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Role of optical anisotropies in the polarization properties
of surface-emitting semiconductor lasers
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Due to the transverse device symmetry, the polarization properties of the light generated by surface-emitting
semiconductor lasers will be strongly influenced by residual anisotropies. We describe the polarization dynam-
ics of these lasers on the basis of a theoretical model founded on the coexistence of two different electron-hole
recombination transitions, which give rise to circularly polarized fields with opposite helicities; the carrier
densities available for these two transitions are coupled via spin-mixing processes. The residual cavity
anisotropies are introduced in the model by means of the boundary conditions imposed to the counterpropa-
gating fields: anisotropies which are symmetric and antisymmetric under time reversal will generate different
boundary conditions. We include in the equations the effects of material strain, which causes symmetric linear
phase and amplitude anisotropies, and of an externally applied magnetic field, which induces antisymmetric
circular phase and amplitude anisotropies via the Faraday effect. This theoretical framework allows us to
explain, with realistic values of the system parameters, some of the polarization behaviors exhibited by
surface-emitting semiconductor lasers, namely, bistability and switching between orthogonal linearly polarized
fields and magnetically induced ellipticityS1050-294{®6)01908-7

PACS numbegs): 42.55—f

[. INTRODUCTION by temperature changes in the gain spectral profile and in the
eigenfrequencies of the linearly polarized states, which are
A vertical cavity surface-emitting las€¥CSEL) is char-  split by the linear phase anisotropg]. This gain-differential
acterized, as compared with conventional edge-emittingheory does not seem to suit VCSEL's very well, due to the
semiconductor lasers, by an active layethogonalto the ~ smallness of the frequency splitting as compared to the large
cavity axis and by light emissioparallel to the device Spectral width of the gain profile. o
growth direction[1,2]. From the nominal transverse symme- Only lately has a theoretical mvestlgatlon_ specifically in-
try which follows from this geometry stems one of the mostt€nded for VCSEL'’s been started by San Miguel, Feng, and

distinctive advantage of VCSEL's, that is, the absence of0loney (SFM) [8]. These authors develop a model which,
astigmatism in the emitted light. neglecting for simplicity all Coulomb interactions and en-

On the other hand, while the light generated by edge_ergy dispersions, takes into account two distinct carrier

emitting lasers is always linearly polarized along one of thepopulatlons characterized by opposite spin and includes their

transverse axes defined by the laser stripe, such simplicit Imfluence on the field phase, via the linewidth enhancement

{10 b tod | VCéEL’ i th pb’ ¢ P dy f%ctor[9]. When a linear phase anisotropy is added, the SFM
not o be expected in S: In Ih€ absence of any A€y, g effectively gives as stationary solutions linearly polar-
signed transverse asymmetry, their polarization propertie

: . i , ) zed states oriented along two preferred orthogonal directions
will be in fact strongly influenced by the residual anisotro- 5nq giscriminated in their stability properties by transverse
pies of the maf[erlal,.and in pgrtlcular by the linear anisotrogffects j.e.. by diffractiori8]. In a very recent paper it has
pies due to unintentional strain. been demonstrated that the SFM approach can also lead to

In effect, an increasing number of experiments shows thafich nonlinear dynamics and that polarization switching can
the light generated by VCSEL's may exhibit a rich variety of take place if an external signal is injected in the 5.
polarization behaviors. The fundamental transverse mode is The motivation of the present paper is rooted in the recent
usually found to be linearly polarizef@], but the polariza- experimental demonstration that the application of an axial
tion direction changes with increasing pumping curreht magnetic field significantly modifies the polarization charac-
higher-order transverse modes are also found to be linearheristics of VCSEL's[11]. From the theoretical point of
polarized, but their polarization direction is orthogonal to theview, this demonstration sets the necessity of an integrated
polarization direction of the fundamental modd. Bistabil-  analysis of the role of linear and circular anisotropies on the
ity and switching among linearly polarized states with or-polarization properties of VCSEL's, since generally the lin-
thogonal polarization directions have also been repdi¢d ear anisotropies cannot be avoided. The aim of the present

A common explanation for the switching between linearly paper is precisely to present such an analysis, on the basis of
polarized states of emission relies on the variations inducethe original SFM framework.

As soon as the influences of a circular anisotropy are to be
investigated, it becomes necessary to distinguish the effects

:Electronic address: Trava@rulhm1.leidenuniv.nl of a magnetic field from the effects of a possible optical
Permanent address: Dipartimento di Fisica, Univewiitslilano,  activity in the laser material. Luckily, although both Faraday
Italy. Electronic address: Travagnin@mi.infn.it effect and optical activity give rise to circular phase anisotro-
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pies, they can be discriminated on the basis of their behavior
under time reversal, or, equivalently, on the basis of their Laser beam
action on the fields which are counterpropagating inside the
laser cavity. We will therefore begin our theoretical investi-
gation one step before what was dond &}, starting from

the equation of counterpropagating fields and applying the Bragg mirror
boundary conditions due to the various cavity anisotropies

according to the formalism described[it2,13; only in this t T )

way can it be demonstrated that optical activity has no net Active layer
effects in a mean-field limit, and consequently that the sole l

origin of circular phase anisotropies is the magnetic field. By
setting the magnetic field to zero we recover some of the
results reported if10].

Bragg mirror

The material of the paper is organized as follows: after 2
this general introduction, we present in Sec. Il the quantum —
scheme of the laser and include the influence of optical 7y

anisotropies, both linear and circular, in the system dynam- v

ics, to derive finally the fundamental equations which regu-

late the polarization properties of VCSEL'’s. In Sec. lll we  FIG. 1. Schematic representation of a vertical cavity surface-

examine the role of the linear anisotropies which follow from emitting laser.

material strain, first determining the system stationary states

and secondly analyzing their stability characteristics. In Sec. A. Quantum scheme

IV we study the influence of the circular anisotropies which  The simplified representation of a VCSEL is shown in

follow from the application of an axial magnetic field, deter- Fig. 1: two distributed Bragg reflectors separated by a spacer

mining first the stable states of the system and then findinghat contains the gain medium, which usually consists of one

their analytical expressions close to the lasing threshold. Figr more qguantum wells. Light is coupled out through the top

nally, in Sec. V, we summarize the results and present somgrface of the wafer. The cross section of the device is usu-

possibilities for future work. ally circular, so that the laser has an overall cylindrical sym-
metry. For the band structure of the active layer in a quantum
well VCSEL we follow the SFM mode€]8], summarized in

II. THEORETICAL FRAMEWORK Fig. 2. If spin-orbit interaction is neglected, the relevant

As in every laser, the polarization properties of the lightauantum numbers are, respectivelyandm, for the orbital
generated by VCSEL's depend both on the quantum numangular momentum and its component, anans for the z
bers of the angular momentum in the states between whickomponent of the spin angular momentum. The conduction
the optical transitions takes place and on the transverse déand is characterized by the valug¢s-0, m=0, and
sign of the laser cavity. The aim of the present section is td"s= = 1/2 and consequently has only spin degeneracy, while
derive a set of equations which relate the polarization behawthe valence band, characterized by 1, m=0,=1, and
ior of VCSEL's to the quantum structure of the active me-Ms=*1/2, has both spin and angular momentum degen-
dium and to the anisotropies of the cavity. eracy. When spin-orbit interaction is taken into account the

The first anisotropy to deal with is the unavoidable linearquantum numbers beconjeand m;, respectively, for the
phase anisotropy due to the strain induced into the materidptal angular momentum and isscomponent. The conduc-
by lattice mismatch or by electrical contacts. As a consetion band is now identified by the valueg=1/2 and
quence of this anisotropy, the orientation degeneracy of then,= = 1/2, while the valence band loses its angular momen-
electric field in the transverse plane will be removed and théum degeneracy, giving rise to four degenerate states
frequencies of orthogonally linearly polarized light fields j=3/2, m;=*1/2,=3/2, which have a higher energy than
will be split. the two degenerate statgs 1/2, m;= +=1/2. When the ef-

A recent experimenftl1] has shown that the application fect of quantum confinement along thedirection is added,
of an axial magnetic field to a VCSEL alters appreciably thethe residual angular momentum orientation degeneracy of
polarization properties of the laser beam and that importarthe j=3/2 state is also removed. The leve=+3/2 is
physical parameters can be deduced by comparing this effeshifted upward and gives rise to the so-called heavy-hole
with theoretical models. In order to provide such a modelband, while the levelm;==*1/2 is shifted downward and
we will include in the equations governing the laser dynam-gives rise to the light-hole banfil4,15. As in the SFM
ics the circular phase anisotropy induced via the Faradagnodel, we will assume in the following that the splitting due
effect, which splits the frequencies of circularly polarizedto quantum confinement is large enough to rule out transi-
light fields with opposite helicities. tions between the conduction and the light-hole valence

The complex nature of the refractive index in dispersiveband, thus assuming that the active material of the vertical
media imposes, via the Kramers-Kronig relations, the preseavity surface-emitting laser can be described by the simpli-
ence of amplitude anisotropies as soon as phase anisotropigsd four-level scheme shown in Fig(l. Note that the se-
are admitted. We will therefore generalize the equations goviection rule Am;=*1 allows two different transitions be-
erning the light polarization dynamics in VCSEL'’s to in- tween the conduction and the heavy-hole valence band, both
clude the effect of linear and circular amplitude anisotropiesassociated with the generation of circularly polarized light:
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FIG. 3. Conventions used to indicate the circularly polarized
fields F. and B which counterpropagate inside the laser cavity;
the active material has been represented with a dashed box, and the
distributed Bragg reflectors have been replaced by two equivalent
hard mirrors. Note that the helicity changes upon every reflection.

Dy Vi D_
m; = —1/2 ;= 1/2 (i) the field cavity decay rate, equal to one half of the
inverse photon lifetime, which is-10'? s~ 1;

(ii) the inverse carrier radiative lifetimey, which is
~10° s %

(iii) the spin-mixing ratey;, which is determined in a
complicated way by a number of different scattering mecha-
nisms[17,18 and in quantum wells is estimated to be in the
range 16°-10't s~ 1;

(iv) the material polarization relaxation ragge , which is
in the range 1&5-104s71.

FIG. 2. (a) Band structure of a quantum well VCSE(b) En- Due to the strong inequality, > «,y;,y|, the material
ergy levels relevant for lasing transitions in VCSEL's: both the polarization can be adiabatically eliminated from the system
transitions shown are associated with circularly polarized light. Theof equations which governs the laser dynamics, and a rate-
symbols F,, F_, B,, and B_ indicate the forward- and equations approach can be followed. The laser dynamics is
backward-propagating fields with opposite helicity. The carrierstherefore fully described by the field5. (z,t) and B=(z,t)
densities available for the two transitions—indicated Wy and  gnd by the carrier inversion densitis. (z,t). With a proper
D_—are coupled to each other through spin—mixing processeghoice of the reference frequency the counterpropagating

m; = —3/2 ¥ m; =3/2

characterized by an overall rajg . fields obey the partial differential equatioffs9]
in the following we will indicate withD..(z,t) the carrier IF aFse | .
inversion densities available for these two transitions. ot tUo 0z =9'Q-ia)D. 7, (1a

The dimensionless slowly varying envelopes of the circu-
larly polarized complex fieldsF.(z,t) and B+ (z,t) which JB- JB.-
propagate respectively in the forward and backward direc- S Vo
tions have been sketched in Fig. 3. The subscripts indicate at 9z
the helicity of the fields, that is, the projection of the photon
intrinsic angular momentum on the direction of propagationwhereuv is the velocity of light in the materiag’ is the gain
[16]: accordingly, we have interchanged the subscript signger unit inversion and unit timéwith the dimension of a
in the backward field with respect to the forward field. Sincevolume divided by timg and the linewidth enhancement
the same electronic transition generates counterpropagatirigctor o («>0) takes account of the influence of the carrier
fields with opposite helicity, the carrier densiB,. available density on the material refractive ind¢].

=g'(1-ia)D.B=, (1b)

for the transitiorm; = — 1/2— — 3/2 will couple with 7, and A considerable simplification of the problem can be
B_, while the carrier densit_ available for the transition achieved if the longitudinal variations of the system vari-
m; =1/2—3/2 will couple with7_ and B, [see Fig. 20)]. ables are so small that the laser can equally well be described

Note that it has been assumed that all the system variabldy/ their z averages; in fact, the high reflectivity of the
D., F., andB- do not depend on the transverse coordi-VCSEL Bragg mirrors guarantees the validity of this longi-
natesx andy: this means that the diffusion of the carriers tudinal quasiuniformity or mean-field assumption. In the fol-
and the diffraction of the light have been neglected, andowing, we will treat the distributed reflectors as identical
therefore all our analysis will be valid in the limit of the hard mirrors placed very close to the boundaries (1) and
plane-wave approximation. (2) of the active layer, choosing the zero of the vertical axes

The time scale of the various processes involved in thén such a way that these boundaries lie respectively in the
dynamics of a VCSEL is described by the following rates. planesz=0 andz=L, whereL is the active layer lengttsee
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Fig. 1 and Fig. 3 The effect of the reflection losses is in- . _ i P
cluded in the model by rescaling the variables according to E+= —K([l—(l—la)D{lEHr ﬁ[(lg(:)—f(i))
the relationd19]

- 1(z +('f—<§>—'z§§>)]J. (8)
Fi(z,t)=ex ) E_l [INR| | F+(z,t), (2a)
In the next subsection we will show how the effects of pos-
- 1z sible small cavity anisotropies can be taken into account in
B+(z,t)=exp{§(r)|lnR| B=(z,1), (2b) the evaluation of the boundary terms which appear in these
equations.
— g’
D.(z)= 7Di(z’t)’ (29 B. Cavity anisotropies

The residual anisotropies of the device are introduced into
Eqg. (8) by means of the boundary terms: this approach is
based on the assumptions that the cavity anisotropies reside

volINR|  vo(1—R) mainly in the mirrors and that their effect can be separated
=0 ~ 2 _ (3)  from the effect of the active medium. The validity of these
2L 2L assumptions is ensured by the fact that the gain and the
~ o~ o~ i i hich h ing fields i ingl
In terms of the new dimensionless variablgs , B+, D. , ggilsi;);rﬁge;gvsrlﬁa”éct on the propagating fields in a single
Egs.(1) take the form Taking advantage of the theory developed 12,13 for

oF. oF. phase anisotropies and adapting it to a basis of circularly

whereR is the mirror intensity reflectivity and the field de-
cay ratex is given by

0_{ = —k[1-(1-ia)D.]F.—vo azﬁ , (49  Ppolarized fields we write
- ~ FO=MFD, BP=MB?, 9
IB- = = B
pn :_K[l_(l_la)pi]BI_FvOW' (4b)  where the superscriptsa) and () indicate two arbitrary
transverse sections of the laser resonator, the double sub-
Defining now thez averages script sign is now a shorthand notation to indicate 2 vec-
tors, andM; and My, are 2<2 matrices completely deter-
1L~ mined by the phase anisotropies which can be present
F.(O= [L F=(z,)dz, (58 petween &) and ().
Let us now assume that tha)(and () planes coincide
1 (L respectively with the surface of the lower mirf@ee Fig. 3
B.(t)= EJ B+ (z,t)dz, (5b) and the active layer boundai)l). Remembering that the
0 helicity is inverted upon reflection, it is easy to demonstrate
1L the relation
0.(0= |, Btz 9 BO-FO=[1-MTMy TIEY, (20

and assuming, thanks to longitudinal quasiuniformity, thatwhere the symbol$ and T denote, respectively, thex2
the averages of the products are equal to the products of threal matrices
averages, we obtain from Eqg)

10 0 1
. L 1= ,T= . 11
Fo=—[1-(1-i@)D.IF. - [FP-FH], (6a {0 1} L 0} (0

In the same way, by letting the) and (b) planes coincide,
respectively, with the active layer boundary (2) and the sur-
face of the upper mirror, it can be demonstrated that the
second boundary condition is expressed by the relation
where the terms with the superscripts indicate the values of _ _ _

the rescaled field€a) and(2b) at the active layer boundaries F2 B2 =[1-T(My) " 1TM,]F? . (12)

(1) and (2) (see Fig. 3. Adding Egs.(6a and (6b) which

govern the averaged counterpropagating fields with opposité/e can therefore rewrite the equatioi® that rule the av-

B.=—x[1-(1-i@)D.]B.+ (B2 -BY], (6b

helicity and defining erage fields in the form
F.+B- - ;
E.=——, (7) E:=—x)[1-(1-ia)D.]E.
it turns out that the mean standing fielés. of opposite + 1 LB 4 M F2)
helicity are ruled by the differential equations 1—R[NI B +MEFY, (13
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where we have defined two different refractive indices to circularly polarized beams
with opposite helicities, independently of their propagation

M®=1-M;T(M,) T, (143 direction. An intuitive explanation of the fact that optical
activity does not influence the laser dynamics is that, since

M@ =1-T(Mp) " 'TMy, (14D circularly polarized light changes the sign of helicity upon

. reflection, any phase variation built up during the forward
and used the shorthand notation f_or the vectors. ... trip will be canceled by the backward trip. It is then clear that
Let us now recall that phase anisotropies can be classifi e only way to provide an effective circular phase anisot-
as linear or circular,. depending on the _poIarization stateeopy is to break the system time-reversal symmetry, as can
between which t_hey mtrod_uce a ph'ase d_lfference, and ,thel}fe done, for example, by applying an external magnetic field
can be symmetrical or antlsymmetrlcal_wnh r_espect to tlmealong the laser cavity. The Faraday effect will cause, in fact,
reversal. The general form of the matik; which express o, gntisymmetric circular phase anisotropy: the material will
the action of phase anisotropies on the forward-propagatinggain present two different refractive indices to circularly
field is polarized beam with opposite helicities, but the two indices
interchange as the beams propagation direction is reversed.
' (15  As a consequence the phase variation built up during the
backward trip will now add with the phase variation built up

) ) during the forward trip.
whered| andé. are the(smal) phase differences introduced,  gince we are treating additively the phase anisotropies

respectively, between linearly and circularly polarized fieldsy e to the material birefringence and to the applied magnetic
during the propagation fromaj to (b). field, we obtain that the matriced*) and M(? which ap-

The form of the matrixM;, which operates on the back- ey in Eqs(13) are given simply by the sum of the matrices
v_vard field depends on the behavior of th_e anisotropies undt%n and (18), so that their global action is summarized by
time reversal: according tpl2], symmetrical and antisym- the matrix

metrical phase anisotropies are characterized, respectively,

1-is, —ig
—is  1+i4,

.

by the conditions 26, 2i6
M =MF = . (19)
_ * ph"ph 1 0j s, —2i4,
Mp=(M¢)*, (163 | e
_ To take into account the effects of amplitude anisotropies,
Mp=[(M¢)~1]*. (16D P P

the same procedure can be followed. The general form of the
Executing all the operations which appear in the defini-Matrix M which expresses the action of amplitude anisotro-

tions (14) it turns out that in the absence of any anisotropyPi€S on the forward-propagating field is

the matricesM ™ andM? are identically equal to the zero

matrix, so that all boundary conditions disappear from Eq. M= =6 —4 , (20)
(13). —& 1+&

In presence of a linear phase anisotropy we have in the , o ,
symmetric case where ¢, and &, are the(smal) fractional variations in the

amplitudes of linearly and circularly polarized fields intro-
0 24 duced during the propagation frora)(to (b). Executing the
: : (17 same steps which led us from Ed.5) to Eq. (19) we con-
2i6 O . AL X .
clude again that only symmetric linear and antisymmetric

while in the antisymmetric case all the components of thefircular amplitude anisotropies can play a role in the laser
two matrices are identically equal to zero. We can therefordynamics, and they are summarized by the matrix
conclude that the only linear phase anisotropy which can 2¢ 2¢
influence the laser dynamics is the symmetric one. Birefrin- MO=pm@=| ¢ !
gence is an example of such an anisotropy, since a birefrin- 2§ —2&
gent sample presents two different refractive indices for two ) » ) ) )
orthogonally linearly polarized beams, independently of theirTreatln_g ad.d|t|vely all the anisotropies and making use of the
propagation direction. approximation

In presence of a circular phase anisotropy we have that in F2) L B
the symmetric case the matric) and M(?) are identi- E.~2= +
cally equal to the zero matrix, while in the antisymmetric - 2
case

1) _ 2) _
My =mi2=|

S.

. (21

(22

which follows from longitudinal quasiuniformity, it is easy
2i 5, 0 } to verify that Egs(13) can be recasted in the form

M =MZ) = . 18
0 —2ié; (18

E.=—x{[1-(1—ia)D.]E.+i(o,—i€)E~

We can therefore conclude that the only circular phase an- *i(o,—ie)Es)}, (23
isotropy which can influence the laser dynamics is the anti-

symmetric one. Optical activity is an example of symmetricwhere the linear and circular phase and amplitude anisotro-
circular phase anisotropy: an optically active sample presentsies per field cavity decay time are defined by
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46 4§ E
o=, =707, (249 +
""1-R* "T1-R X €
48 4¢ Ey o1, € E_
oe=1—g' €~1_g- (24b) \< .
The signs of these amplitude anisotropies have been chosen o, 8 a, B B-

in such a way that whem, ,0.>0 ande ,e.>0 the higher-

frequency field components have higher losses. As already

explained in the introductory remarks, amplitude anisotro-

pies are physically unavoidable in the presence of phase D ) D_

anisotropies and follow from the complex nature of

Kramers-Kroning relations: Eq23) evidences that they be- o )

have as imaginary phase anisotropies. In other terms, we can F/G- 4. Physical interplay between the system variables: the

say that the anisotropies introduce slight modifications irtnear anisotropiesr; and € provide a direct, coherent coupling

both the real and imaginary parts of the semiconductor com2€tWeen the fields, while the circular anisotropigsande, change

plex refractive index n, so that we can write the_ amplltu_d_e and the frequency of_t.he fields, perturb_lng t_helr equi-

(N+ 8n) = (N, o+ 8N,e) +i (N + SN;). Since in a semicon- librium positions. The carriers densities are coupled via spin-mixing
re re m tm/~ processes, so that the spin-mixing ratewill also influence the

QUctor the.s.trong |ne_qualltyre>nim holds (also under las- light polarization properties through the nonlinear light-material in-

ing Condltlo_n;?, this makes_ it natural to _expec_t teraction. This nonlinear interaction is governed by the linewidth

one>dniy, i.e., that the magnitude of phase anisotropieS,nnancement factar and by the pumping strengf.

will be much larger than the magnitude of amplitude

anisotropies.

To study the polarization properties of VCSEL-generated
light it is useful to consider separately the amplitudes and the

C. Fundamental equations phases of the fields, writing
The global laser dynamics is described by the time evo- E.=|E,|exp—id.) (26)
lution of the mean field€€.. and of the carrier densities " " e
D., which is determined by the nonlinear differential sys- E_=|E_|exp—id_), 27)

tem[10]

- . ) and introduce as new variables the light intensity
E.i=—k[(1-ia)(1-D.)E.+(g+io)E=

— 2 2
+ (egtioo)E], (259 =B E]% (28)
the ellipticity angle
D.=—%|(1+|E+|)D.+ 2 (D.~D:)—~(1+8)|, E,|—|E_|
i x=arcta E £ — A< y< /4, (29
(25b) ++IE-]

whereg is a normalized pumping parameter equal to zero aihe tilting angle of the major axis of the polarization ellipse
the lasing threshold and where, with respect to 8), the
reference frequency has been shifted toward the blue by an b= 1(¢+_ b)), —ml2<y<ml2, (30)
amount equal toca. 2

The system of equation&5) lends itself to a global
physical interpretation. As shown in Fig. 4, the linear@nd the total phase angle
anisotropies provide a direct, coherent coupling between the
cirpularly .polarized field£¢ , _whi!e the addition Qf circula}r 9= E(¢++ b)), 0=<@<2m. (31)
anisotropies causes a variation in the frequencies and in the 2
amplitudes of these fields, thus perturbing their equilibrium
states. In absence of any light-material interaction, the interlt is also useful to replace the carrier densitizs andD -
play between these anisotropies completely determines th#ith the averaged total carrier density in the material
VCSEL light polarization. But another field-coupling mecha-
nism comes from the mixing—at the time rate D= D.+D- (32)
yj—between the carrier densiti€s. , and is due to the non- 2 '
linear light-material interaction regulated by the pumping
strengthB and by the linewidth enhancement facter This ~ and with the averaged difference between the carrier densi-
supplementary coupling—which is indirect and incoherent—ties available for the two transitions
will modify the polarization of the laser beam, allowing one,
in principle, to obtain some insight into the values of the d= D,—-D_

system parametey; . > (33
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In term of these new variables the system of equati@as (T+1)(B-1) 172
takes the form tan2y=* 2171 (36b
| =21[D—1— e cos2jcos2y— (e,—d)sin2x], (349  while the active medium is characterized by the carrier den-
sities
: cos sin2
0=a(D—1)+0|—2¢+6|—l//, (34b) I(B—1+1)(B—1)]Y?
COoS2y tan2y d==+ (379
('+1) ’
X =0,Sin2¢+ €,c0s2psin2y — (e.—d)cos2y, (340 D=(B—1)+1. (37h)

Y=o+ ad—(o\cos2+ esin2y)tan2y,  (34d  In the above relations the light intensitys a function of the
pumping strengttB given by either

d=—y[d(I'+1)+Dlsin2y], 34
yLd(T'+1)+Dlsin2y] (349 B (38)
D=—9[D(1+1)+dlsin2y—(B+1)],  (34h or
where the time has been made dimensionless by means of Izla,r,al(ﬁ)' (39

the inverse field decay tima (dimensionless time=«
X time). The parametery andI’, which indicate, respec- These two possibilities are, respectively, responsible for the
tively, the dimensionless inverse carrier radiative lifetimecreation of linearly and elliptically polarized states. The

and the normalized spin-mixing rate, are given by functionl, r ,,(B) is obtained from the equation

+24 (ad)?

=1, r:%. (39 Pu){(ﬁ—m(ﬁ_,) [T(B=D—11+af(I+1),
[ (40)

The above system of equations constitutes a general t_ooI 55)” der the restriction
analyze the influence of optical anisotropies and of light-
material interaction in the polarization properties of the light T
generated by a VCSEL, and will be the basis of our further ﬁm<ls,8, (41
investigations.

which is dictated by the constraint that the expressi@ts

Ill. EFFECT OF MATERIAL STRAIN of the anglesy and ¢ are real valued: using Eq437b), it is

. _ easy to demonstrate that these two inequalities can be rewrit-
We start now our analysis of Eq&4), concentrating for o, in the form

the moment on the case in which the only anisotropies of the
VCSEL are the linear ones, which derive from material B
strain: in this section we will therefore assumig=e,=0. 0<D-1<7 % (42

It is easy to verify that if also the linear anisotropies,
€ are equal to zero—that is, if the system is madelt must be stressed that when the only nonzero anisotropic
isotropic—the only possible stationary solution of E(3) term present in Eq¥34) is the linear phase anisotropy ,
is represented by a linearly polarized field which, due to thehe system is invariant under the transformation
rotational invariancy in the transverse plane, is oriented
along an arbitrary directiofi8]. The introduction of linear X~ X»
anisotropies breaks the transverse rotational invariancy, giv- y—— 1,
ing rise—as we will show—to a rich variety of phenomena.
In the course of the section we will first concentrate on the d——d, (43
role of a phase anisotropy,, and only secondly include in
the picture the effects of the amplitude anisotrapyvhich,
as discussed at the end of Sec. Il B, is unavoidably assoc
ated with it but may be expected to be much smaller. ;z

(X! lr//) = = _"‘"
A. Stationary states X~ .

When in the system of equatiol®4) the only anisotropic The stationary values of the system variables given by Egs.
term different from zero is the linear phase anisotregy ~ (36) and (37) have been represented as functions of the
the stationary values of the light ellipticity angle and of the pumping strength3 in Fig. 5, with the system parameters
tilting angle of the ellipse are respectively found to be fixed to the valuesx=4, I'=100, ando;=0.035. In Fig.

5(a) is shown the ellipticity tang: the straight line repre-
(r+H(g-1) sents the linearly polarized state characterized by the inten-
I-T(B—1I) sity | = 8, while the bifurcating branches represent the ellip-

so that any elliptically polarized solutior}'@) will always
c';_ive rise to two coexisting states,

(44

1/2

: (368

tan2y=+
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@ ©) From the stationary solutions of Eq84c¢) and(34d), it can
3.0 1 , 0.30 . ‘ . be easily verified that the ellipticity and the tilting angles
»o ltan2 020 [N 2 ] satisfy the relation
1ol ] 010l | sin2y + atan2y=0, (47)
0.0 0.00 so that ellipticity is naturally associated with tilting.
- N It is also evident from Fig. 5 that close to threshold the
10 r B 1 -0.10 - B 7 only possible states of the fields are linearly polarized: from
Eq. (34b we deduce that their frequencies are, respectively,
20 b -0.20 + ] : : .
0=+ o, for y=0 and = — o, for ¢y=m/2. Accordingly,
-3.0 . ' ' -0.30 ‘ l ‘ they will be indicated respectively by high and low. In the
00 05 10 15 5 20 00 05 10 15 8 20 next subsection we will investigate their stability properties.
(© (d) . .
0.020 . ‘ . 0.020 ; . —— B. Stability of the stationary states
d 1 A linear stability analysis of the two linearly polarized
0.010 | 10010 | 1 solutions
=8, 6=+, x=0, #=0, D=1, d=0,
0.000 0.000 high (hi)
B p . (48
-0.010 |- 1-0.010 | . =8, 6=—0,, x=0, ¢=u/2, D=1, d=0,
low (lo)
0000 05 10 15 20°%%%0 05 10 15 20
) ) : ) 8 : ) ) . ) B : reveals, in accordance wifiQ], that the high-frequency one

is stable when

FIG. 5. Representation of the system stationary states deter- 2a0
mined by Eqgs(36) and(37). The values of the system parameters p>——--T, (49
are, respectivelya=4, I'=100, ando,;=0.035. See the text for Y
explanations.
and the low-frequency one when
tically polarized states characterized by the intensity I'e
I:IQ,FYUI(B) and opposite signs ofy2 The tilting tan2y is B< ! (50)

shown in Fig. Bb): the straight line represents the linearly R

polarized state of intensity =3, while the bifurcating

2 . . We can therefore divide theo(,8) plane into the four
branches represent the elliptically polarized states of inten-_ . I N
sity IZIa,F,U|(IB) and opposite signs of 2. Note that the regions shown in Fig. @ and labeled with “hi” and/or

/ o ) “lo” to indicate the system stationary stable states. Since a
scale of the ordinate axis is 1/10 as compared with Fi@.5 nuymerical analysis reveals that in the domain indicated by
In Fig. 5(c) we have represented the carrier differedcéhe  the shadowed band also elliptically polarized states are
straight line and the bifurcating branches represent, respegtaple, we deal with the following situations:

tively, the linearly polarized state and the two coexisting (i) hj domain: only the high linearly polarized state is
elliptically polarized states. Finally, in Fig(® the continu- stable:

ous line represents the carrier dendity- 1, and the dashed (i) lo domain: only the low linearly polarized state is
one indicates the functiof/(1+T'): it is clear that the first  staple:

of the conditions expressed by E2) imposes on the (iii) hi-lo domain: coexistence of the two linearly polar-
pumping parameter the inequaliy= g in order to obtain jzed states;

elliptically polarized states; the other condition, on the con- (iv) el domain: coexistence of two elliptically polarized
trary, is always satisfied. The valyesets a bifurcation point = states, which destabilize the lo state;

for the system, because f@=p two states with opposite (V) hi-el domain: coexistence among the high linearly po-
values of the angleg and s and of the carrier difference larized state and the two elliptically polarized ones;

d will be possible. To calculatg we solve the equation (vi) dy domain: the light polarization changes dynami-
cally in time, and does not reach any stationary stable state.

For completeness we now analyze how the situation de-

P(B)=0, 45 . . w ; ; !
(B) 49 scribed above is modified by the action of a linear amplitude
: - anisotropy €, which takes into account polarization-
which follows from Eq.(40), obtaining dependent losses or gain. If we assume that in the system of
I equations(34) the anisotropic terms different from zero are
'é: i _ (46) o) ande|, we find that states with linear polarization are still
a— g

possible and given by



54 ROLE OF OPTICAL ANISOTROPIES IN TH . .. 1655

(a) 3.0

B 2.0
hi ) 1.0
0.0
-1.0

0.5
-2.0

0.010 0.020 0.030 0.040 0.050 -3.0

G Intensity
(b)
20
FIG. 7. Ellipticity tan2y versus intensity for increasing values
B 15 of the pumpingB: a: B=0.8; b: 8=0.9;c: 8=1.0;d: B=1.05;
’ e: B=1.07;f: B=1.1;9: B=1.15;h: =1.90. The values of the
other parameters are=4, I'=100, y=0.0025, andr;=0.035.
1.0 +
with the coefficientsA, B, C respectively given by
05 |
A=y, (539
0%
0.0 & . . . s
0000 0010 0020 0030 0040  0.050 B=(1+¢€)%(y[ —2¢—2a0))+2¢€(1+€)(g—yI)
G
+ 2’}/6|2 , (53b)

FIG. 6. (a) Domains of different behaviors for light polarization
in the presence of a linear phase anisotrepyonly, with a=4, C=[(1+ €|)2(7F_2€|_2¢10|)_2€|(1+ €)(e—vI')
I'=100, andy=0.0025. In the hi and lo domains only one of the
two possible);inearly polarized states is possible, whi>I/e in the hi-lo —2yef+(1+ )% (26l —yD)]e . (539
domain there is bistability among them. The el label and the shad- . -
owing indicate the narrov)\: stabilit%/ domain for elliptically polarized On the other hand, the conditidB0) for the stability of the
states, and the dy label indicates the region in which the polarizalOW-frequency states becomes
tion characteristics of the laser beam change dynamically in time.
(b) Domains of different behaviors for light polarization in the pres- (1-e)(ol+ga)toe
ence of linear phase and amplitude anisotropigsand ¢, with a(l—¢€)—o '
a=4,I'=100, andy=0.0025. The linear amplitude anisotropy
has a modulus equal to 0%, 1%, 5%, and 10% of the modulus of thEigure @b) shows the influence of the linear amplitude an-
linear phase anisotropy, ; both the cases of positive and negative isotropy on the system stability domains; to plot it we have
sign are considered, and represented by the sign in front of théixed the magnitude of the amplitude anisotropy at 1-10 %
percentage. Note that positieegative values ofe, reduce(in-  of the phase anisotropy. This range is based on the observed
creasg the extension of the stability domain of the high-frequency widths of the peaks associated with the two polarization
state, which has higheflower) losses with respect to the low- modes in the VCSEL emission spectra below threshbid.
frequency one. The boundaries of the stability domain of the low-Note that the variation of Eq54) with respect to Eq(50) is
frequency state depend much lessepnand their variation cannot 5o small that it is not visible in Fig.(), while the variation
be seen in the figure. of Eq. (52) with respect to Eq(49) is substantial. It can be
observed that the sign of, determines the system stable
states when the laser is close to threshold, but the influence
of the amplitude anisotropy diminishes as the pumping pa-
rameterg is increased. Switching among the high- and low-
D=1+¢, d=0, high(hi) frequgncy states upon raising and onvering the value of Fhe
(51) Flu(;?pmg paramete8 has been numerically demonstrated in
| = pte . 0=—(o+ag), x=0, y=mul2, Having determined the light polarization stationary states,
1-¢ we give now a description of the behavior of the laser in the
dy domain, where the polarization characteristics change dy-
D=1-¢, d=0, low(lo). namically in time. Therefore we choose the linear phase an-
isotropy o large enough so that increasing the value of the
A linear stability analysis reveals that the conditi@®) for ~ pumping parametes lifts the system from the stationary lo
the stability of the high-frequency state is generalized by theand el domains up to the dy ofsee Fig. 6a)]. In Fig. 7 the
inequality light ellipticity has been plotted as a function of the intensity
for the various values of the pumping. Inside the lo domain
AB?+BB+C>0, (520  the laser state is represented by a point at zero ellipticity

(54

IZB_Q
1+E|’

0=+(01+ae), x=0, ¢=0,
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(a), but when the pumping is increased and the laser is B—1*
brought inside the el domain two states of opposite ellipticity  tan2f= —— (B 15V B= 1=+ DT 15172
are stablelf). If the pumping is further increased each point oexall (B V(B " )] (55b)

becomes a closed ringc), indicating that now the system

stable states are no longer stationary but periodically oscilwhile the active medium is characterized by the carrier den-
lating. The ring is then transformed in an eigllf) (indicat-  sities

ing a doubling of the oscillating period: the eight duplicates

(e) and duplicates again, up to the situation represented in 1=(B=1"+1)(B—1%)]|*
f: note that the system still exhibits the coexistence of two d==x (T+17) ’
(nonstationarystates in such a way that the average value of

the ellipticity for each of them is different from zero. Only D=(B—17)+1. (56b)
when the interaction between the two coexisting states gives

rise to the situation shown ig does the time-averaged value Note that since the system given by E¢&43 is no longer

of the ellipticity become zero. For higher values of theinvariant under the transformation represented by E8),
pumping the system reaches again a quasiperiodic stabtee light intensity in the above relations is not the same for
state, as shown ih, and here again the average light ellip- the upper and lower signs. In fact, it is given in the two

(569

ticity will be equal to zero. cases, respectively, by
We end the present section remarking the large influence .
of the value of the normalized spin-mixing rake on the 1=laro .0 (B) (57)

boundaries of the domains shown in Fig. 6, and therefore on

the general polarization behavior of the laser beam. For and

comparison with the experimental findings, a reliable deter-

mination ofT is therefore a task of primary importance. This 1=lar.o .0 (B) (58
is the topic of the next section.

=+

The two functiond are obtained from the equation

a,r,4r| s
IV. EFFECTS OF MAGNETIC FIELD

(oc+ ad)? )
In this section we study how an external magnetic field QA =(B=D+ (B—1) [F(B=D=1]+af(I'+1).

longitudinally applied along the VCSEL affects the polariza- (59
tion characteristics of the laser beam and thus forms a tool to
measurd’. Since the main consequence of such a field is théJsing Eqs (340 and (344 it is easy to verify that in station-
creation of a circular phase anisotropy in the system of ary conditions the ellipticity and the tilting angle satisfy the
Egs. (34), we are now extending its analysis to the case infelation
which both linear and circular phase anisotropies are differ- cosy
ent from zero. . O¢

A major consequence of the presencesgfis the break- sinZy+ atan2y= o) COS2) (60
ing of the system invariance under the transformation given
by Eq.(43): as a result, we can no longer expect any linearlywhich generalizes Eq47).
polarized states or coexistence of states with opposite ellip- The stationary values of the system variables given by
ticity. We will see in fact that the laser beam will be always Eds. (55) and (56) are shown in Fig. 8 as functions of the
elliptically polarized, and that the sign of the ellipticity angle Pumping strengtlg for the different values of circular phase
is fully determined by the sign of the anisotropies. anisotropys=0.000, 0.002, 0.004, 0.006, 0.008, and 0.010

In order to allow a comparison with the experimental situ-and for the same values of the system parameters used in Fig.
ation described if11], we concentrate on circular phase 5. In Fig. 8a) is shown the ellipticity tan®: the dotted and
anisotropies much smaller than the linear phase anisotropyhe solid lines represent, respectively, the statesnd | ™,
and we fix this latter at a value large enough to avoid thewvhich for o.— 0 collapse, respectively, towards the linearly
bistability domain shown in Fig. 6, since bistable behaviorpolarized solutions and the lower of the bifurcating branches
close to threshold is never met in our experimigidf]. With ~ of Fig. 5a), which is represented by the dashed line. The
these choices, the laser exhibits a prevalence of stationafifting tan2y, the carrier density differena, and the carrier
stable states. densityD — 1 are shown with the same conventions in Figs.
8(b)—8(d): by comparison with Figs. (6)-5(d) it can be
noted that the tilting and the carrier density difference ap-
proach, among the two available branches, the higher one.

When in Egs.(34) the only anisotropic terms different For clarity we have represented in Fig. 8 only the effect of
from zero are the linear and circular phase anisotropies a positive circular phase anisotropy, and among the two
ando, the stationary values of the light ellipticity angle and bifurcating branches depicted in Fig. 5 we have drawn only
of the tilting angle of the ellipse are, respectively, found tothat one which the system approachesoas-0. But it is
be easy to verify from Eq(59) that, if the sign ofo is re-

. . versed, the syster(84) remains unchanged upon reversing
(T+17)(B=17)]" (559 the signs ofd, y, andy: as a consequence, the laser will
I=—T(B—17) ' approach the second of the bifurcating branches.

A. Stationary states

tan2y= =+
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1.0
tan 2y
0.5

0.0

-0.5

-1.0 ) L .
-0.010 . -0.005 0.000 0.005 0.010

(b)
0.055 ‘ .

0.045

0.035

0.030

0.025

0.025 ! - L
-0.010 -0.005 0.000 0.005 0.010

o,

©

-0.005 L L L -0.005 L L L R
00 05 10 15 20 00 05 10 15 20 FIG. 9. Ellipticity tan2y (a) and frequencyd (b) versus circular

B B phase anisotropy for increasing values of linear phase anisotropy
0,=0.025, 0.030, 0.035, 0.040, and 0.045; the values of the fixed
FIG. 8. Representation of the system stationary states deteparameters arev=4, '=100, and8=0.5. Note that under the
mined by Egs(55) and (56). The values of the system parameters conditiono.< o, the ellipticity and the frequency are, respectively,
are, respectivelyg=4, I'=100, ando,=0.035, while the circular linear and parabolic functions of the circular phase anisotropy.
phase anisotropy assumes the increasing vayes0.000, 0.002,
0.004, 0.006, 0.008, and 0.010. See the text for explanations. the ||ght intensity| for various values of the pump”']g
strengthB. Since we havé~ g the ellipticity lines drawn in
A numerical analysis of the stability properties of the sta-Fig. 10 as functions of the intensity can be identified with
tionary states shows that the only solutions which are stablghose shown in Fig. @ as functions of the pumping
close to threshold are those characterized by the intensitytrength. The continuous lines mark the states which are nu-
I'", which have been represented by means of the solid linegnerically found to be stable, while the dotted ones indicate
if the pumping parametep is increased above a certain the unstable states: it can be noted that all the stationary
value these states also will become unstable, as we will shogplutions are stable close to threshold, and that the lower the

later. . _ magnitude ofo,, the wider is their stability domain. The
We conclude that in the presence of a circular phase an-

isotropy o, (i) all stationary states become elliptically polar- 00
ized, (i) the states which are stable near threshold arise from 2,

the bifurcating solutions we met in Sec. lll, ariii) the 02

coexistence between two states with opposite ellipticity is

removed in such a way that the system is forced into one of -0.4 |-

them. In addition, the stationary values of the system vari-

ables change: comparing in Fig. 8 the solid lines with the 06 r

dashed bifurcating branches, we can see that this change i 08

maximum in the neighborhood of the system bifurcation '

point and becomes smaller in percentage as the pumping 10 ‘ , .
parameter is increased. 00 02 04 06 08 Intensityto

In Figs. 9a)—9(b) we have represented the ellipticity and
the frequgncy of the st.able states as functions of'the ,C"C!J'ar FIG. 10. Ellipticity tan2y versus intensity for different values
phase anisotropy for different values of the material birefrin-u¢ .ircular phase anisotropy:, = 0.000, 0.002, 0.004, 0.006, 0.008
gence. Note that the ellipticity has initially a linear depen-,nq 0.010. Continuous and dotted lines indicate, respectively, stable
dence and saturates only for higher values of the circulagng unstable stationary states. In unstable states the intensity and
anisotropy, Wh”e the'Iaser frequgncy is, for sma!l values Ofgllipticity oscillate periodically around their stationary values, as
o, a parabolic function of the circular phase anisotropy. indicated by the three circles for,=0.004 and3=0.60, 0.65, and

To describe the destabilization process of these states, Wg70. The values of the other parameters are4, I'=100,
have plotted in Fig. 10 their ellipticity tan2as a function of y=0.0025, andr,=0.035.
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destabilization has the form of periodic oscillations aroundWe can see from Fig.(8) that, as the pumping is increased,
the predicted stationary values of the variables, as indicated differenced arises between the carrier densities available
by the rings. We have observed that if we add a positivfor the two circular eigenmodes: this difference causes a
circular amplitude anisotropy, in the dynamical equations variation in the circular amplitude anisotropy and, due to
(34) the amplitude of the oscillations is reduced, or—in otherthe dependence of the refractive index on the carrier density
terms—the rings collapse. As a consequence, the stabilitsnediated by thex factor, also in the circular phase anisot-
domains extend toward higher values®f while the ellip-  ropy o.. The effective value otr; is therefore determined
ticity does not shift appreciably from the stationary valuesby Eq.(63b), and as a result the light ellipticity will be given

calculated in the absence ef. by Eqg.(62). The smaller the value df, the less efficient are
the spin-mixing processes, and consequently the larger the
B. Analytical solutions close to threshold carrier differenced, leading to an enhancement of the non-

linear contributions to the anisotropies. We can therefore un-
‘derstand why the pumping paramej@ralways appears in
gs.(61) divided byI', and in Eq.(610 multiplied by a.

We also note that this linearized approach to take into

Explicit expressions for the stationary values of the sys
tem variables as functions of the various parameters can
obtained if they are expanded as geometrical series in the

pumping strengtiB and if it is assumed that the laser is so account the nonlinear light-material interaction is bound to

close to threshold that only terms up to the first order need t?ail as the pumping strenath approaches the vﬁ since a
be included. In this way we can obtain a linear approxima- pumping gth app u

tion of the influence of the nonlinear light-material interac- bifurcation constitutes a phenomenon which cannot be ex-

tion on the polarization properties of the laser light. For theplalned on the basis of a linear model. As a consequence, the

stable states considered up to now we have, under the furthgpproxmate linearized solutiorg1) are valid under the

assumptionr. <o, condition
2 ~ FO’|
o < —
I=(1— = °2)ﬂ, (612 Pk~ o (64
g
2 4 which becomes more stringent asis increased andl de-
0=0,+ i( 1+ —aﬁ) (61b) creased, that is, when the action of nonlinear effects is more
| ’ .
20, Loy appreciable.
As a final note, we stress that Eq61b) and(61¢) for the
o aB light frequency and ellipticity near threshold deserve particu-
tan2y = — ;l 1+ F_(ﬂ ' (619 lar attention, given the experimental measurability of these
variables. It has been, in fact, by fitting them to experimental
o data[11] that we have obtained the vallie= 100 used in the
tan2y= —, (610 numerical simulationgsee discussion of parameter values in
Y Sec. ).
o8
d= To ' (619 V. CONCLUSIONS
|
Let us now summarize the effects of linear and circular
2B phase anisotropies on the polarization characteristics of
D=1+ T2 (61f)  VCSEL'’s light. We already kneWs8] that in the absence of
|

any anisotropy the light is linearly polarized and the field is
oriented along an arbitrary direction of the transverse plane.
When a linear phase anisotropy is added, the transverse ro-
tational invariancy is broken, and in accordance Witl],
oot ad the foIIovying results have been_demonstra’;ed. _

tan2y= — , (62) (13 Linearly polarized solutions are still possible, but

Ol now the field can be oriented only along the two orthogonal
, L . directions of the transverse plane characterized, respectively,
which shows that, in first order, the effect of the material ISpy the minimum and maximum values of the refractive index
to increase th_e.circula_r phase anisotropy by an amount eun!ee the lines tang=0 and tan2/=0 in Figs. 5a) and
to ad. The origin of this phenomenon can be tracked back ta5y)] The continuum of states available in the isotropic case
the set of Eqs(34), and in particular to Eqg$344), (340), and 5 then drastically reduced, and depending on the system pa-
(34d: we can say that a carrier density differentenodifies 5 meters the laser chooses one of the two states now avail-

the circular amplitude and phase anisotropigsand oy in  apje or may even be bistabisee Fig. €a)]. The extension
such a way that their effective values will be given, respecyy ihe pistability domain is demonstrated to depend critically

Using Eq.(61e, the expression obtained for the ellipticity
angle can be recast in the form

tively, by on the possible presence of linear amplitude anisotrdpies
Fig. &b)].
e=¢.—d, (639 9. Eb)]

(1b) The coherent coupling between fields with opposite
off circular polarization allows the creation of states that, when
o¢ =0t ad. (63D the pumping parameter exceeds a certain value, acquire an
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ellipticity. Due to the system invariance under the transfor-gas lasers under a small magnetic field, that is, a rotating
mation (43), states of opposite ellipticity are always coexist- linear polarization. In this case the two circularly polarized
ing [see the bifurcating curve in Figs(é and 5b)]. The fields oscillate with the same amplitude, but—since there is
domain of the parameter space in which elliptically polarizedno longer a direct and coherent coupling between them—
states are stationary is rather small: the system usually orbiteey do not lock their frequencies.
around one of them or it may even oscillate between states We remark that all the values of the parameters used for
with opposite ellipticity, thus exhibiting a time-averaged el- the figures are realistic from the experimental point of view:
lipticity equal to zero(see Figs. 6 and)7 in Fig. 6, for example, withk=3x 10" s~ 1, the frequency

As compared with this situation, the further presence of aseparation between linearly polarized fields
circular phase anisotropy produced by a magnetic field has asv=20,«/(2) ranges up to 5 GHz fowr;=0.05, which is
a main consequence the breaking of the system invariancy typical value observed in VCSEL's. The value Ibfhas
under the transformatio@3), thus forbidding both the pos- been obtained by fitting the theoretical relation E(fslb)
sibility (18 of linearly polarized states and the possibility and (610 to experimental datfil1], obtainingI’~100; as-
(1b) of coexisting states with opposite ellipticity. We have suming y;=0.75x10° s™*, we obtain from the second of
demonstrated, in fact, the following. Egs. (35) the value y;=3.7x10' s™!, which is in the

(2a) The states which were linearly polarized become elmiddle of the range mentioned in Refd7,1§. The value
liptically polarized, and their ellipticity decreases with ¢=4 for the linewidth enhancement factor is commonly ac-
pumping[see the dashed lines in FiggaBand 8b)]; these  cepted in the literature on semiconductor lasers and has been
states are found to be always unstable near the lasing thresfecently measured also in VCSEL20].
old. Finally, we hope that our theoretical investigation will

(2b) The states which were elliptically polarized only for stimulate further experimental work on VCSEL'’s polariza-
large enough values of the pumping parameter are now ation behavior, and in particular on magnetically induced el-
ways elliptically polarized, and the sign of the ellipticity is lipticity. In addition, it will be interesting to see if other
determined by the signs of the linear and circular phaseegions of the parameter space than those stressed in the
anisotropies. The ellipticity increases with pump[sge the present paper are also experimentally accessible.
continuous lines in Figs.(8) and 8b)], and these states are  Note addedRecently we became aware that for the case
found to be stationary up to a certain value of the pumpingf a linear amplitude anisotropy similar results were obtained
paramete(see Fig. 10 by J. Martin-Regalado, F. Prati, M. San Miguel, and N. B.

We can therefore say that the lasing fields generated bgbraham(unpublishedl Also, we received a copy of unpub-
the two electronic transitions; = = 1/2— = 3/2 depending lished work by C. Serrat, N.B. Abraham, M. San Miguel, R.
on the values of the system parametdi$,can realize a Vilaseca, and J. Martin-Regalado giving a description of the
spontaneous phase and frequency locking, giving rise to stalynamical polarization behavior of the VCSEL under the
tionary linear or elliptical polarization, respectively, if they action of a very strong axial magnetic field.
oscillate with the same or different amplitudes(iby do not
realize a spontaneous phase and frequency locking, giving
rise to a time-dependent polarization, characterized by peri-
odic oscillations, period doubling, and possibly chaos. We are glad to acknowledge useful discussions with M.

As a further conclusion, we stress that the polarizationrSan Miguel and F. Prati. The research of M. Travagnin was
properties of VCSEL's are determined both by the linearsupported by the Human Capital and Mobility program
couplings between the circularly polarized fields provided byof the European Community under the Contracts No.
the residual cavity anisotropies and by the nonlinear couERBCHBGCT 930437 and No. CHRX-CT93-0114, by the
plings among the fields and the carrier densities. The smalldESPRIT project 20029 ACQUIRE and by the TMR network
the linear couplings, the more prominent the role of the nonERB4061PL951021. The work of M.P. van Exter was sup-
linear ones: in particular, if the linear anisotropies of theported by the Royal Dutch Academy of Arts and Sciences.
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