=)t N=n,+ny=m,+m,. Therefore, in the Fock representation,

) (a’;)iw(ﬁ’g)iw Eq. (8) is expressed as

=U(6) — , U-%(0)|0),
NI N
:0(9)“’M>0’ (7) |nxaN_nx>0:mE:O Dmxnx(COSZB)|mva_mx>0v (9)

where we have used the fact that the vacuum is invariant
under the rotation. Using the closure relation in Ed),  where again the matrix element is given [dy/]

MR (g )k My TIN= ) Tmy (N—my)!
k=max0,n,—my) k! (Ny— K)'(N— m,— K)!(k+ my— nx)!

Diy,n,(€0520) = (cogg)N~ 2K+ My(ging) 2kt M (10)

Some symmetry relations dﬁmxnx(cosm) are given below,
which are useful for the further calculations,

1,000=sin6|0,1) 4+ cosd|1,0)4,

N —(—1\My—nypN 1
Dmxnx(COSZB) - ( 1) anmx(COSZH)' |111>0:E[|012> w4 |210> 77/4]-
=DN—n,N-m,(COS20),
(11 A direct way to examine the properties of the above vi-
DﬁfonX(COS%’):(— 1)”*”x*meN7anx(coszg), brational states is to measure the population inversion of the

trapped ion. In order to distinguish the statistics determined
by the angle#d, one may need to construct a measuring
Hamiltonian that is spatially dependent. In this case, a laser
. o ) o field of frequencyw is applied to the ion along the¢, axis in
Essentially, Eq(7) is just a basis transformation in the trun- the | amb-Dicke regime, i.ex>Q, whereQ is the Rabi
cated Hilbert spacety; ., in which the total quantum num-  frequency describing the atom-field interaction. Now, the la-
bers are conserved. As a matter of fact, the square ofer frequency is turned to the first red vibrational sideband of
D o (cOSP) is exactly the joint output photon-number dis- the atomic transition so that a resonant JCM Hamiltonian can
tribution of a lossless S@) interferometer[18,19 when  be realized along th¥, axis[5,6]

both the input ports are excited by pure number states. The

photon statistics of this class of states has been investigated R

by several author§l9,20. However, as the transformation Hjay= vala,+
of Eq. (6) coincides with a real-space rotation in teY

plane, the probability distribution described by E®).can be

realized and observed in the two-dimensiof2D) ion trap.  whereo’s are the Pauli matrices amylis the effective cou-
Moreover, in the case of weakly excitéa ,n,),, entangled pling constant. With the help of the well-known solutions for
states of importance in the quantum measurement theory cahe JCM[21], for an initially excited atom the population
also be prepared in this manner; for example, inversion measured in this case is given by

Dl (—€0820)=(—1)™Dpy _, (c0S20).

14

2&Z+ g(a,o. +H.c), (12
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FIG. 1. Number distribution for finding vibrational quanta FIG. 2. Population inversiokV(4,t) as a function ofjt, where

along theX, axis with (a) n,=12, n,=0, 6=/3; (b) n,=12, n,=12, n,=0, 0=m/4; (a) 9%y=0; (b) g%/y=0.005; (c)
n,=0, #=u/4; () n,=6, n,=6, 6==/3; (d n,=6, n,=6, g2/ y=0.05.

0= ml4.
A is transformed to the S@) coherent statef23]. The SU2)
W(,t)=(a,(1)) coherent states are characterized by the binomial distribution
N
= > [DN , (cos28)]?cog2gtym,+1). | DN \(€0820)|?=————(cogH)™(1—cogHhH)N "™,
My=0 X''x X mX!(N—mX)!
(13 (15

which results in sub-Poissonian statistics for both modes.
If, however, we wish to describe the various uncontrollableThe atomic dynamics of a JCM in the presence of(BU
factors in real experiments, such as intensity fluctuations ofoherent states have been investigated by different authors
the laser beams, laser phase fluctuations, or the variations jR4,25. In this paper, identical results are reproduced by
the trap drive frequency, and so forth, we can modify Ed.replacingn,=N in Eq. (10). However, in order to be com-
(13) to include dephasinf2] and obtain patible with the real experiments, we have assumed a small
initial vibrational excitation N=12). The population inver-
N sions are shown in Fig. 2 with different values of the deco-
w(o,t)= > [ Dy, n, (COS26)]? herence factor.
M=0 As can be seen in Fig. 1, the basic difference between
—2g% caseq(i) and (i) is that the quantum number distribution of
Xexr{ 5 (m,+1)

cog2gtym,+1),

(14 ‘ " @

where vy is the decay constant that stems from the decoher
ence effects of the dephasing. It is easy to identify that , , , , , ‘
W(6,t)=W(6+ m,t) using the symmetry relations in Eq. 62 4 &8 8 0 12 16 18 20
(11). We notice that, since the ion is confined in an isotropic ' " ow) ' ' ' '
2D harmonic potential, there are lots of possibilities of
choosing a coordinate system to excite the initial Fock state:
of motion of the ion. Nevertheless, once the relative angle
6 of the probing beam is specified, the statistics of the vibra- % 2 4 6 8 10 12 14 16 18 =20
tional quanta in this direction can be uniquely determined by 1 - , - - - - - -
the matrix elemenDry, , (cos2)).

Several quantum number distributions are shown in Fig. H
1. Basically, the statistical properties ﬁﬂxnx depend cru-

» . . . — . . . .
cially on the initial vibrational excitation. In the following, L
we pay special attention to the two limiting casds)

n,>ny=0, O< @<, and(ii) n,=ny, 6==/4. For the first FIG. 3. Population inversiokV( 6,t) as a function ofjt, where

case, the initial vibrational state is in the highest excitatiom,=6, n,=6, 6=m/4; (8 g%y=0; (b) g%y=0.005; (c)
angular-momentum stafg, j )o, which, according to Eq8), g% y=0.05.
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the latter becomes oscillatory between odd and even countser distribution. In this way the time evolution of the inver-

rather than remain given by the binomial nature of thesion is similar to that seen for a squeezed vacuum, where

former. This is because, when,=n,, the amplitude again odd photon numbers are absent. The clear revivals of

DﬁXN,Z(cosm) is proportional to the associated Legendrethe coherent state JCM depend on the precise interrelation-

function pm/xz— N/2, ship of the adjacent spectral Rabi components; this is lacking
for the cases investigated here.

\ (N-m)! =\ In summary, we have described a simple scheme to pre-
D ni2(€0820) =\ — P, ""(cos2)). (16)  pare vibrational S(?) states within a 2D ion trap. The $2)
* states are important in quantum optical theory not only be-
The oscillatory character of the quantum number distributiorcause they are employed in interferometers, but because they
implies some nonclassical properties engendered by thean also be visualized as the bosonic realization of the col-
strong quantum interference. Particularly,6if 7/4, it fol- lective atomic statef27]. For example, the pseudo-angular-
lows immediately that the number distribution vanishesmomentum statéj,u) and the SW2) coherent states dis-
whenm, is an odd integer, indicating that odd numbers ofcussed in this paper correspond to the Dicke state and Bloch
vibrational quanta do not exist in both modes, as shown istates in the context of the collective atomic interactions,
Fig. 1(d). Whenm, is an even integer, the number distribu- respectively{27]. The vibrational S(2) states discussed in
tion is given by this paper are formally identical to the photon states on the
output ports of a lossless $2) interferometer with number-
5, (17) state inputd19]. The main differences between these two
,(N_mX),} systems ard1) the photons are replaced by the localized
2 ) vibrational quanta, an¢2) the mode-mixing processes on the

output ports of the interferometer are replaced by a real-
which is known as the discrete arcsine distribution of order, put-p b y

: . space rotation. The statistical properties of the vibrational
N/2 in probability theory[26]. In the presence of the number . : :
distribution, Eq.(17), the population inversions of the ion are SUQ) states are spatially dependent, which can be deter

! . mined by measuring the atomic population inversion with
plotted assuming various values of the decoherence factor e atom being driven in a specific direction

Fig. 3. We see that the Rabi oscillations shown in Fig. 3
exhibit chaotic behavior rather than the distinct quantum re- This work was supported in part by the U.K. Engineering
vivals and collapses of the Rabi oscillations in Fig. 2. This isand Physical Sciences Research Council and the European
because the spectral components of the Rabi oscillations thitnion. One of the authoréS.C.G) acknowledges financial
originate from the odd-count Fock states are absent, due tupport by the Ministry of Education, Taiwan, Republic of
the vanishing of the odd number of the initial quantum num-China.

m,! (N—m,)!
mX

2

| Dy ni2(0)]?=27N
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