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Direct sampling of density matrices in field-strength bases
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A simple and efficient method for direct sampling of the density matrix of a signal mode in optical homo-
dyne tomography is developed. The method is based on approximate, quasianalytical techniques of Fourier
transform and yields the density matrix in an arbitrary field-strength basis. It is also suitable for direct sampling
of density matrices of matter systems in generalized position or momentum bases.@S1050-2947~96!03108-3#

PACS number~s!: 42.50.Dv, 42.50.Ar, 03.65.Bz
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The determination of the density matrices of quantum s
tems is of fundamental interest, since they contain all kno
able information on the systems. When the density matrix
a system can be obtained from some kind of measurem
the full quantum-statistical information on it is available,
least in principle. Moreover, measurement of the quant
state in different Hilbert-space bases can give specific ins
into the quantum structure of a system. In this context e
cient and simple methods are required in order to reconst
the quantum state from an appropriate set of measured

Recently Smitheyet al. @1# have demonstrated the feas
bility of reconstruction of the quantum state of a radiatio
field mode by means of optical homodyne tomograp
~OHT!. Measuring the difference-count statistics in balanc
homodyne detection for various phase differences betw
signal mode and local oscillator yields the probability dist
butions of scaled~electric or magnetic! field strengths of the
signal mode for various phase parameters@2,3#. Knowledge
of the field-strength distributions for a sufficiently dense
of phase parameters within an interval of sizep then allows
one to reconstruct the quantum state of the signal mod
terms ofs-parametrized quasidistributions@4#. In particular,
the measured field-strength distributions can be expresse
terms of marginal distributions of the Wigner function. Th
corresponding integral relations, given for a set of phase
rameters, can be inverted to reconstruct the Wigner funct
Practically, this can be done by the method of inverse Ra
transform @1#, which corresponds to a threefold integr
transform @4#. Subsequently, the density matrix in a fiel
strength basis can be obtained by Fourier transforming
Wigner function. It is worth noting that closely related e
periments have been performed to reconstruct quantum s
of molecular vibrations@5#, where the freely evolving posi
tion plays the role of the radiation field strengths in opti
Moreover, a tomographic method for the reconstruction
quantum states of the trapped-ion motion has been prop
@6#.

In practice methods are desired that enable one to ob
the density matrix or other representatives of the quan
state as directly as possible from the measured data inclu
541050-2947/96/54~2!/1678~4!/$10.00
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error control. As was shown by Ku¨hn and co-workers@7,8#,
the density-matrix elements in a field-strength basis can s
ply be given in terms of twofold Fourier transforms of th
field-strength distributions measured in OHT:

^F11F2 ,wu%̂uF12F2 ,w&

5
1

2pE2`

1`

dy e2 iyF1E
2`

1`

dF eiFy8p~F,w8!, ~1!

where

y85y8~y,F2!5A F2
2

uFu4 1y2, ~2!

w85w8~y,F2!5
1

2
p1w2argS 2

F2

uFu2 1 iy D . ~3!

In Eq. ~1!, the uF,w& are the eigenvectors of the field
strength operatorF̂ 5 Fâ 1 F* â† defining the basis,â† and
â are the photon creation and destruction operators, res
tively, and p(F,w8) 5 ^F,w8u%̂uF,w8& is the probability
distribution for the field strength at phasew8. The mode
functionF5uFueiw can be chosen to specify the kind of fie
~e.g., electric or magnetic! under study or, for comparing
with experiments, it can be related to the shot noise@8#.
Alternatively, rotated quadrature operators could be int
duced by identifying F̂5 x̂w and choosinguFu51/2 ~or
1/A2).

Somewhat later, D’Ariano, Macchiavello, and Paris@9#
showed that the density-matrix elements in the phot
number basis can be expressed in terms of a twofold inte
as

^nu%̂um&5E
2`

1`

dFE
0

p

dwKnm~F,w!p~F,w!. ~4!
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54 1679DIRECT SAMPLING OF DENSITY MATRICES IN . . .
To avoid the involved algorithm in Ref.@9#, much effort has
been necessary to calculate the functionsKnm(F,w) @9–12#.
The advantage of reconstruction formulas of the form of E
~4! is that they allow direct sampling of the density-matr
elements by storing the measured data after multiplica
with the sampling functionsKnm(F,w).

The question therefore arises of whether or not the F
rier transform~1! can be used for direct sampling of th
density-matrix elements in a field-strength basis. Clea
changing in Eq.~1! the integration variables by using Eq.~3!,
so that an integration with respect tow8 is performed in
place of that with respect toy, would not be very useful
since the resulting sampling functions are not bounded@10#.
Moreover, the essential advantage of the formula~1!,
namely, the reconstruction of the density matrix by means
well-established Fourier techniques would be lost. In the
lowing we develop a simple and efficient algorithm for dire
sampling of the density-matrix elements in a field-stren
basis using quasianalytical methods of Fourier transfor
The sampling functions derived in this manner are very
ementary and can be computed without effort.

Let us first introduce some mathematical basic relatio
It is well known that any absolutely integrable functio
f (x) can be approximated by linear splines with comp
support@13#. Choosing a finite set of nodes$xn%, an approxi-
mating spline functionf s(x) is given by

f s~x!5(
n

f ~xn11!BDxn ,n~x!, ~5!

whereBDxn ,n(x) denotes the hat function@13#,

BDxn ,n~x!55
x2xn

Dxn
, xn<x<xn11

xn122x

Dxn11
, xn11<x<xn12

0 elsewhere

~6!

andDxn 5 xn11 2 xn . In particular, for equidistant node
xn5nDx the hat function is denoted byNDx,n(x) and reads
as

NDx,n~x!5NS x

Dx
2nD ~7!

with

N~x!5H x, 0<x<1

22x, 1<x<2

0 elsewhere,

~8!

Dx being the mesh size.
The approximationf s(x) of f (x) can now be used to cal

culate the Fourier transform

f̃ ~k!5E
2`

1`

dxeikxf ~x! ~9!

explicitly. Replacingf (x) in Eq. ~9! by the spline function
~5!, we obtain
.
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f̃ ~k!'(
n

f ~xn11!B̃Dxn ,n~k!. ~10!

HereB̃Dxn ,n(k) is the Fourier transform ofBDxn ,n(x), which
can be easily derived to be

B̃Dxn ,n~k!5H k21@ I Dxn ,n~k!2I Dxn11 ,n11~k!# for kÞ0,

221~xn122xn! for k50,
~11!

where

I Dxn ,n~k!5
eikxn112eikxn

kDxn
. ~12!

In particular, for equidistant nodes Eq.~11! reduces to

ÑDx,n~k!5~Dx!eik~n11!Dx sinc2S 1

2
kDxD ~13!

with sinc x 5 sinx/x.
In order to apply these results to the calculation of t

twofold Fourier integral in Eq.~1!, we note that in OHT the
field distributionsp(F,w8) are usually measured on an equ
distant grid of points$Fm ,wn%. Inverting Eq.~3! yields for
F2,0

y5y~w8,F2!52
F2

uFu2 cot~w82w!, ~14!

from whichy points that correspond to equidistantw8 points
are seen to be not equidistant. Note that the density matr
known when it is known forF2 , 0. Applying Eq.~5!, we
can express the field-strength distributionp„F,w8(y,F2)… in
Eq. ~1! in terms of its values on a chosen grid of poin
$Fm ,wn% as follows:

p„F,w8~y,F2!…'(
m,n

p~Fm11 ,wn11!BDFm ,m~F!BDyn ,n~y!.

~15!

In Eq. ~15!, the hat functionBDyn ,n(y) is given according to

Eq. ~6!, where the nodesyn are determined by Eq.~14!,

yn5y~wn ,F2!, wn112wn5Dw, ~16!

the wn being the experimentally chosen phases. In the c
when Fm5mDF the hat-functionBDFm ,m(F) reduces to

NDF,m(F) defined by Eq.~7!.
Substituting in Eq.~1! for p(F,w8) the approximation

~15!, we obtain a reconstruction formula suitable for dire
sampling of the density matrix in a field-strength basis:

^F11F2 ,wu%̂uF12F2 ,w&

'(
m,n

Kmn~F1 ,F2 ,w!p~Fm11 ,wn11!, ~17!

where the sampling function, after evaluating theF integral,
is given by
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Kmn~F1 ,F2 ,w!5
1

2pE2`

1`

dxe2 ixF1B̃DFm ,m„y8~x,F2!…

3BDyn ,n~x!. ~18!

Here, B̃DFm ,m„y8(x,F2)… is simply the Fourier transform o

the hat functionBDFm ,m(F) and can be obtained from Eq

~11!. In particular, forFm 5 mDF it reduces, according to
Eq. ~13!, to ÑDF,m„y8(x,F2)…. The notation
Kmn(F1 ,F2 ,w) indicates that the sampling function depen
on w, because of the dependence onw of theyn @see Eq.~16!
together with Eq.~14!#. The Fourier integral in Eq.~18! can
be calculated by applying Eq.~5! once more. In this case
B̃DFm ,m„y8(x,F2)…BDyn ,n(x) is approximated by

B̃DFm ,m„y8~x,F2!…BDyn ,n~x!

'(
k

B̃DFm ,m„y8~xk11 ,F2!…BDyn ,n~xk11!BDxk ,k~x!,

~19!

FIG. 1. Simulation of the measurement of a set of field-stren
distributions p(Fm ,wn) of a single-photon Fock state~a!, where
150 000 events at 30 phase valueswn are assumed to be recorde
(uFu51). The relative errorse r(Fm ,wn) of the simulated distribu-
tions ~b! indicate the inaccuracies compared with their maxim
values.
where the hat functionBDxk ,k(x) can be obtained from Eq

~6! or whenxk5kDx from Eq. ~7!. Using Eq.~19! and cal-
culating the Fourier integral in Eq.~18! yields

Kmn~F1 ,F2 ,w!'
1

2p(
k

B̃DFm ,m„y8~xk11 ,F2!…

3BDyn ,n~xk11!B̃Dxk ,k~2F1!, ~20!

where B̃Dxk ,k(2F1) is obtained from Eq.~11! or when

xk5kDx from Eq. ~13!.
Equations~17! and ~20! @together with Eqs.~6! and ~11!

or ~13!# reveal that, based on Eq.~1!, the reconstruction of
the density matrix in a field-strength representation requ
sampling functions that are very elementary. In particu
there is no need for separate and lengthy calculations of s
pling functions and there are no problems of~numerical!
convergence. Since the reconstruction formula~17! is valid
for any phasew, it can be used to reconstruct the dens
matrix in various field-strength bases simultaneously. For
ample, choosing two phase valuesw 5 w1 andw 5 w1 1
p/2, the density matrix in a ‘‘position’’ and the associate
‘‘momentum’’ basis can be sampled simultaneously. Co
parison of the two representations may enable one to
criminate between structures of the quantum states un
study and systematic errors in the reconstruction meth

h

FIG. 2. Density matrix^F,wu%̂uF8,w& ~a! reconstructed from
the data in Fig. 1 and relative errors~b! indicating the inaccuracies
compared with the absolute maximum of the density ma
(uFu51). In the case of a Fock state the density matrix does
depend on the phasew of the field strength defining the basis.
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Finally, the different methods of direct sampling of the de
sity matrix may be advantageously combined, since the u
fulness of a chosen method may depend on the observa
one is interested in.

To illustrate the method, we present in Figs. 1 and 2
result of a computer simulation of direct sampling of t
density matrix of a single-photon Fock state~for a realization
of a single-photon Fock state in parametric decay see@14#!.
The reconstruction of such a state in a field-strength bas
not trivial, since the operators defining the Fock state and
basis are essentially noncommuting ones. In Fig. 1~a! the set
of field-strength distributions used in Eq.~17! is shown. It
has been obtained by simulating an OHT experiment
which the number of grid points$Fm ,wn% and the number of
sampling events are comparable with those in the exp
ments reported in Ref.@1#. Note that the field-strength distri
butions of the single-photon Fock state are phase insens
and display the typical two-peak structure. In Fig. 1~b! the
sampling noise of the field-strength distributions is plotte
The sampled density matrix is shown in Fig. 2~a!, and in Fig
2~b! the relative errors are depicted, which reveal that
method yields the density matrix with suitable accura
compared with the noise in the recorded data. Note that
relative errors in Figs. 1~b! and 2~b! are defined with respec
s
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to the maxima of the field-strength distributions and the d
sity matrix in Figs. 1~a! and 2~a!, respectively. Since field-
strength distributions for different values of the phase para
eter represent distributions for noncommuting observab
the information on the maximum values of the field-streng
distributions for different values of the phase in Fig. 1~a! is
contained in the off-diagonal elements of the density mat
the absolute values of which are smaller than the maxim
values of the diagonal elements. This explains the fact
the values of the relative errors in Fig. 2~b! are smaller than
those in Fig. 1~b!.

In conclusion we have derived a simple method for dir
sampling of the density matrix in field-strength or gener
ized position~momentum! bases. It relies on approximate
quasianalytical methods of Fourier transforms, which yie
very elementary expressions for the desired sampling fu
tions. This opens the possibility of sampling the density m
trix of either radiation or matter in different representation
by varying the phase of the observable defining the ba
The method developed here directly applies to the pionee
experiments@1,5#.
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