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Role of optical anisotropies in the polarization properties
of surface-emitting semiconductor lasers

M. Travagnin,* ,† M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman
Huygens Laboratorium, Leiden University, P.O. Box 9504, 2300 RA Leiden, Netherlands

~Received 20 December 1995!

Due to the transverse device symmetry, the polarization properties of the light generated by surface-emitting
semiconductor lasers will be strongly influenced by residual anisotropies. We describe the polarization dynam-
ics of these lasers on the basis of a theoretical model founded on the coexistence of two different electron-hole
recombination transitions, which give rise to circularly polarized fields with opposite helicities; the carrier
densities available for these two transitions are coupled via spin-mixing processes. The residual cavity
anisotropies are introduced in the model by means of the boundary conditions imposed to the counterpropa-
gating fields: anisotropies which are symmetric and antisymmetric under time reversal will generate different
boundary conditions. We include in the equations the effects of material strain, which causes symmetric linear
phase and amplitude anisotropies, and of an externally applied magnetic field, which induces antisymmetric
circular phase and amplitude anisotropies via the Faraday effect. This theoretical framework allows us to
explain, with realistic values of the system parameters, some of the polarization behaviors exhibited by
surface-emitting semiconductor lasers, namely, bistability and switching between orthogonal linearly polarized
fields and magnetically induced ellipticity.@S1050-2947~96!01908-7#

PACS number~s!: 42.55.2f
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I. INTRODUCTION

A vertical cavity surface-emitting laser~VCSEL! is char-
acterized, as compared with conventional edge-emit
semiconductor lasers, by an active layerorthogonal to the
cavity axis and by light emissionparallel to the device
growth direction@1,2#. From the nominal transverse symm
try which follows from this geometry stems one of the mo
distinctive advantage of VCSEL’s, that is, the absence
astigmatism in the emitted light.

On the other hand, while the light generated by ed
emitting lasers is always linearly polarized along one of
transverse axes defined by the laser stripe, such simplici
not to be expected in VCSEL’s: in the absence of any
signed transverse asymmetry, their polarization proper
will be in fact strongly influenced by the residual anisotr
pies of the material, and in particular by the linear anisot
pies due to unintentional strain.

In effect, an increasing number of experiments shows
the light generated by VCSEL’s may exhibit a rich variety
polarization behaviors. The fundamental transverse mod
usually found to be linearly polarized@3#, but the polariza-
tion direction changes with increasing pumping current@4#;
higher-order transverse modes are also found to be line
polarized, but their polarization direction is orthogonal to t
polarization direction of the fundamental mode@5#. Bistabil-
ity and switching among linearly polarized states with o
thogonal polarization directions have also been reported@6#.

A common explanation for the switching between linea
polarized states of emission relies on the variations indu
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by temperature changes in the gain spectral profile and in
eigenfrequencies of the linearly polarized states, which
split by the linear phase anisotropy@7#. This gain-differential
theory does not seem to suit VCSEL’s very well, due to t
smallness of the frequency splitting as compared to the la
spectral width of the gain profile.

Only lately has a theoretical investigation specifically i
tended for VCSEL’s been started by San Miguel, Feng, a
Moloney ~SFM! @8#. These authors develop a model whic
neglecting for simplicity all Coulomb interactions and e
ergy dispersions, takes into account two distinct carr
populations characterized by opposite spin and includes t
influence on the field phase, via the linewidth enhancem
factor @9#. When a linear phase anisotropy is added, the S
model effectively gives as stationary solutions linearly pol
ized states oriented along two preferred orthogonal directi
and discriminated in their stability properties by transve
effects, i.e., by diffraction@8#. In a very recent paper it ha
been demonstrated that the SFM approach can also lea
rich nonlinear dynamics and that polarization switching c
take place if an external signal is injected in the laser@10#.

The motivation of the present paper is rooted in the rec
experimental demonstration that the application of an a
magnetic field significantly modifies the polarization chara
teristics of VCSEL’s @11#. From the theoretical point o
view, this demonstration sets the necessity of an integra
analysis of the role of linear and circular anisotropies on
polarization properties of VCSEL’s, since generally the li
ear anisotropies cannot be avoided. The aim of the pre
paper is precisely to present such an analysis, on the bas
the original SFM framework.

As soon as the influences of a circular anisotropy are to
investigated, it becomes necessary to distinguish the eff
of a magnetic field from the effects of a possible optic
activity in the laser material. Luckily, although both Farad
effect and optical activity give rise to circular phase anisot
1647 © 1996 The American Physical Society
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1648 54TRAVAGNIN, van EXTER, van DOORN, AND WOERDMAN
pies, they can be discriminated on the basis of their beha
under time reversal, or, equivalently, on the basis of th
action on the fields which are counterpropagating inside
laser cavity. We will therefore begin our theoretical inves
gation one step before what was done in@8#, starting from
the equation of counterpropagating fields and applying
boundary conditions due to the various cavity anisotrop
according to the formalism described in@12,13#; only in this
way can it be demonstrated that optical activity has no
effects in a mean-field limit, and consequently that the s
origin of circular phase anisotropies is the magnetic field.
setting the magnetic field to zero we recover some of
results reported in@10#.

The material of the paper is organized as follows: af
this general introduction, we present in Sec. II the quant
scheme of the laser and include the influence of opt
anisotropies, both linear and circular, in the system dyna
ics, to derive finally the fundamental equations which reg
late the polarization properties of VCSEL’s. In Sec. III w
examine the role of the linear anisotropies which follow fro
material strain, first determining the system stationary sta
and secondly analyzing their stability characteristics. In S
IV we study the influence of the circular anisotropies whi
follow from the application of an axial magnetic field, dete
mining first the stable states of the system and then find
their analytical expressions close to the lasing threshold.
nally, in Sec. V, we summarize the results and present s
possibilities for future work.

II. THEORETICAL FRAMEWORK

As in every laser, the polarization properties of the lig
generated by VCSEL’s depend both on the quantum n
bers of the angular momentum in the states between w
the optical transitions takes place and on the transverse
sign of the laser cavity. The aim of the present section is
derive a set of equations which relate the polarization beh
ior of VCSEL’s to the quantum structure of the active m
dium and to the anisotropies of the cavity.

The first anisotropy to deal with is the unavoidable line
phase anisotropy due to the strain induced into the mate
by lattice mismatch or by electrical contacts. As a con
quence of this anisotropy, the orientation degeneracy of
electric field in the transverse plane will be removed and
frequencies of orthogonally linearly polarized light field
will be split.

A recent experiment@11# has shown that the applicatio
of an axial magnetic field to a VCSEL alters appreciably
polarization properties of the laser beam and that impor
physical parameters can be deduced by comparing this e
with theoretical models. In order to provide such a mod
we will include in the equations governing the laser dyna
ics the circular phase anisotropy induced via the Fara
effect, which splits the frequencies of circularly polariz
light fields with opposite helicities.

The complex nature of the refractive index in dispers
media imposes, via the Kramers-Kronig relations, the pr
ence of amplitude anisotropies as soon as phase anisotr
are admitted. We will therefore generalize the equations g
erning the light polarization dynamics in VCSEL’s to in
clude the effect of linear and circular amplitude anisotropi
or
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A. Quantum scheme

The simplified representation of a VCSEL is shown
Fig. 1: two distributed Bragg reflectors separated by a spa
that contains the gain medium, which usually consists of o
or more quantum wells. Light is coupled out through the t
surface of the wafer. The cross section of the device is u
ally circular, so that the laser has an overall cylindrical sy
metry. For the band structure of the active layer in a quant
well VCSEL we follow the SFM model@8#, summarized in
Fig. 2. If spin-orbit interaction is neglected, the releva
quantum numbers are, respectively,l andml for the orbital
angular momentum and itsz component, andms for the z
component of the spin angular momentum. The conduc
band is characterized by the valuesl 50, ml50, and
ms561/2 and consequently has only spin degeneracy, w
the valence band, characterized byl 51, ml50,61, and
ms561/2, has both spin and angular momentum deg
eracy. When spin-orbit interaction is taken into account
quantum numbers becomej and mj , respectively, for the
total angular momentum and itsz component. The conduc
tion band is now identified by the valuesj 51/2 and
mj561/2, while the valence band loses its angular mom
tum degeneracy, giving rise to four degenerate sta
j 53/2, mj561/2,63/2, which have a higher energy tha
the two degenerate statesj 51/2, mj561/2. When the ef-
fect of quantum confinement along thez direction is added,
the residual angular momentum orientation degeneracy
the j 53/2 state is also removed. The levelmj563/2 is
shifted upward and gives rise to the so-called heavy-h
band, while the levelmj561/2 is shifted downward and
gives rise to the light-hole band@14,15#. As in the SFM
model, we will assume in the following that the splitting du
to quantum confinement is large enough to rule out tran
tions between the conduction and the light-hole valen
band, thus assuming that the active material of the vert
cavity surface-emitting laser can be described by the sim
fied four-level scheme shown in Fig. 2~b!. Note that the se-
lection rule Dmj561 allows two different transitions be
tween the conduction and the heavy-hole valence band,
associated with the generation of circularly polarized lig

FIG. 1. Schematic representation of a vertical cavity surfa
emitting laser.
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54 1649ROLE OF OPTICAL ANISOTROPIES IN THE . . .
in the following we will indicate withD6(z,t) the carrier
inversion densities available for these two transitions.

The dimensionless slowly varying envelopes of the circu
larly polarized complex fieldsF6(z,t) andB7(z,t) which
propagate respectively in the forward and backward direc
tions have been sketched in Fig. 3. The subscripts indica
the helicity of the fields, that is, the projection of the photon
intrinsic angular momentum on the direction of propagation
@16#: accordingly, we have interchanged the subscript sign
in the backward field with respect to the forward field. Since
the same electronic transition generates counterpropagati
fields with opposite helicity, the carrier densityD1 available
for the transitionmj521/2→23/2 will couple withF1 and
B2 , while the carrier densityD2 available for the transition
mj51/2→3/2 will couple withF2 andB1 @see Fig. 2~b!#.

Note that it has been assumed that all the system variabl
D6 , F6 , andB7 do not depend on the transverse coordi
natesx and y: this means that the diffusion of the carriers
and the diffraction of the light have been neglected, an
therefore all our analysis will be valid in the limit of the
plane-wave approximation.

The time scale of the various processes involved in th
dynamics of a VCSEL is described by the following rates.

FIG. 2. ~a! Band structure of a quantum well VCSEL.~b! En-
ergy levels relevant for lasing transitions in VCSEL’s: both the
transitions shown are associated with circularly polarized light. Th
symbols F1 , F2 , B1 , and B2 indicate the forward- and
backward-propagating fields with opposite helicity. The carriers
densities available for the two transitions—indicated byD1 and
D2—are coupled to each other through spin–mixing processe
characterized by an overall rateg j .
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~i! the field cavity decay ratek, equal to one half of the
inverse photon lifetime, which is'1012 s21;

~ii ! the inverse carrier radiative lifetimeg i , which is
'109 s21;

~iii ! the spin-mixing rateg j , which is determined in a
complicated way by a number of different scattering mec
nisms@17,18# and in quantum wells is estimated to be in t
range 1010–1011 s21;

~iv! the material polarization relaxation rateg' , which is
in the range 1013–1014 s21.

Due to the strong inequalityg'@k,g j ,g i , the material
polarization can be adiabatically eliminated from the syst
of equations which governs the laser dynamics, and a r
equations approach can be followed. The laser dynamic
therefore fully described by the fieldsF6(z,t) andB7(z,t)
and by the carrier inversion densitiesD6(z,t). With a proper
choice of the reference frequency the counterpropaga
fields obey the partial differential equations@19#

]F6

]t
1v0

]F6

]z
5g8~12 ia!D6F6 , ~1a!

]B7

]t
2v0

]B7

]z
5g8~12 ia!D6B7 , ~1b!

wherev0 is the velocity of light in the material,g8 is the gain
per unit inversion and unit time~with the dimension of a
volume divided by time!, and the linewidth enhancemen
factora (a.0) takes account of the influence of the carr
density on the material refractive index@9#.

A considerable simplification of the problem can b
achieved if the longitudinal variations of the system va
ables are so small that the laser can equally well be descr
by their z averages; in fact, the high reflectivity of th
VCSEL Bragg mirrors guarantees the validity of this long
tudinal quasiuniformity or mean-field assumption. In the fo
lowing, we will treat the distributed reflectors as identic
hard mirrors placed very close to the boundaries (1) a
(2) of the active layer, choosing the zero of the vertical ax
in such a way that these boundaries lie respectively in
planesz50 andz5L, whereL is the active layer length~see

e

s

FIG. 3. Conventions used to indicate the circularly polariz
fields F6 andB7 which counterpropagate inside the laser cavi
the active material has been represented with a dashed box, an
distributed Bragg reflectors have been replaced by two equiva
hard mirrors. Note that the helicity changes upon every reflecti
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1650 54TRAVAGNIN, van EXTER, van DOORN, AND WOERDMAN
Fig. 1 and Fig. 3!. The effect of the reflection losses is in
cluded in the model by rescaling the variables according
the relations@19#

F̃6~z,t !5expF2
1

2 S z

L
21D u lnRuGF6~z,t !, ~2a!

B̃7~z,t !5expF1

2 S z

L D u lnRuGB7~z,t !, ~2b!

D̃6~z,t !5
g8

k
D6~z,t !, ~2c!

whereR is the mirror intensity reflectivity and the field de
cay ratek is given by

k5
v0u lnRu

2L
'

v0~12R!

2L
. ~3!

In terms of the new dimensionless variablesF̃6 , B̃7 , D̃6 ,
Eqs.~1! take the form

]F̃6

]t
52k@12~12 ia!D̃6#F̃62v0

]F̃6

]z
, ~4a!

]B̃7

]t
52k@12~12 ia!D̃6#B̃71v0

]B̃7

]z
. ~4b!

Defining now thez averages

F6~ t !5
1

LE0

L

F̃6~z,t !dz, ~5a!

B7~ t !5
1

LE0

L

B̃7~z,t !dz, ~5b!

D6~ t !5
1

LE0

L

D̃6~z,t !dz, ~5c!

and assuming, thanks to longitudinal quasiuniformity, t
the averages of the products are equal to the products o
averages, we obtain from Eqs.~4!

Ḟ652k@12~12 ia!D6#F62
v0

L
@F̃6

~2!2F̃6
~1!#, ~6a!

Ḃ752k@12~12 ia!D6#B71
v0

L
@B̃7

~2!2B̃7
~1!#, ~6b!

where the terms with the superscripts indicate the value
the rescaled fields~2a! and~2b! at the active layer boundarie
~1! and ~2! ~see Fig. 3!. Adding Eqs.~6a! and ~6b! which
govern the averaged counterpropagating fields with oppo
helicity and defining

E65
F61B7

2
, ~7!

it turns out that the mean standing fieldsE6 of opposite
helicity are ruled by the differential equations
to

t
he

of

ite

Ė652kH @12~12 ia!D6#E61
1

12R
@~B̃7

~1!2F̃6
~1!!

1~F̃6
~2!2B̃7

~2!!#J . ~8!

In the next subsection we will show how the effects of po
sible small cavity anisotropies can be taken into accoun
the evaluation of the boundary terms which appear in th
equations.

B. Cavity anisotropies

The residual anisotropies of the device are introduced
Eq. ~8! by means of the boundary terms: this approach
based on the assumptions that the cavity anisotropies re
mainly in the mirrors and that their effect can be separa
from the effect of the active medium. The validity of the
assumptions is ensured by the fact that the gain and
anisotropies which act on the propagating fields in a sin
cavity trip are small.

Taking advantage of the theory developed in@12,13# for
phase anisotropies and adapting it to a basis of circul
polarized fields we write

F̃6
~b!5M fF̃6

~a! , B̃6
~b!5MbB̃6

~a! , ~9!

where the superscripts (a) and (b) indicate two arbitrary
transverse sections of the laser resonator, the double
script sign is now a shorthand notation to indicate 231 vec-
tors, andM f and Mb are 232 matrices completely deter
mined by the phase anisotropies which can be pres
between (a) and (b).

Let us now assume that the (a) and (b) planes coincide
respectively with the surface of the lower mirror~see Fig. 3!
and the active layer boundary(1). Remembering that the
helicity is inverted upon reflection, it is easy to demonstr
the relation

B̃7
~1!2F̃6

~1!5@ I 2M fT~Mb!21T#B̃7
~1! , ~10!

where the symbolsI and T denote, respectively, the 232
real matrices

I 5F1 0

0 1G , T5F0 1

1 0G . ~11!

In the same way, by letting the (a) and (b) planes coincide,
respectively, with the active layer boundary (2) and the s
face of the upper mirror, it can be demonstrated that
second boundary condition is expressed by the relation

F̃6
~2!2B̃7

~2!5@ I 2T~Mb!21TMf #F̃6
~2! . ~12!

We can therefore rewrite the equations~8! that rule the av-
erage fields in the form

Ė652kH @12~12 ia!D6#E6

1
1

12R
@M ~1!B̃7

~1!1M ~2!F̃6
~2!#J , ~13!
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54 1651ROLE OF OPTICAL ANISOTROPIES IN THE . . .
where we have defined

M ~1!5I 2M fT~Mb!21T, ~14a!

M ~2!5I 2T~Mb!21TMf , ~14b!

and used the shorthand notation for the vectors.
Let us now recall that phase anisotropies can be class

as linear or circular, depending on the polarization sta
between which they introduce a phase difference, and t
can be symmetrical or antisymmetrical with respect to ti
reversal. The general form of the matrixM f which express
the action of phase anisotropies on the forward-propaga
field is

M f5F12 idc 2 id l

2 id l 11 idc
G , ~15!

whered l anddc are the~small! phase differences introduced
respectively, between linearly and circularly polarized fie
during the propagation from (a) to (b).

The form of the matrixMb which operates on the back
ward field depends on the behavior of the anisotropies un
time reversal: according to@12#, symmetrical and antisym
metrical phase anisotropies are characterized, respecti
by the conditions

Mb5~M f !* , ~16a!

Mb5@~M f !
21#* . ~16b!

Executing all the operations which appear in the defi
tions ~14! it turns out that in the absence of any anisotro
the matricesM (1) andM (2) are identically equal to the zer
matrix, so that all boundary conditions disappear from E
~13!.

In presence of a linear phase anisotropy we have in
symmetric case

Ml .s.
~1!5Ml .s.

~2!5F 0 2id l

2id l 0 G , ~17!

while in the antisymmetric case all the components of
two matrices are identically equal to zero. We can theref
conclude that the only linear phase anisotropy which
influence the laser dynamics is the symmetric one. Biref
gence is an example of such an anisotropy, since a bire
gent sample presents two different refractive indices for t
orthogonally linearly polarized beams, independently of th
propagation direction.

In presence of a circular phase anisotropy we have tha
the symmetric case the matricesM (1) and M (2) are identi-
cally equal to the zero matrix, while in the antisymmet
case

Mc.a.
~1! 5Mc.a.

~2! 5F2idc 0

0 22idc
G . ~18!

We can therefore conclude that the only circular phase
isotropy which can influence the laser dynamics is the a
symmetric one. Optical activity is an example of symmet
circular phase anisotropy: an optically active sample pres
ed
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two different refractive indices to circularly polarized beam
with opposite helicities, independently of their propagati
direction. An intuitive explanation of the fact that optic
activity does not influence the laser dynamics is that, si
circularly polarized light changes the sign of helicity upo
reflection, any phase variation built up during the forwa
trip will be canceled by the backward trip. It is then clear th
the only way to provide an effective circular phase anis
ropy is to break the system time-reversal symmetry, as
be done, for example, by applying an external magnetic fi
along the laser cavity. The Faraday effect will cause, in fa
an antisymmetric circular phase anisotropy: the material w
again present two different refractive indices to circula
polarized beam with opposite helicities, but the two indic
interchange as the beams propagation direction is rever
As a consequence the phase variation built up during
backward trip will now add with the phase variation built u
during the forward trip.

Since we are treating additively the phase anisotrop
due to the material birefringence and to the applied magn
field, we obtain that the matricesM (1) and M (2) which ap-
pear in Eqs.~13! are given simply by the sum of the matrice
~17! and ~18!, so that their global action is summarized b
the matrix

M ph
~1!5M ph

~2!5F2idc 2id l

2id l 22idc
G . ~19!

To take into account the effects of amplitude anisotropi
the same procedure can be followed. The general form of
matrix M f which expresses the action of amplitude anisot
pies on the forward-propagating field is

M f5F12jc 2j l

2j l 11jc
G , ~20!

wherej l and jc are the~small! fractional variations in the
amplitudes of linearly and circularly polarized fields intr
duced during the propagation from (a) to (b). Executing the
same steps which led us from Eq.~15! to Eq. ~19! we con-
clude again that only symmetric linear and antisymme
circular amplitude anisotropies can play a role in the la
dynamics, and they are summarized by the matrix

Mam
~1!5Mam

~2!5F2jc 2j l

2j l 22jc
G . ~21!

Treating additively all the anisotropies and making use of
approximation

E6'
F̃6

~2!1B̃7
~1!

2
~22!

which follows from longitudinal quasiuniformity, it is eas
to verify that Eqs.~13! can be recasted in the form

Ė652k$@12~12 ia!D6#E61 i ~s l2 i e l !E7

6 i ~sc2 i ec!E6!%, ~23!

where the linear and circular phase and amplitude aniso
pies per field cavity decay time are defined by
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1652 54TRAVAGNIN, van EXTER, van DOORN, AND WOERDMAN
s l5
4d l

12R
, e l5

4j l

12R
, ~24a!

sc5
4dc

12R
, ec5

4jc

12R
. ~24b!

The signs of these amplitude anisotropies have been ch
in such a way that whens l ,sc.0 ande l ,ec.0 the higher-
frequency field components have higher losses. As alre
explained in the introductory remarks, amplitude anisot
pies are physically unavoidable in the presence of ph
anisotropies and follow from the complex nature
Kramers-Kroning relations: Eq.~23! evidences that they be
have as imaginary phase anisotropies. In other terms, we
say that the anisotropies introduce slight modifications
both the real and imaginary parts of the semiconductor c
plex refractive index n, so that we can write
(n1dn)5(nre1dnre)1 i (nim1dnim). Since in a semicon-
ductor the strong inequalitynre@nim holds ~also under las-
ing conditions!, this makes it natural to expec
dnre@dnim , i.e., that the magnitude of phase anisotrop
will be much larger than the magnitude of amplitu
anisotropies.

C. Fundamental equations

The global laser dynamics is described by the time e
lution of the mean fieldsE6 and of the carrier densitie
D6 , which is determined by the nonlinear differential sy
tem @10#

Ė652k@~12 ia!~12D6!E61~e l1 is l !E7

6~ec1 isc!E6#, ~25a!

Ḋ652g iF ~11uE6u2!D61
g j

g i
~D62D7!2~11b!G ,

~25b!

whereb is a normalized pumping parameter equal to zero
the lasing threshold and where, with respect to Eq.~23!, the
reference frequency has been shifted toward the blue b
amount equal toka.

The system of equations~25! lends itself to a global
physical interpretation. As shown in Fig. 4, the line
anisotropies provide a direct, coherent coupling between
circularly polarized fieldsE6 , while the addition of circular
anisotropies causes a variation in the frequencies and in
amplitudes of these fields, thus perturbing their equilibriu
states. In absence of any light-material interaction, the in
play between these anisotropies completely determines
VCSEL light polarization. But another field-coupling mech
nism comes from the mixing—at the time ra
g j—between the carrier densitiesD6 , and is due to the non
linear light-material interaction regulated by the pumpi
strengthb and by the linewidth enhancement factora. This
supplementary coupling—which is indirect and incoheren
will modify the polarization of the laser beam, allowing on
in principle, to obtain some insight into the values of t
system parameterg j .
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To study the polarization properties of VCSEL-genera
light it is useful to consider separately the amplitudes and
phases of the fields, writing

E15uE1uexp~2 if1!, ~26!

E25uE2uexp~2 if2!, ~27!

and introduce as new variables the light intensity

I 5uE1u21uE2u2, ~28!

the ellipticity angle

x5arctan
uE1u2uE2u
uE1u1uE2u

, 2p/4<x<p/4, ~29!

the tilting angle of the major axis of the polarization ellips

c5
1

2
~f12f2!, 2p/2,c<p/2, ~30!

and the total phase angle

u5
1

2
~f11f2!, 0<u,2p. ~31!

It is also useful to replace the carrier densitiesD1 andD2

with the averaged total carrier density in the material

D5
D11D2

2
, ~32!

and with the averaged difference between the carrier de
ties available for the two transitions

d5
D12D2

2
. ~33!

FIG. 4. Physical interplay between the system variables:
linear anisotropiess l and e l provide a direct, coherent couplin
between the fields, while the circular anisotropiessc andec change
the amplitude and the frequency of the fields, perturbing their eq
librium positions. The carriers densities are coupled via spin-mix
processes, so that the spin-mixing rateg j will also influence the
light polarization properties through the nonlinear light-material
teraction. This nonlinear interaction is governed by the linewid
enhancement factora and by the pumping strengthb.
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In term of these new variables the system of equations~25!
takes the form

İ 52I @D212e lcos2ccos2x2~ec2d!sin2x#, ~34a!

u̇5a~D21!1s l

cos2c

cos2x
1e l

sin2c

tan2x
, ~34b!

ẋ5s lsin2c1e lcos2csin2x2~ec2d!cos2x, ~34c!

ċ5sc1ad2~s lcos2c1e lsin2c!tan2x, ~34d!

ḋ52g@d~G1I !1DIsin2x#, ~34e!

Ḋ52g@D~11I !1dIsin2x2~b11!#, ~34f!

where the time has been made dimensionless by mean
the inverse field decay timek ~dimensionless time5k
3 time!. The parametersg and G, which indicate, respec
tively, the dimensionless inverse carrier radiative lifetim
and the normalized spin-mixing rate, are given by

g5
g i

k
, G5

g i12g j

g i
. ~35!

The above system of equations constitutes a general to
analyze the influence of optical anisotropies and of lig
material interaction in the polarization properties of the lig
generated by a VCSEL, and will be the basis of our furth
investigations.

III. EFFECT OF MATERIAL STRAIN

We start now our analysis of Eqs.~34!, concentrating for
the moment on the case in which the only anisotropies of
VCSEL are the linear ones, which derive from mater
strain: in this section we will therefore assumesc[ec[0.

It is easy to verify that if also the linear anisotropiess l ,
e l are equal to zero—that is, if the system is ma
isotropic—the only possible stationary solution of Eqs.~34!
is represented by a linearly polarized field which, due to
rotational invariancy in the transverse plane, is orien
along an arbitrary direction@8#. The introduction of linear
anisotropies breaks the transverse rotational invariancy,
ing rise—as we will show—to a rich variety of phenomen
In the course of the section we will first concentrate on
role of a phase anisotropys l , and only secondly include in
the picture the effects of the amplitude anisotropye l which,
as discussed at the end of Sec. II B, is unavoidably ass
ated with it but may be expected to be much smaller.

A. Stationary states

When in the system of equations~34! the only anisotropic
term different from zero is the linear phase anisotropys l ,
the stationary values of the light ellipticity angle and of t
tilting angle of the ellipse are respectively found to be

tan2x57F ~G1I !~b2I !

I 2G~b2I ! G1/2

, ~36a!
of

to
-
t
r

e
l

e

e
d

v-
.
e

ci-

tan2c56F ~G1I !~b2I !

a2I ~b2I 11!G
1/2

, ~36b!

while the active medium is characterized by the carrier d
sities

d56F I ~b2I 11!~b2I !

~G1I ! G1/2

, ~37a!

D5~b2I !11. ~37b!

In the above relations the light intensityI is a function of the
pumping strengthb given by either

I 5b ~38!

or

I 5I a,G,s l
~b!. ~39!

These two possibilities are, respectively, responsible for
creation of linearly and elliptically polarized states. Th
function I a,G,s l

(b) is obtained from the equation

P~ I !5F ~b2I !1
~ad!2

~b2I !G@G~b2I !2I #1s l
2~G1I !,

~40!

under the restriction

b
G

11G
,I<b, ~41!

which is dictated by the constraint that the expressions~36!
of the anglesx andc are real valued: using Eq.~37b!, it is
easy to demonstrate that these two inequalities can be re
ten in the form

0<D21,
b

11G
. ~42!

It must be stressed that when the only nonzero anisotro
term present in Eqs.~34! is the linear phase anisotropys l ,
the system is invariant under the transformation

x→2x,

c→2c,

d→2d, ~43!

so that any elliptically polarized solution (x̃,c̃) will always
give rise to two coexisting states,

~x,c!5H x̃,c̃,

2x̃,2c̃.
~44!

The stationary values of the system variables given by E
~36! and ~37! have been represented as functions of
pumping strengthb in Fig. 5, with the system paramete
fixed to the valuesa54, G5100, ands l50.035. In Fig.
5~a! is shown the ellipticity tan2x: the straight line repre-
sents the linearly polarized state characterized by the in
sity I 5b, while the bifurcating branches represent the ell
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tically polarized states characterized by the intensit
I 5I a,G,s l

(b) and opposite signs of 2x. The tilting tan2c is
shown in Fig. 5~b!: the straight line represents the linearly
polarized state of intensityI 5b, while the bifurcating
branches represent the elliptically polarized states of inte
sity I 5I a,G,s l

(b) and opposite signs of 2c. Note that the

scale of the ordinate axis is 1/10 as compared with Fig. 5~a!.
In Fig. 5~c! we have represented the carrier differenced: the
straight line and the bifurcating branches represent, respe
tively, the linearly polarized state and the two coexisting
elliptically polarized states. Finally, in Fig. 5~d! the continu-
ous line represents the carrier densityD21, and the dashed
one indicates the functionb/(11G): it is clear that the first
of the conditions expressed by Eq.~42! imposes on the
pumping parameter the inequalityb>b̃ in order to obtain
elliptically polarized states; the other condition, on the con
trary, is always satisfied. The valueb̃ sets a bifurcation point
for the system, because forb>b̃ two states with opposite
values of the anglesx and c and of the carrier difference
d will be possible. To calculateb̃ we solve the equation

P~ b̃ !50, ~45!

which follows from Eq.~40!, obtaining

b̃5
Gs l

a2s l
. ~46!

FIG. 5. Representation of the system stationary states dete
mined by Eqs.~36! and ~37!. The values of the system parameters
are, respectively,a54, G5100, ands l50.035. See the text for
explanations.
y

n-

c-

-

From the stationary solutions of Eqs.~34c! and~34d!, it can
be easily verified that the ellipticity and the tilting angle
satisfy the relation

sin2x1atan2c50, ~47!

so that ellipticity is naturally associated with tilting.
It is also evident from Fig. 5 that close to threshold t

only possible states of the fields are linearly polarized: fr
Eq. ~34b! we deduce that their frequencies are, respectiv
u̇51s l for c50 and u̇52s l for c5p/2. Accordingly,
they will be indicated respectively by high and low. In th
next subsection we will investigate their stability propertie

B. Stability of the stationary states

A linear stability analysis of the two linearly polarize
solutions

I 5b, u̇51s l , x50, c50, D51, d50,

high ~hi!
~48!

I 5b, u̇52s l , x50, c5p/2, D51, d50,

low ~ lo!

reveals, in accordance with@10#, that the high-frequency one
is stable when

b.
2as l

g
2G, ~49!

and the low-frequency one when

b,
Gs l

a2s l
. ~50!

We can therefore divide the (s l ,b) plane into the four
regions shown in Fig. 6~a! and labeled with ‘‘hi’’ and/or
‘‘lo’’ to indicate the system stationary stable states. Sinc
numerical analysis reveals that in the domain indicated
the shadowed band also elliptically polarized states
stable, we deal with the following situations:

~i! hi domain: only the high linearly polarized state
stable;

~ii ! lo domain: only the low linearly polarized state
stable;

~iii ! hi-lo domain: coexistence of the two linearly pola
ized states;

~iv! el domain: coexistence of two elliptically polarize
states, which destabilize the lo state;

~v! hi-el domain: coexistence among the high linearly p
larized state and the two elliptically polarized ones;

~vi! dy domain: the light polarization changes dynam
cally in time, and does not reach any stationary stable st

For completeness we now analyze how the situation
scribed above is modified by the action of a linear amplitu
anisotropy e l , which takes into account polarization
dependent losses or gain. If we assume that in the syste
equations~34! the anisotropic terms different from zero a
s l ande l , we find that states with linear polarization are st
possible and given by

r-
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I 5
b2e l

11e l
, u̇51~s l1ae l !, x50, c50,

D511e l , d50, high~hi!
~51!

I 5
b1e l

12e l
, u̇52~s l1ae l !, x50, c5p/2,

D512e l , d50, low ~ lo!.

A linear stability analysis reveals that the condition~49! for
the stability of the high-frequency state is generalized by
inequality

Ab21Bb1C.0, ~52!

FIG. 6. ~a! Domains of different behaviors for light polarizatio
in the presence of a linear phase anisotropys l only, with a54,
G5100, andg50.0025. In the hi and lo domains only one of th
two possible linearly polarized states is possible, while in the h
domain there is bistability among them. The el label and the sh
owing indicate the narrow stability domain for elliptically polarize
states, and the dy label indicates the region in which the polar
tion characteristics of the laser beam change dynamically in ti
~b! Domains of different behaviors for light polarization in the pre
ence of linear phase and amplitude anisotropiess l and e l , with
a54, G5100, andg50.0025. The linear amplitude anisotropye l

has a modulus equal to 0%, 1%, 5%, and 10% of the modulus o
linear phase anisotropys l ; both the cases of positive and negati
sign are considered, and represented by the sign in front of
percentage. Note that positive~negative! values ofe l reduce~in-
crease! the extension of the stability domain of the high-frequen
state, which has higher~lower! losses with respect to the low
frequency one. The boundaries of the stability domain of the lo
frequency state depend much less one l , and their variation canno
be seen in the figure.
e

with the coefficientsA, B, C respectively given by

A5g, ~53a!

B5~11e l !
2~gG22e l22as l !12e l~11e l !~e l2gG!

12ge l
2 , ~53b!

C5@~11e l !
2~gG22e l22as l !22e l~11e l !~e l2gG!

22ge l
21~11e l !

2~2e lG2gG!#e l . ~53c!

On the other hand, the condition~50! for the stability of the
low-frequency states becomes

b,
~12e l !~s lG1e la!1s le l

a~12e l !2s l
. ~54!

Figure 6~b! shows the influence of the linear amplitude a
isotropy on the system stability domains; to plot it we ha
fixed the magnitude of the amplitude anisotropy at 1–10
of the phase anisotropy. This range is based on the obse
widths of the peaks associated with the two polarizat
modes in the VCSEL emission spectra below threshold@11#.
Note that the variation of Eq.~54! with respect to Eq.~50! is
so small that it is not visible in Fig. 6~b!, while the variation
of Eq. ~52! with respect to Eq.~49! is substantial. It can be
observed that the sign ofe l determines the system stab
states when the laser is close to threshold, but the influe
of the amplitude anisotropy diminishes as the pumping
rameterb is increased. Switching among the high- and lo
frequency states upon raising and lowering the value of
pumping parameterb has been numerically demonstrated
@10#.

Having determined the light polarization stationary stat
we give now a description of the behavior of the laser in
dy domain, where the polarization characteristics change
namically in time. Therefore we choose the linear phase
isotropys l large enough so that increasing the value of
pumping parameterb lifts the system from the stationary l
and el domains up to the dy one@see Fig. 6~a!#. In Fig. 7 the
light ellipticity has been plotted as a function of the intens
for the various values of the pumping. Inside the lo dom
the laser state is represented by a point at zero ellipti

o
d-

a-
e.

e

e

-

FIG. 7. Ellipticity tan2x versus intensityI for increasing values
of the pumpingb: a: b50.8; b: b50.9; c: b51.0; d: b51.05;
e: b51.07; f : b51.1; g: b51.15; h: b51.90. The values of the
other parameters area54, G5100,g50.0025, ands l50.035.
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(a), but when the pumping is increased and the lase
brought inside the el domain two states of opposite elliptic
are stable (b). If the pumping is further increased each po
becomes a closed ring (c), indicating that now the system
stable states are no longer stationary but periodically os
lating. The ring is then transformed in an eight (d), indicat-
ing a doubling of the oscillating period: the eight duplicat
(e) and duplicates again, up to the situation represente
f : note that the system still exhibits the coexistence of t
~nonstationary! states in such a way that the average value
the ellipticity for each of them is different from zero. On
when the interaction between the two coexisting states g
rise to the situation shown ing does the time-averaged valu
of the ellipticity become zero. For higher values of t
pumping the system reaches again a quasiperiodic st
state, as shown inh, and here again the average light elli
ticity will be equal to zero.

We end the present section remarking the large influe
of the value of the normalized spin-mixing rateG on the
boundaries of the domains shown in Fig. 6, and therefore
the general polarization behavior of the laser beam. Fo
comparison with the experimental findings, a reliable de
mination ofG is therefore a task of primary importance. Th
is the topic of the next section.

IV. EFFECTS OF MAGNETIC FIELD

In this section we study how an external magnetic fi
longitudinally applied along the VCSEL affects the polariz
tion characteristics of the laser beam and thus forms a too
measureG. Since the main consequence of such a field is
creation of a circular phase anisotropysc in the system of
Eqs. ~34!, we are now extending its analysis to the case
which both linear and circular phase anisotropies are dif
ent from zero.

A major consequence of the presence ofsc is the break-
ing of the system invariance under the transformation gi
by Eq.~43!: as a result, we can no longer expect any linea
polarized states or coexistence of states with opposite e
ticity. We will see in fact that the laser beam will be alwa
elliptically polarized, and that the sign of the ellipticity ang
is fully determined by the sign of the anisotropies.

In order to allow a comparison with the experimental si
ation described in@11#, we concentrate on circular phas
anisotropies much smaller than the linear phase anisotr
and we fix this latter at a value large enough to avoid
bistability domain shown in Fig. 6, since bistable behav
close to threshold is never met in our experiment@11#. With
these choices, the laser exhibits a prevalence of statio
stable states.

A. Stationary states

When in Eqs.~34! the only anisotropic terms differen
from zero are the linear and circular phase anisotropiess l
andsc , the stationary values of the light ellipticity angle an
of the tilting angle of the ellipse are, respectively, found
be

tan2x57F ~G1I 6!~b2I 6!

I 62G~b2I 6! G1/2

, ~55a!
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tan2c5
b2I 6

sc6a@ I 6~b2I 6!~b2I 611!/~G1I 6!#1/2,

~55b!

while the active medium is characterized by the carrier d
sities

d56F I 6~b2I 611!~b2I 6!

~G1I 6! G1/2

, ~56a!

D5~b2I 6!11. ~56b!

Note that since the system given by Eqs.~34a! is no longer
invariant under the transformation represented by Eq.~43!,
the light intensity in the above relations is not the same
the upper and lower signs. In fact, it is given in the tw
cases, respectively, by

I 5I a,G,s l ,sc

1 ~b! ~57!

and

I 5I a,G,s l ,sc

2 ~b!. ~58!

The two functionsI a,G,s l ,sc

6 are obtained from the equation

Q~ I !5F ~b2I !1
~sc1ad!2

~b2I ! G@G~b2I !2I #1s l
2~G1I !.

~59!

Using Eqs.~34c! and~34d! it is easy to verify that in station-
ary conditions the ellipticity and the tilting angle satisfy th
relation

sin2x1atan2c5
sc

s l

cos2x

cos2c
~60!

which generalizes Eq.~47!.
The stationary values of the system variables given

Eqs. ~55! and ~56! are shown in Fig. 8 as functions of th
pumping strengthb for the different values of circular phas
anisotropysc50.000, 0.002, 0.004, 0.006, 0.008, and 0.0
and for the same values of the system parameters used in
5. In Fig. 8~a! is shown the ellipticity tan2x: the dotted and
the solid lines represent, respectively, the statesI 2 and I 1,
which for sc→0 collapse, respectively, towards the linear
polarized solutions and the lower of the bifurcating branch
of Fig. 5~a!, which is represented by the dashed line. T
tilting tan2c, the carrier density differenced, and the carrier
densityD21 are shown with the same conventions in Fig
8~b!–8~d!: by comparison with Figs. 5~b!–5~d! it can be
noted that the tilting and the carrier density difference a
proach, among the two available branches, the higher on

For clarity we have represented in Fig. 8 only the effect
a positive circular phase anisotropysc , and among the two
bifurcating branches depicted in Fig. 5 we have drawn o
that one which the system approaches assc→0. But it is
easy to verify from Eq.~59! that, if the sign ofsc is re-
versed, the system~34! remains unchanged upon reversin
the signs ofd, x, and c: as a consequence, the laser w
approach the second of the bifurcating branches.
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A numerical analysis of the stability properties of the sta
tionary states shows that the only solutions which are stab
close to threshold are those characterized by the intens
I 1, which have been represented by means of the solid line
if the pumping parameterb is increased above a certain
value these states also will become unstable, as we will sho
later.

We conclude that in the presence of a circular phase a
isotropysc ~i! all stationary states become elliptically polar-
ized,~ii ! the states which are stable near threshold arise fro
the bifurcating solutions we met in Sec. III, and~iii ! the
coexistence between two states with opposite ellipticity
removed in such a way that the system is forced into one
them. In addition, the stationary values of the system var
ables change: comparing in Fig. 8 the solid lines with th
dashed bifurcating branches, we can see that this change
maximum in the neighborhood of the system bifurcatio
point and becomes smaller in percentage as the pumpi
parameter is increased.

In Figs. 9~a!–9~b! we have represented the ellipticity and
the frequency of the stable states as functions of the circu
phase anisotropy for different values of the material birefrin
gence. Note that the ellipticity has initially a linear depen
dence and saturates only for higher values of the circul
anisotropy, while the laser frequency is, for small values o
sc , a parabolic function of the circular phase anisotropy.

To describe the destabilization process of these states,
have plotted in Fig. 10 their ellipticity tan2x as a function of

FIG. 8. Representation of the system stationary states det
mined by Eqs.~55! and ~56!. The values of the system parameters
are, respectively,a54, G5100, ands l50.035, while the circular
phase anisotropy assumes the increasing valuessc50.000, 0.002,
0.004, 0.006, 0.008, and 0.010. See the text for explanations.
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the light intensity I for various values of the pumping
strengthb. Since we haveI'b the ellipticity lines drawn in
Fig. 10 as functions of the intensity can be identified w
those shown in Fig. 8~a! as functions of the pumping
strength. The continuous lines mark the states which are
merically found to be stable, while the dotted ones indic
the unstable states: it can be noted that all the station
solutions are stable close to threshold, and that the lower
magnitude ofsc , the wider is their stability domain. The

r-

FIG. 9. Ellipticity tan2x ~a! and frequencyu̇ ~b! versus circular
phase anisotropysc for increasing values of linear phase anisotro
s l50.025, 0.030, 0.035, 0.040, and 0.045; the values of the fi
parameters area54, G5100, andb50.5. Note that under the
conditionsc!s l the ellipticity and the frequency are, respective
linear and parabolic functions of the circular phase anisotropy.

FIG. 10. Ellipticity tan2x versus intensityI for different values
of circular phase anisotropy:sc50.000, 0.002, 0.004, 0.006, 0.008
and 0.010. Continuous and dotted lines indicate, respectively, st
and unstable stationary states. In unstable states the intensity
ellipticity oscillate periodically around their stationary values,
indicated by the three circles forsc50.004 andb50.60, 0.65, and
0.70. The values of the other parameters area54, G5100,
g50.0025, ands l50.035.
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destabilization has the form of periodic oscillations arou
the predicted stationary values of the variables, as indica
by the rings. We have observed that if we add a posit
circular amplitude anisotropyec in the dynamical equation
~34! the amplitude of the oscillations is reduced, or—in oth
terms—the rings collapse. As a consequence, the stab
domains extend toward higher values ofb, while the ellip-
ticity does not shift appreciably from the stationary valu
calculated in the absence ofec .

B. Analytical solutions close to threshold

Explicit expressions for the stationary values of the s
tem variables as functions of the various parameters ca
obtained if they are expanded as geometrical series in
pumping strengthb and if it is assumed that the laser is
close to threshold that only terms up to the first order nee
be included. In this way we can obtain a linear approxim
tion of the influence of the nonlinear light-material intera
tion on the polarization properties of the laser light. For t
stable states considered up to now we have, under the fu
assumptionsc!s l ,

I 5S 12
sc

2

Gs l
2Db, ~61a!

u̇5s l1
sc

2

2s l
S 11

4ab

Gs l
D , ~61b!

tan2x52
sc

s l
S 11

ab

Gs l
D , ~61c!

tan2c5
scb

Gs l
2 , ~61d!

d5
scb

Gs l
, ~61e!

D511
sc

2b

Gs l
2 . ~61f!

Using Eq. ~61e!, the expression obtained for the ellipticit
angle can be recast in the form

tan2x52
sc1ad

s l
, ~62!

which shows that, in first order, the effect of the materia
to increase the circular phase anisotropy by an amount e
to ad. The origin of this phenomenon can be tracked back
the set of Eqs.~34!, and in particular to Eqs.~34a!, ~34c!, and
~34d!: we can say that a carrier density differenced modifies
the circular amplitude and phase anisotropiese l and s l in
such a way that their effective values will be given, resp
tively, by

ec
eff5ec2d, ~63a!

sc
eff5sc1ad. ~63b!
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We can see from Fig. 8~c! that, as the pumping is increase
a differenced arises between the carrier densities availa
for the two circular eigenmodes: this difference cause
variation in the circular amplitude anisotropyec and, due to
the dependence of the refractive index on the carrier den
mediated by thea factor, also in the circular phase aniso
ropy sc . The effective value ofsc is therefore determined
by Eq.~63b!, and as a result the light ellipticity will be given
by Eq.~62!. The smaller the value ofG, the less efficient are
the spin-mixing processes, and consequently the larger
carrier differenced, leading to an enhancement of the no
linear contributions to the anisotropies. We can therefore
derstand why the pumping parameterb always appears in
Eqs.~61! divided byG, and in Eq.~61c! multiplied by a.

We also note that this linearized approach to take i
account the nonlinear light-material interaction is bound
fail as the pumping strength approaches the valueb̃, since a
bifurcation constitutes a phenomenon which cannot be
plained on the basis of a linear model. As a consequence
approximate linearized solutions~61! are valid under the
condition

b!b̃5
Gs l

a2s l
~64!

which becomes more stringent asa is increased andG de-
creased, that is, when the action of nonlinear effects is m
appreciable.

As a final note, we stress that Eqs.~61b! and~61c! for the
light frequency and ellipticity near threshold deserve parti
lar attention, given the experimental measurability of the
variables. It has been, in fact, by fitting them to experimen
data@11# that we have obtained the valueG'100 used in the
numerical simulations~see discussion of parameter values
Sec. V!.

V. CONCLUSIONS

Let us now summarize the effects of linear and circu
phase anisotropies on the polarization characteristics
VCSEL’s light. We already knew@8# that in the absence o
any anisotropy the light is linearly polarized and the field
oriented along an arbitrary direction of the transverse pla
When a linear phase anisotropy is added, the transverse
tational invariancy is broken, and in accordance with@10#,
the following results have been demonstrated.

~1a! Linearly polarized solutions are still possible, b
now the field can be oriented only along the two orthogo
directions of the transverse plane characterized, respectiv
by the minimum and maximum values of the refractive ind
@see the lines tan2x50 and tan2c50 in Figs. 5~a! and
5~b!#. The continuum of states available in the isotropic ca
is then drastically reduced, and depending on the system
rameters the laser chooses one of the two states now a
able, or may even be bistable@see Fig. 6~a!#. The extension
of the bistability domain is demonstrated to depend critica
on the possible presence of linear amplitude anisotropies@see
Fig. 6~b!#.

~1b! The coherent coupling between fields with oppos
circular polarization allows the creation of states that, wh
the pumping parameter exceeds a certain value, acquir
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ellipticity. Due to the system invariance under the transf
mation~43!, states of opposite ellipticity are always coexis
ing @see the bifurcating curve in Figs. 5~a! and 5~b!#. The
domain of the parameter space in which elliptically polariz
states are stationary is rather small: the system usually o
around one of them or it may even oscillate between st
with opposite ellipticity, thus exhibiting a time-averaged e
lipticity equal to zero~see Figs. 6 and 7!.

As compared with this situation, the further presence o
circular phase anisotropy produced by a magnetic field ha
a main consequence the breaking of the system invaria
under the transformation~43!, thus forbidding both the pos
sibility ~1a! of linearly polarized states and the possibili
~1b! of coexisting states with opposite ellipticity. We hav
demonstrated, in fact, the following.

~2a! The states which were linearly polarized become
liptically polarized, and their ellipticity decreases wi
pumping@see the dashed lines in Figs. 8~a! and 8~b!#; these
states are found to be always unstable near the lasing th
old.

~2b! The states which were elliptically polarized only fo
large enough values of the pumping parameter are now
ways elliptically polarized, and the sign of the ellipticity
determined by the signs of the linear and circular ph
anisotropies. The ellipticity increases with pumping@see the
continuous lines in Figs. 8~a! and 8~b!#, and these states ar
found to be stationary up to a certain value of the pump
parameter~see Fig. 10!.

We can therefore say that the lasing fields generated
the two electronic transitionsmj561/2→63/2 depending
on the values of the system parameters,~i! can realize a
spontaneous phase and frequency locking, giving rise to
tionary linear or elliptical polarization, respectively, if the
oscillate with the same or different amplitudes or~ii ! do not
realize a spontaneous phase and frequency locking, gi
rise to a time-dependent polarization, characterized by p
odic oscillations, period doubling, and possibly chaos.

As a further conclusion, we stress that the polarizat
properties of VCSEL’s are determined both by the line
couplings between the circularly polarized fields provided
the residual cavity anisotropies and by the nonlinear c
plings among the fields and the carrier densities. The sma
the linear couplings, the more prominent the role of the n
linear ones: in particular, if the linear anisotropies of t
VCSEL are set equal to zero~this experiment is in progres
in our laboratory!, we should recover the same behavior
c
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gas lasers under a small magnetic field, that is, a rota
linear polarization. In this case the two circularly polariz
fields oscillate with the same amplitude, but—since there
no longer a direct and coherent coupling between them
they do not lock their frequencies.

We remark that all the values of the parameters used
the figures are realistic from the experimental point of vie
in Fig. 6, for example, withk5331011 s21, the frequency
separation between linearly polarized fiel
Dn52s lk/(2p) ranges up to 5 GHz fors l50.05, which is
a typical value observed in VCSEL’s. The value ofG has
been obtained by fitting the theoretical relation Eqs.~61b!
and ~61c! to experimental data@11#, obtainingG'100; as-
suming g i50.753109 s21, we obtain from the second o
Eqs. ~35! the value g j53.731010 s21, which is in the
middle of the range mentioned in Refs.@17,18#. The value
a54 for the linewidth enhancement factor is commonly a
cepted in the literature on semiconductor lasers and has
recently measured also in VCSEL’s@20#.

Finally, we hope that our theoretical investigation w
stimulate further experimental work on VCSEL’s polariz
tion behavior, and in particular on magnetically induced
lipticity. In addition, it will be interesting to see if othe
regions of the parameter space than those stressed in
present paper are also experimentally accessible.

Note added: Recently we became aware that for the ca
of a linear amplitude anisotropy similar results were obtain
by J. Martin-Regalado, F. Prati, M. San Miguel, and N.
Abraham~unpublished!. Also, we received a copy of unpub
lished work by C. Serrat, N.B. Abraham, M. San Miguel,
Vilaseca, and J. Martin-Regalado giving a description of
dynamical polarization behavior of the VCSEL under t
action of a very strong axial magnetic field.

ACKNOWLEDGMENTS

We are glad to acknowledge useful discussions with
San Miguel and F. Prati. The research of M. Travagnin w
supported by the Human Capital and Mobility progra
of the European Community under the Contracts N
ERBCHBGCT 930437 and No. CHRX-CT93-0114, by th
ESPRIT project 20029 ACQUIRE and by the TMR netwo
ERB4061PL951021. The work of M.P. van Exter was su
ported by the Royal Dutch Academy of Arts and Scienc
This work is part of the research program of the ‘‘Stichtin
voor Fundamenteel Onderzoek der Materie~FOM!.’’
or-
th,

pl.

F.
@1# K. Iga, F. Koyama, and S. Kinoshita, IEEE J. Quantum Ele
tron. 24, 1845~1988!.

@2# J. L. Jewell, J. P. Harbison, A. Schrerer, Y. H. Lee, and L.
Florentz, IEEE J. Quantum Electron.27, 1332~1991!.

@3# J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Go
sard, and J. H. English, Appl. Phys. Lett.54, 1400~1989!.

@4# C. J. Chang-Hasnain, J. P. Harbison, L. T. Florez, and N.
Stoffel, Electron. Lett.27, 163 ~1991!.

@5# C. J. Chang–Hasnain, J. P. Harbison, G. Hasnain A. C. V
Lehmen, L. T. Flores, and N. G. Stoffel, IEEE J. Quantu
Electron.27, 1402~1991!.
-

.

.

n

@6# Z. George Pan, Shijun Jiang, Mario Dagenais, Robert A. M
gan, Keisuke Kojima, Moses T. Asom, Ronald E. Leibengu
Gregory D. Guth, and Marlin W. Focht, Appl. Phys. Lett.63,
2999 ~1993!.

@7# Kent D. Choquette, D. A. Richie, and R. E. Leibenguth, Ap
Phys. Lett.64, 2062~1994!.

@8# M. San Miguel, Q. Feng, and J. V. Moloney, Phys. Rev. A52,
1728 ~1995!.

@9# C. H. Henry, IEEE J. Quantum Electron.18, 259 ~1982!.
@10# J. Martin-Regalado, M. San Miguel, N. B. Abraham, and

Prati, Opt. Lett.21, 351 ~1995!.



J

a

,

-
5

ys.

s,

n,

1660 54TRAVAGNIN, van EXTER, van DOORN, AND WOERDMAN
@11# A. K. Jansen van Doorn, M. P. van Exter, M. Travagnin, and
P. Woerdman~unpublished!.

@12# D. Lenstra and S. H. M. Geurten, Opt. Commun.75, 63
~1990!.

@13# R. J. C. Spreeuw, M. W. Beijersbergen, and J. P. Woerdm
Phys. Rev. A45, 1213~1992!.

@14# W. W. Chow, S. W. Koch, and M. S. Sargeant III,Semicon-
ductor Lasers Physics~Springer-Verlag, Berlin, 1994!.

@15# P. S. Zory, Quantum Well Lasers~Academic, San Diego
1993!.
.

n,

@16# L. Mandel and E. Wolf,Optical Coherence and Quantum Op
tics ~Cambridge University Press, Cambridge, England, 199!.

@17# R. Ferreira and G. Bastard, Phys. Rev. B43, 9687~1991!.
@18# M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Ph

Rev. B47, 15 776~1993!.
@19# F. Prati, A. Tesei, L. Lugiato, and R. J. Horowicz, Chao

Solitons Fractals4, 1637~1994!.
@20# D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhu

and R. Leibenguth, Appl. Phys. Lett.66, 277 ~1995!.


