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Trapped ions as vibrational beam splitters: SU„2… states in a two-dimensional ion trap

S.-C. Gou and P. L. Knight
Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 29 February 1996!

A scheme for preparing vibrational SU~2! states of motion in a two-dimensional ion trap is described. These
anticorrelated two-mode states are formally equivalent to the output photon states of a lossless SU~2! interfer-
ometer with number-state inputs. Nontrivial statistics such as the binomial distribution and the discrete ‘‘arc-
sine’’ distribution can be generated in the vibrational states of trapped ions, and detected by measuring the
population inversion of the ion driven by a laser field along a specific direction.@S1050-2947~96!03308-2#

PACS number~s!: 42.50.Dv, 42.50.Vk, 32.80.Pj
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Recent developments in the cooling and trapping io
@1–4# have opened a new research realm for both ato
physics and quantum optics. Theoretically, an ion confin
in an electromagnetic trap is equivalent to a particle mov
in a harmonic potential in which the center-of-mass~c.m.!
motion of the ion is quantized as a harmonic oscillat
When the internal atomic states of the trapped ion are exc
or deexcited by the classical laser driving field, the vib
tional states of the c.m. motion are changed, as the ato
stimulated absorption or emission processes are always
companied by momentum exchange of the driving field. F
the most general case, the Schro¨dinger equation of this
model is described by a set of linear differential equatio
that couple the probability amplitudes for the different vibr
tional states@5#. However, if the vibrating amplitude of th
ion is much smaller than the laser wavelength, i.e.,
Lamb-Dicke limit is satisfied, and the driving field is tune
to one of the vibrational sidebands of the atomic transiti
then this model can be simplified to a form similar to t
Jaynes-Cummings model~JCM! @5–7# except that the quan
tized radiation field is replaced by the quantized c.m. mot
of the ion. As the vibrational mode in the ion trap does n
couple to the external optical modes, the dissipative effe
inevitable from cavity damping in the optical regime c
now be significantly suppressed. This prominent feature t
leads to the possibility of realizing some cavity QED expe
ments without using an optical cavity. There have been s
eral schemes proposed recently following this approach
produce nonclassical vibrational states inside an ion trap.
example, Fock states can be prepared by methods invol
quantum jumps@8#, adiabatic passage@9#, trapping states
@10#, or a sequence of Rabip pulses driving the ion@11#.
Coherent states of motion can be produced from the vac
by a spatially uniform classical driving field or by a ‘‘mov
ing standing wave’’@11#. Using bichromatic Raman excita
tion of the ion, one is able to produce squeezed state
motion inside the trap@11–13#. In particular, quantum super
positions of two microscopically distinguishable states~the
Schrödinger cat states! of the trapped ions can also be pr
pared@14–16#.

In this paper, we describe how to prepare and observe
anticorrelated two-mode SU~2! vibrational states by using
trapped ions. Consider a two-level ion of massM moving in
a two-dimensional~2D! isotropic harmonic potential charac
terized by the trap frequencyn. The vibrational quanta are
541050-2947/96/54~2!/1682~4!/$10.00
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described by the annihilation~creation! operatorsâ (â†)
and b̂ (b̂†) defined in theX andY directions, respectively
Accordingly, the position operators are given by

x̂5~2nM !21/2@ â1â†#, ŷ5~2nM !21/2@ b̂1b̂†#, ~1!

where we have assumed that\51.
Using the Schwinger representation@17#

Ĵ15~ â†b̂1âb̂†!/2, Ĵ25~ â†b̂2âb̂†!/2i ,

Ĵ35~ â†â2b̂†b̂!/2, and Ĵ25 Ĵ1
21 Ĵ2

21 Ĵ3
2 , ~2!

it follows that the two-mode Fock stateunx ,ny& can be de-
scribed as the pseudo-angular-momentum stateu j ,m&, which
is the common eigenstate of the angular-momentum op
tors Ĵ2 and Ĵ3 with

Ĵ2u j ,m&5 j ~ j 11!u j ,m&,

Ĵ3u j ,m&5mu j ,m&, ~3!

provided j 5 1
2(nx1ny) andm5 1

2(nx2ny).
For all umu< j , the statesu j ,m& form an orthogonal basis

in a (2j 11)-dimensional Hilbert spaceH2 j 11,

(
m52 j

j

u j ,m&^m, j u51,

~4!
^l, j u j ,m&5dlm .

Thus, an arbitrary two-mode field state can be expressed

uF&5 (
n50

`

(
m50

`

Fnmun,m&5 (
2 j 50

`

(
m52 j

j

F j mu j ,m&, ~5!

where the summation over 2j indicates that the sum include
both integer and half-integer values ofj.

Consider the following transformation defined by the o
eratorÛ(u)5exp@u(â†b̂2âb̂†)#:

Û21~u!S â

b̂D Û~u!5S cosu sinu

2sinu cosu D S â

b̂D 5S âu

b̂uD ,

~6!
1682 © 1996 The American Physical Society
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54 1683TRAPPED IONS AS VIBRATIONAL BEAM . . .
which is equivalent to a rotation of the coordinate system
the X-Y plane with angleu. According to Eq.~1!, we then
have

S x̂u

ŷuD 5S cosu sinu

2sinu cosu D S x̂

ŷD .

We denoteu j ,m&0 as the pseudo-angular-momentum st
excited along the originalX-Y axes, which can be easil
prepared by exciting the ion with a sequence of Rabip
pulses, as illustrated in Ref.@11#. According to the transfor-
mation in Eq.~6!, the stateu j ,m&u in the Xu-Yu direction is
defined as

u j ,m&05
~ â†! j 1m~ b̂†! j 2m

A~ j 1m!! ~ j 2m!!
u0&,

5Û~u!
~ âu

†! j 1m~ b̂u
†! j 2m

A~ j 1m!! ~ j 2m!!
Û21~u!u0&,

5Û~u!u j ,m&u , ~7!

where we have used the fact that the vacuum is invar
under the rotation. Using the closure relation in Eq.~4!,
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u j ,m&0 can be expressed as a linear combination of
pseudo-angular-momentum states observed along the d
tions of theXu-Yu axes, i.e.,

u j ,m&05 (
l52 j

j

u j ,l&uu^l, j uÛ~u!u j ,m&u,

5 (
l52 j

j

Dlm
j ~cos2u!u j ,l&u , ~8!

whereDlm
j (cos2u) is the matrix element of the rotation op

erator Û(u). However, as the total quantum number is
conserved quantity for the Fock statesunx ,ny&0 and
umx ,my&u in different directions, we may le
N5nx1ny5mx1my . Therefore, in the Fock representatio
Eq. ~8! is expressed as

unx ,N2nx&05 (
mx50

N

Dmxnx

N ~cos2u!umx ,N2mx&u , ~9!

where again the matrix element is given by@17#
Dmxnx

N ~cos2u!5 (
k5max~0,nx2mx!

min~nx ,N2mx!
~21!k1mx2nxAnx! ~N2nx!!mx! ~N2mx!!

k! ~nx2k!! ~N2mx2k!! ~k1mx2nx!!
~cosu!N22k1nx2mx~sinu!2k2nx1mx. ~10!
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Some symmetry relations ofDmxnx

N (cos2u) are given below,

which are useful for the further calculations,

Dmxnx

N ~cos2u!5~21!mx2nxDnxmx

N ~cos2u!,

5DN2nxN2mx

N ~cos2u!,

~11!
DmxN2nx

N ~cos2u!5~21!N2nx2mxDN2mxnx

N ~cos2u!,

Dmxnx

N ~2cos2u!5~21!mxDmxN2nx

N ~cos2u!.

Essentially, Eq.~7! is just a basis transformation in the tru
cated Hilbert spaceH2 j 11 in which the total quantum num
bers are conserved. As a matter of fact, the square
Dmxnx

N (cos2u) is exactly the joint output photon-number di

tribution of a lossless SU~2! interferometer@18,19# when
both the input ports are excited by pure number states.
photon statistics of this class of states has been investig
by several authors@19,20#. However, as the transformatio
of Eq. ~6! coincides with a real-space rotation in theX-Y
plane, the probability distribution described by Eq.~9! can be
realized and observed in the two-dimensional~2D! ion trap.
Moreover, in the case of weakly excitedunx ,ny&0, entangled
states of importance in the quantum measurement theory
also be prepared in this manner; for example,
of

he
ed

an

u1,0&05sinuu0,1&u1cosuu1,0&u ,

u1,1&05
1

A2
@ u0,2&p/42u2,0&p/4].

A direct way to examine the properties of the above
brational states is to measure the population inversion of
trapped ion. In order to distinguish the statistics determin
by the angleu, one may need to construct a measuri
Hamiltonian that is spatially dependent. In this case, a la
field of frequencyv is applied to the ion along theXu axis in
the Lamb-Dicke regime, i.e.,n@V, where V is the Rabi
frequency describing the atom-field interaction. Now, the
ser frequency is turned to the first red vibrational sideband
the atomic transition so that a resonant JCM Hamiltonian
be realized along theXu axis @5,6#

ĤJay5nâu
†âu1

n

2
ŝz1g~ âuŝ11H.c.!, ~12!

whereŝ ’s are the Pauli matrices andg is the effective cou-
pling constant. With the help of the well-known solutions f
the JCM @21#, for an initially excited atom the population
inversion measured in this case is given by
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1684 54S.-C. GOU AND P. L. KNIGHT
W~u,t !5^ŝz~ t !&

5 (
mx50

N

@Dmxnx

N ~cos2u!#2cos~2gtAmx11!.

~13!

If, however, we wish to describe the various uncontrolla
factors in real experiments, such as intensity fluctuations
the laser beams, laser phase fluctuations, or the variation
the trap drive frequency, and so forth, we can modify E
~13! to include dephasing@22# and obtain

W~u,t !5 (
mx50

N

@Dmxnx

N ~cos2u!#2

3expF22g2t

g
~mx11!Gcos~2gtAmx11!,

~14!

whereg is the decay constant that stems from the decoh
ence effects of the dephasing. It is easy to identify t
W(u,t)5W(u1p,t) using the symmetry relations in Eq
~11!. We notice that, since the ion is confined in an isotro
2D harmonic potential, there are lots of possibilities
choosing a coordinate system to excite the initial Fock sta
of motion of the ion. Nevertheless, once the relative an
u of the probing beam is specified, the statistics of the vib
tional quanta in this direction can be uniquely determined
the matrix elementDmxnx

N (cos2u).

Several quantum number distributions are shown in F
1. Basically, the statistical properties ofDmxnx

N depend cru-

cially on the initial vibrational excitation. In the following
we pay special attention to the two limiting cases:~i!
nx.ny50, 0<u<p; and ~ii ! nx5ny , u5p/4. For the first
case, the initial vibrational state is in the highest excitat
angular-momentum stateu j , j &0, which, according to Eq.~8!,

FIG. 1. Number distribution for findingn vibrational quanta
along theXu axis with ~a! nx512, ny50, u5p/3; ~b! nx512,
ny50, u5p/4; ~c! na56, ny56, u5p/3; ~d! nx56, ny56,
u5p/4.
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is transformed to the SU~2! coherent states@23#. The SU~2!
coherent states are characterized by the binomial distribu

uDmxN
N ~cos2u!u25

N!

mx! ~N2mx!!
~cos2u!mx~12cos2u!N2mx,

~15!

which results in sub-Poissonian statistics for both mod
The atomic dynamics of a JCM in the presence of SU~2!
coherent states have been investigated by different aut
@24,25#. In this paper, identical results are reproduced
replacingnx5N in Eq. ~10!. However, in order to be com
patible with the real experiments, we have assumed a s
initial vibrational excitation (N512). The population inver-
sions are shown in Fig. 2 with different values of the dec
herence factor.

As can be seen in Fig. 1, the basic difference betw
cases~i! and ~ii ! is that the quantum number distribution o

FIG. 3. Population inversionW(u,t) as a function ofgt, where
nx56, ny56, u5p/4; ~a! g2/g50; ~b! g2/g50.005; ~c!
g2/g50.05.

FIG. 2. Population inversionW(u,t) as a function ofgt, where
nx512, ny50, u5p/4; ~a! g2/g50; ~b! g2/g50.005; ~c!
g2/g50.05.
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54 1685TRAPPED IONS AS VIBRATIONAL BEAM . . .
the latter becomes oscillatory between odd and even co
rather than remain given by the binomial nature of t
former. This is because, whennx5ny , the amplitude
DmxN/2

N (cos2u) is proportional to the associated Legend

function PN/2
mx2N/2 ,

DmxN/2
N ~cos2u!5A~N2mx!!

mx!
PN/2

mx2N/2
~cos2u!. ~16!

The oscillatory character of the quantum number distribut
implies some nonclassical properties engendered by
strong quantum interference. Particularly, ifu5p/4, it fol-
lows immediately that the number distribution vanish
when mx is an odd integer, indicating that odd numbers
vibrational quanta do not exist in both modes, as shown
Fig. 1~d!. Whenmx is an even integer, the number distrib
tion is given by

uDmxN/2
N ~0!u2522N

mx! ~N2mx!!

F S mx

2 D ! S N2mx

2 D ! G2 , ~17!

which is known as the discrete arcsine distribution of or
N/2 in probability theory@26#. In the presence of the numbe
distribution, Eq.~17!, the population inversions of the ion ar
plotted assuming various values of the decoherence fact
Fig. 3. We see that the Rabi oscillations shown in Fig
exhibit chaotic behavior rather than the distinct quantum
vivals and collapses of the Rabi oscillations in Fig. 2. This
because the spectral components of the Rabi oscillations
originate from the odd-count Fock states are absent, du
the vanishing of the odd number of the initial quantum nu
et
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ber distribution. In this way the time evolution of the inve
sion is similar to that seen for a squeezed vacuum, wh
again odd photon numbers are absent. The clear reviva
the coherent state JCM depend on the precise interrela
ship of the adjacent spectral Rabi components; this is lack
for the cases investigated here.

In summary, we have described a simple scheme to
pare vibrational SU~2! states within a 2D ion trap. The SU~2!
states are important in quantum optical theory not only
cause they are employed in interferometers, but because
can also be visualized as the bosonic realization of the
lective atomic states@27#. For example, the pseudo-angula
momentum stateu j ,m& and the SU~2! coherent states dis
cussed in this paper correspond to the Dicke state and B
states in the context of the collective atomic interactio
respectively@27#. The vibrational SU~2! states discussed in
this paper are formally identical to the photon states on
output ports of a lossless SU~2! interferometer with number-
state inputs@19#. The main differences between these tw
systems are~1! the photons are replaced by the localiz
vibrational quanta, and~2! the mode-mixing processes on th
output ports of the interferometer are replaced by a re
space rotation. The statistical properties of the vibratio
SU~2! states are spatially dependent, which can be de
mined by measuring the atomic population inversion w
the atom being driven in a specific direction.
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