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Intensity phase coherence in three-mode Fabry-Ret lasers
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We study analytically the intensity phase coherence in a three-mode FaiotyleRer. We consider in detail
the case of a central mode with maximum gain and two side modes with smaller but equal gains. This laser is
characterized by three relaxation oscillation frequen€igs>Q/,>Q/,. In the framework of a linearized
theory, the laser dynamics is, respectively, inphased and perfectly antipha@¢caatl Q)| ,, irrespective of
the modal gains. Af){, the antiphase is only partial if the side mode gains are smaller than the central mode
gain. Analytic gain- and pump-dependent relations between the three frequencies and between the heights of
the peaks in the power spectra at these frequencies are established. We also derive universal relations between
the peaks of the power spectra of the modal and the total intensities at the same frequencies that do not involve
any parameter at al[S1050-29476)00908-0

PACS numbds): 42.65.Sf

I. INTRODUCTION Of interest are mode numbers for which there is an integer in
that range because we may then expect resonances to appear
Phase coherence is a figure of merit for the spontaneouan external modulation is applied to the laser. However, a
self-organization of nonlinear systems composed of globallyifference in gains will change this situation drastically by
coupled components. The dynamics of individual compo-ncreasing the number of relaxation frequenciés] and
nents is complex in general but they may be correlated ipossibly inducing new relations that may favor other reso-
phase so that the dynamics of the whole system is muchant responses to an external modulation. For these reasons,
simpler. Such a property is known in laser physics as anwe present a study of the three-mode FabryePlaser in the
tiphase dynamic$AD). It has been recognized for the self- frequently occurring situation of a symmetric pattern: one
pulsing statg1—4], in externally modulated lasef$,6], in central mode and two side modes with smaller but equal
the noise spectrum at steady stptg in the transient relax- gains.
ation to steady state8—10, in the chaotic regim¢11,12, This paper is organized as follows. In Sec. Il we solve the
and in the routes to chad43]. In this paper we consider Tang, Statz, and deMa($SD) equations in steady state. We
multimode Fabry-Pet lasers in which the mode-mode cou- determine the necessary and sufficient conditions for the la-
pling is mediated by spatial hole burning of the populationser to operate ohl modes. A linear stability analysis is per-
inversion. AD is most pronounced when the mode-moddormed in Sec. lll in which we establish the relation between
competition is maximum, namely, when the modal gains aréhe peak heights in the power spectra of the modal and total
close to each other. Thus most theoretical studies have beédtiensities for the same frequency as well as relations be-
restricted to the reference model derived1d] in which all ~ tween the three frequencies. The degree of intensity phase
gains are equal. One of the simplest signatures of AD is theoherence at each frequency is obtained analytically and
fact that the power spectrum of the total intensity Feser ~ compared with the numerical evaluation. Conclusions are
peaks than the power spectrum of the modal intensities. Thigresented in the final section.
cancellation signs a coherence effect. This is surprising since
we deal only with lasers that are described by the Tang, Il. N-MODE REGIME:
Statz, and deMars rate equatidi$] that couple the modal NECESSARY AND SUFFICIENT CONDITIONS
intensities to the population inversion. We distinguish be- . . .
tween perfect AD, pwﬁere a peak at one of the Iovs frequen The multimode Fabry-Ret laser can be described by the
cies completely disappears in the power spectrum of the total oL equationg15]
intensity, and partial AD, where only a reduction in the peak P D
height of the total intensity power spectrum is observed. —p:k[ yp<D——p)—1}lp, (D)
From a symmetry point of view, the perfect AD obtained in dt 2
the reference model is due to the equality of the modal gains. D,
In practice, however, the modal gains are not exactly equal.
Then the phases of the time-dependent modal intensities do ot
not cancel out completely. This results in a partial AD. Such
a signature of AD has recently been analyzedili6l. D _D— E
Another influence of the gain difference is related to the ot
internal relaxation oscillation frequencies. When all gains are
equal, there are only two relaxation oscillation frequenciesvherep andg=1,2,...N, the modal intensities arg, while
and their ratio varies in the narrow interval D, and D are defined through the population inversion
[V2N—1,y2N+1] whereN is the number of modefl7]. D(x,t) as

—P=4y,1,D-D,

1+E Yq q)’ (2

>7q|qv ()
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2 (L 1 (L—
Dp:_J D(x,t)cog2px)dx and D:—J D(x,t)dx,
L Jo L Jo

with L being the cavity length. 1i1)—(3) the timet is time

1639
Si—(N—3%)S,>0. (14)

If the condition(14) is satisfied A>0 for anyw guaranteeing
that D*® is real and positive. Conditio(l4) is the necessary

measured in units of the population inversion decay timecondition on the gain in order that the laser operateNon

The modes are characterized by their gain. The para

ter modes. To be sufficient, the inequali9) must be fulfilled

is the gain of mode divided by the gain of the first mode. @s Well. This imposes the constraint on the pump,

Hencevy,=1. The pump ratev is normalized in such a way

that the first mode starts to oscillate wt=1. The inverse

photon lifetimek is assumed to be mode independent but the

modal gainsy, are mode dependent.

Let us denote by}, D, andD® the steady-state solution

that does not depend dnand satisfies the equations

DS
‘yp<DS— 7")—1 15=0, 4
¥pl3D5=D} 1+§q‘, yqlg), (5)
DS
w=DS+% DS— 7") Yol (6)

Making use of the fact thdt;>0 for p<N, we get from(4)
and(5)

1
DSZZ(DS— —), 7
b 7 (7
DS—1/y 1
|,33: ‘1) . Si=2 —. (8)
¥p[S1—(N—3)D?] a=1 Yq

SinceD*® is positive,(5) is satisfied if and only iD f)>0 or,
on account of7)

D> ! 9)
Yp .
Taking (9) into account in(8), the positivity ofl , requires

S

>DS,
N—1

(10

The steady-state population inversi@T satisfies Eq.(6),
which can be written as

DSS, - S,

w=DS4 —— 2
S~ (N~ $)D*

S,=>

: (11
&

Equation(11) is quadratic inD®. However, only one of the
two solutions may satisfy conditiofi0),

S= + = PYNERS (12)

A=(N—31)2w?+4[S?— (N-3)S,]>0. (13

Requiring that the solutiol2) satisfy (10) leads to the in-
equality JA>(N—1/2)w or, equivalently,

1 S — i
" 1= S Ymin , (15)
Ymin  S;Ymin— N+ %

W>WN:

wherey,,, is the smallest among the gains amg is referred

to as theN-mode threshold pump. It follows frort#), (6),
and (9) thatwy is always greater than {,,. On the other
hand, from(9) and(10) we havey,,>(N—1/2)/S,. There-
fore y,in<S:/S,. Combining these relations yields the nec-
essary condition on the gaipy,,

N—3 S,
< < Ymin< g

S
Since the conditiori14) is automatically satisfied if the con-
dition (16) is satisfied, the necessary and sufficient condi-
tions for the laser to operate di modes arg15) and(16).
In particular, if all gains are equal then all the modes lase
simultaneously provided only that>wy=1. On the con-
trary, if the gains are different ad-mode operation requires
that both(15) and(16) be fulfilled, which constrains both the
gains and the pump. We illustrate this point fo+=2 and 3.

(16)

A. Two-mode operation
The condition(15) yields

1 2(1-vyy)
Wy=—+ ——"—7—, 1
2 Y2 2y,-1 an
while (16) gives

The relative gain of mode 2 should exceed 1/2 in order that
mode 2 can join mode 1 to operate in a two-mode regime.

B. Three-mode operation

We assumey,=vy,; and that the laser is operating in a
two-mode regime, i.e.y, is in the interval defined by18).
The condition(16) becomes

3y, <‘}’2(7’2+1)
2(y,+1) T Ty

Yet, becausey,(y,+1)/(ya+1)=7, for y,<1, the actual do-
main for y; is

&< < (19)
2(y,+1) " T

The domain of three-mode operation in the,ys) plane is
shown in Fig. 1. In particular, ify,=1 the smallest value
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lp=13+%p,
n0. Dp=D;+5©p,
3]
Q — S:
go. D=D?%= 69,
5 0 with T, d9,, and 89 being the deviations from the corre-
Z ) sponding steady-state values. We expand to leading order in
S0 S the equations for the deviations and we linearize them. The
) result is
0.5k : : : : : 9%, o Dp s
0.5 0.6 0.7 0.8 0.9 1 9 e > |1p
GAIN OF MODE 2
o - DES y,T
FIG. 1. Domain for three-mode operation in thg,ys) param- ar /PP P4 Ya*q
eter plane. The lower bound is excluded.
S_ s
required for y; to set in a three-mode operation jg=2. +3 yp®lp=Dp 1+§ Vqlq”*
From the condition(15) we obtain the pump threshold for
three-mode operation, E%) D
, a—=—2 Tq— 0| D+, yq<©—7")|g.
1 2[yay2+1)—ya(y2+1)] 4 a a
LE Yol 273(y2+1)=37,] The linearity of these equations means that we can seek so-
lutions of the form(%,, ©,, ®)=(I,, Dy, D)exp(At). Let us
. INTENSITY PHASE COHERENCE define a state vector
A basic property of solid-state lasers for our analysis is z={D,S,N,1,,D,,13,D3}, (21)

the fact thak is large, ranging from about $@or Nd:YAG

(YAG denotes yttrium-aluminum-garndasers to about f0 where S=%, I, and N=2.D,. Such az representation is
for LNP lasers. Following the method proposed 1], we  helpful because it allows one to follow at the same time both
introduce 6=1//k as a small parameter, scale the time asthe modal and the total intensities and population gratings. In

7=t/6 [14], and introduce the following decomposition: this representation the characteristic equation\fas
|
A+oU 1 —5A, 0 S(A1—A)) 0 S(A1—Az)
-Y N A 0 A,— A, 0 As—A;
- oY C, AMt6U C,—Cy 0 C3—C,y 0
def —2A, 0 0 A A, 0 0 =0,
—25A; His 0 Ky N+ 6U Hyo—Hyo 0
—2A; 0 0 0 0 N Az
T
with the notations AU 0®+ Byrw*+ Bro?+ By
= . 23
70’ +5a0%+3a0”+ (
Ap=7plp/2, Cp=vp(5D°-2Sy), Hyq=7,Dg, R
The coefficients appearing i22) and(23) are given in the
Kpg=Hpp—Hap— 7,0, Y=% Yol3, U=1+Y. Appendix.

Up to first order ind we write A=w—dI" and determine» as A. Equal gains
roots of the equation . S
We begin by considering the case where all three modes
of(0?)=0, f(0?)=0’+a0*+aw’+tay, (22 have equal gaing,=7y;=1. This can be thought of as an
approximation for a laser with a very small spread in the
andTI" as functions of these roots, modal gains. Equatiof22) has the obvious trivial root
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FIG. 3. (Qi/Q/,)? versusw—ws for y=0.7, 0.8, 0.9full lines

H _ ”n " \2 _ ”n ” \2
FIG. 2. The ratiosA=(Qr/Q[;1)%, B=(Qg/Q/,)°, and C from top to bottorh and y=1 (dashed ling

=(Q[,/Q/,)? as functions ofy for w—ws=1 (solid curve and

for w—e> (dashed curvgs Thus this ratio can only vary between 7 f&°=1 (when

w=1) and 5 forD®=6/5 (whenw=c).
w1=0. (24) To see the phase coherence between the lasing modes, we
derive the eigenvectors corresponding to the seven eigenval-
The other six nonzero roots are easily obtained using th@es we have obtained. In therepresentatiori21) they have

coefficients(A8)—(A10): the form
) =2 SO, C[1
' Zl: 510131011101 i
, 1 [(D5-1)(5D°-12)\"? 1
=25 5D5-6 A , _[_3  zemis0g,
(25) %23~ | 5DS—6’ 5D°—6 "’
) , o, .1 [D%(1-D%)\? F2mi o0y F2mwoOL
wy5= wg7= L2m o, Q =5—= 5DS—6 ““5p5-6 " 5D°6 '’
(26)
, =27 80
Close to the lasing threshold=1, the low oscillation fre- Z,5= O,O,O,O,O,T,l :
guency has the simple scaling
+2mi 6O,
QU= 1UT1+0(w=1)]. 27 zgf[o,o,o,?& , 4

From (23) and (A8)—(A13) we obtain the corresponding real

parts It is manifest that the modal intensities and population grat-

ings are inphased at frequen@y, but perfectly antiphased at
(5DS—6)%+6 frequency()| . The perfect antiphased dynamics @f is
(5D°—6)(5D°—12)" reflected in the fact that all the global variablBsS, and
vanish inz, s andzg ;. This is because phase coherence oc-
curs so that the contribution of the modal variables to the

[(w)=I}=

7[DS—(DS—1)(5D%—6)]

P N=T = global variables cancels out completely at frequefigy.
Moo=l ="35p"—6)(5D°-12
s B. Two equal gains
D
F(wéys):l_‘(wéj)zr(_:m_ The next case of practical importance is a central mode

having the largest gain with two smaller but equal gains for
the side modes, i.ey,=7y;=7y<1l. The dynamics of such

The inequalities(9) and (10) guarantee that all th&’ are lasers is controlled by both the pump rateand the gainy.
positive. The dynamics of these lasers is characterized bpﬁ this case the functioh(w? in (22) factorizes

oscillations with the frequencies @), and Qg (with Q

<Qf) that are damped with the corresponding decay rates f(w?)=(w?+a)(0*+bw’+c), (29
I'1, I'g, andI'[ . A simple relation betweef} and(}/ is . .
easily derived fron(25) and (26): TABLE |. Parameters for whiclf);=3Q/; with y,=y3=17.

an? 12 y 0.7 0.8 0.9
—| =——5. W—w; 3.1074 0.8156 0.2479
Q] D
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FIG. 4. (QR/Q],)? versusw—ws for y=0.7, 0.8, 0.9, and 1
(from top to botton.
where
a=yD3%(1—yD?®)/M,
b=[8+4y—16yDS+ y(D®)?+3y?(D%)?]/M,
c=(1—D%)(yDS—1)[8—16y—8yDS+8y?—4°DS
+59%(D%)?]/IM?,
with
M=5yD5-2y—4. (29
It follows from (9) and(10) that all the coefficients, b, and
c as well as the discriminant of the quadratic (@8) are

positive in the whole range of allowegt and w. The six
nonzero roots of22) are

1 [b++bZ—4c\¥?

wpg=*2m 60, Qp=5— > ) ,
(30

, 1 (b—b?—4c\Y?

wys=+2m 84, 9'1122775( 5 ,
(3D
wg7= 22w 60, Q=5 Ja. (32

The double prime refers to the cage=y;=y<<1. It is worth
noticing that, in the limit y—1, Q—Qf and
Q/,—0/,—Q/, reducing to the case of equal gains, as
should be. In general, fop<<1, the three frequencies given in
(30)—(32) are different and the inequaliti€3;z>Q/;>Q/,
hold. Close to the lasing threshold for three modes, the lo
oscillation frequencies are given by

278Q ] =f(y)ywW—w3[1+O(w—wj3)], (33
2w60 ,=g(y) YW—W3[1+O(w—ws)], (34
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FIG. 5. (Q],/Q],)? versusw—wj for y=0.7, 0.8, 0.9, and 1
(from top to bottony.

wheref=0 anddf/dy<0 while g=0 anddg/dy>0 in the
relevant rangél19) and(20). In the same domaifw close to
w,) we find for Q} the expansion

(2m8QR)*=(Ww—1)h(y)+O(1),

h(y)=(2+ y+A)/5, (35

A?=(8—84y+147y°—86y°+37*)/(2—8y+3%?).

To explore new features, we recall that y=1 the ratio
(QK/Q])? varies between 7 and 5 fer increasing from 1 to
infinity. However, if y<1 the ratios between the various fre-
quencies may vary in a much larger range. The rafios
=(QRQ71)? B=(QK/Q],)? and C=(Q,/Q],)? are
plotted in Fig. 2 as functions ofy for w—w;=1 (solid
curveg and forw—o (dashed curves For y—1 we have
C—1; in addition,A—B—5 for w—o while A—~B—7 for
w—1. Fory<1, C is slightly greater than 1 bk andB can
be made arbitrarily large by decreasipgas appears in Fig.
2. In Fig. 3 we draw Q4/Q/,)? versusw—wy for different
y. For y=1, the ratio 2/Q};)? can vary only between 7
and 5 (dashed ling For y<1 the range in which
(QR/Q7,)? varies is much wider and the value of
(QF/Q]1)? can be chosen by selecting appropriate values of
w and y. For instance, we find thatXj/Q/,)?=9 for the
parameters listed in Table I. Whebg=3Q, one may ex-
pect in experiments with external modulations a resonant
effect such as a small amplitude modulatior(gt; leading
to a large amplitude change &7 due to third harmonic
generation. Similar curves forX/Q],)2 and Q/,/Q,)?
are plotted in Figs. 4 and 5, respectively. We find, for in-
stance, that);=3Q/, for (y, w—wj3)=(0.9, 1.3563 and
Qg=4Q/, for the parameters listed in Table Il. For these
pairs of pump and gain, a large amplitude respons€ @t
may be induced by a small amplitude periodic modulation at
the lower frequency via harmonic generation. Let us empha-
size that this kind of resonant response does not happen for
v=1 and hence is specific for the laser with nonequal gains.
This analysis is easily completed by deriving the eigen-
vectors associated with the eigenvali@8)—(32). They are
given by
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1=z, (36)

3 T6mis0) 3

"

F127i 8Q4 . .
——— (yD>=1)(yD°=y—1),

— — N S__ _ S AVA
57| M v ,MR[(VD 1)(4=4y+yD*)+M(275Q0g)“], M in
6(1- D% [4—4y—4yDS+3(yD%)?—M(2750%)?] F12mio0q ,F,‘( DS—1)(yD* 1)
— - - - ar y - — Y y
M ug y—4y 4 R M im Y yD >~y
6(1—yD®) ) 5
—MM [4—4y—4yD%+3y°D5-M(278Q%) ], (37
R

z,5=1{(same asz,; with subscriptR replaced byL1)},
(38)

, F2@ o0/, +2mi 80/,
26,7: 0,0,0, st ,_1, ’st ,1 , (39)

where M is defined by(29 and u, with »=R or L1 is
defined through

w,=(1—yD%)(4—4y—4yD%+39’D% + yM (2w 5Q")2.

In Fig. 6 we plotP(QR)/P,(QF) andP,(QR)/P,(QF) as a
function of y for different w. When y—1 we have
Pr(QR)— 9P (QR) =9P,(QR) =9P3(QF) but for y<1 the
following relations hold:

P1(Qg)>P1(Qg)>Py(Qg)=P3(Qg). (44)

Figure 7 is similar to Fig. 6 but foP+(Q/,)/P»(Q{,) and
P.(Q[)/P,(Q],) for which the following relations hold:
L)<P1(Qy). (45

Pr(Q] 1) <P,(Q]1)=P3(

The intensity phase coherence at one given frequency is

characterized by comparing the corresponding componen

of each of the eigenvecto(87)—(39). Let Pp(Q) andP+(Q))

be the peak height at frequenfyin the power spectra of the

modal and total intensities, respectively. Then, frG37)—
(39) it immediately follows that

Pt 4
Pi(QR) Y (yD5—1)(8—-3yD%)+M(2780R)]*’

(40)
P1(QR)  Pi(Qf

PA(QR)  Pa(Of
Y’[(yD®—1)(8—3yD%) +M(2m8Q0p)%]?
- 4(yD3—1)*(yDS—y—1)? ’
(41

P+(Q{,) _ P(Q{y) _ ”’El
Po(Qf1)  P3(Qfy)  4(yD°-1)*(yD*-y—1)*
(42

Pl(QEl) _ Pl(QI’_Il)

PZ( El) P3( ﬁl)
_ YL(yD°-1)(8—3yD%)+ M(2mw 50 1)*]?
a 4(yDS—1)%(yDS—y—1)?

(43

TABLE II. Parameters for whicl)=4Q/, with y,=y3=1.

y 0.7 0.8 0.9
9.8496 1.3741 0.3361

Bhe relationg44) and (45) indicate that the intensity phase
coherence occurs differently &5 andQ/; . It can be veri-
fied that inzj 5 the components;, 1,, andl; have the same
sign, implying an inphased coherence. This is why the peak
of the total intensity is largest a, as implied by the
relations (44). On the other hand, iz, 5 the sign of the
component;, is opposite to the sign d§ andl;, implying an
antiphased coherence @f', .

A complementary expression of these properties is ob-
tained by seeking relations among the power spectra peaks in
the form found in[16]. From the explicit form of the eigen-
vectors(37)—(39), the following relations are easily estab-
lished:

0=0g: Pr=(VPt |Py+\Py)?
153

(78] ]

Q ]

'z 10

14 .

x ]

GE

[a

FIG. 6. The dashed lines represent the r&i¢QR)/P.(QR) as
a function ofy for w—w3=1, 5, and» from bottom to top. The full
lines represent the rati®,(QR)/P,(Qg)=P1(QR)/P3(QF) as a
function of y for w—wz=1, 5, and~ from right to left.
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FIG. 7. The dashed lines repres@(Q;)/P,(Q/,) as a func- O:_
tion of y for w—ws,=1, 5, and from top to bottom. The full lines ) 25 45
represent the ratidP,(Q],)/P,(Q])=P1(Q]1)/P3(Q],) as a
function of y for w—w3=1, 5, ande from bottom to top. 1
with P,=P3#Py, (46)
[
n D_
0=0{;: Pr=(JP+Ps—\P1)?
W|th P2: P3¢ Pl' (47) O
) , 5 25 45
Q=00 Pr=(P—Ps+P)? FREQUENCY
with P2:P3, P]_:O (48)

FIG. 9. Power spectra of mode 1 intens{®;), mode 2 inten-
sity (P,), and the total intensityRy) obtained by solving numeri-

The only vanishing peak height in these three relatior3;is
y gp 9 1 cally the Tang, Statz, and deMars equationskferl0*, y=0.8, and

atQ/,. . o
. , w=7. P, andP3; have peaks at the same frequencies. The initial
'Th((aj cti)egrheefof ar.1t|phdasf('a a;frequerﬁ:y1 can be charac-  .,nqition is x;= (1+0.005 2)XJQ where x,=D, X;3,=D15
terized by the function defined as Xs67=1123 andx? is the steady state of, for w=5.

P(Q) . :
() - (49  Xmn=8/9 in which case we haveP;(Q};)=P,(Q},)
P (Q =P3(Q/)=P1(Q]). In the limit y—1, the degree of an-
% ol Ll)) tiphasex—1 and the power spectra peaks tend towards the
asymptotic valuesP,(Q[;)—2P,(Q[,)=2P5(Q{;) and

The valuey=1 corresponds to 100%, i.e., perfect, antiphase'P QO 0. The dearee of antichase @t'. displaved in
there is no peak in the power spectrum of the total intensit r({2ry) —0. g P L, display

" ) ig. 8 increases from 8/9 where the total intensity peak is
of the peak at}/,. An inphased coherence bstween the|owest in accordance with5). It is also clear that the dif-
modes corresponds $g=0. In Fig. 8 we drawx({2{;) as @ ference 1y is a measure of the antiphased coherence at this
function of y for several values ofv. For y—1/2 the an- frequency.

tiphase degree approaches asymptotically its minimum Tg assess quantitatively this analysis we present in Fig. 9
the power spectra obtained from the numerical integration of

X( Kl)zl_ (

1.00 5 Eqgs.(1)—(3) for k=10% y=0.8, andw=7. Besides the quali-
] tative tendency ruled by the relatiorid4) and (45), our
0.97 ] calculated results Q,=37.3684, O/,=16.3131, Q/,
] =13.5315, P{(QR)/P(QR)=2.3525, P(QR)/P(Qx
><0.94 =14.0383, P(Q{;)/P.(Q],)=0.1556, and P.(Q,)/
] P,(Q/,)=2.0572 reproduce very well the numerical results
0.91 ] in Fig. 9. We also find that for this numerical simulation the
] relations(44) and(45) between the peak heights are valid for
0.88_ T the whole range ofy as shown in Tables Il and IV.
0.5 0.6 0.7 0.8 0.9 1.0 As for the intensity phase coherence at frequefixi

7 there is perfect antiphasing independent yofbecause in

zg; we always haveS=0 due tol,=—I; and 1;=0. This
FIG. 8. Degree of antiphase 8/, versusy for w—w,=1, 5,  resultis again confirmed numerically in Fig. 9, which shows
10, ande (from bottom to top. no peak af(}/, in the power spectra of both the total inten-
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TABLE lll. Calculated and numerical results for the peak height TABLE IV. Same as in Table | but at frequen¢y/; .
ratios at frequency)y for a wide range ofy. The parameters used
are k=10, w—wy;=1, and the initial state is taken as P./P5 P+/P5 P./P5 P./Py
X;=(1+0.005 2)xJQ wherex; =D, Xp34/~D123 X567~1123 and y calculated  numerical calculated  numerical
x{ is the steady state of; for w—w;=0.9.
0.95 0.0510 0.0403 3.1478 3.1770
P/P; P/P,; P,/P, P,/P; 0.85 0.3228 0.3371 2.0502 2.0877
Y calculated numerical calculated  numerical 0.75 0.6107 0.5834 1.4848 1.5427
0.65 0.8352 0.8464 1.1796 1.2253
0.95 4.4454 4.4657 0.3071 0.3097
0.85 1.9954 1.9983 0.0426 0.0427
0.75 1.3549 1.3631 0.0067 0.0069 between the. power spectra peaks. The re_lmﬁ_éA)s—(48) for
0.65 1.1130 11163 0.0007 0.0007 the peak heights are independent of the initial condition, be-

cause they relate components of the same eigenvector. They
are also independent of the system parameters, though the

sity and mode 1 intensity. In the power spectra of mode gnore complete resultgt0)—(43) are functions of the system

: iy . rameters. In this sense, the relatiohd)—(48) are univer-
ar)/d que s mtensmes_ there are three peaks with those ggl The discrepancy between the calculated and numerical
| » being perfectly antiphased.

results(presented in Tables Il and )Ms about 1%, i.e., of
the order ofs. The smallness of is thus a necessary condi-
IV. CONCLUSION tion for the validity of our analytical treatment which is in-
eed based on the fact thé&t1//k<<1. The other assumption
the linearization that requires small initial deviations from

The main result of this paper is the proof that the sprea

of the modal gain distribution induces gain-dependent varia{he steady state. The smallnesssdlso means that the pe-
tions for the relaxation frequencies over a wide range. In th'?iod, proportional toO(s), of the relaxation oscillation is

range, It is quite easy to ﬁnd, values of the paramc_aters foFnuch shorter than the decay time that scale®@s. It is the
which the ratio between the highest frequeity and either  g,jstence of these two widely different time scales that in-
of the two lower frequencie€, or (), is a small integer  gyces the intensity phase coherence which, in turn, leads to

(typically 2, 3, or 4 at a reasonably low pump rate. It iS the universal relation&44) and (45).
expected that these rational relations among the relaxation

frequencies may be the source of resonance phenomena in ACKNOWLEDGMENTS
multimode lasers.

The perfect antiphase i/, is associated with the sym-
metry brought about by the coincidence of two gains
v,=v3="7. If all gains are different, only partial antiphase is
expected at the lower frequencies. The degree of antiphase APPENDIX
increases as the gain difference decreases.

Another class of results we have obtained are relations The coefficients appearing in Eq22) and (23) are

This work was supported in part by the Fonds de la Re-
cherche Scientifique and the Interuniversity Attraction Pole
program of the Belgian government.

_ D¥(y1D°=1)(y,D°—1)(ysD*—1)[5(D®%)*—4S,D°+8(S,~ S3)]

ap= (5DS_281)3 ' (Al)
_ —35;(D%)*+1454(D%)%~ (855+9)(D%)?+45,D%+8(S - S,)
1= (5D5-25;)2 ' A2)
_ S4(D®)?—15D°+4S,
*2= 5DS—2S, ’ (A3)
_ (D®)?(7y1D%=1)(7,D%~1)(y3D%~1)[25(D®%)?*~ 205,D°+2(85;~S,) ] (Ad)

ﬁO (5D3_251)4 '

S

B1=(5DSZTSl):»; [~ 7S7(D%)*+2(11Ss+4S) (D%)°— (4Sg+ 1155+ 81)(D%)*+ (35, + 385,) D°— 2(S,+6S3) ],

(A5)
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_ 7S4(D%)°—(8S5+9)(D%)?+2(25,+9S,) D%~ 145,

2 (5D3_251)2 . (A6)
|
Among the gain-dependent suis, the sumsS; andS, are (D%)?(DS—1)3(5D%-12)
defined in(8) and(11) whereasS;, S,,..., Sg andS, are given ay= (5D°—6)° : (A8)
by
S S S 2
1<, 1 - Ly _ 3D%(8-3D%)(D-1) A9
S=52 . S=> 5 s=3 %, = 67 (A9)
286 wva T ta 7 pa g (5D*-6)
S\2 S
1 . 1 . YpYq , 3(D%)"—15D°+12
= , == , == ’ a,= — , (A10)
S6 zp Yp S; 2 <~ Yp7Yq Sg 2 pqu ,yi 5DS-6
2/ns 3 s\2 S
1 ' ¥p7Yq , (D%)*(D°-1)’[25D®)*~60D°+42]
_t = . (A11
and So=> p% - (A7) Bo (5D°—6)" (A11)
where the prime meang#q in double sums and . 2D —21(D%*+90(D®)3~ 159 D%)*+ 132D°~42]
p+#q+|+p in triple sums. B1= (5D°—6)3 ,
(A12)
Equal gains
When all gains are equal, the coefficients take the simpler B, :21(DS)3_ 57(D°)?+78D°— 42 (A13)
form 2 (5DS—6)2 .
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