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Quantum noise reduction in stationary superradiance
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We discuss a laser withN three-level atoms resonantly and cooperatively interacting with two cavity modes.
Its intensity is proportional toN2, the linewidth scales as 1/N2, and the output intensity fluctuations display up
to 100% squeezing at low frequencies. We show that quantum fluctuations of the pump do not deteriorate the
squeezing significantly. We also find that the fluctuation properties of the ‘‘passive’’ cavity mode which serves
to collectively relax the atoms to the ground state are similar to those of the active mode. Finally we take into
account spontaneous emission. Within a certain range of frequencies good squeezing can still be found.
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PACS number~s!: 42.50.Dv, 42.50.Fx, 42.50.Ar
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I. INTRODUCTION

When several identical two-level atoms are brought
their excited state with no external electromagnetic field
posed then or later, the subsequent radiative deexcita
can, certain conditions met, proceed collectively, i.e., w
all N atoms acting like one rigid dipole@1,2#. The ensuing
superfluorescent radiation pulse has a peak intensityI s;N2

while noncollective radiation would only yieldI n;N. Since
the maximum energy available for radiation isN times the
single-atom excitation energy\v, the temporal width of a
superfluorescent pulse must be inversely proportional toN
(ts;1/Ng) while the radiative lifetime 1/g of the excited
state of a single atom would equal the durationtn of a pulse
of normal fluorescence. For experimental realizations of
perfluorescence@3# one must, roughly speaking, make su
that the characteristic times of all competing processes
inhomogeneous broadening and collisions are much lon
thants .

We have described in Ref.@4# a rather different type of
superradiance. Like the aforementioned one, it is collectiv
generated byN atoms and thus has an intensity;N2; unlike
the former, it can be stationary rather than transient. An e
more striking difference arises for the spectral width: while
superfluorescent pulse has a spectral width;gN, the line-
width of the superradiant laser was found to be extrem
small,Dn;1/N2. Moreover, the intensity fluctuations withi
an individual superfluorescent pulse are close to those
coherent state; those of the stationary output of a superr
ant laser can be much smaller and in fact can be sque
nearly perfectly.

The model of the superradiant laser presented in Ref.@4#
is the simplest one displaying cooperative behavior. Ho
ever, in view of possible experiments, many complicatio
have to be taken into account. Undertaking the first such
in the present paper, we propose to consider the noise p
erties of the passive mode and discuss the influence of p
fluctuations as well as of spontaneous emission on the n
spectra of the superradiant output. A forthcoming publicat
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will be devoted to partially cooperative atomic configur
tions.

The paper is organized as follows. In Sec. II we presen
detailed formulation of the model of the superradiant las
In Sec. III we show that in the semiclassical limit,N@1, the
case of full cooperativity can be treated analytically for
parameter values. In Sec. IV we consider the passive m
and show that its low-frequencies noise spectra are ne
identical to those of the active mode. In Sec. V we take i
account the quantum fluctuations of the pump and find t
they do not deteriorate significantly the noise properties
the superradiant laser. Section VI is devoted to an invest
tion of the influence of spontaneous emission on the fluct
tion spectra.

II. MODEL

As in Ref. @4# we consider the simplest model of a supe
radiant laser which accounts forN three-level atoms~see
Fig. 1! placed inside a resonator. We assume a pump pro
0→2 consisting of a two-photon excitation such that t
resonance condition with the transititon 0↔2 is met. A las-
ing process is assumed by coupling the atoms to the reso
cavity mode in tune with the transition 2↔1. In the follow-
ing we shall refer to this mode as the ‘‘active’’ mode. F
nally, a certain relaxation process 1→0 has to be included to
recycle the atoms back to the influence of the pump. Usua
spontaneous emission between levels 1 and 0 is such

FIG. 1. Scheme of three-level superradiant laser.
1625 © 1996 The American Physical Society
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laxation process. In this case one has the so-called Ra
laser whose quantum noise properties were recently inv
gated by Ritsch, Marte, and Zoller in Ref.@5#.

We here require a different type of relaxation by coupli
the atoms to another cavity mode resonant with the transi
1↔0. However, with respect to the latter mode the resona
does not need to have a high finesse. In fact, in orde
simplify the model we assume that this mode is damp
sufficiently strongly so that it can be eliminated adiaba
cally. That is why we refer to this mode as to the ‘‘passiv
mode. The situation in consideration would, in the abse
of level 2 and with level 1 populated initially, entail th
no-ringing limit of superfluorescence on the transiti
1→0, as observed in Ref.@3#. Our scheme with a third leve
and a stationary coherent pump can, as will be shown be
yield stationary superradiance on both transitions, 2↔1 and
1↔0.

We now turn to a more detailed specification of the o
lined scheme. In order to eliminate the explicit time depe
dence of the pump wave we write the Hamiltonian in t
interaction picture,

H05 i\g12~aS212a†S12!1 i\V~S202S02!

1 i\g01~bS102b†S01!. ~2.1!

It displays the collectivity of the pump mechanism and of t
interaction of the atoms with the active and passive mo
by the appearance of the collective atomic operat
Si j 5(m51

N Si j
m5(m(u i &^ j u)m. There are nine operatorsSi j ;

those withi 5 j refer to polarizations while each ‘‘diagonal

one,Sii [Pi , measures the global occupation of leveli ; they
obey Si j

† 5Sji and @Si j ,Skl#5d jkSil 2d i l Sk j . The operators
a,a†, andb,b† are the operators of annihilation and creation
of photons in the lasing and passive cavity modes. The co
pling constantsgi j and the pump parameterV are specified
in the Hamiltonian~2.1! so as to have the dimension of a
frequency. We assume a two-photon pump process in ord
to secure a ring of effectively allowed transitions
0↔2↔1↔0. The pump strengthV is proportional to the
product of the amplitudes of the two classical pump wave
and is chosen real. Note that by takingV as a fixedc number
we forbid pump fluctuations. This assumption will be lifted
in Sec. V.

It may be worth pointing out that the use of coupling
constantsg12 and g01 identical for all atoms is justified in
two limiting situations. One is typical of microwave experi-
ments where the atomic system has a spatial extension sm
compared to the wavelengths involved. In the optical rang
of frequencies one may employ a running-wave resonat
such that position dependent phase factors like exp@ikW12xWm#
may be absorbed in the definition of the collective polariza
tions,S125(mexp@ikW12xWm#, etc., wherekW12 is the wave vector
of the mode andxWm the position of themth atom.

We finally account for two damping mechanisms due to
the irreversible leakage of photons from the lasing and pa
sive modes through nonideal mirrors. This process can b
described by the following additions to the time rate o
change of the Heisenberg operatorsa(t) andb(t) @6–8#:

~]a~ t !/]t ! irr52kaa~ t !1A2kaha~ t !,
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~]b~ t !/]t ! irr52kbb~ t !1A2kbhb~ t !. ~2.2!

Here ka and kb are the damping constants for the tw
modes. The quantum Langevin forcesha(t) with a5a,b
ensure the preservation of the Bose commutat
@a(t),a†(t)#5@b(t),b†(t)#51 at all times; we can take th
fluctuating forces as independent with Gaussian statistics
white spectra according to

@ha~ t !,hb
†~ t8!#5^ha~ t !hb

†~ t8!&5dabd~ t2t8!,

^ha~ t !&5^ha
†~ t !hb

†~ t8!&5^ha~ t !hb~ t8!&50. ~2.3!

We may interpret the operatorsha(t) andha
†(t) as represen-

tatives of the vacuum fluctuations of the electromagne
field outside the resonators.

The Heisenberg equations of motion for the collecti
atomic operatorsSi j (t) are readily obtained from the Hamil
tonian ~2.1! as Ṡi j 5( i /\)@H0 ,Si j #. The Heisenberg-
Langevin equations for the photon annihilation ope
ators of the lasing and passive modes, obtained
ȧ5( i /\)@H0 ,a#1(]a/]t) irr and analogously forb(t), read

ȧ~ t !52g12S122kaa~ t !1A2kaha~ t !,

ḃ~ t !52g01S012kbb~ t !1A2kbhb~ t !. ~2.4!

Now, as mentioned above, we eliminate adiabatically
field variableb(t) of the passive mode supposing that
damping constantkb is the dominant relaxation constant o
the system. This gives

b~ t !52
g01

kb
S01~ t !1S 2

kb
D 1/2

hb~ t !. ~2.5!

Substituting this expression forb(t) into the atomic Heisen-
berg equations, we arrive at the following set of Heisenbe
Langevin equations forN three-level atoms with collective
relaxation:

Ṡ025g12aS012V~S222S00!1gS12S012A2gS12hb ,

Ṡ1252g12a~S222S11!1VS102gS10S021A2ghb
†S02,

Ṡ0152g12a
†S022VS211g~S112S00!S01

2A2g~S112S00!hb , ~2.6!

Ṡ0052V~S021S20!12gS10S012A2g~S10hb1hb
†S01!,

Ṡ1152g12~aS211a†S12!22gS10S011A2g~S10hb1hb
†S01!,

Ṡ225V~S021S20!1g12~aS211a†S12!,

ȧ~ t !52g12S122kaa~ t !1A2kaha~ t !.

Here g5g01
2 /kb is a rate constant related to the collecti

atomic relaxation 1→0. Two features of Eq.~2.6! are worth
a comment, the nonlinearity of the damping and the ‘‘mu
plicative’’ form of the noise. Both of these features have
their common origin the nonlinearity of the interaction of th
atoms with the passive mode. It is easy to see from Eq.~2.6!
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that in the case ofN51, when the collective atomic opera
tors become the operators of a single atom, we recover
familiar linear relaxation, throughS12

m S01
m 50, S10

m S02
m 5S12

m ,
etc. @9#. We should also note that the atomic observab
Si j preserve their commutation relations, the presence
damping and noise notwithstanding.

The set of equations~2.6! possesses three constants
motion C1 ,C2 ,C3 . The first of these, the number of atom
C15N, arises since our model clearly is not wasteful
atoms. The remaining two owe their existence to the abse
of any noncollective atomic process. In fact,C2 andC3 are
the Casimir operators of the group U~3! which is a symmetry
group of the cooperative dynamics of our three-level
oms @10#. Expressed in terms of the polarization and pop
lation operatorsSi j the Ci read

C1[(
i

Sii , C2[(
i , j

Si j Sji , C3[(
i , j ,k

Si j SjkSki .

~2.7!

A third symmetry is worth mentioning. Shifting phases
the amountD as

a→eiDa, S12→eiDS12, S10→eiDS10, ha→eiDha ,

hb→e2 iDhb , ~2.8!

leaves the system~2.6! invariant. The relative phaseD is
thus conserved as well. Therefore, the system under con
eration has 11 degrees of freedom and at least four cons
of motion.

Clearly, the laser model just presented is a bit of an ov
simplification. We neglect for the moment such effects
pump fluctuations, spontaneous emission, inhomogeno
broadening and detunings between the fields and ato
transitions. By leaving such refinements aside we hope
exhibit most clearly but without inappropriate exaggerat
the potential of cooperativity for noise reduction. We w
include the quantum fluctuations of the pump into the mo
in Sec. V of this paper. The role of spontaneous emiss
which breaks the U~3! symmetry will be discussed in Sec
VI.

In the following we confine ourselves to the semiclassi
limit, N@1. Each of the eleven variablesSi j ,a,a† can then
be represented as a sum of a dominant classical termX̄}N
and a ‘‘small’’ operator valued fluctuationdX,

X5X̄1dX. ~2.9!

Of course, the proportionality of the meansX̄ to N is a mani-
festation of the assumed collectivity. To find theX̄ in the
stationary regime we dropẊ and the noise forces in th
Heisenberg-Langevin equations~2.6! and degrade each op
eratorX to ac numberX̄. The dynamics of thedX’s will be
taken into account by the linearized Heisenberg-Lange
equations.

Since the atomic mean values are proportional toN we
easily infer from~2.6! that the atoms have a relaxation rate
the ordergN. We therefore may express the assumed do
nance of the relaxation constant of the passive mode by

kb@ka , gN. ~2.10!
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The solutions of the classical equations of motion depend
the expectation values of the three constants of mo
C1 ,C2 ,C3 which are determined by the initial atomic stat
To within corrections of relative order 1/N we may factorize
the expectation values of operator products as, e
^Si j (t)Skl(t)&5S̄i j (t)S̄kl(t), and obtain

^C1&5(
i

S̄i i 5N, ^C2&5(
i , j

S̄i j S̄j i 5c2N2,

^C3&5(
i , j ,k

S̄i j S̄jkS̄ki5c3N3. ~2.11!

We shall refer toc2 andc3 as cooperativity parameters.
With the help of the conservation of the number of ato

we can rewrite the cooperativity parameters as

c2512
2

N2 @~S̄00S̄112S̄01S̄10!1~S̄00S̄222S̄02S̄20!

1~S̄22S̄112S̄21S̄12!#,

c35
3c221

2
1

3

N3 ~S̄00S̄11S̄222S̄00S̄12S̄212S̄11S̄20S̄02

2 S̄22S̄10S̄011S̄10S̄02S̄211S̄01S̄12S̄20
!. ~2.12!

To be physically acceptable, the solutions of the class
equations of motion have to obey two requirements of qu
tum mechanical origin. These requirements are (a)
0<S̄ii /N<1 ~since S̄ii /N have the physical meaning o
probabilities!, and (b) three Schwartz inequalities
S̄ii S̄j j 2S̄i j S̄j i >0, which must hold for all pairs of atomic
levels. Inserting the Schwartz inequalities into the express
of c2 we now see thatc2 is restricted from above byc2<1
with c251 for S̄ii S̄j j 2S̄i j S̄j i 50. A simple analysis shows
that the minimum value ofc2 is given byc251/3, realized
by S̄ii 5N/3, S̄i j 50 (iÞ j ), i.e., when all atomic levels are
equally populated and all polarizations vanish.

The condition for the maximum value ofc3 , c351, is
also found easily: as forc251 we must require
uS̄i j u25S̄ii S̄j j and, in addition, arg(S̄01S̄02S̄21)50. We refer
to the case ofc25c351 as full cooperativity. Quite interest
ingly, the easily realizable initial condition of all atoms in th
ground state satisfies the condition of full cooperativity. T
minimum conditions ofc2 are sufficient for the minimum of
c3 , yielding c351/9. In summary we have

1

3
<c2<1,

1

9
<c3<1. ~2.13!

The question as to whether all pairs of (c2 ,c3) values are
realizable and the stationary solutions for arbitrary adm
sible (c2 ,c3) values will be discussed in a following publ
cation. In this paper we concentrate on the fluctuation pr
erties of the superradiant laser. In order to keep
calculations as simple as possible we here only consider
case of full cooperativityc25c351.
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III. FULL COOPERATIVITY

The case of full cooperativity is of particular interest sin
it is, as was already mentioned, easily realizable by prepa
all atoms initially in the ground state. At all subsequent tim
the atoms can then be described by the fully symmetric st
un0 ,n1 ,n2& whereni is the number of atoms in leveli and
n01n11n25N. In the spirit of second quantization we ma
introduce six atomic annihilation and creation operat
zi ,zi

† , (i 50,1,2) which lower and raise the occupatio
numbers ni as z0un0 ,n1 ,n2&5An0un021,n1 ,n2& and
z0

†un0 ,n1 ,n2&5An011un011,n1 ,n2&, etc. This behavior is
consistent with the Bose commutation rules@zi ,zj

†#5d i j .
Moreover, we are led to Schwinger’s representation of
Lie algebra @11# of the group U~3! by expressing our nine
atomic polarization and population operators
Si j (t)5zi

†(t)zj (t). Indeed, the commutation rule
@Si j ,Skl#5d jkSil 2d i l Sk j are recovered and so is the actio
of the collective atomic operators on the symmet
basis states,S01un0 ,n1 ,n2&5A(n011)n1un011,n121,n2&,
etc. @12#.

In the subspace of fully cooperative atomic states un
consideration the Casimir operatorsC2 , C3 take on the val-
ues C25N(N12), C35N2(N13) with ( i 50

2 zi
†zi5N. As

a consequence, the semiclassical cooperativity param
become maximal,c25c351.

The Heisenberg equations of motion for the operat
zi(t) are obtained asżk5( i /\)@H0 ,zk#. From a classical
point of view, after adiabatic elimination of the passive mo
we have eight real equations~six for atomic variables and
two for the field!. However, only six of them are indepen
dent. Indeed, the number of atoms is fixed and one of
phases may be eliminated since onlyz̄i* z̄j are of interest.
This counting is in agreement with the results from the p
vious section. Indeed, for the case of full cooperativity
have three Schwartz equalities,S̄i j (t)S̄j i (t)2S̄ii (t)S̄j j (t)
50, one condition on the phases, arg(S̄10S̄02S̄21)50, and
conservation of the number of atoms. Thus, there are a
of five constraints on 11 real equations~nine atomic and two
field variables!, which amounts to six independent variable

The stationary solution of the corresponding classi
equations of motion with nonvanishing mean photon nu
bers can be expressed in terms of an effective pump stre
p and a dimensionless coupling strengthc,

p5
V

NgAc
, c5

g12
2 kb

g01
2 ka

5
g12

2

gka
. ~3.1!

In the following we shall assume a pump parameterV;N so
thatp andc are of zero order inN. For the coupling strength
c an interesting interpretation arises from the following re
soning: in a stationary regime the leakage rates of pho
from the active and passive cavities must coinci
kan̄a5kbn̄b . This means that

Ac5
g12An̄a

g01An̄b

~3.2!
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is the ratio of the Rabi frequencies on the transitions coup
to the active and passive modes.

Due to the phase symmetry~2.8! we may choose the sta
tionary value of the field amplitudeā as real. With this
choice we obtain the following stationary mean values:

z̄05S Nc~12p!

11c D 1/2

, z̄15ANp, z̄25S N~12p!

11c D 1/2

,

ā52N
g12

ka
S p~12p!

11c D 1/2

. ~3.3!

As follows from Eqs.~3.3!, the pump strengthp now is
allowed to range within 0<p<1. The absence of a thresho
for the pump strengthp in the laser amplitudeā can be seen
as due to our neglect of spontaneous emission. A less
pected feature of the stationary amplitudeā is the appearance
of an upper limit for the pump strength,p51, and of an
optimal pumping,p51/2, at which ā is maximal. As we
shall see from the stability analysis below, not all values
p between 0 and 1 are physically acceptable because
stationary solution can become unstable.

As a final remark on the mode amplitudeā in Eqs.~3.3!
we would like to once more underscore the proportiona
ā}N which manifests the superradiant character of the la
in discussion. However, this point deserves more expla
tion. If we imagine a series of realizations of our laser f
various values ofN, keeping all other parameters, i.e
g,ka ,g12,V fixed, we would go to ever weaker pumpin
strengthp asN increases. Sincep}1/N one would even be
led to concludeā to increase only in proportion toAN. But
if one insists on keepingp fixed, for instance in sticking to
the optimal pumpingp51/2, for the whole series of imag
ined lasers, one getsā}N at the expense of increasingV in
proportion toN. When we talk about superradiance here
think of all variables and parameters referred to their ‘‘na
ral’’ N dependent units that arise in a scale invariant theo

Turning now to the analysis of stability and fluctuatio
of the stationary solution~3.3!, we linearize the equations o
motion~2.6! around the classical mean values with respec
the fluctuationsdzi andda aszi5 z̄i1dzi , a5ā1da. This
brings about a significant simplification of the noise: throu
Si j (t)hb(t)→S̄i j hb(t) the atomic noise forces in Eqs.~2.6!
are freed of their so-called multiplicative character, i.e., b
come simple inhomogeneous terms. We split the oper
valued fluctuationsdzi ,da and the Langevin forcesha into
Hermitian ‘‘real’’ and ‘‘imaginary’’ parts as

dzi5dui1 idv i , da52
gN

g12
~du1 idv !, ha5Sa1 iDa .

~3.4!

The inhomogeneous linearized equations of motion sepa
into two independent blocks
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S du̇0

du̇1

du̇2

du̇

D 52gNS 2p

2z̄1z̄0

2pAc

0

22z̄1z̄0

uz̄0u2

2g12ā/gN

2cz̄2 /j

pAc

g12ā/gN

0

2cz̄1 /j

0

2 z̄2

z̄1

1/j

D
3S du0

du1

du2

du

D 1A2gS 2 z̄1Sb

z̄0Sb

0

2AcSa /j

D , ~3.5!

S d v̇0

d v̇1

d v̇2

d v̇
D 52gNS 2p

0

2pAc

0

0

uz̄0u2

2g12ā/gN

cz̄2 /j

pAc

g12ā/gN

0

2cz̄1 /j

0

z̄2

z̄1

1/j

D
3S dv0

dv1

dv2

dv
D 1A2gS z̄1Db

z̄0Db

0

2AcDa /j

D . ~3.6!

We refer to the block of the real partsdui ,du as to the
amplitude block since these fluctuations are related to
intensity fluctuations viadI 52ādu, etc. Conversely, the
four imaginary partsdv i ,dv may be interpreted as phas
fluctuations throughdv5ādf, etc.

Beyond the coupling strengthc and the pump strengthp
we now meet one additional dimensionless parameterj, the
ratio between the atomic and the field decay rates

j5
gN

ka
. ~3.7!

We look for dimensionless eigenvaluesl as
dzi5dzi(0)exp@2lgNt#, da5da(0)exp@2lgNt# and find
two characteristic polynomials each of order four

Pu~l!5lFl32l2S p~112c!2c

11c
2

1

j D
1lS pc~31c22p!

11c
2

p

j
~12c! D1

4pc~12p!

j G ,
Pv~l!5l2Fl22lS p~112c!2c

11c
2

1

j D
1S pc~c2112p!

11c
2

p

j
~12c! D G . ~3.8!

The polynomialPu(l) comes from the amplitude block an
Pv(l) from the phase block. The factorl in Pu(l) is due to
the conservation of the norm( i 50

2 uzi u251. The origin of the
factor l2 of Pv(l) is the symmetry~2.8! and the invariance
of the equations of motion underzi→eifzi for arbitrary real
f. The roots of these polynomials give the eigenvalues. S
bility requires that all eigenvalues have positive real pa
e

a-
.

To obtain the stability conditions we apply the Hurwitz cr
terion to both polynomials. The resulting stability conditio
read

p,
c11/j

112c
,

12c1~12c2!/~jc!

2
,p,

31c2~12c2!/~jc!

2
, ~3.9!

0,2
12c

j2 1
p~112c!22c

j

2c
@p~112c!2c#~322p1c!

~11c!2 .

In the good-cavity limit,j@1, these are the conditions a
ready given in Ref.@4#. In Fig. 2 we show the stability re
gions in thep,c plane for variousj values. Starting with
j@1 the domain of stability in thep,c plane shrinks for
decreasingj and vanishes forj51. Another domain of sta-
bility appears forj,1. In the bad-cavity case,j!1, the
domain of stability is determined byc.1. In this case, two
of the eigenvalues of the amplitude block turn out to
l5p(12c)/26Ap2(12c)2/424pc(12p). They become
complex forp!1. The one with the positive imaginary pa
is responsible for the appearance of a peak at the freque
Iml with the width Rel in the amplitude fluctuation spec
trum in the bad-cavity case. Forp!1 the frequency is

FIG. 2. The stability domain in thep,c plane forj>1 ~a! and
j<1 ~b!. For eachj the solution is stable in the region above th
corresponding curve.
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1630 54FRITZ HAAKE et al.
approximately given by Iml'2jApcka!ka and the width
Rel5jp(c21)ka!ka . The physical origin of this peak is
in the phenomenon of relaxation oscillations well known
usual~nonsuperradiant! bad-cavity lasers@13#.

To solve the linearized Heisenberg-Langevin equati
we perform a Fourier transform of the fluctuations as

dX~v!5E
2`

1`

dt eivtdX~ t !. ~3.10!

The linearized differential equations of motion now beco
linear algebraic equations which we solve with the help
Cramer’s rule.

Inasmuch as we are interested in the noise propertie
the field transmitted outside the cavity through the outc
pling mirror, we should consider the annihilation opera
aout(t) of photons outside the cavity. That operator is rela
to its intracavity partnera(t) by the input-output transforma
tion @7#

aout~ t !5A2kaa~ t !2ha~ t !. ~3.11!

It is worth pointing out that the operatorsaout(t) and a(t)
have different normalizations and dimensions. The m
value ^a†(t)a(t)& gives a mean photon number inside t
cavity while ^aout

† (t)aout(t)& represents a photon flux~in
photons/sec! outside the cavity. We use such a normalizati
of the extracavity fielda out(t) since it entails a more natura
expression for the standard quantum-noise limit which d
not include the round-trip time of the cavity~see below!. The
explicit form of the output fluctuations of the active mode
written out in the Appendix.

Particularly simple results arise in the good-cavity lim
j@1. The amplitude fluctuation spectrum then reads

^duout~v!duout~v8!&5~1/4!d~v1v8!H 12
S0~p,c!

11v2ta
2 J ,

~3.12!

with the squeezing strengthS0(p,c)

S0~p,c!5
1

2
1

2c

~11c!2 2
p2

2~12p!2 , ~3.13!

and the width

1

ta
54ka

~12p!~11c!

31c22p
. ~3.14!

Positive values of the squeezing strength indicate noise
duction below the vacuum level. Ideal squeezing is incur
at p→0, c51 ~see Fig. 3!, i.e., when the pump is weak an
when the Rabi frequencies associated with the transit
2↔1 and 1↔0 coincide. Since zero pumping is admitted
not a particularly interesting working point of a laser it
important to infer from Fig. 3 that the squeezing streng
S0 has a rather flat maximum at that point so that go
squeezing prevails for weak pumping.

Another quantity of interest is the low-frequency asym
totic version of the fluctuation spectrum of the phase quad
ture since it gives the linewidthDna of the laser
output through^dvout(v)dvout(v8)&→d(v1v8)(ā)2Dna /
r

s

e
f

of
-
r
d

n

s

e-
d

s

h
d

-
a-

v2 for v→0. The low-frequency divergence o
^dvout(v)dvout(v8)& as;1/v2 is characteristic of phase dif
fusion ~see also@14#!. In the limit j@1 we obtain the line-
width

Dna5
ka

~ ā!2

p2~11c!21~12p!2~12c!2

c2112p
. ~3.15!

It is interesting to compare the linewidth~3.15! of the super-
radiant laser with the Schawlow-Townes linewidthDnST for
an ordinary incoherently pumped laser. The Schawlo
Townes linewidth in our notations would yiel
DnST5ka /(ā)2. The linewidth of a superradiant laser thu
differs from the Schawlow-Townes result only by a dime
sionless factor. For some special cases,c51, or p50 and
p51, we haveDna5DnST. For p51/2 which provides the
maximum value ofā, Dna5DnST(11c2)/(2c2); for large
coupling strengthc@1 this gives the linewidthDna one half
the Schawlow-Townes result.

It is worth underscoring once more that due to the sup
radiant character of the laser field,ā;N, the linewidthDn
scales as 1/N2. Thus not only the amplitude fluctuations e
hibit an interesting potential of noise reduction; the linewid
does as well.

Using the general expressions for the output fluctuati
given in the Appendix, we have numerically evaluated t
fluctuation spectrum for an arbitrary quadrature compon
xout(u)5aoute

2 iu1aout
† eiu of the field outside the cavity:

^dxout~v!dx out~v8!&5~1/4!d~v1v8!I ~u,v!.
~3.16!

Minimizing the spectrumI (u,v) with respect tou for each
v we have obtained the optimum-squeezing spectr
I 2(v). The fluctuations in the corresponding conjuga
quadrature are described by the maximum-stretching s
trum I 1(v). These spectra are displayed in Fig. 4 toget
with their productI 2(v)I 1(v) which approaches the quan
tum limit unity for large frequencies as well as for certa
finite values ofv. Figure 4~a! refers to the good-cavity limit
j@1 for which simple analytic results arise, while Fig. 4~b!
was obtained for the bad-cavity limitj!1.

FIG. 3. The squeezing functionS0(p,c) of the superradiant lase
without pump fluctuations;S051 corresponds to optimal squee
ing, S050 to a coherent state.
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As it turns out, the optimum-squeezing spectrum at z
frequency does not depend onj and is determined solely b
p andc as long as the stationary solution is stable. It follo
from Fig. 2, that for parameters close to the point of optim
squeezing,p!1 andc'1, the stationary solution is stabl
for both j@1 and j!1. As mentioned above, in the bad
cavity case there appears a peak in the squeezing spec
at the frequency 2jApc. With j decreasing this peak shift
towards smaller frequencies that will make the lo
frequency squeezing in this regime hardly observable.

We would like to conclude with a simple assessment
the limits of applicability of our semiclassical approxim
tion. Clearly, our separation of observablesX into a classical
term X̄ and a small quantum fluctuationdX @see Eq.~2.9!# is
valid only when^(dX)2&!X̄2. We will check on this condi-
tion for the example of the amplitude quadrature compon
u of the field inside the resonator.

Since we have availed ourselves of the output fluctuati
^duout(v)duout(v8)&5(1/4)d(v1v8)^(duout)

2&v it is con-
venient to obtain the variancê(du)2& by reading the input-
output relation~3.11! backwards and integrating overv,

^~du!2&511
1

2ka
E

2`

` dv

2p
@^~duout!

2&v21#. ~3.17!

This integration is easily performed in the good-cavity lim
j@1, when the spectrum̂(duout)

2&v is a simple Lorentzian
@see Eq.~3.12!#. This gives for^(du)2&

FIG. 4. Optimum squeezing~lower solid curve! and stretching
~upper solid! spectraI 2(v) and I 1(v) and their product~dots! for
the superradiant laser:~a! good-cavity case,~b! bad-cavity case; the
dimensionless frequency is defined asv/ka .
o

l

um

f

nt

s

^~du!2&512S0~p,c!
~12p!~11c!

31c22p
511Q, ~3.18!

whereQ is Mandel’s parameter calculated in Ref.@4#. In the
interesting region ofp and c where we have squeezing
S0>0, the variance is thus seen to be of order unity. T
condition ^(du)2&!ū2 is then equivalent toū@1. For the
coupling strengthc near its optimal valuec51 we obtain the
following condition of validity of the semiclassical approx
mation:

p@
1

Nj
, ~3.19!

which is equivalent toV@ka /N. Thus, for the good-cavity
case the semiclassical approximation holds true up to R
frequencies of the order of 1/N times the rate of the cavity
decay.

This assessment changes in the bad-cavity limit,j!1,
due to the presence of a high peak of relaxation oscillati
in the spectrum̂ (duout)

2&v . The height of this peak scale
as 1/p2 and its width asjp so that the area underneath
proportional toj/p. Thus, for small values of the pum
strengthp, whenj/p@1, the peak in question will bring a
dominant contribution to the integral in Eq.~3.17!. The con-
dition ^(du)2&!ū2 is then equivalent to

p@
1

AN
, ~3.20!

which is stronger than the one given by Eq.~3.19!.
Apart from the ‘‘non-trivial’’ stationary solution found

above with nonvanishing mean photon number, given by
~3.3!, there are ‘‘trivial’’ solutions of the classical equation
of motion with vanishing stationary photon number. One
given by

z̄15AN, z̄25 z̄05ā50, ~3.21!

and obviously has all atoms in the intermediate level 1.
second such solution has the intermediate level empty
displays Rabi oscillations between the upper and lower l
els driven by the pump,

z̄15ā50,

z̄0~ t !5 z̄0~0!cos~pAcNgt !2 z̄2~0!sin~pAcNgt !,
~3.22!

z̄2~ t !5 z̄0~0!sin~pAcNgt !1 z̄2~0!cos~pAcNgt !,

with two complex parametersz̄0(0),z̄2(0) obeying
uz̄0(0)u21uz̄2(0)u25N. It follows from the linearized stabil-
ity analysis that for each of these solutions at least one
gree of freedom is not damped. Hence, their stability mus
checked by a nonlinear treatment. Our numerical investi
tions of the classical equations of motion suggest that wh
ever the system is incapable of sustaining finite photon nu
ber for large times it ends up in one of these trivial solutio
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IV. SQUEEZING IN THE PASSIVE MODE

We proceed to calculating the fluctuation spectra of
passive mode. When we adiabatically eliminated that m
at the beginning we expressed the annihilation oper
b(t) through the collective atomic polarizationS01(t) and
the Langevin forcehb(t) @see Eq.~2.5!#. For the mean value
of the stationary field amplitudeb̄ we obtain

b̄5
Ng

g01
S cp~12p!

11c D 1/2

52S ka

kb
D 1/2

ā, ~4.1!

and infer that the radiation field of the passive mode is a
collective in character sinceb̄;N.

From Eq. ~2.5! the fluctuations of the field modeb are
given by

db~ t !52
g01

kb
dS01~ t !1S 2

kb
D 1/2

hb~ t !. ~4.2!

Again, we split the field fluctuationsdb into real and imagi-
nary parts asdb5dũ1 id ṽ. By invoking the previous results
for dui(v) anddv i(v) we obtain the amplitude fluctuation
of the passive mode.

The annihilation operatorbout(t) of the passive mode out
side the cavity is related to the intracavity operatorb(t) in
the same fashion as is the case for the active mode in
~3.11!,

bout~ t !5A2kbb~ t !2hb~ t !. ~4.3!

The explicit form of the output fluctuations of the passi
mode is presented in the Appendix. In the good-cavity lim
j@1 and for the frequenciesv!gN the fluctuation spec-
trum of the amplitude quadrature component of the pas
mode outside the cavity simplifies to

^dũout~v!dũout~v8!&5~1/4!d~v1v8!@12S~p,c,v!#,
~4.4!

with

S~p,c,v!5
S0~p,c!1v2/@2ka

2~12p!~11c!#

11ta
2v2 , ~4.5!

with the squeezing functionS0(p,c) and the widthta of the
lasing mode given by Eqs.~3.14! and~3.15!. For frequencies
v!ka this result may be approximated by a Lorentzian w
a width

1

tb
5

1

ta
F12

8~12p!~11c!

@p~11c!1~31c!~12p!#2S0~p,c!G
21/2

.

~4.6!

We see that for frequenciesv!ka the amplitude fluctuation
spectrum of the passive mode is flatter than that of the la
mode. Not surprisingly, the width of the passive mode
like the width of the active mode, proportional toka . This is
simply due to the fact that on the time scale 1/ka the ‘‘fast’’
passive mode adiabatically follows the slow relaxation of
active mode.
e
e

or

o

q.

t

e

g
,

e

We have calculated the linewidthDnb of the laser radia-
tion in the passive mode in analogy to the calculation of
linewidth Dna of the active mode and found these to
identical

Dnb5Dna . ~4.7!

Therefore, as for the active mode the linewidthDnb scales as
Dnb;1/N2.

V. QUANTUM FLUCTUATIONS OF THE PUMP

Several authors have previously taken into account
quantum statistics of an external driving field in its effect
the output from the so driven system@15–20#. Marte,
Ritsch, and Walls in Ref.@18# consider coherent pumping o
a laser by broadband squeezed light. They use the fact
tained earlier by Gardiner@21# that the interaction of a two-
level atom with a squeezed vacuum~instead of a normal one!
modifies the decay rates of atomic polarization. Ritsch a
Zoller in Ref. @19# drop the assumption of white noise fo
the incoming squeezed vacuum and consider the driving
two-level atom by finite-bandwidth squeezed light. Zakrz
wski, Lewenstein, and Mossberg in Ref.@20# consider pump
depletion.

It is worth pointing out here some difficulties arisin
when one tries to describe interaction of nonclassical driv
fields ~like squeezed or sub-Poissonian light! with atoms.
First, nonclassical light cannot be described by a fluctuat
c number in a density-matrix equation. Second, for noncl
sical light with finite bandwidth the nonlinear response of t
atomic system to the light field must be expected to be n
Markovian in character. Third, usually one has to deal wit
situation where the pumped atomic medium does not re
back on the source of the pump light. Thus, one has to
scribe the interaction between the light source and the ato
medium in a nonsymmetric way@22–24#.

Our present goal is less ambitious than looking for furth
noise suppression by feeding squeezed light from one so
into a second active medium. We just want to make sure
not too much of the squeezing is lost when our collection
three-level atoms is driven by a fluctuating pump. For th
purpose it suffices to add broadband vacuum fluctuation
thec number amplitude of the pump wave. As an admitted
crude model we elevate the Rabi frequencyV, introduced in
Sec. II, to an operator

V~ t !5V1x~ t ! ~5.1!

where V is a stationary real classical pump amplitude
before andx(t) is a noise operator with the properties

@x~ t !,x†~ t8!#5^x~ t !x†~ t8!&5
G

2
d~ t2t8!,

^x~ t !&5^x†~ t !x~ t8!&50, ~5.2!

with an effective bandwidthG. We thus treat the pump field
not as a dynamical variable but as an externaly impo
quantity with prescribed quantum statistics, incapable of
periencing back reaction from the atoms.

Our HamiltonianH0 from Eq. ~2.1! is now extended to



e

th
ls

pu
ui
e

d
e
ve

n

g

o
r
o
-
o

ua
th

s of
de.

on
z-
a-
ing.
ear
al
can

cal
ers
the

ser

us
an

rom
by

n
we
sion
this

an-
n

the
the
ic

r

54 1633QUANTUM NOISE REDUCTION IN STATIONARY . . .
H5H01 i\~xS022x†S20!. ~5.3!

The new term in Eq.~5.3! entails additional multiplicative-
noise forces in the evolution equations~2.6! of the atomic
variables,

~]S02/]t !pf52x~S222S00!,

~]S12/]t !pf5xS10,

~]S01/]t !pf52xS21, ~5.4!

~]S00/]t !pf52~]S22/]t !pf52~xS201x†S02!,

~]S11/]t !pf50.

Since these additional terms have zero means and sinc
operatorsC1 ,C2 ,C3 from Eq. ~2.7! are still conserved, the
stationary solutions found above remain unchanged. Like
noise related to the collective damping the pump noise a
leaves the stability analysis untouched. It is only the out
fluctuations of the active and the passive mode that acq
additive corrections. These are given in the Appendix in th
general form.

Once more all explicit results are significantly simplifie
in the good-cavity limit,j@1. In this case we obtain for th
amplitude quadrature fluctuation spectrum of the acti
mode field outside the cavity

^duout~v!duout~v8!&5
1

4
d~v1v8!H 12

S~p,c, f !

11v2t2 J .

~5.5!

The new squeezing functionS(p,c, f ) is related to the pre-
vious S0(p,c) from ~3.13! as

S~p,c, f !5S0~p,c!2
f

4~11c!

~122p!2

p~12p!
, ~5.6!

i.e., diminished by an amount proportional to a dimensio
less fluctuation strength

f 5
G

g
. ~5.7!

In the most interesting situationf !1 it is possible to find
analytically the optimum values of the coupling strengthc0
and the pump strengthp0 which maximize the squeezin
function S(p,c, f ) for fixed f . One easily finds
c051, p05 f 1/3/2, and the maximum squeezing

Smax5S~p0 ,c0 , f !5123 f 2/3/8. ~5.8!

A plot of S(p,c, f ) is presented in Fig. 5 forf 50.1.
To investigate the influence of the quantum fluctuations

the pump field on the linewidthDna of the superradiant lase
we have calculated the new low-frequency version
^dvout(v)dvout(v8)&. We find the linewidth of the superra
diant laser not affected at all by the quantum fluctuations
the pump.

We have also calculated the effect of the pump fluct
tions on the squeezing properties and on the linewidth of
the

e
o
t
re
ir

-

-

f

f

f

-
e

passive mode. As before, the zero-frequency propertie
the passive mode are identical to those of the active mo

VI. SPONTANEOUS EMISSION

In this section we shall allow for spontaneous emission
the transition 2→1 and shall find out its influence on squee
ing. It is already well known from the literature that spont
neous emission can almost entirely undo all squeez
Spontaneous emission of the active medium in the lin
optical amplifier destroys all squeezing of an extern
squeezed signal already at very low gain; such a device
therefore not be employed for amplification of nonclassi
fields @25#. In incoherently pumped sub-Poissonian las
spontaneous emission from the upper lasing level to
lower one~i.e., on the lasing transition! or to third levels also
weakens the sub-Poissonian character of the la
radiation @26–29#. As we have shown in@4#, when the col-
lective relaxation 1→0 is replaced by usual spontaneo
emission, thus bringing our scheme to an ordinary Ram
laser, the maximum obtainable squeezing goes down f
100% to only 50%. This result was also found previously
Ritsch, Marte, and Zoller in@5#.

In this section we keep the collective relaxation 1→0 but
allow for spontaneous emission on the transition 2→1 ~on
this one only, for simplicity!. Thus, we have a competitio
between collective and noncollective relaxation. Since
would like to separate the effects of spontaneous emis
and of pump fluctuations, the latter are not considered in
section.

To describe a noncollective relaxation on the lasing tr
sition, we introduce for each atom a coupling to its ow
separate reservoir according to the Hamiltonian

dH5 i\g12(
m51

N

~dmS21
m 2dm

† S12
m !, ~6.1!

wheredm and dm
† destroy and create quanta within themth

reservoir. We imagine all reservoirs eliminated by using
usual Born and Markov approximations and thus face
incremental time rates of change for the collective atom
variables

FIG. 5. Squeezing functionS(p,c, f ) of the superradiant lase
with quantum fluctuations of the pump of strengthf 50.1.
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~]S02/]t !se52gsS021A2gs(
m

S01
m hm ,

~]S12/]t !se52gsS122A2gs(
m

~S22
m 2S11

m !hm ,

~]S01/]t !se52A2gs(
m

hm
† S02

m , ~6.2!

~]S00/]t !se50,

~]S11/]t !se52~]S22/]t !se

52gsS222A2gs(
m

~hmS21
m 1hm

† S12
m !.

Heregs}g12
2 is a constant of noncollective atomic relaxatio

for the transition 2→1 andhm(t), m51,2, . . . ,N are cor-
responding Langevin forces, independent for different ato

@hm~ t !,hn
†~ t8!#5^hm~ t !hn

†~ t8!&5dmnd~ t2t8!,

^hm~ t !&5^hm
† ~ t !hn~ t8!&5^hm~ t !hn~ t8!&50. ~6.3!

There is an important scaling difference between the col
tive relaxation terms in Eqs.~2.6! and noncollective ones in
Eqs. ~6.2!. The first ones scale asN2 while the latter are
proportional only toN. Therefore, for the semiclassical a
proximation,N@1, noncollective relaxation terms are ve
small compared to the collective ones. We may theref
eventually confine ourselves to the limitgs→0 without in-
curring more than an error of order 1/N, i.e., one inherent in
the semiclassical approximation anyway. Of course, the li
gs→0 must not be taken by blindly settinggs50 in Eq.
~6.2!. We must first realize that the incoherent terms~6.2!
break the collectivity of the dynamics, i.e., destroy the co
servation ofC2 and C3 in Eq. ~2.7!. Needless to say the
conservation of the number of atoms is retained. A station
solution of the Heisenberg-Langevin equations~2.6! with the
incoherent terms~6.2! will therefore not connect continu
ously with the previously obtained solution~3.3! for full co-
operativity.

To appreciate the point just made, a closer look at
construction of the semiclassical stationary solution is in
cated. As previously, we~i! drop the time derivatives and th
noise in Eq.~2.6!, ~ii ! degrade operators toc numbers,~iii !
fix an arbitrary phase to make all stationary means real,
~iv! employ the pump parameterp and the coupling strength
c @cf. Eqs.~3.1!#. From ȧ50, Ṡ005Ṡ1150 we then express
ā , S̄12, andS̄20 in terms ofS̄01[xN and S̄22, obtaining

S̄1256~N/Ac!Ax22gsS̄22/gN2. ~6.4!

Note that the incoherent correction in the radicand is of or
1/N. We should also mention that in contrast to the fu
cooperative case without spontaneous emission we must
keep track of the6 alternative. In the strict absence of spo
taneous emission this alternative also formally arises; h
ever, the minus sign leads to a physically unacceptable s
tion in conflict with the Schwartz inequalityuS̄i j u2<S̄ii S̄j j .
s,

c-
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In Sec. III we had not met that alternative since t
Schwinger representationSi j 5zi

†zj there employed enforce
uS̄i j u25S̄ii S̄j j to begin with. Here, in the presence of spon
neous emission, both signs lead to solutions in agreem
with the Schwartz inequality.

Next, we formally considerṠi j 50 as linear inhomoge-
neous equations for the population differenc
S222S11, S112S00, andS002S22 which we formally solve.
For self-consistency, the population differences thus fou
must sum up to zero; that latter requirement reads, afte
little rearrangement,

gsF pAc~p22x2!S̄22/N6~cx21p2!Ax22gsS̄22/gN2G50.

~6.5!

Obviously, in the fully cooperative casegs50 this consis-
tency condition is trivially fulfilled; in the present case th
square bracket must vanish, and that equation now takes
role previously played by the conservation ofC2 in nailing
down all stationary means. At this point we may and sho
indeed drop the 1/N correction gsS̄22/gN2 in the square
bracket, thus implementing the formal limitgs→0. Clearly,
that limit is not equivalent to settinggs50 from the outset.

The inequivalence ofgs50 andgs→0 is somewhat remi-
niscent of the symmetry breaking in second-order phase t
sitions. For instance, a Heisenberg magnet below the C
temperature is assigned, by the mean-field equations~which
correspond to our semiclassical approximation!, a vanishing
magnetization in the strict absence of a symmetry break
magnetic fieldh; however, if hÞ0 is allowed, the limit
h→0 leaves a spontaneous magnetization.

To finally establish the stationary solution in the lim
gs→0 we employ the population conservation~2.11! and
arrive at

S̄01/N5x, S̄02/N52x2/~Acp!, S̄12/N56x/Ac,

S̄00 /N5~1/3!F16
x2

cp
~11cp2/x222c!G ,

S̄11 /N5~1/3!F16
x2

cp
~122cp2/x21c!G , ~6.6!

S̄22 /N5~1/3!F16
x2

cp
~221cp2/x21c!G ,

ā57
Ng

g12
Acx,

with x defined by the following equation:

2~11c!x41cp~cp71!x21c2p3~p61!50. ~6.7!

This is to be confronted with the first of Eqs.~2.12!. Here we
have, in fact, two different equations corresponding to t
different signs, upper and lower, which stem, in turn, fro
two different signs in the mean polarizationS̄12 in ~6.4!.

Solving~6.7! with the lower sign, we obtain the following
result forx which we shall call the ‘‘gamma’’ solution:
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cp~11cp!

4~11c! H S 11
8~11c!p~12p!

~11cp!2 D 1/2

21J .

~6.8!

Obviously, this solution exists for 0<p<1 as does the so
lution ~3.3! for full cooperativity. Equation~6.7! with the
upper sign has two solutions which we shall call ‘‘alpha
and ‘‘beta,’’

xa,b
2 5

cp~12cp!

4~11c! H 16S 12
8~11c!p~11p!

~12cp!2 D 1/2J ,

~6.9!

where ‘‘1 ’’ corresponds to the alpha solution and th
‘‘ 2 ’’ to the beta solution. These two solutions exist for t
pump strengthp in the limits 0<p<pm wherepm is equal to

pm5
1

~512A6!~11c!21
. ~6.10!

We can see from~6.10! that pm<1 for any value of the
coupling strengthc. When c→0, pm→(A622)/4'0.11,
and then decreases monotonically with growingc. Figure 6
shows the intensity of the mean intracavity field for all thr
solutions alpha, beta, and gamma, and also for the solu
without spontaneous emission.

A full understanding of why several stationary solutio
can arise and of their stability properties is possible o
after a discussion of submaximal cooperativity atgs50,
when c2<1, c3<1. This will be treated in a forthcoming
publication.

While in general multistability turns out to be possib
there is one simple limit, that of weak pumping (p!1) and
a bad cavity (j!1), where only thea solution is stable. For
that case we have determined the squeezing spectrum. F
7 compares this squeezing spectrum with that of the solu
without spontaneous emission. Obviously, spontane
emission leads to the appearence of a new high narrow p
around zero frequency. That peak has a height}Ng/gs and
a width}gs , such that the area underneath remains cons
in the limit gs→0, indicating an asymptoticd-function peak,

FIG. 6. Stationary intracavity intensity of the superradiant la
vs pump strengthp without ~uppermost curve! and with (a, b and
g) spontaneous emission for the coupling strengthc50.1.
on

y

ure
n
s
ak

nt

^duout~v!duout~v8!&

}d~v1v8!
~gs /Ng!1n1~v/Ng!21 . . .

~gs /Ng!21d1~v/Ng!21d2~v/Ng!41•••

,

~6.11!

with dimensionless coefficientsn1 , . . . in thenumerator and
d1 ,d2 , . . . in thedenominator, all of which are independe
of gs . One sees that thed-function peak indeed arises a
gs→0. However, forgs50 one power ofv2 cancels where-
upon one comes back to the case of Sec. III. A second p
in the spectrum of Fig. 7 reflects relaxation oscillations ty
cal of the bad-cavity limit to which the figure pertains. Mo
importantly, there is a broad intermediate frequency ran
where the squeezing is strong and not qualitatively chan
from the one obtained forgs50.
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APPENDIX: THE OUTPUT FLUCTUATIONS

We here list the output fluctuations of the active and
passive mode. There are three contributions to each of th
fluctuations resulting from the vacuum fluctuating forces
the active modeha5Sa1 iDa , the vacuum fluctuating
forces of the passive modehb5Sb1 iDb and the pump fluc-
tuationsx5Ag(Sp1 iDp). In order to save space we he
use the abbreviationx5v/gN. The output fluctuations of
the active mode read as

duout~v!5
Nu

a~x!Sa~v!1Nu
b~x!Sb~v!1Nu

p~x!Sp~v!

Du~x!
,

dvout~v!5
Nv

a~x!Da~v!1Nv
b~x!Db~v!1Nv

p~x!Dp~v!

Dv~x!
,

r
FIG. 7. Squeezing spectrum without~dots! and with spontane-

ous emission~solid curve! for a solution; gs /Ng55310210,
Ng/ka50.01, c50.9, p50.03.
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where

Du~x!5~ ix !32~ ix !2S p~112c!2c

11c
2

1

j D
1 ixS pc~31c22p!

11c
2

p

j
~12c! D1

4pc~12p!

j
,

Nu
a~x!52Du~x!1

2

j S ~ ix !22 ix
p~112c!2c

11c

1
pc~31c22p!

11c D ,

Nu
b~x!52S 2c

j D ix~12p!2p~c2112p!

11c
,

Nu
p~x!52S 2p~12p!

11c D 1/2S c

j D ~224p1 ix !,

Dv~x!5 ixF ~ ix !22 ixS p~112c!2c

11c
2

1

j D
1

pc~c2112p!

11c
2

p

j
~12c!G ,

Nv
a~x!52Dv~x!1

2

j S 2~ ix !21 ix
p~112c!2c

11c

2
pc~c2112p!

11c D ,

Nv
b~x!52S 2c

j D ix~12p!2p~12c12pc!

11c
,

Nv
p~x!5S 2p~12p!

11c D 1/2S c

j D ~ ix !2.

The polynomialsDu(x), Dv(x) arePu( ix) andPv( ix) from
Eq. ~3.8!, divided by ix.

The output fluctuations of the passive mode are
.

ey

l.

r-
r o
dũout~v!5
Nũ

a~x!Sa~v!1Nũ
b~x!Sb~v!1Nũ

p~x!Sp~v!

Du~x!
,

d ṽout~v!5
N ṽ

a~x!Da~v!1N ṽ
b~x!Db~v!1N ṽ

p~x!Dp~v!

Dv~x!
,

with

Nũ
a~x!5S 2c

j D ix~12p!1p~12c12cp!

11c
,

Nũ
b~x!5Du~x!12~ ix !2

p~112c!2c

11c

22ixS 2cp~12p!

11c
2

p~112c!2c

j~11c! D
1

2c

j

p~4p12cp2c23!

11c
,

Nũ
p~x!5S 2p~12p!

11c D 1/2F ~ ix !22 ixS c~122p!2
1

j D
2

2c

j
~122p!G ,

N ṽ
a~x!52S 2c

j D ix~12p!2p~12c12p!

11c
,

N ṽ
b~x!5Dv~x!12~ ix !2

p~112c!2c

11c

12ixS 2pc~12p!

11c
1

p~112c!2c

j~11c! D
12

pc~12c12cp!

j~11c!
,

N ṽ
p~x!5S 2p~12p!

11c D 1/2

~ ix !2S ix1
c~12c22p!

11c
1

1

j D .
od.
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