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Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates

T. Gruner and D.-G. Welsch
Friedrich-Schiller-Universita¨t Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1, D-07743 Jena, Germany

~Received 28 November 1995; revised manuscript received 25 March 1996!

Using the Green-function approach to the problem of quantization of the phenomenological Maxwell theory,
the propagation of quantized radiation through dispersive and absorptive multilayer dielectric plates is studied.
Input-output relations are derived, with special emphasis on the determination of the quantum noise generators
associated with the absorption of radiation inside the dielectric matter. The input-output relations are used to
express arbitrary correlation functions of the outgoing field in terms of correlation functions of the incoming
field and those of the noise generators. To illustrate the theory, photons at dielectric tunneling barriers are
considered. It is shown that inclusion in the calculations of losses in the photonic band gaps may substantially
change the barrier traversal times.@S1050-2947~96!02508-5#

PACS number~s!: 42.50.Ct, 42.25.Bs, 42.79.2e, 73.40.Gk
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I. INTRODUCTION

It is well known that the use of instruments in optic
experiments needs careful examination with regard to t
action on the quantum statistics of the light under study
particular, the presence of passive instruments that ma
regarded as macroscopic dielectric bodies responding
early to radiation can be included in the theory by quanti
tion of the phenomenological Maxwell theory for radiatio
in linear inhomogeneous dielectrics. The formalism was fi
developed for dispersionless and lossless dielectrics@1–4#
and successfully applied to the study of the action of vari
devices, such as dielectric plates and interfaces@5,6# and
optical cavities@7,8#. When broadband radiation propagat
through dielectric devices the effects of dispersion and
sorption, which are related to each other by the Krame
Kronig relations, must necessarily be taken into account
this context, a number of questions have arisen, such as
question about the velocity at which a single-photon wa
packet travels in absorbing dielectric matter under the in
ence of normal and/or anomalous dispersion. Needles
say, absorption also introduces additional noise, at least
~quantum! vacuum noise.

The problem of describing the effects of dispersive a
absorptive linear dielectric devices on quantized radiat
has been considered in a number of papers and various q
tization schemes have been proposed@9–17#. As we have
recently shown, quantization of the radiation field within t
framework of the phenomenological Maxwell theory~with
given complex permittivity in the frequency domain! can be
performed using a Green-function expansion of the oper
of the vector potential @16,18#. This quantum-field-
theoretical formalism, which may be regarded as a gene
zation of the familiar concepts of mode expansion, applie
both homogeneous and inhomogeneous dielectric matter
is consistent with both the Kramers-Kronig relations and
canonical~equal-time! field commutation relations in QED.

In the present paper we use the method in order to st
the behavior of quantized radiation in the presence
multilayer dielectric plates and to derive input-output re
tions. The calculation of input-output relations is common
based on a development of the familiar formalism of qu
541050-2947/96/54~2!/1661~17!/$10.00
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tum noise theory~see, e.g.,@19#!, in which the explicit nature
of the input from a heat bath, and the output into it, is tak
into account. The advantage of the quantum-field-theoret
approach is that it enables one to obtain the input-out
relations including their dependence on frequency throu
geometry and dispersive and absorptive properties of the
ers, because it consistently accounts for the effects
radiation-field propagation according to the~phenomenologi-
cal! quantum Maxwell equations.

It is well known that when dielectric matter in free spa
is considered and the imaginary part of the permittivity m
be disregarded~provided that the losses in the chosen fr
quency interval are sufficiently small!, then the input-output
relations correspond to unitary transformations betwe
input- and output-mode operators@20,21#. These concepts
fail when the effect of absorption of radiation through t
dielectric matter is taken into account. In this case the o
going fields are not only related to the incoming fields b
also to appropriately chosen noise sources@22#. Neglect of
these supplementary contributions would unavoidably le
to a violation of the canonical commutation relations for t
outgoing fields, and hence effects of quantum noise would
left out.

Knowing the input-output relations, the properties of t
outgoing fields can be obtained from those of the incom
fields and the dielectric-matter excitations. The multilay
dielectric structure under study may serve as a model fo
number of devices, such as mirrors, beam splitters, inter
ometers, and optical fibers. In particular, multilayer dielect
mirrors may be regarded as tunnel barriers for photons@23#
and can be used in order to measure barrier traversal tim
as has recently been demonstrated in two-photon interfere
experiments@24–27#. In this context, we demonstrate th
influence of losses in the photonic barriers on the appare
superluminal behavior of photons at such barriers and sh
that losses can substantially change the values of the
versal times.

The paper is organized as follows. In Sec. II the Gre
function approach to the quantization of radiation in disp
sive and lossy linear dielectrics is summarized. Applying
quantization scheme to radiation propagating throu
multilayer dielectric plates, in Sec. III input-output relation
1661 © 1996 The American Physical Society



no
s
in
m

in
er
cy

n

a

as

rp
-

e

the
e

f
to

er-
et
rics,

b-

1662 54T. GRUNER AND D.-G. WELSCH
are derived. In Sec. IV these relations are used to study
mally ordered correlation functions of the outgoing field
with special emphasis on the problem of photon tunnel
through absorbing barriers. Finally, a summary and so
conclusions are given in Sec. V.

II. QUANTIZATION SCHEME

A. Green-function approach

Let us consider linearly polarized radiation propagating
the x direction and allow for the presence of a multilay
dielectric plate characterized in terms of a frequen
dependent permittivitye(x,v) that varies inx direction and
obeys, for causality reasons, the Kramers-Kronig relatio
Introducing the vector potentialA(x,t) and using the relation

D~x,t !5e0FE~x,t !1E
2`

t

dt x~ t2t!E~x,t!G ~1!

(E52Ȧ), the classical phenomenological Maxwell equ
tions yield

]2

]x2 A~x,t !2
1

c2 F Ä~x,t !1E
2`

t

dt x~ t2t!Ä~x,t!G50,

~2!

which in the frequency domain reads as

F ]2

]x2 1
v2

c2 e~x,v!GA~x,v!50. ~3!

Equation ~3! may be transferred to quantum theory
follows @16,18#:

F ]2

]x2 1
v2

c2 e~x,v!G Â~x,v!5 ĵ ~x,v!, ~4!

where the ‘‘current’’ operator

ĵ ~x,v!5
v

c2A \

pe0A
e i~x,v! f̂ ~x,v! ~5!

is introduced to take into account the noise owing to abso
tion. In Eq.~5!, f̂ (x,v) and f̂ †(x,v) are bosonic field opera
tors,

@ f̂ ~x,v!, f̂ †~x8,v8!#5d~x2x8!d~v2v8!, ~6!

@ f̂ ~x,v!, f̂ ~x8,v8!#5@ f̂ †~x,v!, f̂ †~x8,v8!#50, ~7!

and

e~x,v!5e r~x,v!1 i e i~x,v! ~8!

(A, normalization area in theyz plane!. The solution of Eq.
~4! may be given by

Â~x,v!5E dx8G~x,x8,v! ĵ ~x8,v!, ~9!

whereG(x,x8,v) is the classical Green function obeying th
equation
r-
,
g
e

-

s.

-

-

F ]2

]x2 1
v2

c2 e~x,v!GG~x,x8,v!5d~x2x8! ~10!

and tending to zero asx→6`. It can be shown@16,18# that
the quantization scheme outlined above ensures that
~Schrödinger! operators of the vector potential and th
electric-field strength,

Â~x!5E
0

`

dv Â~x,v!1H.c., ~11!

Ê~x!5 i E
0

`

dv v Â~x,v!1H.c., ~12!

satisfy the well-known canonical commutation relation

@Â~x!,Ê~x8!#52
i\

Ae0
d~x2x8!. ~13!

B. Quantum Langevin equations

From Eqs.~11!, ~9!, and~10! we see that the problem o
determining the operator of the vector potential reduces
the calculation of the classical Green function. Before p
forming the calculations for multilayer dielectric plates, l
us summarize some results for homogeneous dielect
where

G~x,x8,v!5
1

2pE2`

`

dk eik~x2x8!
c2

v2e~v!2c2k2

5F2i
v

c
n~v!G21

expF i
v

c
n~v!ux2x8uG .

~14!

Here

n~v!5Ae~v!5b~v!1 ig~v! ~15!

is the complex refractive index. Using Eqs.~9! and~14!, Eq.
~11! may be rewritten as

Â~x!5E
0

`

dvA \

4pcve0b~v!A
b~v!

n~v!

3@eib~v!vx/câ1~x,v!

1e2 ib~v!vx/câ2~x,v!#1H.c., ~16!

where the operators

â6~x,v!5
1

i
A2g~v!

v

c
e7g~v!vx/c

3E
2`

6x

dx8e2 in~v!vx8/c f̂ ~6x8,v! ~17!

associated with the waves propagating to the right (1) and
left (2) are introduced. In the limiting case when the a
sorption may be disregarded@g(v)vux2x8u/c→0#, Eq.
~16! reduces to the familiar mode-expansion result@16,18#.
In particular, the operatorsâ6(x,v) and â6

† (x,v) become
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54 1663QUANTUM-OPTICAL INPUT-OUTPUT RELATIONS FOR . . .
independent ofx and satisfy the well-known commutatio
relations for photon destruction and creation operators,
spectively.

Equation ~17! implies that the operatorsâ6(x,v) and
â6(x8,v) can be related to each other as

â6~x,v!5â6~x8,v!e7g~v!v~x2x8!/c

1E
x8

x

dy F̂6~y,v!e7g~v!v~x2y!/c, ~18!

where

F̂6~x,v!56
1

i
A2g~v!

v

c
e7 ib~v!vx/c f̂ ~x,v!. ~19!

Hence the operatorsâ6(x,v) obey quantum Langevin equa
tions in the space domain@18#,

]

]x
â6~x,v!57g~v!

v

c
â6~x,v!1F̂6~x,v!, ~20!

where the operatorsF̂6(x,v) may be regarded as Langev
noise sources,

@ F̂6~x,v!,F̂6
† ~x8,v8!#52g~v!

v

c
d~x2x8!d~v2v8!,

~21!

@ F̂6~x,v!,â6
† ~x8,v8!#56Q~6x87x!2g~v!

v

c

3e2g~v!vux82xu/cd~v2v8!.

~22!

III. INPUT-OUTPUT RELATIONS

We now turn to the problem of propagation of quantiz
radiation through multilayer dielectric plates. AssumingN
dielectric slabs, the interfaces being parallel to theyz plane
~cf. Figs. 1 and 2!, the permittivity may be given by

FIG. 1. Scheme of the single-slab dielectric plate~2! of thick-
nessl embedded in dielectric matter~1 and 3!.
e-

e~x,v!5(
j 51

N

l j~x!e j~v!, ~23!

where

l j~x!5H 1 if xj 21,x,xj

0 otherwise
~24!

is the characteristic function of thej th slab (x0→2`,
xN→`). In particular, forN>3 the system represents a
(N22)-slab dielectric plate surrounded by dielectric mat
whose permittivity on the left and right, respectively,
e1(v) and eN(v). To determine the Green functio
G(x,x8,v) that satisfies Eq.~10! ~and vanishes at infinity!,
we note thatG(x,x8,v) can be decomposed into two part

G~x,x8,v!5G0~x,x8,v!1G1~x,x8,v!, ~25!

where, according to Eq.~14!,

G0~x,x8,v!5(
j 51

N

l j~x!l j~x8!F2i
v

c
nj~v!G21

3expF i
v

c
nj~v!ux2x8uG , ~26!

andG1(x,x8,v) is the solution of the homogeneous equati

F ]2

]x2 1
v2

c2 e~x,v!GG1~x,x8,v!50, ~27!

which implies that

G1~x,x8,v!5(
j 51

N

l j~x!@Cj
~1!~x8,v!ein j ~v!vx/c

1Cj
~2!~x8,v!e2 in j ~v!vx/c#. ~28!

Clearly, theCj
(1)(x8,v) andCj

(2)(x8,v) must be determined
in such a way thatG(x,x8,v) vanishes at infinity and is
continuously differentiable at the surfaces of discontinui
The somewhat lengthy calculations may be performed i
straightforward way. For the simplest case of a single-s
dielectric plate embedded in dielectric matter (N53, cf. Fig.
1!, the result is given in Appendix A. Because of the vol
minous formulas, we renounce their presentation for the g
eral case.

Combining Eqs.~9! and~25! @together with Eqs.~26! and
~28!#, the ~Schrödinger! operator of the vector potentia
Â(x) for the j th domain (j 51, . . . ,N) may be represented
as, similar to Eq.~16!,

Â~x!5E
0

`

dvA \

4pcve0b j~v!A
b j~v!

nj~v!

3@eib j ~v!vx/câj 1~x,v!

1e2 ib j ~v!vx/câj 2~x,v!#1H.c. ~29!

(xj 21<x<xj ), where the dependence onx of the amplitude
operatorsâ j 6(x,v) is governed by quantum Langevin equ
tions of the type given in Eq.~20! together with Eqs.~19!
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1664 54T. GRUNER AND D.-G. WELSCH
and ~21! @b(v),g(v)→b j (v),g j (v)#, so that â j 6(x,v)
can be represented in the form~18!, viz.,

âj 6~x,v!5â j 6~x8,v!e7g j ~v!v~x2x8!/c

1E
x8

x

dy F̂j 6~y,v!e7g j ~v!v~x2y!/c ~30!

(xj 21<x,x8<xj ), where

F̂ j 6~x,v!56
1

i
A2g j~v!

v

c
e7 ib j ~v!vx/c f̂ ~x,v!. ~31!

Since the relations betweenâ j 6(x,v) and f̂ (x,v) sensitively
depend on the actual expression forG(x,x8,v), the commu-
tation relations~22! @that are based on Eq.~17!# cannot be
applied in general. Successive application of Eq.~30! en-
ables one to relate the~amplitude! operators â12(x,v)
(2`<x<x1) and âN1(x,v) (xN21<x<`) for the outgo-
ing fields to the left and right, respectively, to the operat
of the corresponding incoming fields,â11(x,v) and
âN2(x,v), and operator noise sources associated with
losses owing to absorption.

A. Single-slab dielectric plate

To illustrate the procedure outlined, let us first study t
input-output relations for a single-slab dielectric plate
thicknessl embedded in two~different! dielectrics (N53, cf.
Fig. 1!. Substituting in Eq.~9! for G(x,x8,v) the expression
~A1! given in Appendix A and introducing the~amplitude!
operators â16(x,v), 2`<x<2 l /2, and â36(x,v),
l /2<x<` @Appendix B 1, Eqs.~B1!–~B4!#, the input opera-
tors are found to satisfy the commutation relations

@ â11~x,v!,â11
† ~x8,v8!#5e2g1~v!v ux2x8u/cd~v2v8!,

~32!

@ â32~x,v!,â32
† ~x8,v8!#5e2g3~v!v ux2x8u/cd~v2v8!,

~33!

@ â11~x,v!,â32
† ~x8,v8!#50 ~34!

@Eqs.~B20!–~B22!#, so that the input fields from the left an
right behave like the fields in the corresponding bulk diel
trics and may be regarded as independent variables. Note
â11(x,v),â32(x,v) are commuting quantities.

Defining operators

ĝ6
~1!~v!5@2c6~ l ,v!#21/2@ ĝ28 ~v!6ĝ18 ~v!#, ~35!

where

ĝ68 ~v!5
1

i
Av

c
ein2~v!v l /~2c!E

2 l /2

l /2

dx8e7 in2~v!vx8/c f̂ ~x8,v!

~36!

and
s

e

e
f

-
hat

c6~ l ,v!5e2g2~v!v l /c
1

g2~v!
sinhFg2~v!

v

c
l G

6e2g2~v!v l /c
1

b2~v!
sinFb2~v!

v

c
l G , ~37!

and recalling Eqs.~6! and ~7!, we find that

@ ĝ6
~1!~v!,„ĝ6

~1!~v8!…†#5d~v2v8!, ~38!

@ ĝ6
~1!~v!,„ĝ7

~1!~v8!…†#50. ~39!

Since

@ â11~x,v!,„ĝ6
~1!~v8!…†#50

5@ â32~x,v!,„ĝ6
~1!~v8!…†#

~40!

@Eq. ~B23!#, the incoming-field~amplitude! operators and the
operatorsĝ6

(1)(v),„ĝ6
(1)

…

†(v) may be regarded as being ind
pendent variables~note thatâ11 , â32 , and ĝ6

(1) commute!.
Moreover, theĝ6

(1)(v) and „ĝ6
(1)

…

†(v), respectively, which
are obviously destruction and creation operators of boso
excitations associated with the plate, play the role of
additional operator noise sources in the input-output relati

S â12~2 1
2 l ,v!

â31~ 1
2 l ,v!

D 5T̃~1!S â11~2 1
2 l ,v!

â32~ 1
2 l ,v!

D 1Ã~1!S ĝ1
~1!~v!

ĝ2
~1!~v!D

~41!

derived in Appendix B1@Eq. ~B5!#, the elements of the
232 matrices

T̃~1!5S T11
~1!~v! T12

~1!~v!

T21
~1!~v! T22

~1!~v!
D ~42!

and

Ã~1!5S A11
~1!~v! A12

~1!~v!

A21
~1!~v! A22

~1!~v!
D ~43!

being given in Eqs.~B6!–~B13! @note the simplifications
~B14!–~B19! when the plate is surrounded by vacuum#. In
Eq. ~41! the ~amplitude! operators of the outgoing fields
â12(2 l /2,v) andâ31( l /2,v), are expressed in terms of th
operators of the incoming fields,â11(2 l /2,v) and
â32( l /2,v), and the operator noise sourcesĝ6

(1)(v). The
characteristic transformation matrix of the plate,T̃(1), which
for an approximately lossless dielectric plate in free sp
reduces to the well-known characteristic matrix given, e
in @28#, describes the effects of transmission and reflection
the input fields, whereas the losses inside the plate give
to an additional matrix,Ã(1), which may be called the char
acteristic absorption matrix.

It should be mentioned that the output amplitude ope
tors â12(x), x<2 l /2, and â31(x), x> l /2, can easily be
obtained from Eq.~30!, with x852 l /2 andx85 l /2, respec-
tively, and application of the input-output relations~41!. The
resulting representation of the outgoing fields is of cou
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54 1665QUANTUM-OPTICAL INPUT-OUTPUT RELATIONS FOR . . .
fully equivalent to the Green’s function expansion primaril
used. The commutation relations for the output amplitu
operators are given in Appendix B1@Eqs. ~B24!–~B26!#.
They differ, in general, from those given in Eqs.~32!–~34!
for the input operators. The differences vanish when the d
tances from the plate are large compared with the~classical!
absorption length or when the plate is in free space.

B. Multilayer dielectric plates

The results given in Sec. III A can be extended to a
arbitrary multislab dielectric structure (N>3, cf. Fig. 2! in a
straightforward way~for details see Appendix B 2!. In par-
ticular, the input-output relations may be given by

S â12~x1 ,v!

âN1~xN21 ,v!D 5T̃~N22!S â11~x1 ,v!

âN2~xN21 ,v!D
1Ã~N22!S ĝ1

~N22!~v!

ĝ2
~N22!~v!

D . ~44!

Here,x5x1 andx5xN21 , respectively, are the left and righ
surfaces of the multislab plate~note that for the single-slab
plate,N53, the notationsx152 l /2 andxN215x25 l /2 have
been used!. The commutation rules for the input operator
â11(x,v), â11

† (x,v) (2`<x<x1), âN2(x,v), âN2
† (x,v)

(xN21<x<`), and the noise operatorsĝ6
(N22)(v) are the

same as in the preceding section, i.e.,

@ â11~x,v!,â11
† ~x8,v8!#5e2g1~v!v ux2x8u/cd~v2v8!,

~45!

@ âN2~x,v!,âN2
† ~x8,v8!#5e2gN~v!v ux2x8u/cd~v2v8!,

~46!

@ â11~x,v!,âN2
† ~x8,v8!#50, ~47!

@ ĝ6
~N22!~v!,„ĝ6

~N22!~v8!…†#5d~v2v8!, ~48!

FIG. 2. Scheme of the multilayer dielectric configuration, th
arrows together with the amplitude operators indicating incomi
and outgoing fields.
e

s-

n

@ ĝ6
~N22!~v!,„ĝ7

~N22!~v8!…†#50, ~49!

@ â11~x,v!,„ĝ6
~N22!~v8!…†#50

5@ âN2~x,v!,„ĝ6
~N22!~v8!…†#. ~50!

The input-output relations~44! @together with the commu-
tation relations~45!–~50!# apply to arbitrary multislab di-
electric equipment described in terms of a complex perm
tivity that spatially varies as a multistep function and who
dependence on frequency is consistent with the Kram
Kronig relations over the whole frequency domain. Typic
examples are fractionally transparent dielectric mirrors a
combinations of them, such as resonatorlike cavit
bounded by dielectric walls. In particular, when the over
device is surrounded by vacuum, so that the incoming
outgoing radiation fields propagate in free space,

n1~v!5nN~v![1, ~51!

the familiar mode expansions for the input and output~free!
fields are recognized. Forj 51, N Eq. ~29! takes the form

Â~x!5E
0

`

dvA \

4pcve0A

3@eivx/câj 1~v!1e2 ivx/câj 2~v!#1H.c., ~52!

where the input and output operatorsâ16(v) @â16
† (v)# and

âN6(v) @âN6
† (v)#, respectively, are proper~space-

independent! photon destruction~creation! operators, and

S â12~v!

âN1~v!D 5T̃~N22!S â11~v!

âN2~v!D
1Ã~N22!S ĝ1

~N22!~v!

ĝ2
~N22!~v!

D . ~53!

The influence of the plate on the incident light through
flection and transmission from the two sides is described
the matrix elementsTik

(N22)(v), whereas the matrix element
Aik

(N22)(v) arise from absorption. From Eqs.~45!–~47!, the
bosonic commutation relations for the input-mode operat
â11(v), âN2(v) are easily seen to be satisfied. Using the
and recalling the commutation rules~48!–~50!, the bosonic
commutation relations for the output-mode operat
â12(v), âN1(v) can then be obtained by means of t
input-output relations~53!, because the relations

uT11
~N22!u21uT12

~N22!u21uA11
~N22!u21uA12

~N22!u2

5uT21
~N22!u21uT22

~N22!u21uA21
~N22!u21uA22

~N22!u251 ~54!

and

T11
~N22!~T21

~N22!!* 1T12
~N22!~T22

~N22!!* 1A11
~N22!~A21

~N22!!*

1A12
~N22!~A22

~N22!!* 50 ~55!

are valid@see Appendixes B 1 and B 2#. For notational con-
venience, the frequency arguments of the matrix eleme

g
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1666 54T. GRUNER AND D.-G. WELSCH
Tik
(N22) andAik

(N22) are omitted. In particular, these relation
reflect the fact that the sum of the probabilities for reflectio
transmission, and absorption of a photon is equal to unity
the losses inside the plate can approximately be disregar
Ã(N22)'0, the well-known method of unitary transforma
tion is recognized. In this case the relations~54! and ~55!
simplify to

uT11
~N22!u21uT12

~N22!u25uT21
~N22!u21uT22

~N22!u251, ~56!

T11
~N22!~T21

~N22!!* 1T12
~N22!~T22

~N22!!* 50, ~57!

so thatT̃(N22) becomes a unitary matrix. Since the phot
operators of the output and input modes are uniquely rela
to each other through a unitary transformation, the boso
commutation relations are automatically preserved. In g
eral, theT̃(N22) matrix is not unitary and the output-mod
operators are obtained, according to Eq.~53!, from both the
input-mode operators and the noise operators associated
the losses. The relations~54! and~55!, which are the natura
generalization of the relations~56! and~57!, may be regarded
as necessary conditions imposed on theT̃(N22) and Ã(N22)

matrices of an arbitrary dispersive and absorptive multis
dielectric device in free space. It should be emphasized
these conditions need not be postulated, but they necess
come out of the theory, which also enables one to system
cally calculate both theT̃(N22) and Ã(N22) matrices.

IV. APPLICATIONS

A. Radiation-field correlation functions

The input-output relations~53! can be used to obtain th
quantum statistical properties of the outgoing radiation fr
the properties of the incoming radiation and the excitatio
associated with the dielectric matter. With regard to m
surement, the quantum statistics of radiation is freque
described in terms of normally ordered correlation functio
such as correlation functions of the electric-field strength
on
,
If
ed,

ed
ic
n-

ith

b
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ti-

s
-

ly
,
r

the photon creation and destruction operators~see, e.g.,
@4,30#!. Introducing the notationsâ1[â11 , â2[âN2 ,
â18[â12 , â28[âN1 andĝ1[ĝ1

(N22) , ĝ2[ĝ2
(N22) , from Eqs.

~12! and ~52!, the electric-field strength of the outgoing ra
diation in thei th channel (i 51,2) reads as

Êi8~x!5Ê8 i
~1 !~x!1Ê8 i

~2 !~x!, ~58!

Ê8 i
~1 !~x!5 i E

0

`

dvA \v

4pce0A
eivh i x/câi8~v!, ~59!

Ê8 i
~2 !~x!5@Ê8 i

~1 !~x!#† ~60!

(h151, h2521), where the output-photon operato
âi8(v) can be related to the input-photon operatorsâi(v)
as, according to Eq.~53!,

âi8~v!5 (
k51

2

@Tik~v!âk~v!1Aik~v!ĝk~v!# ~61!

@Tik(v)[Tik
(N22)(v), Aik(v)[Aik

(N22)(v)#. To express the
normally ordered electric-field correlation functions of th
outgoing radiation,

C8$ i m%
~m,n!~$xm ,tm%!5K F )

m51

m

Ê8 i m
~2 !~xm ,tm!G

3F )
m5m11

m1n

Ê8 i m
~1 !~xm ,tm!G L , ~62!

in terms of normally ordered correlation functions of phot
creation and destruction operators, we use Eqs.~58!–~60!
and recall the harmonic~exponential! time evolution of the
photon destruction operators in the Heisenberg picture.
obtain
C8$ i m%
~m,n!~$xm ,tm%!5 i n2mS \

4pce0AD ~n1m!/2E
0

`

dv1Av1eiv1t i 1•••E
0

`

dvm1nAvm1ne2 ivm1nt i m1nC8$ i m%
~m,n!~$vm%! ~63!
(t i m
5tm2h i m

xm /c), where

C8$ i m%
~m,n!~$vm%!5K F )

m51

m

â8 i m
† ~vm!GF )

m5m11

m1n

âi m
8 ~vm!G L ,

~64!

which can be rewritten as, on using the input-output relati
~61!,
s

C8$ i m%
~m,n!~$vm%!5K H )

m51

m

(
km51

2

[Ti mkm
* (vm)âkm

† (vm)

1Ai mkm
* (vm)ĝkm

† (vm)] J

3H )
m5m11

m1n

(
km51

2

[Ti mkm
(vm)âkm

(vm)

1Ai mkm
(vm)ĝkm

(vm)] J L . ~65!
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In particular, when the states of the incoming radiation a
the dielectric matter are not correlated to each other,
correlation functions of the output photons, Eq.~65!, can be
expressed in terms of sums of products of input-photon c
relation functions

C$ i m%
~k,l !~$vm%!5K F )

m51

k

âi m
† ~vm!GF )

m5 l 11

k1 l

âi m
~vm!G L

~66!

and correlation functions of the excitations associated w
the dielectric matter,

G$ i m%
~p,q!~$vm%!5K F )

m51

p

ĝi m
† ~vm!GF )

m5p11

p1q

ĝi m
~vm!G L ,

~67!

with k,p<m and l ,q<n. Clearly, when the matter is pre
pared in an incoherent state, then the correlation functi
G$ i m%

(p,q)($vm%) vanish whenpÞq ~explicit expressions for the

correlation functions observed when the matter is therm
excited are given in Appendix C!.

FIG. 3. The ratio of the photon-number densities of the
flected outgoing field and the incoming field,N1(v)5Nph18 (v) /
Nph1(v), as a function of frequency and plate thickness for
single-resonance medium (v05v1 , G50.1v0).

FIG. 4. The ratio of the photon-number densities of the tra
mitted outgoing field and the incoming field,N2(v)5Nph28 (v) /
Nph1(v), as a function of frequency and plate thickness for
single-resonance medium (v05v1 , G50.1v0).
d
e
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B. Spectral photon-number densities

Let us briefly consider the photon-number density~num-
ber of photons per unit frequency! in the i th output channel
( i 51,2),

Nphi8 ~v!5^â8 i
†~v!âi8~v!&5C8 i i

~1,1!~v,v!, ~68!

which can easily be obtained from application of Eqs.~65!–
~67!. In particular, when a zero-temperature dielectric plate
irradiated from one side@Nph 2(v) 5 0# we find that

Nphi8 ~v!5uTi1~v!u2Nph 1~v! ~ i 51,2!. ~69!

As expected, the mean photon-number densities in the ou
channels 1 and 2, respectively, are simply given by the m
input photon-number density multiplied by the reflection a
transmission coefficients. In general, the overall out
photon-number density is reduced below the input level o
ing to absorption:

Nph 18 ~v!1Nph 28 ~v!<Nph 1~v!. ~70!

In Figs. 3 and 4 the relative photon-number densities
the outgoing radiation,N1 [ Nph 18 (v) / Nph 1(v) 5
uT11(v)u2 andN2 [ Nph 28 (v) / Nph 1(v) 5 uT21(v)u2 @Eq.
~69!#, are shown as functions of frequency and plate thi
ness for a single-slab plate in free spa
@e1(v)5e3(v)51#. The relative photon-number density o
the radiation absorbed by the plate,Na5$Nph 1(v)2
@Nph 18 (v)1Nph 28 ~v!#%/Nph 1~v!5a1~v!5a2(v) is shown in
Fig. 5. The results in Figs. 3–5 are given for a simple mo
permittivity e(v)[e2(v) based on a single medium res
nance,

e~v!511
v1

2

v0
22v22 iGv

, ~71!

which enables one to clearly distinguish the~resonance! re-
gion of frequency for which the imaginary part of the refra
tive index may substantially exceed the real part from ot
~off-resonance! regions for which the imaginary part be
comes small.

For frequencies that are small compared with the med
resonance frequency (v!v0) the approximately real refrac

-

-

FIG. 5. The ratio of the photon-number densities of the absor
field and the incoming field,Na 5 $Nph 1(v) 2 @Nph 18 (v) 1

Nph 28 (v)] % / Nph 1(v) 5 a1(v) 5 a2(v), as a function of fre-
quency and plate thickness for a single-resonance med
(v05v1 , G50.1v0).
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tive index@n(v)5b(v)1 ig(v)'b(v)>1# gives rise to a
variation with the plate thickness of the transmitted and
flected numbers of photons which show the oscillating
havior typical for a Fabry-Pe´rot device. In this frequency
region the losses inside the plate may be disregarded
creasing the frequency, both the real and imaginary part
the refractive index,b(v) and g(v), respectively, are in-
creased. Increasingg(v) implies increasing probability for
photon absorption in the plate. Since the number of absor
photons increases with the thickness of the plate, the num
of transmitted photons decreases with increasing plate th
ness. Further, owing to the increasing absolute value of
refractive index the number of photons that are reflecte
increased at the expense of the number of photons that e
the plate. The two effects mentioned become more and m
pronounced asv approachesv0 . In particular, in the vicinity
of the medium resonance the number of reflected photon
substantially enhanced. The photons that enter the plate
absorbed over a short distance, so that the number of tr
mitted photons rapidly tends to zero when the thickness
the plate is increased. In this ‘‘surface regime’’ the pla
behaves like a lossy mirror, the enhanced reflectivity be
caused by the large absolute value of the refractive ind
which results, in general, from both the real and the ima
nary parts. Further increase of frequency that is associ
with a decrease of the real and imaginary parts of the ref
tive index ~region of anomalous dispersion! reduces the ef-
fects of strong reflection and absorption and the plate ag
becomes fractionally transparent. Needless to say, for s
ciently high frequencies when the refractive index a
proaches unity the plate becomes fully transparent.

It should be noted that when the input field is in t
vacuum state and the dielectric plate is in thermal equi
rium, we recognize the quantum theory of thermal radiati

Nphi8 ~v!5
L

2pc
a i~v!nth~v! ~ i 51,2!, ~72!

where

a i~v!5 (
k51

2

uAik~v!u2 ~73!

is the (i th-side! absorption coefficient of the plate, and

nth~v!5
1

exp~\v/kBT!21
~74!

(T, temperature;kB , Boltzmann constant;L, length of the
quantization volume of the radiation!. The plate behaves like
a thermal radiator which tends to a blackbody as the abs
tion becomes perfect@a i(v)→1#. Note that forL→` the
photon numbers per unit frequency and unit leng
Nphi8 (v)/L, remain finite.

C. Photon tunneling through absorbing barriers

Let us finally outline the problem of photon tunnelin
through absorbing dielectric barriers. The question of h
much time is spent by a single photon in a barrier reg
acting as a photonic band gap has been of increasing int
and experiments have been made to observe superlum
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behavior of photons at such barriers@24–26#, without con-
tradiction to Einstein’s causality@27#. Although a number of
theoretical predictions have been verified experimentall
there have been open questions, such as the effect of los
in the barriers.

In the experiments~Fig. 6, for details see Ref.@24#! a
potassium dihydrogen phosphate~KDP! crystal is pumped
by a cw UV laser, producing pairs of down-conversion pho
tons, directed by mirrors to impinge on the surface of
50%:50% beam splitter, the output coincidences being me
sured. One photon of each pair travels through air~interfer-
ometer arm I in Fig. 6!, while the conjugate photon passes
multilayer dielectric barrier~interferometer arm II in Fig. 6!.
The coincidences attain a minimum when the two-photo
wave packets overlap perfectly at the beam splitter. This c
be achieved by translating an appropriately chosen prism
one arm of the interferometer in order to compensate for t
delay owing to the barrier.

From photodetection theory it is well known~see, e.g.,
Ref. @4#! that the joint probability of recording an event in
the ~small! time interval t1 , t11Dt1 and an event in the
~small! time intervalt2 , t21Dt2 by the two detectors in the
output channels of the interferometer is proportional to th
normally ordered intensity correlation function,

p~ t1 ,t2!5j2Dt1Dt2^Ê81
~2 !~x1 ,t1!Ê82

~2 !~x2 ,t2!

3Ê82
~1 !~x2 ,t2!Ê81

~1 !~x1 ,t1!& ~75!

(j, detection efficiency!. Applying the results outlined in
Sec. IV A, the intensity correlation function in Eq.~75! can
be related to correlation functions of the fields in the inpu
channels of the interferometer. Whereas the action of t
beam splitter simply reduces to a unitary transformation th
can be assumed to be independent of frequency, the inc
sion of the multilayer barrier in one arm of the interferomete
requires specific knowledge of the input-output relations. T
calculate the input-field correlation function, we assume th
the quantum state of the correlated photon pair can be mo
eled by

uC&5E
0

`

dVFa~V!E
0

V

dv f ~v! f ~V2v!

3âI
†~v!âII

†~V2v!u0&G , ~76!

FIG. 6. Scheme of the two-photon interference experime
@24,25# for the determination of photon traversal times throug
multilayer dielectric barriers (L, laser; P, prism; DB, dielectric
barrier; BS, beam splitter; PD1 , PD2 , photodetectors!.
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where the indices I and II are used to distinguish between
two photons. The spectral interval of laser photons is giv
by the functiona(V), andf (v) centered atV/2 is the band-
width function of the down-conversion photons. The func
tions a(V) and f (v) are normalized to unity, so that
^CuC& 5 1. After some lengthy but straightforward calcu
lation we derive the following expression for the overall co
incidencesR:

R5E dt1E dt2p~ t1 ,t2!

52p2N 4E
0

`

dVH a2~V!E
2V/2

V/2

dvS 1

4
V22v2D

3 f 4~V/22v!T12* ~V/21v!

3@T12~V/21v!2T12~V/22v!e22ivDt#J 1Rth .

~77!

Here, Dt52s/c, where s is the translation length of the
prism, andN 5 Aj\/(4pce0A). Since the thermal contri-
bution Rth is independent ofs, it has not been written down
explicitly.

Using the algorithm in Appendix B 2, we have performe
numerical calculations for anH(LH)5 structured plate (H,
titanium dioxide;L, fused silica! of l/4 layers of the type
described in Ref.@24#. Restricting attention to narrow band
width laser light, the effect of absorption on the transmi
tance of the barrier and the coincidences measured is sho
in Figs. 7 and 8, respectively. From these figures we see t
the change in the barrier transmittance owing to an ima
nary part of the refractive index of silica of about 2.6% of th
real part~the data have been taken from Ref.@29#! can give
rise to a shift of the position of the minimum of the coinci
dences of about 19%. The result indicates that the effect
losses should be considered very carefully in order to ga

FIG. 7. The absolute value of the transmittanceuT12u2 as a func-
tion of the wavelengthl is shown for anH(LH)5 structured plate
of l/4 layers of the type described in Ref.@24#; curve ~1!: lossless
barrier (nTiO2

5 2.22, nSiO2
5 1.41), curve~2!: absorbing barrier

(nTiO2
5 2.22, nSiO2

5 1.41 1 0.0372i @29#!.
e
n

-

-
wn
at
i-

of
in

deeper insight into the tunneling process. In the calculati
the dependence on frequency of the refractive indices
silica and titanium dioxide has been disregarded and the
fractive index of titanium dioxide has been assumed to
real, because of the lack of reliable data. In particular,
combination of the effects of dispersion and absorption
expected to affect both the delay and the curvature of
coincidences in the vicinity of the minimum, even when t
changes in the refractive indices are small.

V. SUMMARY AND CONCLUSIONS

Applying the method of Green-function expansion to t
quantization of radiation propagating through a multilay
dispersive and absorptive dielectric plate, we have stud
the problem of calculating the proper input-output relatio
for the radiation-field operators and presented results for
case when the radiation propagates perpendicularly to
plate. The plate is described in terms of a multistep~spatially
varying! complex permittivity in the frequency domain
which is introduced phenomenologically and only requir
to satisfy the Kramers-Kronig relations. The advantage of
method is that it enables one to obtain input-output relati
that not only apply to regions of frequency far from the m
dium resonances, but are valid, within the framework of
phenomenological linear electrodynamics, in the whole f
quency domain.

In consequence of the inclusion of the losses in the the
the output-radiation-field operators are found to be relate
the input-radiation-field operators and operator noise sou
in the plate associated with the losses, in agreement with
dissipation-fluctuation theorem. Disregarding all the loss
the characteristic absorption matrix that relates the outp
radiation operators to the operator noise sources vani
and the characteristic transformation matrix that relates
output-radiation operators to the input operators reduces
unitary matrix. The unitary transformation ensures that
bosonic commutation relations are preserved.

When the multilayer dielectric plate is embedded in
absorbing medium the input- and output-radiation fields c
be described in terms of amplitude operators whose sp
dependence~owing to damping! is governed by quantum
Langevin equations. Only in the limiting case when the s
rounding medium can be regarded as being lossless~particu-
larly, when the plate is embedded in free space! do the am-
plitude operators reduce to the well-known bosonic pho
operators. In this case, the characteristic transformation
absorption matrices of the plate can be shown to be relate
each other through conditions that ensure preservation o
bosonic commutation relations. These conditions can be
garded as the natural generalization of the familiar unita
conditions for lossless plates.

The input-output relations can be used advantageousl
order to obtain the quantum statistics of the output radiat
from that of the input radiation and the noise sources as
ciated with the absorbing matter. In this context, we ha
considered normally ordered radiation-field correlation fun
tions, with special emphasis on the spectral photon-num
densities. Application of the formalism to multilayer diele
tric barriers used in recent experiments on superluminal p
ton tunneling reveals that losses can lead to observable m
fications in the delay times.
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1670 54T. GRUNER AND D.-G. WELSCH
Finally, let us briefly comment on the underlying formal-
ism of quantization of the phenomenological Maxwell theor
for radiation in dispersive and absorptive linear media.
should be mentioned that the formalism used resembles
concepts of generalized free-field theories@31#. This type of
quantum field theory has recently been applied successfu
to thermo field dynamics for quantum fields@32#. The simi-
larities between the two descriptions may provide further in
sight into the basic physical structure of the theory, such

FIG. 8. The dependence on the timeDt52s/c of the coinci-
dencesR ~in arbitrary units! is shown for photon tunneling through
a multilayer dielectric barrier according to the scheme in Fig. 6, th
transmittance of the barrier being shown in Fig. 7; curve~1!: loss-
less barrier~minimum at 2.2 fs!, curve~2!: absorbing barrier~mini-
mum at 1.8 fs!.
t
he

lly

-
s

the limit of vanishing absorption. In thermo field dynami
this limit corresponds to the zero-temperature limit that h
been shown to be essentially nonanalytical. Similar featu
are also found in an indeterminacy of the dispersion re
tions. Absorption prevents the ‘‘spatially damped photon
from exhibiting a well-determined relation between ener
~frequency! and momentum~wave vector!. Similarly, at fi-
nite temperature particle states achieve a continuous s
trum not only for the particle momentum but at the sam
time for the mass parameter~for any fixed value of the par-
ticle momentum!.
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APPENDIX A: SINGLE-SLAB GREEN FUNCTION

Let us consider a dielectric slab of thicknessl embedded
in dielectric matter that may be different on the two sid
~see Fig. 1!. The Green functionG(x,x8,v) can be obtained
from Eqs.~25!, ~26!, and ~28!, with N53. The coefficients
Cj

(1)(x8,v) and Cj
(2)(x8,v) in Eq. ~28!, j 51,2,3, must be

determined from the conditions that the Green function
continuously differentiable at the surfaces of discontinu
~that is to say, atx56 l /2) and vanishes at infinity. Note tha
the latter requires the coefficientsC1

(1)(x8,v) and
C3

(2)(x8,v) to be zero. Straightforward but rather length
calculation yields@nj[nj (v)#

e

G~x,x8,v!5F2in1

v

c G21

Q~2x82 1
2 l !$Q~2x2 1

2 l !@ein1vux2x8u/c1ein1vu~2 l !/22x8u/c

3~r 121t12qein2v l /cr 23e
in2v l /ct21!e

in1vu~2 l !/22xu/c#1@Q~x1 1
2 l !2Q~x2 1

2 l !#t12qein1vu~2 l !/22x8u/c

3~ein2vux2~2 l !/2u/c1r 23e
in2v~ l 1u l /22xu/c!!1Q~x2 1

2 l !ein1vu~2 l !/22x8u/ct12e
in2v l /cqt23e

in3vux2 l /2u/c%

1F2in2

v

c G21

3@Q~x81 1
2 l !2Q~x82 1

2 l !#$Q~2x2 1
2 l !q~ein2vux82~2 l !/2u/c1ein2vu l /22x8u/cr 23e

in2v l /c!t21e
in1vu~2 l !/22xu/c

1@Q~x1 1
2 l !2Q~x2 1

2 l !#@ein2vux2x8u/c1q~ein2vux82~2 l !/2u/cr 21e
in2v l /c1ein2vu l /22x8u/c!r 23e

in2vu l /22xu/c

1q~ein2vux82~2 l !/2u/c1ein2vu l /22x8u/cr 23e
in2v l /c!r 21e

in2vux2~2 l !/2u/c#

1Q~x2 1
2 l !q~ein2vux82~2 l !/2u/cr 21e

in2v l /c1ein2vu l /22x8u/c!t23e
in3vux2 l /2u/c%1F2in3

v

c G21

Q~x82 1
2 l !

3$Q~2x2 1
2 l !ein3vux82 l /2u/ct32qein2v l /ct21e

in1vu~2 l !/22xu/c1@Q~x1 1
2 l !2Q~x2 1

2 l !#ein3vux82 l /2u/c

3t32q~ein2vu l /22xu/c1ein2v l /cr 21e
in2vux2~2 l !/2u/c!1Q~x2 1

2 l !@ein3vux2x8u/c1ein3vux82 l /2u/c

3~r 321t32qein2v l /cr 21e
in2v l /ct23!e

in3vux2 l /2u/c#%. ~A1!
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Here, the interface reflection and transmission coefficie
r i j [r i j (v) and t i j [t i j (v), respectively, are defined by

r i j ~v!52r j i ~v!5
ni~v!2nj~v!

ni~v!1nj~v!
, ~A2!

t i j ~v!5
2ni~v!

ni~v!1nj~v!
, ~A3!

and the factorq[q(v), which arises from multiple reflec
tions inside the slab, reads as

q~v!5(
j 50

`

@ein2~v!v l /cr 21~v!ein2~v!v l /cr 23~v!# j

5@12ein2~v!v l /cr 21~v!ein2~v!v l /cr 23~v!#21.

~A4!

Note that the above given form of the Green function perm
of a direct physical interpretation. The terms in Eq.~A1!
simply correspond to the potential propagations of radiat
from a source pointx8 to a point of observation,x.
ts

s

n

APPENDIX B: PHOTONIC OPERATORS, NOISE
OPERATORS, INPUT-OUTPUT RELATIONS

1. Single-slab dielectric plate

Substituting in Eq.~9! for G(x,x8,v) the expression~A1!
and rewriting the result ~within the space intervals
2`<x<2 l /2 and l /2<x<`) in the form ~29!, we easily
see that the amplitude operators of the incoming fields fr
the left and right, respectively,â11(x,v) and â32(x,v),
read as

â11~x,v!5
1

i
A2g1~v!

v

c
e2g1~v!vx/c

3E
2`

x

dx8e2 in1~v!vx8/c f̂ ~x8,v!, ~B1!

â32~x,v!5
1

i
A2g3~v!

v

c
eg3~v!vx/c

3E
x

`

dx8ein3~v!vx8/c f̂ ~x8,v! ~B2!
@nj (v)5b j (v)1 ig j (v)#, and the amplitude operators of the outgoing fields to the left and right, respectively,â12(x,v) and
â31(x,v), are given by

â12~x,v!5
1

i
A2g1~v!

v

c
eg1~v!vx/cE

x

2 l /2

dx8ein1~v!vx8/c f̂ ~x8,v!1eg1~v!v~x2 l /2!/ce2 in1~v!v l /c

3@r 12~v!1t12~v!r 23~v!t21~v!e2in2~v!v l /cq~v!#â11~2 1
2 l ,v!1A2g1~v!eg1~v!vx/c

n1~v!

n2~v!
Ab2~v!g2~v!

b1~v!g1~v!

3q~v!t21~v!e2 in1~v!v l /~2c!@ ĝ28 ~v!1r 23~v!ein2~v!v l /cĝ18 ~v!#1e@g1~v!x2g3~v!l /2#v/c
n1~v!

n3~v!
Ab3~v!

b1~v!

3e2 i @n1~v!22n2~v!1n3~v!#v l /~2c!t32~v!t21~v!q~v!â32~ 1
2 l ,v!, ~B3!

â31~x,v!5
1

i
A2g3~v!

v

c
e2g3~v!vx/cE

l /2

x

dx8e2 in3~v!vx8/c f̂ ~x8,v!1e2g3~v!v~x1 l /2!/ce2 in3~v!v l /c

3@r 32~v!1t32~v!r 21~v!t23~v!e2in2~v!v l /cq~v!#â32~ 1
2 l ,v!1A2g3~v!e2g3~v!vx/c

n3~v!

n2~v!
Ab2~v!g2~v!

b3~v!g3~v!

3q~v!t23~v!e2 in3~v!v l /~2c!@ ĝ18 ~v!1r 21~v!ein2~v!v l /cĝ28 ~v!#1e2@g1~v!l /21g3~v!x#v/c
n3~v!

n1~v!
Ab1~v!

b3~v!

3e2 i @n1~v!22n2~v!1n3~v!#v l /~2c!t12~v!t23~v!q~v!â11~2 1
2 l ,v!, ~B4!

where the operatorsĝ68 (v) are defined in Eq.~36!.
Inverting the relations~35!, we may express the operatorsĝ68 (v) in terms of the operatorsĝ6

(1)(v) and rewrite Eqs.~B3!
~for x52 l /2) and~B4! ~for x5 l /2) in the compact form

S â12~2 1
2 l ,v!

â31~ 1
2 l ,v!

D 5T̃~1!S â11~2 1
2 l ,v!

â32~ 1
2 l ,v!

D 1Ã~1!S ĝ1
~1!~v!

ĝ2
~1!~v!D . ~B5!

The elements of the characteristic transformation matrixT̃(1), Tik
(1)(v), are seen to be
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T11
~1!~v!5e2 ib1~v!v l /c@r 12~v!1t12~v!e2in2~v!v l /cr 23~v!q~v!t21~v!#, ~B6!

T12
~1!~v!5

n1~v!

n3~v!
Ab3~v!

b1~v!
e2 i @b1~v!1b3~v!#v l /~2c!t32~v!ein2~v!v l /cq~v!t21~v!, ~B7!

T21
~1!~v!5

n3~v!

n1~v!
Ab1~v!

b3~v!
e2 i @b1~v!1b3~v!#v l /~2c!t12~v!ein2~v!v l /cq~v!t23~v!, ~B8!

T22
~1!~v!5e2 ib3~v!v l /c@r 32~v!1t32~v!e2in2~v!v l /cr 21~v!q~v!t23~v!#, ~B9!
tr

ra-
and the elements of the characteristic absorption ma
Ã(1), Aik

(1)(v), read as

A11
~1!~v!5Ag2~v!

b2~v!

b1~v!
e2 ib1~v!v l /~2c!t12~v!q~v!

3Ac1@11ein2~v!v l /cr 23~v!#, ~B10!

A12
~1!~v!5Ag2~v!

b2~v!

b1~v!
e2 ib1~v!v l /~2c!t12~v!q~v!

3Ac2@12ein2~v!v l /cr 23~v!#, ~B11!

A21
~1!~v!5Ag2~v!

b2~v!

b3~v!
e2 ib3~v!v l /~2c!t32~v!q~v!

3Ac1@ein2~v!v l /cr 21~v!11#, ~B12!

A22
~1!~v!5Ag2~v!

b2~v!

b3~v!
e2 ib3~v!v l /~2c!t32~v!q~v!

3Ac2@ein2~v!v l /cr 21~v!21#, ~B13!

wherec6 is defined in Eq.~37!.
Note that when the plate is surrounded by vacuum,

n1~v!5n3~v![1, ~B14!

so that

b1~v!5b3~v![1, g1~v!5g3~v![0, ~B15!

the following relations are valid@cf. Eqs.~A2!–~A4!#:
ix
r 12~v!5r 32~v!5

12n2~v!

11n2~v!
52r 21~v!52r 23~v!,

~B16!

t12~v!5t32~v!5
2

11n2~v!
, ~B17!

t21~v!5t23~v!5
2n2~v!

11n2~v!
, ~B18!

q~v!5(
j 50

`

@ein2~v!v l /cr 21~v!ein2~v!v l /cr 23~v!# j

5@12r 21
2 ~v!e2in2~v!v l /c#21. ~B19!

Using Eqs.~35! and ~36! and recalling the commutation
relations~6! and~7!, from Eqs.~B1! and~B2! we derive that

@ â11~x,v!,â11
† ~x8,v8!#5e2g1~v!v ux2x8u/cd~v2v8!,

~B20!

@ â32~x,v!,â32
† ~x8,v8!#5e2g3~v!v ux2x8u/cd~v2v8!,

~B21!

@ â11~x,v!,â32
† ~x8,v8!#50, ~B22!

@ â11~x,v!,„ĝ6
~1!~v8!…†#505@ â32~x,v!,„ĝ6

~1!~v8!…†#.
~B23!

The commutation relations for the output amplitude ope
tors â12(x,v), â31(x,v) and â12

† (x,v), â31
† (x,v) can be

derived in a similar way or, more easily, using Eqs.~30! and
~31! and applying the input-output relations~B5! ~together
with the corresponding commutation relations!. Straightfor-
ward calculation yields
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@ â12~x,v!,â12
† ~x8,v8!#5d~v2v8!H e2g1~v!vux2x8u/c1e2g1~v!v@ ux2~2 l /2!u/c1ux82~2 l /2!u/c#

3F uT11
~1!~v!u21uT12

~1!~v!u21uA11
~1!~v!u21uA12

~1!~v!u2211 i
g1~v!

b1~v!

3$T11
~1!~v!~eib1~v!v l /c2e22ib1~v!vx8/c!2@T11

~1!~v!#* ~e2 ib1~v!v l /c2e2ib1~v!vx/c!%G J ,

~B24!

@ â31~x,v!,â31
† ~x8,v8!#5d~v2v8!H e2g3~v!vux2x8u/c1e2g3~v!v~ ux2 l /2u/c1ux82 l /2u/c!

3F uT21
~1!~v!u21uT22

~1!~v!u21uA21
~1!~v!u21uA22

~1!~v!u2211 i
g3~v!

b3~v!

3$T22
~1!~v!~eib3~v!v l /c2e2ib3~v!vx8/c!2@T22

~1!~v!#* ~e2 ib3~v!v l /c2e22ib3~v!vx/c!%G J , ~B25!

@ â31~x,v!,â12
† ~x8,v8!#5d~v2v8!H e2g1~v!vux82~2 l /2!u/c2g3~v!vux2 l /2u/cF @T11

~1!~v!#* T21
~1!~v!

1@T12
~1!~v!#* T22

~1!~v!1@A11
~1!~v!#* A21

~1!~v!1@A12
~1!~v!#* A22

~1!~v!

1 iT21
~1!~v!

g1~v!

b1~v!
~eib1~v!v l /c2e22ib1~v!vx8/c!

1 i @T12
~1!~v!#*

g3~v!

b3~v!
~e22ib3~v!vx/c2e2 ib3~v!v l /c!G J . ~B26!
e
ia

n
s

-
ra-

a

n

rs
Needless to say,â12(x,v) and â31(x,v) are commuting
quantities. Using Eqs.~B6!–~B13! and assuming that th
plate is embedded in nonabsorbing med
@g1(v)5g3(v)50#, the following relations are easily
proved correct:

uT11
~1!~v!u21uT12

~1!~v!u21uA11
~1!~v!u21uA12

~1!~v!u2

5uT21
~1!~v!u21uT22

~1!~v!u21uA21
~1!~v!u21uA22

~1!~v!u251,

~B27!

T11
~1!~v!@T21

~1!~v!#* 1T12
~1!~v!@T22

~1!~v!#*

1A11
~1!~v!@A21

~1!~v!#* 1A12
~1!~v!@A22

~1!~v!#* 50.

~B28!

In this case, both the input-field commutation relatio
~B20!–~B22! and the output-field commutation relation
s

~B24!–~B26! obviously reduce to the familiar bosonic com
mutation relations for photon destruction and creation ope
tors.

2. Multislab dielectric plates

Starting from the results derived in Appendix B 1 for
single-slab dielectric plate (N53), the results for an arbi-
trary dielectric plate (N>3, cf. Fig. 2! can be obtained step
by step, without explicitly calculating the multislab Gree
function. For this purpose we show that when Eqs.~44!–~50!
are valid forN21, then they are also valid forN. Using Eq.
~44!, with N21 in place ofN, and expressing the operato
âN21 6(xN22 ,v) in terms of the operatorsâ16(x1 ,v), we
find that

S âN21 1~xN22 ,v!

âN21 2~xN22 ,v!D 5P̃S â12~x1 ,v!

â11~x1 ,v!D
1Q̃S ĝ1

~N23!~v!

ĝ2
~N23!~v!

D , ~B29!

where the matricesP̃[P̃(N23) andQ̃[Q̃(N23) are given by
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P̃5~T12
~N23!!22S T22

~N23! T21
~N23!T12

~N23!2T22
~N23!T11

~N23!

1 2T11
~N23! D , ~B30!

Q̃5~T12
~N23!!22S A21

~N23!T12
~N23!2A11

~N23!T22
~N23! A22

~N23!T12
~N23!2A12

~N23!T22
~N23!

2A11
~N23! 2A12

~N23! D . ~B31!
le
The desired (N22)-slab plate can be obtained by supp
ment to the (N23)-slab plate of the (N21)th slab~cf. Fig.
2!. Applying Eq. ~30! to âN21 6(x,v) (xN22<x<xN21)
yields

âN21 6~xN21 ,v!5âN21 6~xN22 ,v!e7gN21~v!v l N21 /c

1d̂N21 68 ~v!, ~B32!

wherel N215xN212xN22 , and

d̂N21 68 ~v!5E
xN22

xN21
dy F̂N21 6~y,v!e7gN21~v!v~xN212y!/c,

~B33!

with F̂N21 6(y,v) according to Eq.~31!. Recalling the com-
mutation relations~21!, the operatorsd̂N21 68 are found to
satisfy the commutation relations

@ d̂N21 68 ~v!,d̂8N21 6
† ~v8!#52d~v2v8!e7gN21~v!v l N21 /c

3sinhFgN21~v!
v

c
l N21G ,

~B34!

@ d̂N21 68 ~v!,d̂8N21 7
† ~v8!#522d~v2v8!

gN21~v!

bN21~v!

3e7 ibN21~v!v~xN221xN21!/c

3sinFbN21~v!
v

c
l N21G .

~B35!

By means of linear combination of the operatorsd̂N21 68 ,
bosonic operatorsd̂N21 6 can be introduced as

S d̂N21 1~v!

d̂N21 2~v!
D 5D̃S d̂N21 18 ~v!

d̂N21 28 ~v!
D , ~B36!

@ d̂N21 6~v!,d̂N21 6
† ~v8!#5d~v2v8!, ~B37!

@ d̂N21 6~v!,d̂N21 7
† ~v8!#50. ~B38!

In Eq. ~B36!, the matrixD̃ reads as

D115H 2Fa11S a1

a2
D 1/2

ua0uG J 21/2

, ~B39!

D2152H 2Fa12S a1

a2
D 1/2

ua0uG J 21/2

, ~B40!
-
D125exp@ i arg~a0!#H 2Fa21S a2

a1
D 1/2

ua0uG J 21/2

,

~B41!

D225exp@ i arg~a0!#H 2Fa22S a2

a1
D 1/2

ua0uG J 21/2

,

~B42!

where

a652e7gN21~v!v l N21 /csinhFgN21~v!
v

c
l N21G ,

~B43!

a0522
gN21~v!

bN21~v!
e2 ibN21~v!v~xN221xN21!/c

3sinFbN21~v!
v

c
l N21G . ~B44!

Combining Eqs.~B32! and ~B36! we may write

S âN21 1~xN21 ,v!

âN21 2~xN21 ,v!D 5R̃S âN21 1~xN22 ,v!

âN21 2~xN22 ,v!D
1D̃21S d̂N21 1~v!

d̂N21 2~v!
D , ~B45!

whereRii 85Rii d i i 8, with

R115R22
215expF2gN21~v!

v

c
l N21G . ~B46!

We now relate the operatorsâN6(xN21 ,v) and
âN21 6(xN21 ,v) to each other, recalling thatÂ(x) is con-
tinuously differentiable atxN21 . Straightforward calculation
yields

S âN1~xN21 ,v!

âN2~xN21 ,v!
D 5S̃S âN21 1~xN21 ,v!

âN21 2~xN21 ,v!
D , ~B47!

where the elements of the matrixS̃ read as

S115AbN21~v!

bN~v!

nN~v!1nN21~v!

2nN21~v!

3e2 i @bN~v!2bN21~v!#vxN21 /c, ~B48!



54 1675QUANTUM-OPTICAL INPUT-OUTPUT RELATIONS FOR . . .
S125AbN21~v!

bN~v!

nN~v!2nN21~v!

2nN21~v!

3e2 i @bN~v!1bN21~v!#vxN21 /c, ~B49!

S215AbN21~v!

bN~v!

nN~v!2nN21~v!

2nN21~v!

3ei @bN~v!1bN21~v!#vxN21 /c, ~B50!

S225AbN21~v!

bN~v!

nN~v!1nN21~v!

2nN21~v!

3ei @bN~v!2bN21~v!#vxN21 /c. ~B51!

Combining Eqs.~B29!, ~B45!, and~B47!, we obtain
S âN1~xN21 ,v!

âN2~xN21 ,v!D 5S̃R̃P̃S â12~x1 ,v!

â11~x1 ,v!D 1S̃R̃Q̃S ĝ1
~N23!~v!

ĝ2
~N23!~v!

D
1S̃D̃21S d̂N21 1~v!

d̂N21 2~v!
D , ~B52!

from which we deduce that

S â12~x1 ,v!

âN1~xN21 ,v!D 5T̃~N22!S â11~x1 ,v!

âN2~xN21 ,v!D
1Ã8S ĝ1

~N23!~v!

ĝ2
~N23!~v!

D 1Ã9S d̂N21 1~v!

d̂N21 2~v!
D ,

~B53!

where the matrices read as
T̃~N22!5~SRP!21
22S 2~SRP!22 1

~SRP!12~SRP!212~SRP!11~SRP!22 ~SRP!11
D , ~B54!

Ã85~SRP!21
22S 2~SRQ!21 2~SRQ!22

~SRQ!11~SRP!212~SRQ!21~SRP!11 ~SRQ!12~SRP!212~SRQ!22~SRP!11
D , ~B55!

Ã95~SRP!21
22S 2~SD21!21 2~SD21!22

~SD21!11~SRP!212~SD21!21~SRP!11 ~SD21!12~SRP!212~SD21!22~SRP!11
D . ~B56!
m

rs
ors
e

Note thatĝ6
(N23)(v) and d̂N21 6

† (v) are commuting quanti-
ties, because they refer to different space intervals@cf. the
commutation relations~6! or ~21!#.

Finally, we introduce bosonic operatorsĝ6
(N22)(v) as lin-

ear combinations of the operatorsĝ6
(N23)(v) and

d̂N21 6(v):

S ĝ1
~N22!~v!

ĝ2
~N22!~v!

D 5ŨF Ã8S ĝ1
~N23!~v!

ĝ2
~N23!~v!

D
1Ã9S d̂N21 1~v!

d̂N21 2~v!
D G , ~B57!

@ ĝ6
~N22!~v!,„ĝ6

~N22!~v8!…†#5d~v2v8!, ~B58!

@ ĝ6
~N22!~v!,„ĝ7

~N22!~v8!…†#50. ~B59!

The elements of the matrixŨ are given by

U115H 2Fm11S m1

m2
D 1/2

um0uG J 21/2

, ~B60!

U2152H 2Fm12S m1

m2
D 1/2

um0uG J 21/2

, ~B61!
U125exp@ i arg~m0!#H 2Fm21S m2

m1
D 1/2

um0uG J 21/2

,

~B62!

U225exp@ i arg~m0!#H 2Fm22S m2

m1
D 1/2

um0uG J 21/2

,

~B63!

where

m15uA118 u21uA128 u21uA119 u21uA129 u2, ~B64!

m25uA218 u21uA228 u21uA219 u21uA229 u2, ~B65!

m05A118 A821* 1A128 A822* 1A119 A921* 1A129 A922* . ~B66!

Identifying the inverse ofŨ with Ã(N22),

Ã~N22!5Ũ21, ~B67!

Eq. ~B53! @together with Eq.~B57!# is the desired result~44!.
From the structure of the Green function@cf. Eqs.~25!–~28!#
it is clear that the input operatorsâ11(x,v) and
âN2(x,v), respectively, can always be written in the for
given in Eqs.~B1! and ~B2! @with arbitrary N (N>3) in
place of N53#. With regard to the basic-field operato
f̂ (x,v), both the input operators and the noise operat
ĝ6

(N22)(v) refer to different space intervals. Hence all th
commutation relations~45!–~50! are satisfied for arbitrary
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N (N>3), which implies that the commutation relation
~B24!–~B26! remain also valid whenâN1(x,v),âN1

† (x8,v)
and T̃(N22),Ã(N22) are substituted for
â31(x,v),â31

† (x8,v) andT̃(1),Ã(1), respectively. We finally
mention that in a way similar to that outlined above for t
input-output relations the extension of the relations~B27!
and ~B28! to arbitraryN (N>3) may be proved correct.

APPENDIX C: OUTGOING-RADIATION CORRELATION
FUNCTIONS

When the dielectric plate is in thermal equilibrium th
density operator of the matter excitations may be given b

%̂DP5expH2(
i 51

2 E
0

`

dvS ln@11nth~v!#

1
\v

kBT
ĝi

†~v!ĝi~v!D J , ~C1!

with nth(v) from Eq. ~74!. Note that this density operator o
course corresponds to the thermal-equilibrium state of
basic fieldf̂ (x,v) inside the plate. The correlation function
~67! are then calculated to be
s

e

G$ i m%
~p,q!~$vm%!5dpq)

z51

p

d i z i z1p
nth~vz!d~vz2vz1p!,

~C2!

where the set of indicesz denotes a permutation of the set
indices m, so that vz21,vz for 2<z<p or
p12<z<p1q @note thatG$ i m%

(p,q)($vm%) vanishes if for any

z with p>z>2 the relationvz215vz is fulfilled#.
We now appropriately label the terms that~after disentan-

gling! occur on the right-hand side of Eq.~65!. For this pur-
pose we introduce the setS(m,n) of arrangements of the
m1n indicesz ~disposed in ascending order! by assigning
them to two classes (K51,2) and four ~possibly empty!
groups (j 51,2,3,4). The class indicesK51 andK52 refer
to the creation and destruction operators, respectively,
the group indicesj 51,2,3,4 are used to distinguish betwe
the four excitations to be considered. ForK51 (2) the indi-
ces refer forj 51 to â1

† (â1), for j 52 to â2
† (â2), for j 53 to

ĝ1
† (ĝ1), and for j 54 to ĝ2

† (ĝ2). The l j
K indices of the

Kth class and j th group are denoted byz j
K( i ),

i 51, . . . ,l j
K . From Eq.~65! we then find that
C8$ i m%
~m,n!~$vm%!5 (

S~m,n!
C

$ i z1
; i z2

%

~l1
1 ,l1

2 ;l2
1 ,l2

2
!
~$vz1

;vz2
%!G

$ i z3
%

~l3
1 ,l3

2
!
~$vz3

%!G
$ i z4

%

~l4
1 ,l4

2
!
~$vz4

%!

3 )
a51

l1
1

)
b51

l2
1

)
g51

l1
2

)
h51

l2
2

Ti z1
1~a!1

* ~vz
1
1~a!!Ti z2

1~b!2
* ~vz

2
1~b!!Ti z1

2~g!1
~vz

1
2~g!!Ti z2

2~h!2
~vz

2
2~h!!

3 )
f51

l3
1

uAi z3
1~f!1

~vz
3
1~f!!u2)

x51

l4
1

uAi z4
1~x!2

~vz
4
1~x!!u2, ~C3!

where

C
$ i z1

; i z2
%

~l1
1 ,l1

2 ;l2
1 ,l2

2
!
~$vz1

;vz2
%!5K F )

a51

l1
1

â1
†~vz

1
1~a!!GF )

b51

l2
1

â2
†~vz

2
1~b!!GF )

g51

l1
2

â1~vz
1
2~g!!GF )

h51

l2
2

â2~vz
2
2~h!!G L ~C4!

~the notationz j is used to indicate sets of indices, without distinguishing between the two classes!.
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