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Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates
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Using the Green-function approach to the problem of quantization of the phenomenological Maxwell theory,
the propagation of quantized radiation through dispersive and absorptive multilayer dielectric plates is studied.
Input-output relations are derived, with special emphasis on the determination of the quantum noise generators
associated with the absorption of radiation inside the dielectric matter. The input-output relations are used to
express arbitrary correlation functions of the outgoing field in terms of correlation functions of the incoming
field and those of the noise generators. To illustrate the theory, photons at dielectric tunneling barriers are
considered. It is shown that inclusion in the calculations of losses in the photonic band gaps may substantially
change the barrier traversal tim¢§1050-294{@6)02508-5

PACS numbgs): 42.50.Ct, 42.25.Bs, 42.79e, 73.40.Gk

I. INTRODUCTION tum noise theorysee, e.9.,19]), in which the explicit nature
of the input from a heat bath, and the output into it, is taken

It is well known that the use of instruments in optical into account. The advantage of the quantum-field-theoretical
experiments needs careful examination with regard to theiapproach is that it enables one to obtain the input-output
action on the quantum statistics of the light under study. Irrelations including their dependence on frequency through
particular, the presence of passive instruments that may bgeometry and dispersive and absorptive properties of the lay-
regarded as macroscopic dielectric bodies responding lirers, because it consistently accounts for the effects of
early to radiation can be included in the theory by quantizaradiation-field propagation according to tfghenomenologi-
tion of the phenomenological Maxwell theory for radiation cal) quantum Maxwell equations.
in linear inhomogeneous dielectrics. The formalism was first It is well known that when dielectric matter in free space
developed for dispersionless and lossless dielecffiesf] is considered and the imaginary part of the permittivity may
and successfully applied to the study of the action of varioude disregardedprovided that the losses in the chosen fre-
devices, such as dielectric plates and interfdde6] and quency interval are sufficiently smalthen the input-output
optical cavitied7,8]. When broadband radiation propagatesrelations correspond to unitary transformations between
through dielectric devices the effects of dispersion and abiput- and output-mode operatof20,21]. These concepts
sorption, which are related to each other by the Kramersfail when the effect of absorption of radiation through the
Kronig relations, must necessarily be taken into account. Irlielectric matter is taken into account. In this case the out-
this context, a number of questions have arisen, such as tlgoing fields are not only related to the incoming fields but
question about the velocity at which a single-photon wavealso to appropriately chosen noise sourf2®]. Neglect of
packet travels in absorbing dielectric matter under the influthese supplementary contributions would unavoidably lead
ence of normal and/or anomalous dispersion. Needless tm a violation of the canonical commutation relations for the
say, absorption also introduces additional noise, at least theutgoing fields, and hence effects of quantum noise would be
(quantum vacuum noise. left out.

The problem of describing the effects of dispersive and Knowing the input-output relations, the properties of the
absorptive linear dielectric devices on quantized radiatioroutgoing fields can be obtained from those of the incoming
has been considered in a number of papers and various qudields and the dielectric-matter excitations. The multilayer
tization schemes have been propo$@dl17. As we have dielectric structure under study may serve as a model for a
recently shown, quantization of the radiation field within thenumber of devices, such as mirrors, beam splitters, interfer-
framework of the phenomenological Maxwell theawyith ometers, and optical fibers. In particular, multilayer dielectric
given complex permittivity in the frequency domaicean be  mirrors may be regarded as tunnel barriers for phof@3$
performed using a Green-function expansion of the operatcand can be used in order to measure barrier traversal times,
of the vector potential [16,18. This quantum-field- as has recently been demonstrated in two-photon interference
theoretical formalism, which may be regarded as a generaliexperiments[24—-27. In this context, we demonstrate the
zation of the familiar concepts of mode expansion, applies tinfluence of losses in the photonic barriers on the apparently
both homogeneous and inhomogeneous dielectric matter arsdiperluminal behavior of photons at such barriers and show
is consistent with both the Kramers-Kronig relations and thehat losses can substantially change the values of the tra-
canonical(equal-time field commutation relations in QED. versal times.

In the present paper we use the method in order to study The paper is organized as follows. In Sec. Il the Green-
the behavior of quantized radiation in the presence ofunction approach to the quantization of radiation in disper-
multilayer dielectric plates and to derive input-output rela-sive and lossy linear dielectrics is summarized. Applying the
tions. The calculation of input-output relations is commonlyquantization scheme to radiation propagating through
based on a development of the familiar formalism of quan-multilayer dielectric plates, in Sec. Il input-output relations
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are derived. In Sec. IV these relations are used to study nor-
mally ordered correlation functions of the outgoing fields,
with special emphasis on the problem of photon tunneling

through absorbing barriers. Finally, a summary and som@nd tending to zero as— = . It can be show16,1§ that

G(x,x",w)=86(x—x") (10

conclusions are given in Sec. V. the quantization scheme outlined above ensures that the
(Schralingen operators of the vector potential and the
Il. QUANTIZATION SCHEME electric-field strength,

A. Green-function approach

Let us consider linearly polarized radiation propagating in Alx)= fo do Alx,w)+H.c, (1D

the x direction and allow for the presence of a multilayer
dielectric plate characterized in terms of a frequency- A (e
dependent permittivitye (X, w) that varies inx direction and E(x)= 'f
obeys, for causality reasons, the Kramers-Kronig relations.

Introducing the vector potenti&l(x,t) and using the relation  satisfy the well-known canonical commutation relation

dw o A(X,w)+H.c., (12)
0

t
D(X,t): €p

E(x,t)+f

_drx(t=7E(X,7) D [A(x),é(x’)]z—/:l—zé(x—x’). (13)
0

'Eilén:s_yﬁe)l(,j the classical phenomenological Maxwell equa- B. Quantum Langevin equations
From Egs.(11), (9), and(10) we see that the problem of
determining the operator of the vector potential reduces to
the calculation of the classical Green function. Before per-
(2)  forming the calculations for multilayer dielectric plates, let

us summarize some results for homogeneous dielectrics,

&2

17. t .
&_XZA(X’U_CT A(X,t)+f7xd7')((t—7')A(X,T) =0,

which in the frequency domain reads as where
s AX,0)=0 3 o= = [ akdoe &
W"‘?G(X,w) (X,w)=0. 3 G(x,x ’w)_ﬁjﬂc wle(w) =Kz
Equation (3) may be transferred to quantum theory as N0 1 N0 ,
follows [16,18: =|2ion(w)| ex |En(w)|x—x |
2w A s (14)
W—l— ?e(x,w) A(X,w)=j(X,w), (4) Here
where the “current” operator N(w)=e(w)=B(w)+iy(w) (15)
- _w | h 2 is the complex refractive index. Using EqS) and(14), Eq.
1X0)== meg A €i(x0)f(x0) ®) (11) may be rewritten as
is introduced to take into account the noise owing to absorp- Ax)= %d f B(w)
tion. In Eq.(5), f(x,w) andf'(x,w) are bosonic field opera- )= 0 @ drcwegB(w)An(w)
tors, .
R ) X[elﬁ(w)wxlca+(x’w)
f(X,w),fT(x",0)]=6(x—x")é(0—o'), 6 . R
[fOe) P 0)]=dx=xDdw—wl), (6 +e 1AW (x w)]+H.c., (16)
[?(X,w),?(x’,w’)]:[?T(X,w),,f'r(x’,w’)]zo, (7) Where the Operators
and 1 )
. 8- (x,0)= T\ 2(w) [T
E(Xaw): er(wi)—"_lei(wi) (8) ! C
(A, normalization area in thgz plang. The solution of Eq. X Jixdxfefinm)wX’/cf(ixr,w) (17)
(4) may be given by o

- R associated with the waves propagating to the righ) @nd
A(X-“’):f dx'G(x,x", @)j (X", ), (9 left () are introduced. In the limiting case when the ab-

sorption may be disregardefy(w)w|x—x'|/c—0], Eq.

whereG(x,x',w) is the classical Green function obeying the (16) reduces to the familiar mode-expansion re$ti,18.

equation In particular, the operatora..(x,») and éL(x,w) become
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N
e(x,0)=2, \j(X)¢j(w), (23)
o o o o e o o j=1
e °° ¢ * where
(o] o o o [ ) [ ] L}
1 if X <x<X;
o o o o o -1 J
(x)= 24
o o o o o o M) 0 otherwise @49
° °° ¢ is the characteristic function of thgth slab f&,— —oe,
© o o o / ¢ o o Xy— ). In particular, forN=3 the system represents an
(N—2)-slab dielectric plate surrounded by dielectric matter
1 2 3 whose permittivity on the left and right, respectively, is
- ' €,(w) and ey(w). To determine the Green function
—1/2 l/2 z G(x,x’,w) that satisfies Eq(10) (and vanishes at infinijy

we note thaiG(x,x’,w) can be decomposed into two parts,

FIG. 1. Scheme of the single-slab dielectric plé2g of thick-

nessl embedded in dielectric mattét and 3. GOxx",w)=Go(X,X", ) + Gy (X, X', ), (29

) ) . where, according to Eq14),
independent ok and satisfy the well-known commutation

relations for photon destruction and creation operators, re- N
spectively. Go(X, X", w)= E Nj(X)N(X")

Equation (17) implies that the operatora. (x,) and N
a.(x’',w) can be related to each other as

-1

)
2|Enj(w)

w
xexp{i E”j(w)|x—x’| , 26
é.+(X, (1)) = é.+(X, , a))e1 Yw)o(x—x")lc
andG;(x,x’,w) is the solution of the homogeneous equation

X ~ —
+f dy F.(y,w)e* "@el-vic (18 2 2
XI

OX 2+ 2 E(X w) 1(X,X’,w)=0, (27)

where
which implies that

) 1 - .
F.(x0)= ti—\/zy(w)%e“/;(wwcr(x,w). (19 N

G(X, X', w) :2 j(X)[Cl(l)(X’,w)emi(w)“”(/c

Hence the operatog. (x,») obey quantum Langevin equa- , Cinore
tions in the space domari8], +CI2(x,w)eMil@exc], (28)

© A Clearly, theC)(x’,w) andC{?(x’,w) must be determined
é\i(x,w)=Iy(a))géi(x,w)-l—lzt(x,w), (200 in such a way thaG(x,x’,w) vanishes at infinity and is
continuously differentiable at the surfaces of discontinuity.
The somewhat lengthy calculations may be performed in a
straightforward way. For the simplest case of a single-slab
dielectric plate embedded in dielectric mattdr= 3, cf. Fig.
1), the result is given in Appendix A. Because of the volu-

ax

where the operator’éi(x,w) may be regarded as Langevin
noise sources,

[IA:i(x w)'ﬁi(xl,w,)]zzy(a))ﬂa(x_xl)(s(w_ ®'), ggogas,sf;rmulas, we renounce their presentation for the gen-
(21) Combining Eqs(9) and(25) [together with Eqs(26) and

(28)], the (Schralinge) operator of the vector potential
A(x) for the jth domain (=1, ... N) may be represented
as, similar to Eq(16),

. ~ o * / ﬂj(w)
(22 A(X)_jo de 477Cweoﬂj(w).An (w)

x[eAilexley; (x,w)

[E.(x0),aL (X, 0')]= i@(ix’ix)Zy(w)%

xea~ Y(w)o|x’ 7X|/C§(w_ (1)')

Ill. INPUT-OUTPUT RELATIONS )
+e Ailwlexey, (x,w)]+H.c. (29)
We now turn to the problem of propagation of quantized
radiation through multilayer dielectric plates. AssumiNg  (x;_1<X=X;), where the dependence &rof the amplitude
dielectric slabs, the interfaces being parallel to ylzeplane operator91+(x w) is governed by quantum Langevin equa-
(cf. Figs. 1 and P, the permittivity may be given by tions of the type given in Eq(20) together with Eqs(19)
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and (21) [B(w),y(w)— Bj(w),yj(w)], so thata;.(x,w) e L w
can be represented in the for(h8), viz., c.(l,w)=e 72 (@) vo(w) |
éji(xyw):éji(X',w)eiy"(w)w(xfxr)lc +e valwollc_—__gjn 2@ 3
) — ,82((1)) BZ((U) c ' ( 7)
A. Fyi(w)o(x—y)/
+ L/dy Fja(y, @)™ emie @0 g recalling Eqs(6) and (7), we find that
[6W(0),@P(0"))=8w-w), (38)

(Xj—1=X,X"=<X;), where

1
J+(x(u) * 2y,(w)—e+'ﬁj<m’°f(xm 3D gince

. 3 EOPITINN
Since the relations between. (x,w) andf(x,») sensitively [81+(X,0),(@="(«")']=0
depend on the actual expression @&fx,x’, ), the commu- =[a3_(X,w), (g<1>(a,/))‘r]
tation relations(22) [that are based on E@17)] cannot be
applied in general. Successive application of E2)) en-
ables one to relate théamplitude operatorsa;_(x,w)
(—oosx<xX;) anday, (X,0) (Xy_1=x=c=) for the outgo-
ing fields to the left and right, respectively, to the operators
of the corresponding incoming fieldsa, . (x,») and
an—_(x,w), and operator noise sources associated with th
losses owing to absorption.

[6(0), @Y (o' )]=0. (39)

(40)

[Eqg. (B23)], the incoming-fieldamplitude operators and the
operatorsg(l)(w) (g(l)) (w) may be regarded as being inde-
pendent variablegote thata, . , a5, andg‘ commuts.
Moreover, theg'™(w) and (§)"(w), respectively, which
are obviously destruction and creation operators of bosonic
excitations associated with the plate, play the role of the
) ) ) additional operator noise sources in the input-output relations
A. Single-slab dielectric plate

To illustrate the procedure outlined, let us first study the [ &1 (= zl,0)| ~ (& (—3lw)| _ [§¥(w)
input-output relations for a single-slab dielectric plate of =T +AW 59 (o)
thicknesd embedded in twddifferent dielectrics N=3, cf. g9-
Fig. 1). Substituting in Eq(9) for G(x,x’,w) the expression (42)
(A1) given in Appendix A and introducing th@mplitud®  gerived in Appendix B1[Eq. (B5)], the elements of the
operators a;.(X,w), —oosx<-1/2, and az.(X,o), 2% 2 matrices
[/2<x=<x [Appendix B 1, Eqs(B1)—(B4)], the input opera-

a3+(%|!w) é3_(%|,0))

tors are found to satisfy the commutation relations - (111)(w) T8 (w )> w
[y, (x,0),3], (X ,0")]=e Mk Xleg( o), 21(0) Th(0)
(32 and
[85-(x,0),8] (X' 0")]=e" 2ol 50—0), ~o_[AT(0) AZ(0)
(33 = (1)(00) (1)( ) (43
(A, (X,0),a,_(X',0')]=0 (349  being given in Egs(B6)—(B13) [note the simplifications

(B14)—(B19) when the plate is surrounded by vacuurm

[Egs.(B20)—(B22)], so that the input fields from the left and EQ. (41) the (amplitude operators of the outgoing fields,
right behave like the fields in the corresponding bulk dielec-21-(—1/2,0) andag, (1/2,0), are expressed in terms of the
trics and may be regarded as independent variables. Note tHaerators  of the incoming fieldsa,.(—1/2,w) and
a;. (X, 0),35_(X,w) are commuting quantities. a;_(1/2,0), and the operator noise sourcg§’(w). The
Defining operators characteristic transformation matrix of the pIaTé which
for an approximately lossless dielectric plate in free space
gP(w)=[2c.(l,0)] Y19" (0)*q" (w)], (35  reduces to the well-known characteristic matrix given, e.g.,
- in [28], describes the effects of transmission and reflection of
the input fields, whereas the losses inside the plate give rise
to an additional matrixA(*), which may be called the char-
o 2 acteristic absorption _matrix. _
9. (w)= _\[emz )wl/(2¢) dxreiinz(w)wx’/c%(xr,w) It §hou|d be mentioned Ehat the output amphtudg opera-
- c ~1/2 tors a;_(x), x<—1/2, andas, (x), x=1/2, can easily be
(36)  obtained from Eq(30), with x’=—1/2 andx’ =1/2, respec-
tively, and application of the input-output relatio@@l). The
and resulting representation of the outgoing fields is of course

where



54 QUANTUM-OPTICAL INPUT-OUTPUT RELATIONS FOR ... 1665

[0 (), @ *(0")'1=0, (49
[81+(%,0),@" ?(0")'=0

A N i

EE =[Ay-(x,0), @M P (0" )], (50)

1 2| o o o N-2 N-1 N The input-output relation&4) [together with the commu-
tation relations(45)—(50)] apply to arbitrary multislab di-
electric equipment described in terms of a complex permit-

— ' tivity that spatially varies as a multistep function and whose
ai- an-1,- an- dependence on frequency is consistent with the Kramers-
Kronig relations over the whole frequency domain. Typical
examples are fractionally transparent dielectric mirrors and
combinations of them, such as resonatorlike cavities
bounded by dielectric walls. In particular, when the overall
' ' ' device is surrounded by vacuum, so that the incoming and
T T2 IN-3 TN-2 IN-1 T . - . .
outgoing radiation fields propagate in free space,
FIG. 2. Scheme of the multilayer dielectric configuration, the n(w)=ny(w)=1, (52
arrows together with the amplitude operators indicating incoming
and outgoing fields. the familiar mode expansions for the input and outfirge)

fields are recognized. Fgr=1, N Eq. (29) takes the form
fully equivalent to the Green’s function expansion primarily

used. The commutation relations for the output amplitude ~ (" / h
operators are given in Appendix BEgs. (B24)—(B26)]. AX)= 0 do AmCwenA

They differ, in general, from those given in Eq82)—(34)

for the input operators. The differences vanish when the dis- x[e'“¥q;, (w)+e ¥y _(w)]+H.c., (52)
tances from the plate are large compared with(thassical
absorption length or when the plate is in free space. where the input and output operat@rs. (o) [é}i(w)] and
an-(w) [a}.(w)], respectively, are proper(space-
B. Multilayer dielectric plates independentphoton destructioricreation) operators, and
The results given in Sec. Ill A can be extended to an A, (o) 4. ()
arbitrary multislab dielectric structuréN& 3, cf. Fig. 2 in a ( - = ) :~<N—2)( - 1+ )
straightforward way(for details see Appendix B)2In par- an+(w) ay-(w)
ticular, the input-output relations may be given by ~(N—2)
~ o 9% (w)
a;_(Xy,0) a; (X, 0) +AM 2)( ~(N-2) ) (53
( -\ ):T(NZ)(A +1%1 ) 0o w)

an+(Xn-1,) an-(Xy-1,@)

The influence of the plate on the incident light through re-
- (f:](l\"z)(w) flection and transmission from the two sides is described by
+AN2 G0N ()] (44 the matrix element3 N~ ?(w), whereas the matrix elements
9- AN~?(w) arise from absorption. From Eq&t5)—(47), the
Here,x=x, andx=Xxy_, respectively, are the left and right bosonic commutation relations for the input-mode operators
surfaces of the multislab plat@ote that for the single-slab 21+(@), () are easily seen to be satisfied. Using them
plate,N=3, the notations; = — /2 andxy_,=x,=1/2 have ~ and recalling the commutation rul¢48)—(50), the bosonic
been used The commutation rules for the input operators COmmutation relations for the output-mode operators
a;. (X, ), éL(x,w) (—oo<x<x,), y_ (X ), éL_(x,w) gl,(w), an.(w) can then be obtained by means of the
(xy_1=<x=%), and the noise operato&N—Z)(w) are the input-output relation$53), because the relations

same as in the preceding section, i.e., - , _ _
PrECEEns T2+ T2+ Al 2P+ AL 27

[al*(x"")'é‘h(x"“")]:e”(“')w'”"’cé(w—w’)(,%) =[TO 212+ [T 212+ AR 22+ AN 22=1 (54
and
[An_ (X, 0), 8 (X', 0")]=e W@ X Tes5(— o), e ) e o -
(46 T O(Te ) TR (T )AL (A )
A At ’ N — 127 22* —
(a1 (X,w),ay_ (X' ,0')]=0, (47) + AN 2)(A(N 2>)* 0 (55

A (N-2) A(N=2)  1unt ) are valid[see Appendixes B 1 and B.ZFor notational con-
[0y “(0),@ “(')']=6w-0"), (48)  venience, the frequency arguments of the matrix elements
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T andA§} "2 are omitted. In particular, these relations the photon creation and destruction operat(ee, e.g.,
reflect the fact that the sum of the probabilities for reflection [4,30]). Introducmg the notationsa;=a;,, a,=ay-,
transmission, and absorption of a photon is equal to unity. IBj=a,_, a;=ay,; andg,= g(N 2) , 0> g(N 2) | from Egs.
the losses inside the plate can approximately be disregarded,2) and (52), the electric-field strength of the outgoing ra-

AN=2~0, the well-known method of unitary transforma- diation in theith channel (=1,2) reads as
tion is recognized. In this case the relatiofa}) and (55)

Slmpllfy to éi/(x):E/i(+)(x)+é/i(—)(x)' (58)
T R T T L 6 p—
E'§+>(x)=if do\/ o7& "8/ (w), (59
TN (TN=2yx 4 TN=2)(TN=2)yx _ (57) 0 mCeo
so thatT™N~2) becomes a unitary matrix. Since the photon B0 =[E" (M0 60)

operators of the output and input modes are uniquely related
to each other through a unitary transformation, the bosoni¢, =1, 5,=-1), where the output-photon operators
commutation relations are automatically preserved. In genj, ,(w) can be related to the input-photon operatay&w)
eral, theT™~2) matrix is not unitary and the output-mode as, according to E¢53),

operators are obtained, according to Esg), from both the

input-mode operators and the noise operators associated with 2

the losses. The relatior{§4) and(55), which are the natural N _ . A _ A

generalization of the relatior{§6) and(57), may be regarded 3 (@)= 21 [Ti(@)a )+ Ai(w)0(w)] 61

as necessary conditions imposed on T2 and A(N-2)

matrices of an arbitrary dispersive and absorptive multislaj Tix(@) =T (), Ax(0)=Al"?(w)]. To express the
dielectric device in free space. It should be emphasized thatormally ordered electric-field correlation functions of the
these conditions need not be postulated, but they necessaribyitgoing radiation,

come out of the theory, which also enables one to systemati-
cally calculate both th@N~2) and A(N~2) matrices.

CH (ot = < [H B/ ()

IV. APPLICATIONS

A. Radiation-field correlation functions nﬁn E +) ) 62
. . . (Xt ,
The input-output relation§s3) can be used to obtain the w=m+1 (X

guantum statistical properties of the outgoing radiation from

the properties of the incoming radiation and the excitationsn terms of normally ordered correlation functions of photon
associated with the dielectric matter. With regard to meacreation and destruction operators, we use E§8—(60)
surement, the quantum statistics of radiation is frequentlyand recall the harmoniexponential time evolution of the
described in terms of normally ordered correlation functionsphoton destruction operators in the Heisenberg picture. We
such as correlation functions of the electric-field strength oobtain

j oy Vo917 f domsnVom: e inC (M ({w,}) (63

(n+m)/2

(Tiﬂ:tﬂ— ni#XM/C), where

m 2
1 2 1T (0 (0.

Cim (o) = <

A (wﬁ)gk (0,)]

m+n
él, (w ) ’
le;[+1 M >

(64)

m

CimP o= <{H &'l (w )}

+ 2
S PR UNACAENCR

which can be rewritten as, on using the input-output relations

(61), ’ A k(0,0 (0,)] ] > : (65)
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FIG. 3. The ratio of the photon-number densities of the re- FIG. 5. The ratio of the photon-number densities of the absorbed
flected outgoing field and the incoming field;(w) =Ny (w) /  field and the incoming fieldNV; = {Npni(@) — [Npn(@) +
Npna(w), as a function of frequency and plate thickness for aNph{@)]}/ Nph (@) = a1(w) = ap(w), as a function of fre-
single-resonance mediunm§=w;, I'=0.10,). quency and plate thickness for a single-resonance medium

(wo=w1, I'=0.1wg).
In particular, when the states of the incoming radiation and

. . B. Spectral photon-number densiti
the dielectric matter are not correlated to each other, the pectral photon-number densities

correlation functions of the output photons, E65), can be Let us briefly consider the photon-number densitym-
expressed in terms of sums of products of input-photon corber of photons per unit frequenkin theith output channel
relation functions (i=12),
: . Npi(@)=(&'{(0)a(w))=C'{"(w,0),  (68)
(k1) = af 3
E{m}({w“}) <L1_—[1 a'ﬂ(w”) ML[H a'u(w“)} which can easily be obtained from application of E@5)—

(66) (67). In particular, when a zero-temperature dielectric plate is
irradiated from one sidgN,, {w) = 0] we find that
and correlation functions of the excitations associated with

the dielectric matter, Nji (@) =[Tiz(0)[*Npn (@) (i=1,2). (69
p p+q As expected, the mean photon-number densities in the output
r(p.a) — at o ’ channels 1 and 2, respectively, are simply given by the mean
= ({ou}) < ,Hl g'ﬂ(w”) ,u=1_p[+l g'ﬂ(w“) input photon-number density multiplied by the reflection and

(67)  transmission coefficients. In general, the overall output

photon-number density is reduced below the input level ow-
with k,p<m andl,q=<n. Clearly, when the matter is pre- ing to absorption:

pared in an incoherent state, then the correlation functions

EEF;?)({%}) vanish whem# q (explicit expressions for the Nph (@) +Npp L @) <Npp o ). (70)
correlation functions observed when the matter is thermally In Figs. 3 and 4 the relative photon-number densities of
excited are given in Appendix)C the outgoing radiation,\N; = N,’)h (@) / Npp (@)

I T1(w)]? and N, = Nph @) / Npp (@) = [ Tou(w)]? [Eq.
(69)], are shown as functions of frequency and plate thick-

\\\\\\gl\:},.\\ ness for a single-slab plate in free space
\\\‘.%"((\\})“\\‘ [ €1(w) = €e3(w)=1]. The relative photon-number density of
SRR 3
&&)}}{{'\i\&%{{\\\\\\\\\\\\\\ the radiation absorbed by the platey,={Ny(w)—
’::::{g‘:s:ggist\\\\‘\‘(\‘\\\\\\\\z\\\\\\\\\ [NJh (@) +NJ A0) N (@)= an(w) = ay(w) is shown in
1 'oz’g.‘gg:s:;‘:{::\\\\\\\‘\\\\\\\\\\\\\)).‘;g:g Fig. 5. The results in Figs. 3—5 are given for a simple model
Nofw) 0.75 ‘\“‘%ﬁ\\\\\\}\\\\\\\\\\\}}gz"’?" . permittivity e(w)=e€,(w) based on a single medium reso-
0.5 SR
0.25 \\‘;““"m . nance,
g Lo/ f(w)=1+ ——o 1)
W)= 2

wo—wz—irw'

which enables one to clearly distinguish tlresonancere-
30 gion of frequency for which the imaginary part of the refrac-
tive index may substantially exceed the real part from other
FIG. 4. The ratio of the photon-number densities of the trans{(0ff-resonancg regions for which the imaginary part be-
mitted outgoing field and the incoming field/,(w) =N (w) / comes small.
Npni(w), as a function of frequency and plate thickness for a  For frequencies that are small compared with the medium
single-resonance mediunv{=w;, I'=0.1wg). resonance frequencys< wg) the approximately real refrac-
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tive index[n(w) = B(w) +iy(w)~ B(w)=1] gives rise to a

variation with the plate thickness of the transmitted and re: PD:
flected numbers of photons which show the oscillating be: BS
havior typical for a Fabry-Ret device. In this frequency

region the losses inside the plate may be disregarded. I

creasing the frequency, both the real and imaginary parts ¢ PD,

the refractive indexB(w) and y(w), respectively, are in-
creased. Increasing(w) implies increasing probability for 7 DB
photon absorption in the plate. Since the number of absorbe p
photons increases with the thickness of the plate, the number
of transmitted photons decreases with increasing plate thick- FIG. 6. Scheme of the two-photon interference experiment
ness. Further, owing to the increasing absolute value of thg24,25 for the determination of photon traversal times through
refractive index the number of photons that are reflected isnultilayer dielectric barriersl(, laser; P, prism; DB, dielectric
increased at the expense of the number of photons that entearrier; BS, beam splitter; PD PD,, photodetectojs
the plate. The two effects mentioned become more and more
pronounced a& approaches. In particular, in the vicinity
of the medium resonance the number of reflected photons #ehavior of photons at such barrig24—24, without con-
substantially enhanced. The photons that enter the plate atediction to Einstein’s causalify27]. Although a number of
absorbed over a short distance, so that the number of trantheoretical predictions have been verified experimentally,
mitted photons rapidly tends to zero when the thickness ofhere have been open questions, such as the effect of losses
the plate is increased. In this “surface regime” the platein the barriers.
behaves like a lossy mirror, the enhanced reflectivity being In the experimentgFig. 6, for details see Ref24]) a
caused by the large absolute value of the refractive indexpotassium dihydrogen phosphat€DP) crystal is pumped
which results, in general, from both the real and the imagiby a cw UV laser, producing pairs of down-conversion pho-
nary parts. Further increase of frequency that is associatd@ns, directed by mirrors to impinge on the surface of a
with a decrease of the real and imaginary parts of the refrad0%:50% beam splitter, the output coincidences being mea-
tive index (region of anomalous dispersipreduces the ef- sured. One photon of each pair travels through(iaierfer-
fects of strong reflection and absorption and the plate agaiameter arm I in Fig. § while the conjugate photon passes a
becomes fractionally transparent. Needless to say, for suffinultilayer dielectric barrietinterferometer arm Il in Fig. 6
ciently high frequencies when the refractive index ap-The coincidences attain a minimum when the two-photon
proaches unity the plate becomes fully transparent. wave packets overlap perfectly at the beam splitter. This can

It should be noted that when the input field is in the be achieved by translating an appropriately chosen prism in
vacuum state and the dielectric plate is in thermal equilib-one arm of the interferometer in order to compensate for the
rium, we recognize the quantum theory of thermal radiationdelay owing to the barrier.

From photodetection theory it is well knowisee, e.g.,

, L . Ref. [4]) that the joint probability of recording an event in
Non(@) =5 ailo)g(w)  (1=1.2), (72 the (smal) time intervalt,, t,;+At, and an event in the
(smal) time intervalt,, t,+ At, by the two detectors in the
where output channels of the interferometer is proportional to the
5 normally ordered intensity correlation function,
i = i 2 —r(— ~r(—
a(w)= 2 |Aw(w) 3 Plty t2) = E2ALAL(E (X t)E'S (Xs.t2)
= (+) =7 (+)

is the (th-side absorption coefficient of the plate, and XE' (%o 1) E' T (X 1) (75
1 (¢, detection efficiency Applying the results outlined in

Nin(w) = exphalkaT) -1 (74 sec. IV A, the intensity correlation function in E(75) can

be related to correlation functions of the fields in the input
(T, temperaturekg, Boltzmann constant(, length of the channels of the interferometer. Whereas the action of the
quantization volume of the radiatipriThe plate behaves like beam splitter simply reduces to a unitary transformation that
a thermal radiator which tends to a blackbody as the absorgan be assumed to be independent of frequency, the inclu-
tion becomes perfedta;(w)—1]. Note that forL—o the  sion of the multilayer barrier in one arm of the interferometer
photon numbers per unit frequency and unit lengthrequires specific knowledge of the input-output relations. To
N;I)hi(w)/*c’ remain finite. calculate the input-field correlation function, we assume that

the quantum state of the correlated photon pair can be mod-

C. Photon tunneling through absorbing barriers eled by

Let us finally outline the problem of photon tunneling o
through absorbing dielectric barriers. The question of how I\I’>=f dQ
much time is spent by a single photon in a barrier region 0
acting as a photonic band gap has been of increasing interest
and experiments have been made to observe superluminal Xér(w)éﬁ(ﬂ—wﬂo)}, (76)

Q
a(Q)fO do f(w)f(Q—w)
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deeper insight into the tunneling process. In the calculations

|T1of? the dependence on frequency of the refractive indices of
0.022 silica and titanium dioxide has been disregarded and the re-
fractive index of titanium dioxide has been assumed to be
0.02¢ real, because of the lack of reliable data. In particular, the
0.018 combination of the effects of dispersion and absorption is
expected to affect both the delay and the curvature of the
0.016 coincidences in the vicinity of the minimum, even when the
0.014 @ changes in the refractive indices are small.
0.012 ® V. SUMMARY AND CONCLUSIONS
0.01 Applying the method of Green-function expansion to the
0.008 quantization of radiation propagating through a multilayer
TV E— T B CTrS =3 =z,  dispersive and absorptive dielectric plate, we have studied

the problem of calculating the proper input-output relations
Afnm for the radiation-field operators and presented results for the
case when the radiation propagates perpendicularly to the
FIG. 7. The absolute value of the transmittafitg|® as a func-  plate. The plate is described in terms of a multistggatially
tion of the wavelength is shown for arH(LH)® structured plate  varying complex permittivity in the frequency domain,
of N4 layers of the type described in Rg24]; curve (1): lossless  which is introduced phenomenologically and only required
barrier (Wrio, = 2.22, ngjo, = 1.41), curve(2): absorbing barrier  to satisfy the Kramers-Kronig relations. The advantage of the
(Nio, = 2.22,ngj0, = 1.41+ 0.0372 [29]). method is that it enables one to obtain input-output relations
that not only apply to regions of frequency far from the me-
where the indices | and Il are used to distinguish between thgium resonances, but are valid, within the framework of the
two photons. The spectral interval of laser photons is giverphenomenological linear electrodynamics, in the whole fre-
by the functiona(£}), andf(w) centered af)/2 is the band-  quency domain.
width function of the down-conversion photons. The func-  In consequence of the inclusion of the losses in the theory
tions a(2) and f(w) are normalized to unity, so that the output-radiation-field operators are found to be related to
(¥|¥) = 1. After some lengthy but straightforward calcu- the input-radiation-field operators and operator noise sources
lation we derive the following expression for the overall co-in the plate associated with the losses, in agreement with the
incidencesR: dissipation-fluctuation theorem. Disregarding all the losses,
the characteristic absorption matrix that relates the output-
R:f dtlf dtp(ty,ty) radiation operatorg _to the operatc_)r noise_sources vanishes
and the characteristic transformation matrix that relates the
" an 1 output-radiation operators to the input operators reduces to a
:2772/\/4J' dQ{ aZ(Q)J dw<_92_w2) unitary matrix. The unitary transformation ensures that the
0 -Q/2 4 bosonic commutation relations are preserved.
When the multilayer dielectric plate is embedded in an
absorbing medium the input- and output-radiation fields can
. be described in terms of amplitude operators whose space
X[T1o( Q2+ @) —T1o( Q22— w)e‘z"”AT]] + Ry dependencdowing to damping is governed by quantum
Langevin equations. Only in the limiting case when the sur-
(77) rounding medium can be regarded as being loss[easicu-
larly, when the plate is embedded in free spase the am-
Here, A7=2s/c, wheres is the translation length of the plitude operators reduce to the well-known bosonic photon
prism, and\ = +/¢éh/(4mcepA). Since the thermal contri- operators. In this case, the characteristic transformation and
bution Ry, is independent o$, it has not been written down absorption matrices of the plate can be shown to be related to

X F4( 02— ) TE Q2+ o)

explicitly. each other through conditions that ensure preservation of the
Using the algorithm in Appendix B 2, we have performed bosonic commutation relations. These conditions can be re-
numerical calculations for ahl(LH)® structured plate H, garded as the natural generalization of the familiar unitarity

titanium dioxide;L, fused silica of \/4 layers of the type conditions for lossless plates.

described in Ref[24]. Restricting attention to narrow band-  The input-output relations can be used advantageously in
width laser light, the effect of absorption on the transmit-order to obtain the quantum statistics of the output radiation
tance of the barrier and the coincidences measured is shovirom that of the input radiation and the noise sources asso-
in Figs. 7 and 8, respectively. From these figures we see thafated with the absorbing matter. In this context, we have
the change in the barrier transmittance owing to an imagieonsidered normally ordered radiation-field correlation func-
nary part of the refractive index of silica of about 2.6% of thetions, with special emphasis on the spectral photon-number
real part(the data have been taken from RigZ9]) can give  densities. Application of the formalism to multilayer dielec-
rise to a shift of the position of the minimum of the coinci- tric barriers used in recent experiments on superluminal pho-
dences of about 19%. The result indicates that the effect dbn tunneling reveals that losses can lead to observable modi-
losses should be considered very carefully in order to gaifications in the delay times.
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the limit of vanishing absorption. In thermo field dynamics
R this limit corresponds to the zero-temperature limit that has
been shown to be essentially nonanalytical. Similar features
are also found in an indeterminacy of the dispersion rela-
tions. Absorption prevents the “spatially damped photons”
from exhibiting a well-determined relation between energy
(frequency and momentum{wave vectoy. Similarly, at fi-
nite temperature particle states achieve a continuous spec-
trum not only for the particle momentum but at the same
time for the mass parametéor any fixed value of the par-
ticle momentum
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less barriefminimum at 2.2 f$, curve(2): absorbing barrietmini- . . . .
mum at 1.8 & Let us consider a dielectric slab of thicknéssmbedded

in dielectric matter that may be different on the two sides
Finally, let us briefly comment on the underlying formal- (see Fig. 1 The Green functio(x,x", ) can be obtained

ism of quantization of the phenomenological Maxwell theoryfr(()lr;1 Egs.(29), (2?2))’ and(28), with N=3. The coefficients
for radiation in dispersive and absorptive linear media. ItC;'(x’,®) and Cj”(x’, ) in Eq. (28), j=1,2,3, must be
should be mentioned that the formalism used resembles tHéetermined from the conditions that the Green function is
concepts of generalized free-field theori4]. This type of contmuously differentiable at thg surfacgs .of discontinuity
quantum field theory has recently been applied successfull{fhat is to say, ax= *1/2) and vanishes at infinity. Note that
to thermo field dynamics for quantum fielf82]. The simi-  the latter requires the coefficient<C{"(x’,w) and
larities between the two descriptions may provide further in-C)(x’,») to be zero. Straightforward but rather lengthy
sight into the basic physical structure of the theory, such asalculation yieldd n;=n;(v)]

-1

G(X,X’,w)= @(_X/_ %'){@(_X— %|)[einlwlx—x/|/0+einlw\(—l)/Z—X'\/C

) w
2|n1€
X(r12+tlzﬂeinzwllcrdeinzwllctzﬂeinlw\(7I)/27X\/C]+[®(X+ %')—®(X— %|)]tlzﬁeinlwl(fl)ﬂfx’l/c

X(einzw\x—(—l)/z\/c+r23ein2w(l+|I/2—x\/c))+(X_ %|)einlw\(—I)/2—x’\/ctlzeinzwI/CQtzsein:%w\x—I/2|/C}

-1
+

2in,—
Ny, —

2c
X[@(X"i‘ %I)_®(X1_ %I)]{@(—X— %I)ﬂ(ein2w|x'7(fl)/2|/c+ein2w||/27x’|/Cr23ein2w|/0)t21ein1w|(7|)/27X\/C

+[O(x+ %|)—(X— %l)][ein2w|x—x’\/c+ 1c}(einzw\x’—(—I)/Z\/cr2lein2a)llt:_'_(_:‘inzw\I/Z—x’V(:)r23(_:‘in2w\ll2—x|/c

. ' . o . . e
Q9(e|n2a)\x (=h/2llc e|n2w|I/2 X \/crzaelnzwI/C)ruelnzwlx ( I)/2\/C]
-1

+®(X_ %|)ﬁ(einzw\x'7(7|)/2\/Cr21ein2a)|lc+einzw“/Z*X'|/C)t23ein3w\xfll2\/(:}+ @(Xr_ %l)

2i @
ng—

3¢
X{(_X_ %|)ein3w\x'7|/2|/Ct320ein2wllct21ein1u)|(7|)/27X\/C+[@(X+ %l)_®(x_ %l)]ein3w\x'7|/2|lc

thzﬁ(einsz/fol/c_*_einzwllchleinzw\xf(7I)/2|IC)+®(X_ %|)[ein3w|xfx’\/c+ein3w|X’7I/2|/c

X (I g+ tazﬂeinzwllcrZleinzwllctzs)einsw\xfI/2|/0]}_ (A1)
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Here, the interface reflection and transmission coefficients APPENDIX B: PHOTONIC OPERATORS, NOISE
rij=rij(w) andt;;=t;;(w), respectively, are defined by OPERATORS, INPUT-OUTPUT RELATIONS

n(w)— nj(w) 1. Single-slab dielectric plate

Mij(w)=—rji(w)= ni(w)+n(w)’ (A2) Substituting in Eq(9) for G(x,x’,») the expressiofAl)
and rewriting the result(within the space intervals
2n;(w) —oo=<x<-—1/2 andl/2=x=<x) in the form (29), we easily
tij(w)= m (A3) see that the amplitude operators of the incoming fields from

the left and right, respectivelya, . (x,») and as_(X,),
and the factord= 9(w), which arises from multiple reflec- read as
tions inside the slab, reads as

A 1 @ —vy1(w)wx/c
i A+ (X,0)= 7\ 2y1(w) e

ﬂ(w) :jzo [einz(w)wllchl(w)einz(w)wllcrziw)]j

X
I a—ing(@)ox ICE !
:[1_ein2(a))w|/cr21(w)einz(w)wllcrzg(w)]—l_ X Jiocdx € ! f(X 1‘0)1 (Bl)

(A4) 1 w
a — _av3(w)wxlc
Note that the above given form of the Green function permitsa3‘(x’w) i 27s(®) ce

of a direct physical interpretation. The terms in E4l)
simply correspond to the potential propagations of radiation > f dX/ein3(w)wx’/c'f(X/ ) (B2)
from a source poink’ to a point of observationx. x '

[nj(w)=Bj(w)+iyj(w)], and the amplitude operators of the outgoing fields to the left and right, respecéiyelk, ) and
as. (X,w), are given by

[ —1/2 ~
él,(x,w) — I} 2,}/1((0) %eyl(w)wX/CJ dxleir‘ll(w)wx//Cf(X/ ,w)+eyl(w)w(x—|/2)/Ce—in1(w)w|/c

X

(w)wx/cnl(w) Bao(w)ya(w)
Ny(w) V Bi(w)yi(w)

Ni(w) [Bs(w)

N3(w) V Bi(w)

X g In(o)=2nale) s ol 200 )ty ) D w)Es(31,0), (B3)

. 1 w X . o~ _
a3+(X,(,z))= I_ 2'}’3((1))Ee7 v3(w)wx/c Ilzdxreflnrs(w)a)x /Cf(X/ ,(1))+87 73(a))w(x+|/2)/cefIns(w)wllc

. - e 13(@)  [Ba(0)72(w)
X[1 3 0) + i ) (@)t @) €240 () g (31,0)+ \2ys(w)e oo £2 Z(Z)Z;Z)

Na(w)

B . ) . _ N3(w) [Bi(w)
ing(@)ol/(200F &7 ing(@allcg’ [ya(@)l/2+ yz(o)x]wlc =
X D)ty w)e "3 [9° (@) +721() TG (w) ]+t ’ ni(o) V Bay(w)

X @7 [M(e) =200 F 15020t )t ) D)y (— 31,0), (B4)

X[ (@) + i @) g5 )ty )22V (w)]a; (= 31, 0) +V2y1(w)em

X ﬁ(w)tZl(w)efinl(w)wI/(ZC)[gl(w)+ r23(w)ein2(“’)‘””°§]£r(w)]+e[“/1(‘”)xf v3(w)l/2]wlc

where the operatorg’, (w) are defined in Eq(36).
Inverting the relation35), we may express the operat@’$(w) in terms of the operator@;(j)(w) and rewrite Eqs(B3)
(for x=—1/2) and(B4) (for x=1/2) in the compact form

éu—%l,w)):?m Bui(-3ho)| o (8%(@))
é3+(%|,w)
1)

R (B5)
W (w)
The elements of the characteristic transformation matfi, T®(w), are seen to be

é37(% l ,(l))
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T (w)=e PN () + ()22 o ) (W) try(w)], (B6)
Ni(w) [Bs(w) _. :
(D¢, y— L 3 —i[B1(w)+ B3(w)]wl/(2c) iny(w)wllc
TR0 = V@ too ©)€"2 0 ()t @), (87)
ny(w) [Bi(w) . )
(1) __3 1 —i[B1(®)+ Ba(w)]wl/(2C) in(w)wl/c
T21 ((1)) nl(w) B3(w)e 1 s tlZ(w)e 2 19(w)tZCs‘(w)v (BS)
T (@)= P 3 ) +taf @) €220 5y ) D)oo )], (BY)
|
and the elements of the characteristic absorption matrix 1—ny(w)
AW, Al)(w), read as M) =rp(ow)= Trnyw) —Tai(@)= —T3(w),
(B16)
Ba(w) _.
ALl (0)= \ 72(@) gose Al w) () 2
! tiyw) =tz(w)= —1+n2(w) , (B17)
X\, [1+eM2r )], (B10)
= _ 2nalw) B18
. o) tr(w)=ty(w)= T4 (@)’ (B18)
AL (@) =\ 7a(w) G Se @t ) B (w)
_ ainy(w)ollc < _ .
X \/E[l ez r23((1))], (Bll) ﬁ(w):;o [elnz(w)wllcrZl(w)elnz(o))wllcrzg(w)]J
Bz(w) | =[1_ rgl(w)eZinz(w)wllc:l*l. (Blg)
Al (@)= \] 72(@) grse @t 0) 8(w)
Using Egs.(35) and (36) and recalling the commutation
X \/a[einz<w>w|/cr21(w)+ 1], (B12) relations(6) and(7), from Eqgs.(B1) and(B2) we derive that
Bo(w) [él+(X,w),é-I+(X’,w')]zefyl(w)w‘xfxr‘/cﬁ(w—w’),
2 i
A (@)= \] y2(w) e 1Bs(@)6ll(20) () 9 ( ) (B20)

Bs(w)

X e_[en@eller, (o) —1], (B13)

wherec.. is defined in Eq(37).
Note that when the plate is surrounded by vacuum,

Ny (w)=n3(w)=1, (B14)

so that

Bilw)=PB3(w)=1, 7y (w)=y3(w)=0, (B1H

the following relations are valificf. Egs.(A2)—(A4)]:

[ég,(X,w),ég,(X’ ') ]=e @y Xles(h,— '),
(B21)

[814 (X,0),8]_(x",0")]=0, (B22)

[a14 (%), @M (0"))1=0=[a5_(X,0), @ (o).
(B23)

The commutation relations for the output amplitude opera-
tors &;_(X,w), az,(X,) andal_(x,w), a}, (x,w) can be
derived in a similar way or, more easily, using E(0) and
(31) and applying the input-output relatioriB5) (together
with the corresponding commutation relatipnStraightfor-
ward calculation yields
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[a;_(X,0),a] _(X',0")]=8(w— w')[ g~ n(@olx=x'llcy a=ri(@)ollx=(-12)/c+|x"~(1/2)|/c]

Y1(w)

X[ [TH (@) 2+ TH (@) 2+]|AF (0)|2+|AS ()| 2— 1+i
Bi(w)

X{T&]i)(w)(eiﬂl(w)wllc_e2iBl(w)wx'/C)_[T&]i)(w)]*(eiﬂl(a))a)llc_e2iB1(w)wX/C)}H ,

(B24)

[é3+(X,w),é£+(X’,w')]: 5(0)_ w/){e—y:;,(w)a)X—x'|/C+e—73(w)w(X—|/2|/C+|X'—|/2/C)

Y3(w)

X | (1)(w)|2+|T(1)(w)|2+|A(1)(w |2+|A22( )|2 1+i 53((0)

X {T(zlé)(w)(eiﬁ:;,(w)wllc_ e2iﬁ3(w)wx//(:) _ [T(Zjé)(w)]* (e—iﬁ3(m)w|/C_ e—2iﬁ3(w)wX/C)}H ' (825)

[83: (x,0),8] (X', 0")]= 5<w—w'>[en<w>“’<"2>’CW""X"2’°[[T&?(w>]*Té?(w>

HTE(0)1* Th () +[AD (@) ]* A (@) +[AY (0)]* A (@)

w, (@) iBiollc_ g=2ip;(w)ox'fc
+iT5 (@ ),3( )( e )
|[T(l)( )]* ; ( 72iﬁ3(w)wxlc_ ei,83(w)w|/C)} ] ] (826)

Needless to saya,_(x,w) and as,(X,) are commuting (B24)—(B26) obviously reduce to the familiar bosonic com-
guantities. Using Eqs(B6)—(B13) and assuming that the mutation relations for photon destruction and creation opera-
plate is embedded in nonabsorbing mediators.
[71(w)=7y3(w)=0], the following relations are easily
proved correct: 2. Multislab dielectric plates
Starting from the results derived in Appendix B 1 for a
single-slab dielectric plateN=3), the results for an arbi-
trary dielectric plate =3, cf. Fig. 2 can be obtained step

(1) 2 (1) 2 (1) 2 (1) 2
| T37 (@)[*+[T17 (@) |+ |Ar] (0)[*+ A7 (o)) by step, without explicitly calculating the multislab Green
function. For this purpose we show that when Edg)—(50)
T V2 T2 AL V2 AL (2 _ s .
=[To1 (@) "+ T35 (0)[*+ [Azr (@) |+ Az (0)[*=1, are valid forN— 1, then they are also valid fod. Using Eq.

(44) with N—1 in place ofN, and expressing the operators

(B27) an_1+(XN_2,0) in terms of the operatora, . (X;,»), we
find that
TH(@)[TH (0)]* + TH (0)[T5 (0)]* By 1s (@) B (X1 0)
+AY () [AY(0)]* + A (0)[AS (w)]* =0. (éw—l—(XN—z’m): <5l+(><1yw)>
(B28) g (w)
Q(g(_N %))- (B29)

In this case, both the input-field commutation relations
(B20)-(B22) and the output-field commutation relations where the matriceB=P™N"3 andQ=QMN"? are given by
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(N=3)  T(N=3)T(N-3) _ T(N-3)T(N-3)
~ —3) 22 21 12 22 11
P:(ng 3)) 2( 1 _T&T_s) ). (B30)
A(N 3)-|—(N 3) A(N—B)T(ZIEI—S) A(N 3T(N 3)_ A(N—S)T(2§—3)
— N=3)\—
Q=(Tiz *) 2( AN A3 ) (B31)

The desired l—2)-slab plate can be obtained by supple-

ment to the N—3)-slab plate of theN— 1)th slab(cf. Fig.
2). Applying Eq. (30) to ay_1+(X,®) (Xy_2SX<Xn_1)
yields
An-1+(Xno1,0) = Ay_ 1 (Xy_p,w)e” IN-1(@)eln-1/e
+d{_; . (), (832
wherely_1=Xy_1—Xny_2, and

XN—

~ N—-1 ~ —
df\l—lr(w):J dy Fy_1 « (Y, w)e™ IN-1(@etn_g=yc
XN-2
(B33

with IA:N,lt(y,w) according to Eq(31). Recalling the com-
mutation relationg21), the operatorsiy_, . are found to
satisfy the commutation relations

A1 2 (0),0" {1 (@)]=28(0— ') g7 W-a(eleln-ale

) w
Xsin 7N—1(w)E|N—1

(B34)
, _ n-1(@)
[dN l+(w) )]_ 25( )ﬁN—l(w)
XeiiﬁN,l(a))w(xN,2+xN,1)/c

) 1)
XS"-{ﬁN—l(w)EIN—l}-
(B35)

By means of linear combination of the operataii’,@,li,
bosonic operatordy_ 1+ can be introduced as

(aN—1+(w)) ~(a,’\,_1+(w))
- =D| -, , (B36)
dn-1- () dN,l,(w)
[dyo1+(@),dy 1 2(0)]=8(0-w'),  (B37)
[dn-1 = (w),df_y =(@')]=0. (B38)
In Eq. (B36), the matrixD reads as
o, 1/2 —-1/2
Dn:{2 a,+ _) | exol ] , (B39)
a_
o, 1/2 —-1/2
D21:_[2 a+—(a—) |a0| ] f (B40)

o \12 -2
—_ |ao| )

Di,=exdi arg ao)][ 2
(B41)

r o \V2 )12
a—|{——| fadl|[

D,,=exdi arg ao)][

o
(B42)
where
_ . w
a¢=28+7N1(“’)‘°'N1/°S|n"{7N—1(w)E|N—1},
(B43)
n-1(o) o iBu-1(@)w(Xy_p+Xy_1)/c
ag=—2—"T— N-1 N-2FTXN-1
Bn-1(@
. w
XSl BN*l(w)EIN*l . (B44)
Combining Egs(B32) and (B36) we may write
(éN—l+(XN—1-w)) ~(éN—1+(XN—21w))
~ =R| .
an-1-(Xn-1,0) an-1-(Xn-2,0)
~ [dy_1.(o)
+D1(AN v ) (B45)
dn-1-(@)
whereR;;, =R;; &;;, with
Rii=Ry; =ex _7N71((‘))E|N71- (B46)
We now relate the operatoréNi(xNA_l,w) and

an_1+(Xy_1,) to each other, recalling tha¥(x) is con-
tinuously differentiable axy_,. Straightforward calculation
yields

(é-N+(XN—1:w)) :~( an-1+(Xy-1,0)

an-(Xn-1,®) an-1-(Xn-1,®)

| o

where the elements of the mati$read as

S— [Bn-1(@) ny(w) +ny_1(w)
t Bn(w) 2ny- ()

x @ 1IAN(®) = Bn-1(w)]oxy—g /c

(B48)
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S - /BNfl(w)nN(a’)_anl(w)
12 Bn(w) 2ny-_1(w)
X e*i[,BN(w)Jr,BN,l(o))]wXN,l/C,

Sy /,BNfl(w) Ny(w) —Ny-1(w)
! Bn(w) 2ny_1(w)

X ei[,BN(w)+BN,1(w)]wa,1/C’

S, [Bn-1(@) Ny(w) +Ny-1(w)
2 Bn(w) 2ny-1(w)

)= Bn-1(@)]oxy_q/c

(B49

(B50)

x el[An(e (B51)

Combining Egs(B29), (B45), and(B47), we obtain

T<N—2>=(SRH;12(

K'z(SRFazf( L

K"=(SR92_12< S0 a

Note thatgN~*(w) andd],_, . (w) are commuting quanti-
ties, because they refer to different space interyalsthe
commutation relation$6) or (21)].

Finally, we introduce bosonic operat@$'~?(w) as lin-

ear combinations of the operator§ *(w) and
dn-1+(0):
(N 2((1)) I (N 3)((0)
( g 2(w)) U{A (9(_N 3)(w))
d (w)
LR N-1+ ) (B57)
dN 1-(w)
[6072(0), @1 2 (0))]=8(w-w’), (B8
[N 2 (), @M ? (0" )=0. (B59)
The elements of the matri¥ are given by
Wy 1/2 -1/2
U11:[2 Mt M_—) |,U«O|H ' (B60)
1/2 —-1/2
M
U21:_[2 M+_(/L_+) |Mo|} : (B61)

(SRP12(SRP 2~ (SRP11(SRP 2,

(SRQ1(SRP2;—(SRQ2(SRP

(SD™ 111(SRP»;—(SD ™ 1),1(SRPy;  (SD ™ 1)15(SRP,;—(SD™
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(éNJr(XNl!w)):—éﬁ.F;( al(Xl,w)) ~~~<g(+N_3)(a)))

an-(Xn-1,0) a1 (Xq,) gN"(w)
e [dy_1 (@)
+so—1(A“ v ) (B52)
dy-1- ()
from which we deduce that
( a;_ (X1, ) )_ (N 2( ar, (X, ) )
an+(Xn-1,®) an-(Xn-1,)
~,(@&”3><w)> K,,(cEINH(w))
@(—N_s)(w) dN—l—(w) ’
(B53)
where the matrices read as
—(SRPy, 1 ) (B54)
(SRPyy)’
—(SRQ2,
, (B55)
(SRQ1ASRP2;—(SRQ2A(SRP 13
—(SD™ Yy, ) (56
12(SRPyy/
|
[ "o 1/2 1) —1/2
Upo=exfi arQIMo)][Z N M—+) | ol -
) (B62)
[ we 1/2 1) —1/2
U= exf arg,uo)][Z M_<M_+) | ol } '
) ) (B63)
where
M+:|A11|2+|A32|2+|A11|2+|A,1’2|2! (B64)
po=|AgP+ AP+ AP+ [A)?, (B6Y)
pro=ALA 3+ ALA S+ ALA+ALA™S,.  (B66)
Identifying the inverse of) with A(N~2),
AN-2 -1, (B67)

Eq. (B53) [together with Eq(B57)] is the desired resu(#4).
From the structure of the Green functipsf. Egs.(25—(28)]

it is clear that the input operators,(x,») and
ay_(x,w), respectively, can always be written in the form
given in Eqgs.(B1) and (B2) [with arbitrary N (N=3) in
place of N=3]. With regard to the basic-field operators
f(x,w), both the input operators and the noise operators
Q(iN_Z)(w) refer to different space intervals. Hence all the
commutation relationg45)—(50) are satisfied for arbitrary
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N (N=3), which implies that the commutation relations p

(B24)—(B26) remain also valid whe@y, (x,0),a5, (X', ) (p q)({wﬂ}) 1;[1 i, (@) Sl = wpyp),

and T2, AN2) are substituted for (2

a3, (X, 0),a], (x',0) andTH, A, respectively. We finally

mention that in a way similar to that outlined above for the

input-output relations the extension of the relatidB27)  \yhere the set of indices denotes a permutation of the set of

and(B28) to arbitraryN (N=3) may be proved correct. indices u, so that wf <w, for 2<¢<p or
p+2<{<p+q [note thatl';" q)({wﬂ}) vanishes if for any

£ with p=(=2 the relationwé«_l— w, is fulfilled].
We now appropriately label the terms thafter disentan-
When the dielectric plate is in thermal equilibrium the gling) occur on the right-hand side of E55). For this pur-
density Opel’ator Of the matter eXCitationS may be giVen by pose we introduce the Sé(m,n) of arrangements of the
2 m-+n indices ¢ (disposed in ascending orddry assigning
QDp=eXp{—E fxdw(ln[lJrnth(w)] them to two classesK(=1,2) _anc_j four (possibly empty
i=1 Jo groups (=1,2,3,4). The class indicaé=1 andK=2 refer
to the creation and destruction operators, respectively, and
—wf}T(w)@i(w)> ] , (1) the group in_dic_e$= 1,2,3,4 are used to distinguish b_etV\_/een
the four excitations to be considered. FF@F 1(2) the indi-
ces refer foj=1 to al (al) for j=2to a2 (ay), forj=3 to
(9,), and forj=4 to 92 (9,). The )\K indices of the
h class and jth group are denoted bygJ (1),
=1,... \{". From Eq.(65) we then find that

APPENDIX C: OUTGOING-RADIATION CORRELATION
FUNCTIONS

with n(w) from Eq.(74). Note that this density operator of -
course corresponds to the thermal-equilibrium state of th%t
basic fieldf (x,w) inside the plate. The correlation functlons
(67) are then calculated to be

CiM e = Z)j;.”{ }*2 ?({wy; wgz})r“s " ({w T FW " (fo )

1.1 .2 .2
ALoAp AN

XH H H ]._[ |1( )1( gl(a))T| 1

AN LA LN S (0gdip) iz 1(020) iz, 2(020)

1p)2

1 1
3 Y

o I PO el | R P O Tl (C3)

where

M Y M A
At at A S
11 &g }1 az(@p) yﬂl a1(@ () ;_:Il (@) (C4)

(the notation{; is used to indicate sets of indices, without distinguishing between the two Jlasses

Izl
C{lgl gl} 2! ({w§1 wévz}) <
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