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Intensity phase coherence in three-mode Fabry-Pe´rot lasers

Ba An Nguyen and Paul Mandel
Optique Nonline´aire Théorique, Universite´ Libre de Bruxelles, Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium

~Received 22 February 1996!

We study analytically the intensity phase coherence in a three-mode Fabry-Pe´rot laser. We consider in detail
the case of a central mode with maximum gain and two side modes with smaller but equal gains. This laser is
characterized by three relaxation oscillation frequenciesVR9.VL19 .VL29 . In the framework of a linearized
theory, the laser dynamics is, respectively, inphased and perfectly antiphased atVR9 andVL29 , irrespective of
the modal gains. AtVL19 the antiphase is only partial if the side mode gains are smaller than the central mode
gain. Analytic gain- and pump-dependent relations between the three frequencies and between the heights of
the peaks in the power spectra at these frequencies are established. We also derive universal relations between
the peaks of the power spectra of the modal and the total intensities at the same frequencies that do not involve
any parameter at all.@S1050-2947~96!00908-0#

PACS number~s!: 42.65.Sf
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I. INTRODUCTION

Phase coherence is a figure of merit for the spontane
self-organization of nonlinear systems composed of glob
coupled components. The dynamics of individual comp
nents is complex in general but they may be correlated
phase so that the dynamics of the whole system is m
simpler. Such a property is known in laser physics as
tiphase dynamics~AD!. It has been recognized for the se
pulsing state@1–4#, in externally modulated lasers@5,6#, in
the noise spectrum at steady state@7#, in the transient relax-
ation to steady state@8–10#, in the chaotic regime@11,12#,
and in the routes to chaos@13#. In this paper we conside
multimode Fabry-Pe´rot lasers in which the mode-mode co
pling is mediated by spatial hole burning of the populati
inversion. AD is most pronounced when the mode-mo
competition is maximum, namely, when the modal gains
close to each other. Thus most theoretical studies have
restricted to the reference model derived in@14# in which all
gains are equal. One of the simplest signatures of AD is
fact that the power spectrum of the total intensity hasfewer
peaks than the power spectrum of the modal intensities. T
cancellation signs a coherence effect. This is surprising s
we deal only with lasers that are described by the Ta
Statz, and deMars rate equations@15# that couple the moda
intensities to the population inversion. We distinguish b
tween perfect AD, where a peak at one of the low frequ
cies completely disappears in the power spectrum of the t
intensity, and partial AD, where only a reduction in the pe
height of the total intensity power spectrum is observ
From a symmetry point of view, the perfect AD obtained
the reference model is due to the equality of the modal ga
In practice, however, the modal gains are not exactly eq
Then the phases of the time-dependent modal intensitie
not cancel out completely. This results in a partial AD. Su
a signature of AD has recently been analyzed in@16#.

Another influence of the gain difference is related to t
internal relaxation oscillation frequencies. When all gains
equal, there are only two relaxation oscillation frequenc
and their ratio varies in the narrow interv
@A2N21,A2N11# whereN is the number of modes@17#.
541050-2947/96/54~2!/1638~9!/$10.00
us
ly
-
in
h
-

e
e
en

e

is
ce
g,

-
-
al
k
.

s.
l.

do
h

e
s

Of interest are mode numbers for which there is an intege
that range because we may then expect resonances to a
if an external modulation is applied to the laser. However
difference in gains will change this situation drastically
increasing the number of relaxation frequencies@18# and
possibly inducing new relations that may favor other re
nant responses to an external modulation. For these rea
we present a study of the three-mode Fabry-Pe´rot laser in the
frequently occurring situation of a symmetric pattern: o
central mode and two side modes with smaller but eq
gains.

This paper is organized as follows. In Sec. II we solve
Tang, Statz, and deMars~TSD! equations in steady state. W
determine the necessary and sufficient conditions for the
ser to operate onN modes. A linear stability analysis is pe
formed in Sec. III in which we establish the relation betwe
the peak heights in the power spectra of the modal and t
intensities for the same frequency as well as relations
tween the three frequencies. The degree of intensity ph
coherence at each frequency is obtained analytically
compared with the numerical evaluation. Conclusions
presented in the final section.

II. N-MODE REGIME:
NECESSARY AND SUFFICIENT CONDITIONS

The multimode Fabry-Pe´rot laser can be described by th
TSD equations@15#

]I p

]t
5kFgpS D2

Dp

2 D21G I p , ~1!

]Dp

]t
5gpI pD2DpS 11(

q
gqI qD , ~2!

]D

]t
5w2D2(

q
S D2

Dp

2 DgqI q , ~3!

wherep andq51,2,...,N, the modal intensities areI p while
Dp and D are defined through the population inversio
D̄(x,t) as
1638 © 1996 The American Physical Society
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Dp5
2

L E
0

L

D̄~x,t !cos~2px!dx and D5
1

L E
0

L

D̄~x,t !dx,

with L being the cavity length. In~1!–~3! the timet is time
measured in units of the population inversion decay tim
The modes are characterized by their gain. The parametegp
is the gain of modep divided by the gain of the first mode
Henceg1[1. The pump ratew is normalized in such a way
that the first mode starts to oscillate atw51. The inverse
photon lifetimek is assumed to be mode independent but
modal gainsgp are mode dependent.

Let us denote byI p
s, D p

s, andDs the steady-state solutio
that does not depend onk and satisfies the equations

FgpS Ds2
Dp

s

2 D 21G I p
s50, ~4!

gpI p
sDs5Dp

sS 11(
q

gqI q
sD , ~5!

w5Ds1(
q

S Ds2
Dp

s

2 DgqI q
s . ~6!

Making use of the fact thatI p
s.0 for p<N, we get from~4!

and ~5!

Dp
s52S Ds2

1

gp
D , ~7!

I p
s5

Ds21/gp

gp@S12~N2 1
2 !Ds#

, S15 (
q51

N
1

gq
. ~8!

SinceDs is positive,~5! is satisfied if and only ifD p
s.0 or,

on account of~7!

Ds.
1

gp
. ~9!

Taking ~9! into account in~8!, the positivity ofI p requires

S1

N2 1
2

.Ds. ~10!

The steady-state population inversionDs satisfies Eq.~6!,
which can be written as

w5Ds1
DsS12S2

S12~N2 1
2 !Ds

, S25 (
q51

N
1

gq
2 . ~11!

Equation~11! is quadratic inDs. However, only one of the
two solutions may satisfy condition~10!,

Ds5
S1

N2 1
2

1
w

2
2

AD

2N21
, ~12!

D5~N2 1
2 !2w214@S1

22~N2 1
2 !S2#.0. ~13!

Requiring that the solution~12! satisfy ~10! leads to the in-
equalityAD.(N21/2)w or, equivalently,
.

e

S1
22~N2 1

2 !S2.0. ~14!

If the condition~14! is satisfied,D.0 for anyw guaranteeing
that Ds is real and positive. Condition~14! is the necessary
condition on the gain in order that the laser operate onN
modes. To be sufficient, the inequality~9! must be fulfilled
as well. This imposes the constraint on the pump,

w.wN5
1

gmin
1

S12S2gmin

S1gmin2N1 1
2

, ~15!

wheregmin is the smallest among the gains andwN is referred
to as theN-mode threshold pump. It follows from~4!, ~6!,
and ~9! that wN is always greater than 1/gmin . On the other
hand, from~9! and~10! we havegmin.(N21/2)/S1 . There-
fore gmin<S1/S2 . Combining these relations yields the ne
essary condition on the gaingmin ,

N2 1
2

S1
,gmin<

S1

S2
. ~16!

Since the condition~14! is automatically satisfied if the con
dition ~16! is satisfied, the necessary and sufficient con
tions for the laser to operate onN modes are~15! and ~16!.
In particular, if all gains are equal then all the modes la
simultaneously provided only thatw.wN51. On the con-
trary, if the gains are different anN-mode operation require
that both~15! and~16! be fulfilled, which constrains both the
gains and the pump. We illustrate this point forN52 and 3.

A. Two-mode operation

The condition~15! yields

w25
1

g2
1

2~12g2!

2g221
, ~17!

while ~16! gives

1
2 ,g2<1. ~18!

The relative gain of mode 2 should exceed 1/2 in order t
mode 2 can join mode 1 to operate in a two-mode regim

B. Three-mode operation

We assumeg2>g3 and that the laser is operating in
two-mode regime, i.e.,g2 is in the interval defined by~18!.
The condition~16! becomes

3g2

2~g211!
,g3<

g2~g211!

g2
211

.

Yet, becauseg2~g211!/~g2
211!>g2 for g2<1, the actual do-

main for g3 is

3g2

2~g211!
,g3<g2 . ~19!

The domain of three-mode operation in the~g2,g3! plane is
shown in Fig. 1. In particular, ifg251 the smallest value
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1640 54BA AN NGUYEN AND PAUL MANDEL
required forg3 to set in a three-mode operation isg35
3
4.

From the condition~15! we obtain the pump threshold fo
three-mode operation,

w35
1

g3
1

2@g2~g211!2g3~g2
211!#

g2@2g3~g211!23g2#
. ~20!

III. INTENSITY PHASE COHERENCE

A basic property of solid-state lasers for our analysis
the fact thatk is large, ranging from about 104 for Nd:YAG
~YAG denotes yttrium-aluminum-garnet! lasers to about 106

for LNP lasers. Following the method proposed in@14#, we
introduced51/Ak as a small parameter, scale the time
t5t/d @14#, and introduce the following decomposition:

FIG. 1. Domain for three-mode operation in the~g2,g3! param-
eter plane. The lower bound is excluded.
s

s

I p5I p
s1Tp ,

Dp5Dp
s1dDp ,

D5Ds5dD,

with Tp , dDp , anddD being the deviations from the corre
sponding steady-state values. We expand to leading ord
d the equations for the deviations and we linearize them. T
result is

]Tp

]t
5gpS D2

Dp

2 D I p
s ,

]Dp

]t
5gpTpDs2Dp

s(
q

gqTq

1dFgpDI p
s2DpS 11(

q
gqI q

sD G ,
]D

]t
52(

q
Tq2dFD1(

q
gqS D2

Dp

2 D I q
sG .

The linearity of these equations means that we can seek
lutions of the form~Tp , Dp , D!5~Ip , Dp , D!exp~lt!. Let us
define a state vector

z5$D,S,N,I2 ,D2 ,I3 ,D3%, ~21!

whereS5(q Iq andN5(qDq . Such az representation is
helpful because it allows one to follow at the same time b
the modal and the total intensities and population gratings
this representation the characteristic equation forl is
detU l1dU 1 2dA1 0 d~A12A2! 0 d~A12A3!

2Y l A1 0 A22A1 0 A32A1

2dY C1 l1dU C22C1 0 C32C1 0

22A2 0 0 l A2 0 0

22dA2 H12 0 K21 l1dU H322H12 0

22A3 0 0 0 0 l A3

22dA3 H13 0 H232H13 0 K31 l1dU

U50,
des
n
he
with the notations

Ap5gpI p
s/2, Cp5gp~5Ds22S1!, Hpq5gpDq

s ,

Kpq5Hpp2Hqp2gpDs, Y5(
q

gqI q
s , U511Y.

Up to first order ind we writel5v2dG and determinev as
roots of the equation

v f ~v2!50, f ~v2!5v61a2v41a1v21a0 , ~22!

andG as functions of these roots,
G5
4Uv61b2v41b1v21b0

7v615a2v413a1v21a0
. ~23!

The coefficients appearing in~22! and ~23! are given in the
Appendix.

A. Equal gains

We begin by considering the case where all three mo
have equal gainsg25g351. This can be thought of as a
approximation for a laser with a very small spread in t
modal gains. Equation~22! has the obvious trivial root
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v1850. ~24!

The other six nonzero roots are easily obtained using
coefficients~A8!–~A10!:

v2,38 562p idVR8 ,

VR85
1

2pd S ~Ds21!~5Ds212!

5Ds26 D 1/2

5
1

2pd
Aw21,

~25!

v4,58 5v6,78 562p idVL8 , VL85
1

2pd S Ds~12Ds!

5Ds26 D 1/2

.

~26!

Close to the lasing thresholdw51, the low oscillation fre-
quency has the simple scaling

VL8 /VR85A1/7@11O~w21!#. ~27!

From ~23! and~A8!–~A13! we obtain the corresponding re
parts

G~v18![G185
~5Ds26!216

~5Ds26!~5Ds212!
,

G~v2,38 ![GR85
7@Ds2~Ds21!~5Ds26!#

2~5Ds26!~5Ds212!
,

G~v4,58 !5G~v6,78 ![GL85
Ds

2~625Ds!
.

The inequalities~9! and ~10! guarantee that all theG8 are
positive. The dynamics of these lasers is characterized
oscillations with the frequencies 0,VL8 , and VR8 ~with VL8
,VR8 ! that are damped with the corresponding decay ra
G18 , GR8 , andGL8 . A simple relation betweenVR8 andVL8 is
easily derived from~25! and ~26!:

S VR8

VL8
D 2

5
12

Ds25.

FIG. 2. The ratiosA5(VR9 /VL19 )2, B5(VR9 /VL29 )2, and C
5(VL19 /VL29 )2 as functions ofg for w2w351 ~solid curves! and
for w→` ~dashed curves!.
e

by

s

Thus this ratio can only vary between 7 forDs51 ~when
w51! and 5 forDs56/5 ~whenw5`!.

To see the phase coherence between the lasing mode
derive the eigenvectors corresponding to the seven eigen
ues we have obtained. In thez representation~21! they have
the form

z185H 1

2
,0,3,0,1,0,1J ,

z2,38 5H 3

5Ds26
,

76p idVR8

5Ds26
,3,

3
72p idVR8

5Ds26
,1,

72pdVR8

5Ds26
,1J ,

z4,58 5H 0,0,0,0,0,
62p idVL8

Ds ,1J ,

z6,78 5H 0,0,0,
62p idVL8

Ds ,1,0,0J .

It is manifest that the modal intensities and population gr
ings are inphased at frequencyVR8 but perfectly antiphased a
frequencyVL8 . The perfect antiphased dynamics atVL8 is
reflected in the fact that all the global variablesD, S, andN
vanish inz4,58 andz6,78 . This is because phase coherence
curs so that the contribution of the modal variables to
global variables cancels out completely at frequencyVL8 .

B. Two equal gains

The next case of practical importance is a central mo
having the largest gain with two smaller but equal gains
the side modes, i.e.,g25g35g,1. The dynamics of such
lasers is controlled by both the pump ratew and the gaing.
In this case the functionf ~v2! in ~22! factorizes

f ~v2!5~v21a!~v41bv21c!, ~28!

FIG. 3. (VR9 /VL19 )2 versusw2w3 for g50.7, 0.8, 0.9~full lines
from top to bottom! andg51 ~dashed line!.

TABLE I. Parameters for whichVR953VL19 with g25g35g.

g 0.7 0.8 0.9
w2w3 3.1074 0.8156 0.2479
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where

a5gDs~12gDs!/M ,

b5@814g216gDs1g~Ds!213g2~Ds!2#/M ,

c5~12Ds!~gDs21!@8216g28gDs18g224g2Ds

15g2~Ds!2#/M2,

with

M55gDs22g24. ~29!

It follows from ~9! and~10! that all the coefficientsa, b, and
c as well as the discriminant of the quadratic in~28! are
positive in the whole range of allowedg and w. The six
nonzero roots of~22! are

v2,39 562p idVR9 , VR95
1

2pd S b1Ab224c

2 D 1/2

,

~30!

v4,59 562p idVL19 , VL19 5
1

2pd S b2Ab224c

2 D 1/2

,

~31!

v6,79 562p idVL29 , VL29 5
1

2pd
Aa. ~32!

The double prime refers to the caseg25g35g,1. It is worth
noticing that, in the limit g→1, VR9→VR8 and
VL19 →VL29 →VL8 , reducing to the case of equal gains,
should be. In general, forg,1, the three frequencies given i
~30!–~32! are different and the inequalitiesVR9.VL19 .VL29
hold. Close to the lasing threshold for three modes, the
oscillation frequencies are given by

2pdVL19 5 f ~g!Aw2w3@11O~w2w3!#, ~33!

2pdVL29 5g~g!Aw2w3@11O~w2w3!#, ~34!

FIG. 4. (VR9 /VL29 )2 versusw2w3 for g50.7, 0.8, 0.9, and 1
~from top to bottom!.
w

where f >0 andd f /dg,0 while g>0 anddg/dg.0 in the
relevant range~19! and~20!. In the same domain~w close to
wc! we find for VR9 the expansion

~2pdVR9 !25~w21!h~g!1O~1!,

h~g!5~21g1A!/5, ~35!

A25~8284g1147g2286g313g4!/~228g13g2!.

To explore new features, we recall that ifg51 the ratio
(VR8 /VL8)2 varies between 7 and 5 forw increasing from 1 to
infinity. However, ifg,1 the ratios between the various fre
quencies may vary in a much larger range. The ratiosA
5(VR9 /VL19 )2, B5(VR9 /VL29 )2, and C5(VL19 /VL29 )2 are
plotted in Fig. 2 as functions ofg for w2w351 ~solid
curves! and for w→` ~dashed curves!. For g→1 we have
C→1; in addition,A→B→5 for w→` while A→B→7 for
w→1. Forg,1, C is slightly greater than 1 butA andB can
be made arbitrarily large by decreasingg, as appears in Fig
2. In Fig. 3 we draw (VR9 /VL19 )2 versusw2w3 for different
g. For g51, the ratio (VR9 /VL19 )2 can vary only between 7
and 5 ~dashed line!. For g,1 the range in which
(VR9 /VL19 )2 varies is much wider and the value o
(VR9 /VL19 )2 can be chosen by selecting appropriate values
w and g. For instance, we find that (VR9 /VL19 )259 for the
parameters listed in Table I. WhenVR953VL19 one may ex-
pect in experiments with external modulations a reson
effect such as a small amplitude modulation atVL19 leading
to a large amplitude change atVR9 due to third harmonic
generation. Similar curves for (VR9 /VL29 )2 and (VL19 /VL29 )2

are plotted in Figs. 4 and 5, respectively. We find, for
stance, thatVR953VL29 for ~g, w2w3!5~0.9, 1.3563! and
VR954VL29 for the parameters listed in Table II. For the
pairs of pump and gain, a large amplitude response atVR9
may be induced by a small amplitude periodic modulation
the lower frequency via harmonic generation. Let us emp
size that this kind of resonant response does not happen
g51 and hence is specific for the laser with nonequal ga

This analysis is easily completed by deriving the eige
vectors associated with the eigenvalues~30!–~32!. They are
given by

FIG. 5. (VL19 /VL29 )2 versusw2w3 for g50.7, 0.8, 0.9, and 1
~from top to bottom!.
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z19[z18 , ~36!

z2,39 5H 3

M
,

76p idVR9

M
,

3

mR
@~gDs21!~424g1gDs!1M ~2pdVR9 !2#,

712p idVR9

MmR
~gDs21!~gDs2g21!,

6~12gDs!

MmR
@424g24gDs13~gDs!22M ~2pdVR9 !2#,

712p idVR9

MmR
~gDs21!~gDs2g21!,

6~12gDs!

MmR
@424g24gDs13g2Ds2M ~2pdVR9 !2#J , ~37!
y
en e

ak

ob-
ks in
-
-

z4,59 5$~same asz2,39 with subscript R replaced byL1!%,
~38!

z6,79 5H 0,0,0,
72p idVL29

gDs ,21,
62p idVL29

gDs ,1J , ~39!

where M is defined by~29! and mn with n5R or L1 is
defined through

mn5~12gDs!~424g24gDs13g2Ds!1gM ~2pdVn9!2.

The intensity phase coherence at one given frequenc
characterized by comparing the corresponding compon
of each of the eigenvectors~37!–~39!. Let Pp~V! andPT~V!
be the peak height at frequencyV in the power spectra of the
modal and total intensities, respectively. Then, from~37!–
~39! it immediately follows that

PT~VR9 !

P1~VR9 !
5

mR
2

g2@~gDs21!~823gDs!1M ~2pdVR9 !2#2 ,

~40!

P1~VR9 !

P2~VR9 !
5

P1~VR9 !

P3~VR9 !

5
g2@~gDs21!~823gDs!1M ~2pdVR9 !2#2

4~gDs21!2~gDs2g21!2 ,

~41!

PT~VL19 !

P2~VL19 !
5

PT~VL19 !

P3~VL19 !
5

mL1
2

4~gDs21!2~gDs2g21!2 ,

~42!

P1~VL19 !

P2~VL19 !
5

P1~VL19 !

P3~VL19 !

5
g2@~gDs21!~823gDs!1M ~2pdVL19 !2#2

4~gDs21!2~gDs2g21!2 .

~43!

TABLE II. Parameters for whichVR954VL29 with g25g35g.

g 0.7 0.8 0.9
w2w3 9.8496 1.3741 0.3361
is
ts

In Fig. 6 we plotPT(VR9 )/P1(VR9 ) andP1(VR9 )/P2(VR9 ) as a
function of g for different w. When g→1 we have
PT(VR9 )→9P1(VR9 )59P2(VR9 )59P3(VR9 ) but for g,1 the
following relations hold:

PT~VR9 !.P1~VR9 !.P2~VR9 !5P3~VR9 !. ~44!

Figure 7 is similar to Fig. 6 but forPT(VL19 )/P2(VL19 ) and
P1(VL19 )/P2(VL19 ) for which the following relations hold:

PT~VL19 !,P2~VL19 !5P3~VL19 !,P1~VL19 !. ~45!

The relations~44! and ~45! indicate that the intensity phas
coherence occurs differently atVR9 andVL19 . It can be veri-
fied that inz2,39 the componentsl1, l2, and l3 have the same
sign, implying an inphased coherence. This is why the pe
of the total intensity is largest atVR9 , as implied by the
relations ~44!. On the other hand, inz4,59 the sign of the
componentl1 is opposite to the sign ofl2 andl3, implying an
antiphased coherence atVL19 .

A complementary expression of these properties is
tained by seeking relations among the power spectra pea
the form found in@16#. From the explicit form of the eigen
vectors~37!–~39!, the following relations are easily estab
lished:

V5VR9 : PT5~AP21AP31AP1!2,

FIG. 6. The dashed lines represent the ratioPT(VR9 )/P1(VR9 ) as
a function ofg for w2w351, 5, and̀ from bottom to top. The full
lines represent the ratioP1(VR9 )/P2(VR9 )5P1(VR9 )/P3(VR9 ) as a
function of g for w2w351, 5, and` from right to left.
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1644 54BA AN NGUYEN AND PAUL MANDEL
with P25P3ÞP1 , ~46!

V5VL19 : PT5~AP21AP32AP1!2,

with P25P3ÞP1 , ~47!

V5VL29 : PT5~AP22AP31AP1!2,

with P25P3 , P150. ~48!

The only vanishing peak height in these three relations isP1

at VL29 .
The degree of antiphase at frequencyVL19 can be charac-

terized by the function defined as

x~VL19 !512
PT~VL19 !

S (
p

APp~VL19 ! D 2 . ~49!

The valuex51 corresponds to 100%, i.e., perfect, antipha
there is no peak in the power spectrum of the total inten
of the peak atVL19 . An inphased coherence between t
modes corresponds tox50. In Fig. 8 we drawx(VL19 ) as a
function of g for several values ofw. For g→1/2 the an-
tiphase degree approaches asymptotically its minim

FIG. 7. The dashed lines representPT(VL19 )/P2(VL19 ) as a func-
tion of g for w2w351, 5, and̀ from top to bottom. The full lines
represent the ratioP1(VL19 )/P2(VL19 )5P1(VL19 )/P3(VL19 ) as a
function of g for w2w351, 5, and` from bottom to top.

FIG. 8. Degree of antiphase atVL19 versusg for w2w351, 5,
10, and` ~from bottom to top!.
:
y

m

xmin58/9 in which case we haveP1(VL19 )5P2(VL19 )
5P3(VL19 )5PT(VL19 ). In the limit g→1, the degree of an-
tiphasex→1 and the power spectra peaks tend towards
asymptotic valuesP1(VL19 )→2P2(VL19 )52P3(VL19 ) and
PT(VL19 )→0. The degree of antiphase atVL19 displayed in
Fig. 8 increases from 8/9 where the total intensity peak
lowest in accordance with~45!. It is also clear that the dif-
ference 12g is a measure of the antiphased coherence at
frequency.

To assess quantitatively this analysis we present in Fi
the power spectra obtained from the numerical integration
Eqs.~1!–~3! for k5104, g50.8, andw57. Besides the quali-
tative tendency ruled by the relations~44! and ~45!, our
calculated results VR9537.3684, VL19 516.3131, VL29
513.5315, PT(VR9 )/P1(VR9 )52.3525, P1(VR9 )/P2(VR9 )
514.0383, PT(VL19 )/P1(VL19 )50.1556, and P1(VL19 )/
P2(VL19 )52.0572 reproduce very well the numerical resu
in Fig. 9. We also find that for this numerical simulation th
relations~44! and~45! between the peak heights are valid f
the whole range ofg as shown in Tables III and IV.

As for the intensity phase coherence at frequencyVL29
there is perfect antiphasing independent ofg because in
z6,79 we always haveS50 due to l252l3 and l150. This
result is again confirmed numerically in Fig. 9, which sho
no peak atVL29 in the power spectra of both the total inte

FIG. 9. Power spectra of mode 1 intensity~P1!, mode 2 inten-
sity ~P2!, and the total intensity (PT) obtained by solving numeri-
cally the Tang, Statz, and deMars equations fork5104, g50.8, and
w57. P2 and P3 have peaks at the same frequencies. The ini
condition is xj5(110.005j 2)x j

0 where x15D, x2,3,45D1,2,3,
x5,6,75I 1,2,3, andx j

0 is the steady state ofxj for w55.
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sity and mode 1 intensity. In the power spectra of mod
and mode 3 intensities there are three peaks with thos
VL29 being perfectly antiphased.

IV. CONCLUSION

The main result of this paper is the proof that the spre
of the modal gain distribution induces gain-dependent va
tions for the relaxation frequencies over a wide range. In
range, it is quite easy to find values of the parameters
which the ratio between the highest frequencyVR9 and either
of the two lower frequenciesVL19 or VL29 is a small integer
~typically 2, 3, or 4! at a reasonably low pump rate. It
expected that these rational relations among the relaxa
frequencies may be the source of resonance phenome
multimode lasers.

The perfect antiphase atVL29 is associated with the sym
metry brought about by the coincidence of two ga
g25g35g. If all gains are different, only partial antiphase
expected at the lower frequencies. The degree of antiph
increases as the gain difference decreases.

Another class of results we have obtained are relati

TABLE III. Calculated and numerical results for the peak heig
ratios at frequencyVR9 for a wide range ofg. The parameters use
are k5104, w2w351, and the initial state is taken a
xj5(110.005j 2)x j

0 wherex15D, x2,3,45D1,2,3, x5,6,75I 1,2,3, and
x j

0 is the steady state ofxj for w2w350.9.

g
PT/P1

calculated
PT/P1

numerical
P2/P1

calculated
P2/P1

numerical

0.95 4.4454 4.4657 0.3071 0.3097
0.85 1.9954 1.9983 0.0426 0.0427
0.75 1.3549 1.3631 0.0067 0.0069
0.65 1.1130 1.1163 0.0007 0.0007
2
at

d
-

is
r

on
in

se

s

between the power spectra peaks. The relations~44!–~48! for
the peak heights are independent of the initial condition,
cause they relate components of the same eigenvector. T
are also independent of the system parameters, though
more complete results~40!–~43! are functions of the system
parameters. In this sense, the relations~44!–~48! are univer-
sal. The discrepancy between the calculated and nume
results~presented in Tables III and IV! is about 1%, i.e., of
the order ofd. The smallness ofd is thus a necessary cond
tion for the validity of our analytical treatment which is in
deed based on the fact thatd51/Ak!1. The other assumption
is the linearization that requires small initial deviations fro
the steady state. The smallness ofd also means that the pe
riod, proportional toO~d!, of the relaxation oscillation is
much shorter than the decay time that scales asO~1!. It is the
existence of these two widely different time scales that
duces the intensity phase coherence which, in turn, lead
the universal relations~44! and ~45!.
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APPENDIX

The coefficients appearing in Eqs.~22! and ~23! are

t TABLE IV. Same as in Table I but at frequencyVL19 .

g
PT/P2

calculated
PT/P2

numerical
P1/P2

calculated
P1/P2

numerical

0.95 0.0510 0.0403 3.1478 3.1770
0.85 0.3228 0.3371 2.0502 2.0877
0.75 0.6107 0.5834 1.4848 1.5427
0.65 0.8352 0.8464 1.1796 1.2253
a05
Ds~g1Ds21!~g2Ds21!~g3Ds21!@5~Ds!224S1Ds18~S22S3!#

~5Ds22S1!3 , ~A1!

a15
23S7~Ds!4114S6~Ds!32~8S519!~Ds!214S4Ds18~S32S2!

~5Ds22S1!2 , ~A2!

a25
S6~Ds!2215Ds14S1

5Ds22S1
, ~A3!

b05
~Ds!2~g1Ds21!~g2Ds21!~g3Ds21!@25~Ds!2220S1Ds12~8S32S2!#

~5Ds22S1!4 , ~A4!

b15
2Ds

~5Ds22S1!3 @27S7~Ds!412~11S614S9!~Ds!32~4S8111S5181!~Ds!21~3S4138S2!Ds22~S216S3!#,

~A5!
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b25
7S6~Ds!32~8S519!~Ds!212~2S419S1!Ds214S2

~5Ds22S1!2 . ~A6!
pl
Among the gain-dependent sumsSn , the sumsS1 andS2 are
defined in~8! and~11! whereasS3, S4,...,S8 andS9 are given
by

S35
1

2 (
p,q

8
1

gpgq
, S45(

p,q
8

gp

gq
2 , S55(

p,q
8

gp

gq
,

S65(
p

gp , S75
1

2 (
p,q

8gpgq , S85
1

2 (
p,q,l

8
gpgq

g1
2 ,

and S95
1

2 (
p,q,l

8
gpgq

g l
, ~A7!

where the prime meanspÞq in double sums and
pÞqÞ lÞp in triple sums.

Equal gains

When all gains are equal, the coefficients take the sim
form
ys

t.

ys

lo
er

a085
~Ds!2~Ds21!3~5Ds212!

~5Ds26!3 , ~A8!

a185
3Ds~823Ds!~Ds21!2

~5Ds26!2 , ~A9!

a285
3~Ds!2215Ds112

5Ds26
, ~A10!

b085
~Ds!2~Ds21!3@25~Ds!2260Ds142#

~5Ds26!4 , ~A11!

b185
2Ds@221~Ds!4190~Ds!32159~Ds!21132Ds242#

~5Ds26!3 ,

~A12!

b285
21~Ds!3257~Ds!2178Ds242

~5Ds26!2 . ~A13!
m-

J.

-

i,

,

@1# K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Ph
Rev. Lett.65, 1748~1990!.

@2# P. Le Boudec, C. Jaouen, P. L. Franc¸ois, J.-F. Bayon, F.
Sanchez, P. Besnard, and G. Stephan, Opt. Lett.18, 1890
~1993!.

@3# P. Mandel and J.-Y. Wang, Opt. Lett.19, 533 ~1994!.
@4# J.-Y. Wang and P. Mandel, Phys. Rev. A48, 671~1993!; J.-Y.

Wang, P. Mandel, and T. Erneux, Quantum Semiclass. Op7,
169 ~1995!; J.-Y. Wang and P. Mandel, Phys. Rev. A52, 1474
~1995!.

@5# K. Otsuka, Phys. Rev. Lett.67, 1090~1991!.
@6# B. A. Nguyen and P. Mandel, Opt. Commun.112, 235~1994!.
@7# K. Otsuka, M. Georgiou, and P. Mandel, Jpn. J. Appl. Ph

31, L1250 ~1992!.
@8# K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. G

rieux, Phys. Rev. A46, 1692~1992!.
@9# S. Bielawski, D. Derozier, and P. Glorieux, Phys. Rev. A46,

2811 ~1992!.
.

.

-

@10# P. Mandel, M. Georgio, K. Otsuka, and D. Pieroux, Opt. Co
mun.100, 341 ~1993!.

@11# K. Otsuka, P. Mandel, M. Georgiou, and C. Etrich, Jpn.
Appl. Phys.32, L318 ~1993!.

@12# E. A. Viktorov, D. R. Klemer, and M. A. Karim, Opt. Com
mun.113, 441 ~1995!.

@13# N. B. Abraham, L. L. Everett, C. Iwata, and M. B. Janick
Proc. SPIE Int. Soc. Opt. Eng.2095, 16 ~1994!.

@14# D. Pieroux and P. Mandel, Opt. Commun.107, 245
~1994!.

@15# C. L. Tang, H. Statz, and G. deMars, J. Appl. Phys.34, 2289
~1963!.

@16# P. Mandel and J.-Y. Wang, Phys. Rev. Lett.75, 1923
~1995!.

@17# D. Pieroux, T. Erneux, and P. Mandel~unpublished!.
@18# P. A. Khandokhin, P. Mandel, I. V. Koryukin, B. A. Nguyen

and Ya. I. Khanin~unpublished!.


