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Direct sampling of density matrices in field-strength bases
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A simple and efficient method for direct sampling of the density matrix of a signal mode in optical homo-
dyne tomography is developed. The method is based on approximate, quasianalytical techniques of Fourier
transform and yields the density matrix in an arbitrary field-strength basis. It is also suitable for direct sampling
of density matrices of matter systems in generalized position or momentum [&$850-294{6)03108-3

PACS numbe(s): 42.50.Dv, 42.50.Ar, 03.65.Bz

The determination of the density matrices of quantum syserror control. As was shown by #m and co-worker§7,8],
tems is of fundamental interest, since they contain all knowthe density-matrix elements in a field-strength basis can sim-
able information on the systems. When the density matrix oply be given in terms of twofold Fourier transforms of the
a system can be obtained from some kind of measuremerfi¢ld-strength distributions measured in OHT:
the full quantum-statistical information on it is available, at
least in principle. Moreover, measurement of the quantum R
state in different Hilbert-space bases can give specific insigk{tf1+f2,¢|9|f1—fz )
into the quantum structure of a system. In this context effi-
cient and simple methods are required in order to reconstruct _ i dy e_iy]:]-J'+xd]: 6 p(Fo), @
the quantum state from an appropriate set of measured data. 27 ) —w

Recently Smitheyet al. [1] have demonstrated the feasi-
bility of reconstruction of the quantum state of a radiation-where
field mode by means of optical homodyne tomography
(OHT). Measuring the difference-count statistics in balanced
homodyne detection for various phase differences between ., 75 5
signal mode and local oscillator yields the probability distri- y' =y'(y,.F2)= WW , @
butions of scaledelectric or magneticfield strengths of the
signal mode for various phase parame{&8]. Knowledge
of the field-strength distributions for a sufficiently dense set 1 F»
of phase parameters within an interval of sizeéhen allows =9 (y,Fp)= >t qo—ar% B +iy
one to reconstruct the quantum state of the signal mode in

terms ofs-parametrized quasidistributiofé]. In particular, |y Eq. (1), the | F,¢) are the eigenvectors of the field-

the measured field-strength distributions can be expressed gﬂrength operatd = Fa + F*a' defining the basis' and
terms of marginal distributions of the Wigner function. Theé1 are the photon creation and destruction operators, respec-

corresponding integral relations, given for a set of phase pa- , A N o
rameters, can be inverted to reconstruct the Wigner functiont'YEIY’ apd P(F.¢") - (F.¢'|e|F,¢") is the probability
Practically, this can be done by the method of inverse Radoffistribution for ?he field strength at phage’. The mode
transform [1], which corresponds to a threefold integral function F=_|F|e ¥ can be_chosen to specify the kind of f|eld
transform[4]. Subsequently, the density matrix in a field- (€-0- €lectric or magneticunder study or, for comparing
strength basis can be obtained by Fourier transforming th@ith experiments, it can be related to the shot ndigp
Wigner function. It is worth noting that closely related ex- A\ltérnatively, rotated guadrature operators could be intro-
periments have been performed to reconstruct quantum statdgced by identifyingF =X, and choosing|F|=1/2 (or
of molecular vibrationg5], where the freely evolving posi- 1N2).
tion plays the role of the radiation field strengths in optics. Somewhat later, D’Ariano, Macchiavello, and Paj
Moreover, a tomographic method for the reconstruction oshowed that the density-matrix elements in the photon-
quantum states of the trapped-ion motion has been propos&§mber basis can be expressed in terms of a twofold integral
[6]. as

In practice methods are desired that enable one to obtain

the density matrix or other representatives of the quantum <n|é|m>= fﬂd]-'J’wd(pIC (F.)p(F, ). (4)
state as directly as possible from the measured data including - 0 nm '

+ oo
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To avoid the involved algorithm in Ref9], much effort has - ~
been necessary to calculate the functidiag,(F,¢) [9-12. ko~ f(Xn+1)Bax, .n(K). (10
The advantage of reconstruction formulas of the form of Eq. "
(4) is that they allow direct sampling of the density-matrix 3 ; ; .
elements by storing the measured data after multiplicatior'#ereBAXn'”gk) 'S t.he Fourier transform ., n(x), which
with the sampling function&,,(F, ¢). can be easily derived to be

The question therefore arises of whether or not the Fou- 1 .
rier transform(1) can be used for direct sampling of the By (k)= K [IAan“(k) lAXnan*l(k)] for k#0,
density-matrix elements in a field-strength basis. Clearly, ~*n" 27X (Xp1 20— Xp) for k=0,
changing in Eq(1) the integration variables by using BS), (11
so that an integration with respect to' is performed in
place of that with respect ty, would not be very useful, Where
since the resulting sampling functions are not boundeil
Moreover, the essential advantage of the formyia, -

. . . IAx n(k)

namely, the reconstruction of the density matrix by means of n
well-established Fourier techniques would be lost. In the fol- ) o
lowing we develop a simple and efficient algorithm for direct IN particular, for equidistant nodes E@.1) reduces to
sampling of the density-matrix elements in a field-strength
basis using quasianalytical'methods. of Fourier transforms. “N'AX (k)= (Ax)elk(n+ DA sincz(lkAx) (13)
The sampling functions derived in this manner are very el- ' 2
ementary and can be computed without effort. o )

Let us first introduce some mathematical basic relationsWith sincx = sinx/x. _
It is well known that any absolutely integrable function In order to apply these results to the calculation of the
f(x) can be approximated by linear splines with compactwofold Fourier integral in Eq(1), we note that in OHT the.
support 13]. Choosing a finite set of nod¢s,,}, an approxi- f|§ld dlstrlputlonsp(f,¢ ) are usually_ measured on an equi-
mating spline functiorf(x) is given by c]i-lstagt grid of pointy 7, ¢n}. Inverting Eq.(3) yields for

5<

eik><n+ 1 eikxn

KAXp, (12

fo(X)= 2 f(Xns1)Bax n(X), (5) %
" Y=y(¢' F2)=~ gz cote’ @), (14)

whereB,, ,(x) denotes the hat functidri 3],
" from whichy points that correspond to equidistagt points

X—Xp are seen to be not equidistant. Note that the density matrix is
Ax, XnSXSXnt1 known when it is known fotF, < 0. Applying Eq.(5), we
can express the field-strength distributio€F, ¢’ (y,F>)) in
Bax, n(X)=1{ Xn+2—X e (6)  Eq. (1) in terms of its values on a chosen grid of points
Axy B nriSXSXne2 {Fm,¢n} as follows:

0 elsewhere

Foo' (¥, Fo)~ Fnt1s B B .
andAx, = X,+1 — X,. In particular, for equidistant nodes PIF.'(y. F2)) % P+ 1)Baz, m{F)Bay, nl)

X,=nNAx the hat function is denoted byt,, ,(x) and reads (15
as
In Eq. (15), the hat functiorBAyn,n(y) is given according to
X Eq. (6), where the nodeg,, are determined by Edq14),
NAx,n(X):N<R_n) (7) "
Yo=Y(@n,F2), @ni1—en=A¢, (16)
with
the ¢, being the experimentally chosen phases. In the case
X, 0=sx=l1 when F,=mAF the hat-functionBAfm,m(f) reduces to
N(x)={ 2-x, 1=x=2 ®  Nagn(P) defined by Eq(7). I
titut . ') imati
0 elsewhere, ubstituting in Eq.(1) for p(F,¢') the approximation

Ax being the mesh size sampling of the density matrix in a field-strength basis:

The approximatiorf ((x) of f(x) can now be used to cal-

culate the Fourier transform (Fit Forele| Fu—Fo0)
—~ +OO .
f(k)ZJ dxd**f(x) 9 ”%} Kin(F1:F2,@)P(Fms1,@n+1) 17

explicitly. Replacingf(x) in Eq. (9) by the spline function where the sampling function, after evaluating théntegral,
(5), we obtain is given by

(15), we obtain a reconstruction formula suitable for direct
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FIG. 2. Density matrix(]—",<p|é|]—"’,go> (a) reconstructed from
the data in Fig. 1 and relative errafts) indicating the inaccuracies
FIG. 1. Simulation of the measurement of a set of field-strengthcompared with the absolute maximum of the density matrix
distributions p(F,,¢,) of a single-photon Fock stat@), where  (|F|=1). In the case of a Fock state the density matrix does not
150 000 events at 30 phase valugsare assumed to be recorded depend on the phase of the field strength defining the basis.
([F|=1). The relative errorg, (F,,¢,) of the simulated distribu-
tions (b) indicate the inaccuracies compared with their maximumwhere the hat fUﬂCtiOfBAxk,k(X) can be obtained from Eq.

values. (6) or whenx,=kAx from Eq. (7). Using Eq.(19) and cal-
culating the Fourier integral in Eq18) yields

1 [+ o~
Kl Py Fon)= 5= | axe By oty (6. F) B
- mnl/1,772,0)~ 5— ar mlyY (Xee1,772
2 k m?
X BAyn ,n(x)- (18) ~
X BAyn,n(Xk+l)BAxk,k(_~7:1)a (20)

Here,IHBJAfm,m(y’(x,}‘z)) is simply the Fourier transform of

_ ) where I§AX «(—Fy) is obtained from Eq.(11) or when
the hat funcUonBA;m,m(]:) and can be obtained from Eq. K

xx=kAx from Eq. (13).
(12). In particular, forF, = mAF it reduces, according to Equations(17) and (20) [together with Eqs(6) and (11)
Eq. (13, to  Nazm(y' (X,72)). The notation or (13)] reveal that, based on E(L), the reconstruction of
Kmn(F1,%2,¢) indicates that the sampling function dependsthe density matrix in a field-strength representation requires
on ¢, because of the dependencegnf they, [see Eq(16)  sampling functions that are very elementary. In particular,
together with Eq(14)]. The Fourier integral in Eq(18) can  there is no need for separate and lengthy calculations of sam-
be calculated by applying E45) once more. In this case pling functions and there are no problems (oimerica)
EAFm,m(y,(X!}—Z))BAyn,n(X) is approximated by convergence. Since the reconstruction formi@ is valid
for any phasep, it can be used to reconstruct the density
_ matrix in various field-strength bases simultaneously. For ex-
Bar, .m(Y'(X,F2))Bay,n(X) ample, choosing two phase valugs= ¢, andgp = ¢; +
/2, the density matrix in a “position” and the associated
“momentum” basis can be sampled simultaneously. Com-
~S B / parison of the two representations may enable one to dis-
; Bar, m(Y' (Xcr1,72))Bay, n(Xi+1)Bax, k(X), criminate between structures of the quantum states under
(29 study and systematic errors in the reconstruction method.
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Finally, the different methods of direct sampling of the den-to the maxima of the field-strength distributions and the den-
sity matrix may be advantageously combined, since the usesity matrix in Figs. 1a) and Za), respectively. Since field-
fulness of a chosen method may depend on the observablggength distributions for different values of the phase param-
one is interested in. eter represent distributions for noncommuting observables,
To illustrate the method, we present in Figs. 1 and 2 thehe information on the maximum values of the field-strength
result of a computer simulation of direct sampling of the gjstributions for different values of the phase in Figa)lis
density matrix of a single-photon Fock stéter a realization  ¢ontained in the off-diagonal elements of the density matrix,
of a single-photon Fock state in parametric decay[$4d.  the absolute values of which are smaller than the maximum
The reconstruction of such a state in a field-strength basis i$;|,es of the diagonal elements. This explains the fact that

not trivial, since the operators defining the Fock state and thg, ., | a1ues of the relative errors in Fig( are smaller than
basis are essentially noncommuting ones. In Fig) the set those in Fig. 1b) ‘

E;:eklji-::]reggttgindelzmt?;tggqsu|l§i?1?; IgnE%BTISeigz\:\ill:{ellgt in In cpnclusion we hgve deriyeq a.simple method for direct
which the number of grid point&7, . e,} and the number of _sampllng. pf the density matrix in f|eld_—strength or ggneral—
sampling events are comparablgywri]th those in the experi'—Zed _posmoln(momentun)l bases.'lt relies on approximate,
ments reported in Refl]. Note that the field-strength distri- quasianalytical methods .Of Fourier transforms, Wh'.Ch yield
butions of the single—ph(.)ton Fock state are phase insensitive. eler_nentary expressm_n_s_for the des_|red samplm_g func-
and display the typical two-peak structure. In Figb)lthe ffons. This opens the possibility of sampling the density ma-
. . : o ' trix of either radiation or matter in different representations,
sampling noise of the field-strength distributions is plotted

. o g S F ‘by varying the phase of the observable defining the basis.
The sampled_densny matrix Is shown in F.'ga)z and in Fig The method developed here directly applies to the pioneering
2(b) the relative errors are depicted, which reveal that theex erimentg1,5]
method vyields the density matrix with suitable accuracy P o
compared with the noise in the recorded data. Note that the This work was supported by the Deutsche Forschungsge-

relative errors in Figs. (b) and 2Zb) are defined with respect meinschatt.
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