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Quantum noise reduction in stationary superradiance
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We discuss a laser witR three-level atoms resonantly and cooperatively interacting with two cavity modes.
Its intensity is proportional tdi?, the linewidth scales asNf, and the output intensity fluctuations display up
to 100% squeezing at low frequencies. We show that quantum fluctuations of the pump do not deteriorate the
squeezing significantly. We also find that the fluctuation properties of the “passive” cavity mode which serves
to collectively relax the atoms to the ground state are similar to those of the active mode. Finally we take into
account spontaneous emission. Within a certain range of frequencies good squeezing can still be found.
[S1050-294{@6)08707-0

PACS numbeis): 42.50.Dv, 42.50.Fx, 42.50.Ar

I. INTRODUCTION will be devoted to partially cooperative atomic configura-
tions.

When several identical two-level atoms are brought to The paper is organized as follows. In Sec. Il we present a
their excited state with no external electromagnetic field im-detailed formulation of the model of the superradiant laser.
posed then or later, the subsequent radiative deexcitatioit Sec. Ill we show that in the semiclassical linfit>1, the
can, certain conditions met, proceed collectively, i.e., withcase of full cooperativity can be treated analytically for all
all N atoms acting like one rigid dipoleL,2]. The ensuing Parameter values. In Sec. IV we consider the passive mode
superfluorescent radiation pulse has a peak inteihgigN2 fand ghow that its Iow-frquenmes noise spectra are ngarly
while noncollective radiation would only yield,~N. Since identical to those of the acuvg mode. In Sec. V- we tgke Into
the maximum energy available for radiationNstimes the account the quan'gum fluqtugt!ons of the pump and f|n.d that
single-atom excitation energyw, the temporal width of a they do not pleterlorate S|gr_1|f|cant_ly the noise prop_ertles_ of

: . the superradiant laser. Section VI is devoted to an investiga-
superfluoresce_nt pulse ”?“?’t be_ myersely proportlon_a‘u to tion of the influence of spontaneous emission on the fluctua-
(7s~1/Nv) while the radiative lifetime 3y of the excited tion spectra.
state of a single atom would equal the duratigrof a pulse
of normal fluorescence. For experimental realizations of su-
perfluorescencg3] one must, roughly speaking, make sure
that the characteristic times of all competing processes like Ag in Ref. [4] we consider the simplest model of a super-
inhomogeneous broadening and collisions are much longggdiant laser which accounts fot three-level atomgsee
than 7. Fig. 1) placed inside a resonator. We assume a pump process

We have described in Reff4] a rather different type of 0—2 consisting of a two-photon excitation such that the
superradiance. Like the aforementioned one, it is collectivelyesonance condition with the transititor-® is met. A las-
generated byN atoms and thus has an intensiN?; unlike  ing process is assumed by coupling the atoms to the resonant
the former, it can be stationary rather than transient. An evepavity mode in tune with the transition-21. In the follow-
more striking difference arises for the spectral width: while aing we shall refer to this mode as the “active” mode. Fi-
superfluorescent pulse has a spectral widthN, the line-  nally, a certain relaxation process-10 has to be included to
width of the superradiant laser was found to be extremelyecycle the atoms back to the influence of the pump. Usually,
small, A v~ 1/N?. Moreover, the intensity fluctuations within Spontaneous emission between levels 1 and 0 is such a re-
an individual superfluorescent pulse are close to those of a
coherent state; those of the stationary output of a superradi-
ant laser can be much smaller and in fact can be squeezed 2=

J\/\/‘»/ o~

1. MODEL

nearly perfectly.

The model of the superradiant laser presented in [2éf. aCtg’e
is the simplest one displaying cooperative behavior. How- pump mode (a, a")
ever, in view of possible experiments, many complications —_—
have to be taken into account. Undertaking the first such step - /)/ passive
in the present paper, we propose to consider the noise prop- mode (b, b+)

erties of the passive mode and discuss the influence of pump
fluctuations as well as of spontaneous emission on the noise
spectra of the superradiant output. A forthcoming publication FIG. 1. Scheme of three-level superradiant laser.
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laxation process. In this case one has the so-called Raman (ab(t)/dt)ir=— Kkpb(t) + V2 7p(1). (2.2
laser whose quantum noise properties were recently investi-
gated by Ritsch, Marte, and Zoller in Rdf]. Here k, and «,, are the damping constants for the two

We here require a different type of relaxation by couplingmodes. The quantum Langevin forces(t) with a=a,b
the atoms to another cavity mode resonant with the transitioensure the preservation of the Bose commutators
1+ 0. However, with respect to the latter mode the resonatofa(t),a’(t)]=[b(t),b'(t)]=1 at all times; we can take the
does not need to have a high finesse. In fact, in order tfluctuating forces as independent with Gaussian statistics and
simplify the model we assume that this mode is dampedvhite spectra according to
sufficiently strongly so that it can be eliminated adiabati-

cally. That is why we refer to this mode as to the “passive” [7a(0), 75(t)]= (0o (D) (L)) = 8,58(t—1"),
mode. The situation in consideration would, in the absence : :
of level 2 and with level 1 populated initially, entail the (7a(D)=( () np(t"))=(na(t) np(t'))=0. (2.3

no-ringing limit of superfluorescence on the transition _ +
10, as observed in Ref3]. Our scheme with a third level W€ may interpret the operatorg,(t) and7,(t) as represen-

and a stationary coherent pump can, as will be shown below@tives of the vacuum fluctuations of the electromagnetic

yield stationary superradiance on both transitions;2and  fleld outside the resonators. _ _
10, The Heisenberg equations of motion for the collective

We now turn to a more detailed specification of the out-2t0mic operators;;(t) are readily obtained from the Hamil-

lined scheme. In order to eliminate the explicit time depen{onian (2.1 as §;=(i/#)[Ho,S;]. The Heisenberg-

dence of the pump wave we write the Hamiltonian in thelLangevin equations for the photon annihilation oper-
interaction picture, ators of the lasing and passive modes, obtained as

a=(i/h)[Hq,a]+ (daladt);, and analogously fob(t), read

_ . a(t) = ~ 91551~ Kaa(t) + V2a7a(1),
+i:go1(bS10—b"Spy). (2.)

. y . b(t) = —GorSor— xbb(1) + V2kp (D). (29
It displays the collectivity of the pump mechanism and of the
interaction of the atoms with the active and passive modeblow, as mentioned above, we eliminate adiabatically the
by the appearance of the collective atomic operatordield variableb(t) of the passive mode supposing that its
Sij =EZ‘:1$,’J-‘:EM(|i><j|)“. There are nine operatol§; ; damping constank,, is the dominant relaxation constant of
those withi =j refer to polarizations while each “diagonal” the system. This gives
one,S;;=P;, measures the global occupation of levethey
obey S{rj =S;i and[S;j,Sq]= 6jkSi— 61 S;. The operators b(t)=— 9_0180 (t) +
b t T . 1
a,a', andb,b" are the operators of annihilation and creation Kp
of photons in the lasing and passive cavity modes. The cou- o ) ) ) ) )
pling constantgy;; and the pump paramet€l are specified Subshtutmg this expression fon(t) into Fhe atomic H_elsen—
in the Hamiltonian(2.1) so as to have the dimension of a berg eq.uat|ons,.we arrive at the following set.of Helsen.berg-
frequency. We assume a two-photon pump process in Ordé,ange\(ln equations foN three-level atoms with collective
to secure a ring of effectively allowed transitions "elaxation:
02+ 1<0. The pump strengtlf) is proportional to the :
product of the amplitudes of the two classical pump waves So2= 9122 51~ (S22~ So0) + ¥S12501~ V2 ¥S1a7s
and is chosen real. Note that by takifigas a fixedc number .
we forbid pump fluctuations. This assumption will be lifted ~ S12= ~ 9128(Sz2~ S19)+ QS10~ ¥S10802+ V2 75So2.
in Sec. V.

Ho=ifg14aSy—a'S;) +i%0Q (S~ Spy)

1/2

7p(t). (2.5

Kp

It may be worth pointing out that the use of coupling So1=~ 912" Sp2~ S+ ¥(S11~ S00) Son
constantsgy,, and gq; identical for all atoms is justified in _ \/2—7(811_ Se0) 76 2.6

two limiting situations. One is typical of microwave experi-
ments where the atomic system has a spatial extension small
compared to the wavelengths involved. In the optical range
of frequencies one may employ a running-wave resonato

L =— +a'S15) — 29S16S01+ V2 Y(S1076+ 75S01),
such that position dependent phase factors likeikx,, ] 11 ~ 0181+ 8 S12) ~ 2916801+ V2(Swomy+ 75500
may be absorbed in the definition of the collective polariza-

- > = +S,0+ +a's,,),
tions,S;,=2 ,exdikyx, ], etc., wherek,, is the wave vector S22~ S0zt S0 1@t 2’5,
of the mode and,, the position of theuth atom. a(t) = — 91,510~ kaa(t) + 2k, 7a(t).
We finally account for two damping mechanisms due to
the irreversible leakage of photons from the lasing and pasHere yzggllxb is a rate constant related to the collective
sive modes through nonideal mirrors. This process can batomic relaxation 0. Two features of Eq2.6) are worth
described by the following additions to the time rate ofa comment, the nonlinearity of the damping and the “multi-
change of the Heisenberg operatafs) andb(t) [6—8]: plicative” form of the noise. Both of these features have as
their common origin the nonlinearity of the interaction of the
(da(t)/dt),=— ka(t)+ \/Z_Ka’l]a(t), atoms with the passive mode. It is easy to see from(E®)

Soo=— Q(Soz+ S20) + 2¥S10501— V2¥(S107p+ 75S00).
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that in the case oN=1, when the collective atomic opera- The solutions of the classical equations of motion depend on
tors become the operators of a single atom, we recover thie expectation values of the three constants of motion
familiar linear relaxation, througi®{,Sh,=0, S{;Sh,=S4,, C1,C,,C3 which are determined by the initial atomic state.
etc. [9]. We should also note that the atomic observables'o within corrections of relative order /we may factorize
S;j preserve their commutation relations, the presence othe expectation values of operator products as, e.g.,
damping and noise notwithstanding. (Sij (1) Si(t))=S;j(t) Sy (t), and obtain

The set of equation$2.6) possesses three constants of
motion C,,C,,C5. The first of these, the number of atoms — -
C,=N, arises since our model clearly is not wasteful of (CH=2 Si=N, (Cp)=2 S;S;i=CoN?,
atoms. The remaining two owe their existence to the absence ' "
of any noncollective atomic process. In fa€; andC; are
the Casimir operators of the groug3) which is a symmetry A NN 3
group of the cooperative dynamics of our three-level at- (Cs) i,jz,k SiySpSa= CaN 219
oms [10]. Expressed in terms of the polarization and popu-

lation operatorss; the C; read We shall refer toc, andc; as cooperativity parameters.
With the help of the conservation of the number of atoms
C1§2 S, szz S;Si, Cs= 2 S SiSui - we can rewrite the cooperativity parameters as
i i ik
2 L [ (SooS- S0+ (S8 S
Co=1—32 —S01S10) + - S5.S,
A third symmetry is worth mentioning. Shifting phases by N So011™ SorS0) + (So0Sz2™ S0
h -
the amountA as +(SS1— SuS1o) ],
a—e'*a, S;p,—€Sp,, S;—€S), n.—€7na,
A 3¢,-1 3
Th—€ "~ 7p, (2.9 C3= 2 + ﬁﬁ(soosllszz_ S00512521~ S11520502
leaves the systen2.6) invariant. The relative phasa is e e e e e e e e
ysten.9 P ~ SSiSort SiSsSrt oSS (212

thus conserved as well. Therefore, the system under consid-

eration has 11 degrees of freedom and at least four constants ) ) .
of motion. To be physically acceptable, the solutions of the classical

Clearly, the laser model just presented is a bit of an over€duations of motion have to obey two requirements of quan-
simplification. We neglect for the moment such effects agum_mechanical origin. These requirements are) (
pump fluctuations, spontaneous emission, inhomogenoudssSi/N=<1 (since S;/N have the physical meaning of
broadening and detunings between the fields and atomierobabiliie, and (8) three Schwartz inequalities,
transitions. By leaving such refinements aside we hope t&;;S;; — S;S;;=0, which must hold for all pairs of atomic
exhibit most clearly but without inappropriate exaggerationlevels. Inserting the Schwartz inequalities into the expression
the potential of cooperativity for noise reduction. We will of c, we now see that, is restricted from above bg,<1
include the quantum fluctuations of the pump into the modelith ¢,=1 for SiS;j—S;;Sji=0. A simple analysis shows
in Sec. V of this paper. The role of spontaneous emissiofthat the minimum value of, is given byc,=1/3, realized
which breaks the (B) symmetry will be discussed in Sec. by?n:N/& §j=0 (i#]), i.e., when all atomic levels are

V. . ) ) . equally populated and all polarizations vanish.
In the following we confine ourselves to the semiclassical "the condition for the maximum value @, ca=1, is

limit, N>1. Each of the eleven varir:lblt.S.Sﬁ,a,a’r canthen 550 found easily: as forc,=1 we must require

be represented as a sum of a dominant classical ¥xN |§|2=Si-8-- and, in addition, argf;Sp;S,)=0. We refer
and a “small” operator valued fluctuatiofX ' e ’ ’ e e
P ' to the case o€,=c3=1 as full cooperativity. Quite interest-
X=X+ 5X 2.9 ingly, the easily realizable initial condition of all atoms in the
N : : ground state satisfies the condition of full cooperativity. The
minimum conditions ot, are sufficient for the minimum of
c3, Yyielding c3=1/9. In summary we have

Of course, the proportionality of the meaXgo N is a mani-
festation of the assumed collectivity. To find tkein the
stationary regime we droX and the noise forces in the
Heisenberg-Langevin equatioi®.6) and degrade each op-
eratorX to ac numberX. The dynamics of thé&X’s will be
taken into account by the linearized Heisenberg-Langevin
equations. The question as to whether all pairs af,(c3) values are
Since the atomic mean values are proportionaNtove  realizable and the stationary solutions for arbitrary admis-
easily infer from(2.6) that the atoms have a relaxation rate of Sible (c2,c3) values will be discussed in a following publi-
the orderyN. We therefore may express the assumed domication. In this paper we concentrate on the fluctuation prop-

nance of the relaxation constant of the passive mode by ~erties of the superradiant laser. In order to keep the
calculations as simple as possible we here only consider the

Kp> Ky, YN. (2.10 case of full cooperativite,=c;=1.

<css=1. (2.13

w|
©| =

<cC,=1,
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ll. FULL COOPERATIVITY is the ratio of the Rabi frequencies on the transitions coupled

The case of full cooperativity is of particular interest sinceto the active and passive modes.

- ) . ) ! Due to the phase symmet(g2.8) we may choose the sta-
it is, as was already mentioned, easily realizable by prEpa”nﬂonary value of the field amplitud@ as real. With this
all atoms initially in the ground state. At all subsequent timeschoice we obtain the following stationary meén values:
the atoms can then be described by the fully symmetric states '
[ng,n1,n,) wheren; is the number of atoms in levéland
ng+n,+n,=N. In the spirit of second quantization we may

introduce six atomic annihilation and creation operators __ (Nc(l—p) 172

1 Z_l: \/N_pl 2_2:

N(l_p) 1/2
z,z}, (i=0,1,2) which lower and raise the occupation Z0=|"77¢ ?) ’
numbers n; as zy|Ng,N;,n,)=Ng|Ng—1,n7,n,) and
z}|ng.n1,no)=Vno+1|ng+1,n1,n,), etc. This behavior is

consistent with the Bose commutation rulbs,z;r]=5ij.

Moreover, we are led to Schwinger’'s representation of the 2= 912
Lie algebra[11] of the group U3) by expressing our nine Ka
atomic polarization and population operators as
Sij(t):z?(t)zj(t). Indeed, the commutation rules

E)?ij 'Er?g];jigitli;eﬁnasgna:irs rggce’;’aet:)erg agg St?]’;s ;@%?:gt?ir::allowed to range within &p<1. The absence of a threshold
. ——— for the pump strengtp in the laser amplituda can be seen
basis _states, SojNo,N1,Nz) =V(Ngt+1)ng[Not1ns—1.n;), as due to our neglect of spontaneous emission. A less ex-
etc.[12]. . . ected feature of the stationary amplituales the appearance
In.the s.ubspace of.fullly cooperative atomic states unde f an upper limit for the pump strengtim=1, and of an
consideration the Casimir operatd@s, C; take on the val- optimal pumping,p=1/2, at whicha is maximal. As we

_ _ N2 G o2 ot
uesC,=N(N+2), Cg=N .(N+3) with 2i=0%Zi=N. AS gl see from the stability analysis below, not all values of
a consequence, the semiclassical cooperativity parametefSpenveen 0 and 1 are physically acceptable because the

become maximalc,=cs=1. , stationary solution can become unstable.
The Heisenberg equations of motion for the operators A< 5 final remark on the mode amplitudein Egs. (3.3

z(t) are obtained ag,=(i/7)[Ho.z]. From a classical '\ o \yould like to once more underscore the proportionality

point of view, after adiabatic elimination of the passive mode— . . .
we have eight real equatiorisix for atomic variables and a>N which manifests the superradiant character of the laser

two for the field. However, only six of them are indepen- in discussion. However, this point deserves more explana-

dent. Indeed. the number of atoms is fixed and one of théion. If we imagine a series of realizations of our laser for

phases may be eliminated since Oaﬁ are of interest. Varous values ofN, keeping all other parameters, i.e.,

This counting is in agreement with the results from the pre—y"(é"glz”Q fixed, we would go to ever weaker pumping

vious section. Indeed, for the case of full cooperativity Westrengthp asN|_ncre_ases. SmeM.l/N one vyould even be
h th Schwart litieS (1)S- (1) — S (DS (t led to concludea to increase only in proportion tgN. But
_ave ree schwartz - equall oS ( )—“u—s”(_) (D if one insists on keeping fixed, for instance in sticking to
=0, one _cond|t|on on the phases, #gS,S;,) =0, and the optimal pumpingp=1/2, for the whole series of imag-
conservation of the number of atoms. Thus, there are a tot

i raint 11 real tioftine atomic and ¢ ed lasers, one gets<N at the expense of increasiiy in
or five constraints on L1 rea equa.|o¢.|mne atomic and two proportion toN. When we talk about superradiance here we
field variable$, which amounts to six independent variables.

) , . —>think of all variables and parameters referred to their “natu-
The stationary solution of the corresponding classica

. i . s al” N dependent units that arise in a scale invariant theory.
equations of motion with nonvanishing mean photon num-

b b din t f frecti ; Turning now to the analysis of stability and fluctuations
€rs can be expressed in terms of an eliective pump s rengg} the stationary solutiof3.3), we linearize the equations of
p and a dimensionless coupling strength

motion (2.6) around the classical mean values with respect to
the fluctuationssz; and da asz,=z;+ 6z, a=a+ da. This
brings about a significant simplification of the noise: through
Sij (1) 7p(t) — S;; (1) the atomic noise forces in Eq&2.6)

are freed of their so-called multiplicative character, i.e., be-
come simple inhomogeneous terms. We split the operator
valued fluctuationssz; ,6a and the Langevin forceg, into
“real” and “imaginary” parts as

1/2

p(1—p)
1+c

(3.3

As follows from Egs.(3.3), the pump strengtlp now is

o= Q o gisz_ 9%
NY\/E, gglka 7Ka.

(3.2

In the following we shall assume a pump paraméler N so -
thatp andc are of zero order iN. For the coupling strength Hermitian
c an interesting interpretation arises from the following rea-

soning: in a stationary regime the leakage rates of photons

from the active and passive cavities must coincide, wN
KaNa= kN, . This means that d8z;=4du;+idv;, da=-— g—(5u+i5v), Pou=2,+1A,.
12
(3.9
n
Je= Gi2\a (3.2 The inhomogeneous linearized equations of motion separate

901\/n=b into two independent blocks



SUg -p —2z75,  pfc 0
8uy N 22129 [2]? g 2/N  —2,
suy | - pVc  —gialyN 0 7
8u 0 —czlé  —czlé 1§
S —2;3,
5U1 \/2_ Z_ozb
X + .
su, Y 0 ’ @9
Su — e3¢
vg -p 0 p\c 0
vy N 0 [20]? 91a/YN 2,
v, Y —pJc  —giA/WN 0 k2
Sv 0 cz, /¢ —czlé ¢
ovg Z—lAb
v ZoA
R N (3.6
51}2 0
Sv —JeA, /&

We refer to the block of the real par#u;,éu as to the

amplitude block since these fluctuations are related to the

intensity fluctuations viasl =2adu, etc. Conversely, the
four imaginary partsév;,év may be interpreted as phase
fluctuations throughSv =ad¢, etc.

Beyond the coupling strength and the pump strength
we how meet one additional dimensionless paramg&tehe
ratio between the atomic and the field decay rates

yN

§=——. (3.7

We look for dimensionless eigenvaluesn as
6z;= 6z;(0)exd —AWt], sa=da(0)exg—AyNt] and find
two characteristic polynomials each of order four

B p(1+2c)—-c 1
Pu(A)=A|13-A2 T_E)
3+c—2 Apc(l—
er(pc( 1+cC p)_%(l_c))+ pc(g p)},
p(l1+2c)—c 1
PW:V[V‘*(T‘E)
pc(c—1+2p) p
+<T_E(1_C)) . (3.8

The polynomialP,(\) comes from the amplitude block and
P,(\) from the phase block. The factarin P,(\) is due to
the conservation of the nori?_,|z|2=1. The origin of the
factor A2 of P,(\) is the symmetry2.8) and the invariance
of the equations of motion under— e'%z, for arbitrary real
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FIG. 2. The stability domain in thp,c plane foré=1 (a) and
£<1 (b). For each¢ the solution is stable in the region above the
corresponding curve.

To obtain the stability conditions we apply the Hurwitz cri-

terion to both polynomials. The resulting stability conditions
read

c+1/¢
1+2c’

p<

1-c+(1-c?)/(&c)

3+c—(1-c?)/(&c)
> <

2

. (3.9

1-c p(l+2c)—2c

g ¢
[p(1+2c)—c](3—2p+cC)

B (1+c¢)? '

o< -—

In the good-cavity limit,£>1, these are the conditions al-
ready given in Ref[4]. In Fig. 2 we show the stability re-
gions in thep,c plane for various¢ values. Starting with
&>1 the domain of stability in thg,c plane shrinks for
decreasing and vanishes foé=1. Another domain of sta-
bility appears foré<1. In the bad-cavity case&<1, the
domain of stability is determined by>1. In this case, two
of the eigenvalues of the amplitude block turn out to be
A=p(1—c)/2= Jp*(1—c)?/4—4pc(1—p). They become
complex forp<1. The one with the positive imaginary part
is responsible for the appearance of a peak at the frequency

¢. The roots of these polynomials give the eigenvalues. Staimi with the width Reé. in the amplitude fluctuation spec-
bility requires that all eigenvalues have positive real partstrum in the bad-cavity case. Fqu<1 the frequency is
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approximately given by In~2¢\/pck,<k, and the width
Reh=¢ép(c—1)ka<<k,. The physical origin of this peak is
in the phenomenon of relaxation oscillations well known for
usual(nonsuperradiantbad-cavity laserg13].

To solve the linearized Heisenberg-Langevin equations
we perform a Fourier transform of the fluctuations as

+

5X(w)=f “dt etsX(t). (3.10

— o0

The linearized differential equations of motion now become
linear algebraic equations which we solve with the help of
Cramer’s rule.

Inasmuch as we are interested in the noise properties of FIG. 3. The squeezing functidBy(p,c) of the superradiant laser
the field transmitted outside the cavity through the outcouwithout pump fluctuationsSy=1 corresponds to optimal squeez-
pling mirror, we should consider the annihilation operatoring, S,=0 to a coherent state.

a,,(t) of photons outside the cavity. That operator is related

to its intracavity partnea(t) by the input-output transforma- 2 for »—0. The low-frequency divergence of
tion [7] {6V @) v ")) as~1/w? is characteristic of phase dif-

fusion (see also[14]). In the limit £&1 we obtain the line-
Aoult) = V2Kaa(t) — ma(t). (3.11 width ( (14D ¢

It is worth pointing out that the operatogg, (t) and a(t)

have different normalizations and dimensions. The mean ka PA(1+c)?+(1—p)2(1—c)?

value (a'(t)a(t)) gives a mean photon number inside the Avg=— c—1+2p . 31y
cavity while (agut(t)aout(t)) represents a photon flugn (@)

photons/secoutside the cavity. We use such a normalization

of the extracavity fielda ,,(t) since it entails a more natural Itis interesting to compare the linewid(B.15 of the super-
expression for the standard quantum-noise limit which doegdiant laser with the Schawlow-Townes linewidthvsy for

not include the round-trip time of the cavitgee below. The ~ an ordinary incoherently pumped laser. The Schawlow-
explicit form of the output fluctuations of the active mode is Townes linewidth in our notations would yield

written out in the Appendix. Avgt=k,/(a)%. The linewidth of a superradiant laser thus
Particularly simple results arise in the good-cavity limit, differs from the Schawlow-Townes result only by a dimen-
£>1. The amplitude fluctuation spectrum then reads sionless factor. For some special cases,1, or p=0 and
p=1, we haveAv,=Avgr. Forp=1/2 ;/vhicthrovides the
) ) So(p,C) maximum value ofa, Av,=Avg(1+c?)/(2¢?); for large
(SUouf @) Uguf ")) = (1/4) 8(w+ ')} 1= 1+w27.a)' coupling strengttt>1 this gives the linewidti v, one half
(3.12  the Schawlow-Townes result.
It is worth underscoring once more that due to the super-
with the squeezing streng®,(p,c) radiant character of the laser field~N, the linewidthA v
) scales as N2. Thus not only the amplitude fluctuations ex-
Sy(p,c) = £+ 2¢c _ P (3.13 hibit an interesting potential of noise reduction; the linewidth
’ 2 (1+c)®> 2(1-p)? ' does as well.
) Using the general expressions for the output fluctuations
and the width given in the Appendix, we have numerically evaluated the
fluctuation spectrum for an arbitrary quadrature component
1 p a-p+c 314  Xoul0)=aque '+ al €'’ of the field outside the cavity:
Ta a 3+c—2p
Positive values of the squeezing strength indicate noise re-  {Xou( @) X ou{@'))=(1/4) 5w+ ")I (6, w).
duction below the vacuum level. Ideal squeezing is incurred (3.16

atp—0, c=1 (see Fig. 3, i.e., when the pump is weak and
when the Rabi frequencies associated with the transitiondlinimizing the spectrum (8, w) with respect tod for each
21 and k-0 coincide. Since zero pumping is admittedly ®« we have obtained the optimum-squeezing spectrum
not a particularly interesting working point of a laser it is | _(w). The fluctuations in the corresponding conjugate
important to infer from Fig. 3 that the squeezing strengthquadrature are described by the maximum-stretching spec-
S, has a rather flat maximum at that point so that goodrum |, (w). These spectra are displayed in Fig. 4 together
squeezing prevails for weak pumping. with their productl _(w)l ; (w) which approaches the quan-
Another quantity of interest is the low-frequency asymp-tum limit unity for large frequencies as well as for certain
totic version of the fluctuation spectrum of the phase quadrafinite values ofw. Figure 4a) refers to the good-cavity limit
ture since it gives the linewidthAv, of the laser ¢&=1 for which simple analytic results arise, while Fighy
output through{ v o, { ) Svou{@'))— 8w+ ') (a)?Av,/  was obtained for the bad-cavity limft<1.
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EX o (1-p)(1+c) B
(W) =1=Su(p.c) 33 —55 =1¥Q. (318
25}
whereQ is Mandel's parameter calculated in Ré#]. In the
e 20 interesting region ofp and ¢ where we have squeezing,
s s S$=0, the variance is thus seen to be of order unity. The
g - condition ((Su)?)<u? is then equivalent ta>1. For the
g 10 coupling strengtlt near its optimal value=1 we obtain the
following condition of validity of the semiclassical approxi-
05 mation:
%00 2 4 6 8 0 12 14 16 p> i (3.19
N¢’ '
3.0
which is equivalent td)> «,/N. Thus, for the good-cavity
25 (®) case the semiclassical approximation holds true up to Rabi
£=0.1 frequencies of the order of /times the rate of the cavity
op 20 =5.0 decay.
E p=0.3 This assessment changes in the bad-cavity lig€1,
§ L5 due to the presence of a high peak of relaxation oscillations
o in the spectrum{(du,,)?),,. The height of this peak scales
“ 10 2 . . )
as 1p° and its width asép so that the area underneath is
proportional to&/p. Thus, for small values of the pump
0.5 i ; aer
strengthp, when &/p>1, the peak in question will bring a
0.0 dominant contribution to the integral in E8.17). The con-
00 02 04 06 08 10 12 14 16 dition ((8u)?)<u? is then equivalent to
dimensionless frequency
1
FIG. 4. Optimum squeezingower solid curvg and stretching p> \/N, (3.20

(upper solid spectral _(w) andl . (w) and their productdots for
the superradiant lasei@) good-cavity casgb) bad-cavity case; the

dimensionless frequency is defined @b« . which is stronger than the one given by E§.19.

Apart from the “non-trivial” stationary solution found
As it turns out, the optimum-squeezing spectrum at zerabove with nonvanishing mean photon number, given by Eq.
frequency does not depend grand is determined solely by (3.3), there are “trivial” solutions of the classical equations
p andc as long as the stationary solution is stable. It followsof motion with vanishing stationary photon number. One is
from Fig. 2, that for parameters close to the point of optimalgiven by
squeezingp<<1l andc~1, the stationary solution is stable
for both é>1 and £<1. As mentioned above, in the bad- z,=yN, Z,=z,=a=0, (3.21)
cavity case there appears a peak in the squeezing spectrum
at the frequency 2/pc. With ¢ decreasing this peak shifts and obviously has all atoms in the intermediate level 1. A
towards smaller frequencies that will make the low-second such solution has the intermediate level empty and
frequency squeezing in this regime hardly observable.  displays Rabi oscillations between the upper and lower lev-
We would like to conclude with a simple assessment ofe|s driven by the pump,
the limits of applicability of our semiclassical approxima-
tion. Clearly, our separation of observableto a classical Z,=a=0
termX and a small quantum fluctuatia¥X [see Eq(2.9)] is ’
valid only when((8X)2)<X2. We will check on this condi-
tion for the example of the amplitude quadrature component
u of the field inside the resonator.
Since we have availed ourselves of the output fluctuations

Zo(t) =2(0)cog pyeNyt) —z5(0)sin( pyeNyt),
(3.22

(SUou @) SUgu( ")) =(1/8)8(w+ w’){((SUgw)?),, it is con- Z,(t) =2o(0)sin(pcNyt) +2,(0)cog pyeNyt),
venient to obtain the variandésu)?) by reading the input- i - _
output relation(3.11) backwards and integrating over, with two complex parameterszy(0),z,(0) obeying

[26(0)|2+[2,(0)|2=N. It follows from the linearized stabil-
N 1 [~ dw ) ity analysis that for each of these solutions at least one de-
((ou%H=1+ z_ﬁfxﬂ[«guout) =1l (317 gree of freedom is not damped. Hence, their stability must be
checked by a nonlinear treatment. Our numerical investiga-
This integration is easily performed in the good-cavity limit, tions of the classical equations of motion suggest that when-
&>1, when the spectrur( 8uy,)?),, is a simple Lorentzian ever the system is incapable of sustaining finite photon num-
[see Eq(3.12]. This gives for{(5u)?) ber for large times it ends up in one of these trivial solutions.
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IV. SQUEEZING IN THE PASSIVE MODE We have calculated the linewidthy,, of the laser radia-

. . tion in the passive mode in analogy to the calculation of the
We proceed to calculating the fluctuation spectra of thqineWi dth Apv of the active mo dgyan d found these to be
a

passive mode. When we adiabatically eliminated that mode

at the beginning we expressed the annihilation operatolrdentlcal
b(t) through the collective atomic polarizatidBy,(t) and Avy=Av,. 4.7
the Langevin forcey,(t) [see Eq(2.5)]. For the mean value
of the stationary field amplitudie we obtain Therefore, as for the active mode the linewidth,, scales as
Av,~1/N?.
— Ny C|o(1—|o))“2 (Ka vz
Jo1\ 1+c Kp & @1 V. QUANTUM FLUCTUATIONS OF THE PUMP

and infer that the radiation field of the passive mode is also Several authors have previously taken into account the

collective in character sinde—N. quantum statistics of an external driving field in its effect on
From Eg. (2.5 the fluctuations of the field mode are th_e output from 'the SO drlven. systef15-20. Ma_rte,
given by Ritsch, and Walls in Ref[18] consider coherent pumping of

a laser by broadband squeezed light. They use the fact ob-

112 tained earlier by Gardinef21] that the interaction of a two-
—) 7p(1). 4.2 level atom with a squeezed vacuyimstead of a normal one
Kb modifies the decay rates of atomic polarization. Ritsch and
Zoller in Ref. [19] drop the assumption of white noise for
the incoming squeezed vacuum and consider the driving of a
two-level atom by finite-bandwidth squeezed light. Zakrze-
wski, Lewenstein, and Mossberg in R¢R20] consider pump
depletion.

It is worth pointing out here some difficulties arising
when one tries to describe interaction of nonclassical driving
felds (like squeezed or sub-Poissonian lightith atoms.
First, nonclassical light cannot be described by a fluctuating
¢ number in a density-matrix equation. Second, for nonclas-
sical light with finite bandwidth the nonlinear response of the
atomic system to the light field must be expected to be non-
Markovian in character. Third, usually one has to deal with a
situation where the pumped atomic medium does not react
back on the source of the pump light. Thus, one has to de-
&cribe the interaction between the light source and the atomic
medium in a nonsymmetric wa}22—-24.

(gl @) ST @)= (1) 8w+ 0" )[1— S(p,C, )] Our present goal is less ambitious than looking for further
ou ou . ("1 ) noise suppression by feeding squeezed light from one source
' into a second active medium. We just want to make sure that

ob(t)=— %5801(0 +

Again, we split the field fluctuationgb into real and imagi-
nary parts agb= su+idv. By invoking the previous results
for Su;(w) and év;(w) we obtain the amplitude fluctuations
of the passive mode.

The annihilation operatds, (t) of the passive mode out-
side the cavity is related to the intracavity operabgt) in
the same fashion as is the case for the active mode in E

(3.1,
boul(t) = V2x,b(t) — 7p(1). (4.3

The explicit form of the output fluctuations of the passive
mode is presented in the Appendix. In the good-cavity limit
£&>1 and for the frequenciee<vyN the fluctuation spec-
trum of the amplitude quadrature component of the passiv
mode outside the cavity simplifies to

with not too much of the squeezing is lost when our collection of
three-level atoms is driven by a fluctuating pump. For that
So(p,C)+ w[2k3(1—p)(1+C)] purpose it suffices to add broadband vacuum fluctuations to
S(p,c,w)= 11 202 , (4.5  thec number amplitude of the pump wave. As an admittedly
a

crude model we elevate the Rabi frequelityintroduced in

. . . ) Sec. Il, to an operator
with the squeezing functio8y(p,c) and the widthr, of the

lasing mode given by Eq$3.14) and(3.15. For frequencies Q) =Q+ (1) (5.2)
o<k, this result may be approximated by a Lorentzian with
a width where () is a stationary real classical pump amplitude as
before andy(t) is a noise operator with the properties
11 L 8(1—p)(1+c) -1z
w ol [PArOrGral-pTReOl DDA E))= (rOx )= 5 311,
We see that for frequencies< «, the amplitude fluctuation ()Y =(Tx(t"H)=0, (5.2

spectrum of the passive mode is flatter than that of the lasing

mode. Not surprisingly, the width of the passive mode iswith an effective bandwidtlh’. We thus treat the pump field
like the width of the active mode, proportional4q. Thisis not as a dynamical variable but as an externaly imposed
simply due to the fact that on the time scale lthe “fast” quantity with prescribed quantum statistics, incapable of ex-
passive mode adiabatically follows the slow relaxation of theperiencing back reaction from the atoms.

active mode. Our HamiltonianH, from Eq. (2.1 is now extended to
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H=Ho+i%(xSoz— x"S20- (5.3

The new term in Eq(5.3 entails additional multiplicative-
noise forces in the evolution equatiof.6) of the atomic

_ ‘ ST o S
(9Sg2! 3t) pi= — X(Sz2— Spo) ) “‘}:“;’;9;‘&’»“ <\
S esy
(9S12/ 9t) o= X S10,
(0S01/ 9t) o=~ X Saa, (5.9
(9S00/ 1) p =~ (9S32/ 9t) o=~ (X Sa0+ X 'S0,
((7311/(9t)pf: 0. FIG. 5. Squeezing functio®(p,c,f) of the superradiant laser

with quantum fluctuations of the pump of strendth 0.1.
Since these additional terms have zero means and since the
operatorsC,,C;,C3 from Eq. (2.7) are still conserved, the passive mode. As before, the zero-frequency properties of
stationary solutions found above remain unchanged. Like théhe passive mode are identical to those of the active mode.
noise related to the collective damping the pump noise also
leaves the stability analysis untouched. It is only the output
fluctuations of the active and the passive mode that acquire VI. SPONTANEOUS EMISSION
additive corrections. These are given in the Appendix in their
general form.

Once more all explicit results are significantly simplifie
in the good-cavity limit,é> 1. In this case we obtain for the
amplitude quadrature fluctuation spectrum of the active
mode field outside the cavity

In this section we shall allow for spontaneous emission on
g the transition 2-1 and shall find out its influence on squeez-
ing. It is already well known from the literature that sponta-
neous emission can almost entirely undo all squeezing.
Spontaneous emission of the active medium in the linear
optical amplifier destroys all squeezing of an external
S(p,c,f) squeezed signal already at very Iow_ gain'; such a devicg can
- m] t_herefore not b_e employed for amplification _of no_nclassmal
(5.5) fields [25]. In mc_oh_erently pumped sub-Po_lssonlan lasers
spontaneous emission from the upper lasing level to the
The new squeezing functio(p,c,f) is related to the pre- lower one(i.e., on the lasing transitigror to third levels also
vious Sy(p,c) from (3.13 as weakens the sub-Poissonian character of the laser
radiation [26—29. As we have shown iff4], when the col-
f (1-2p)? lective relaxation -0 is replaced by usual spontaneous
S(p.c,f)=Sy(p,c)— 4110 pi-p) "’ (5.6)  emission, thus bringing our scheme to an ordinary Raman
laser, the maximum obtainable squeezing goes down from
i.e., diminished by an amount proportional to a dimension-100% to only 50%. This result was also found previously by

less fluctuation strength Ritsch, Marte, and Zoller ir{5].
In this section we keep the collective relaxation-D but

r allow for spontaneous emission on the transition 2 (on
f=—. (5.7) this one only, for simplicity. Thus, we have a competition
between collective and noncollective relaxation. Since we
In the most interesting situatioh<1 it is possible to find Wwould like to separate the effects of spontaneous emission
analytically the optimum values of the coupling strenggh ~ and of pump fluctuations, the latter are not considered in this

and the pump strength, which maximize the squeezing Section.
function S(p,c,f) for fixed f. One easily finds To describe a noncollective relaxation on the lasing tran-

co=1, po=F¥2, and the maximum squeezing sition, we introdgce for e_ach atom a cqupli.ng to its own
separate reservoir according to the Hamiltonian

1

<5uout(w)5uout(w,)>: %5(‘”_"0’,)

Smax= S(Po,Co,f)=1—3f238. (5.8
N

A plot of S(p,c,f) is presented in Fig. 5 fof=0.1. .

To investigate the influence of the quantum fluctuations of oH=i ﬁgﬂ;l (d,S5— dLS/lE)’
the pump field on the linewidth v, of the superradiant laser
we have calculated the new low-frequency version of
(bvouw) v @')). We find the linewidth of the superra- whered, and d; destroy and create quanta within tjgh
diant laser not affected at all by the quantum fluctuations ofeservoir. We imagine all reservoirs eliminated by using the
the pump. usual Born and Markov approximations and thus face the

We have also calculated the effect of the pump fluctuaincremental time rates of change for the collective atomic
tions on the squeezing properties and on the linewidth of theariables

(6.9
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In Sec. lll we had not met that alternative since the
(9S02! ) se= = ¥sSoa+ V2752 S617u Schwinger representatidy); =ziTzJ- there employed enforces
: |Sij|>=S;iS;; to begin with. Here, in the presence of sponta-
neous emission, both signs lead to solutions in agreement
(012191 5= — YsS10—~ V2752 (Sha—Si) 7, with the Schwartz inequality.
# Next, we formally considesS;=0 as linear inhomoge-
neous equations for the population differences
(9Sp1/ ) se= — 275>, 77;552, 6.2 S22~ S11, S11—Spo, andSyo— Sy, which we formally solve.
u For self-consistency, the population differences thus found
must sum up to zero; that latter requirement reads, after a

(9Spo/ ) se=0, little rearrangement,
0S11/9t) = — (8S,55/ dt —
(P50l oe™ = (95221 T)se ¥s p\/E(pz_Xz)Szz/Ni(CX2+pz)\/xz_73322/?"\'2}:0-
=278 V272 (7,851t 7St 6.9
m

Obviously, in the fully cooperative casg,=0 this consis-
Here ysocgiz is a constant of noncollective atomic relaxation tency condition is trivially fulfilled; in the present case the
for the transition 2-1 and#,(t), ©=1,2,... N are cor- square bracket must vanish, and that equation now takes the
responding Langevin forces, independent for different atomsiole previously played by the conservation®©§ in nailing
down all stationary means. At this point we may and should
[7,(0), 75 (t)]=(n, (D) pl(t))=5,,8(t—t"), indeed drop the N correction y.S,,/ yN? in the square
bracket, thus implementing the formal limjt— 0. Clearly,
(7,(0)=(n,, (D) 7,(t"))=(7,(D)7,(t'))=0. (6.9  that limit is not equivalent to settings=0 from the outset.
The inequivalence ofs=0 andys;— 0 is somewhat remi-
There is an important Scaling difference between the COIIECniSCent of the Symmetry breaking in second-order phase tran-
EqS. (62) The first ones scale ENZ while the latter are temperature is assigned, by the mean-field equa('wh'mh
proportional Only toN. Therefore, for the semiclassical ap- Correspond to our semiclassical approxima}jm‘]vanishing
proximation,N>1, noncollective relaxation terms are very magnetization in the strict absence of a symmetry breaking
small compared to the collective ones. We may thereforenagnetic fieldh; however, if h#0 is allowed, the limit
eventually confine ourselves to the ||rT’9I’E—>O without in- h—0 leaves a Spontaneous magnetization_
curring more than an error of ordeL/i.e., one inherent in To finally establish the stationary solution in the limit

the semiclassical approximation anyway. Of course, the limit, _,0 we employ the population conservati¢®.11) and
vs—0 must not be taken by blindly setting;=0 in Eq.  arrive at

(6.2. We must first realize that the incoherent ter(6s?)

break the collectivity of the dynamics, i.e., destroy the con- 'S_ /N=x, Sy,/N=—x2/(\cp), S;/N==x/\c,

servation ofC, and C; in Eq. (2.7). Needless to say the

conservation of the number of atoms is retained. A stationary o X2

solution of the Heisenberg-Langevin equati¢®$) with the Soo/N= (1/3)[1t—(1+cp2/x2—20)

incoherent termg6.2) will therefore not connect continu- cp

ously with the previously obtained soluti@8.3) for full co- 2

operativity. - §11/N=(1/3)[1t—(1—2cp2/x2+ c)
To appreciate the point just made, a closer look at the cp

construction of the semiclassical stationary solution is indi-

cated. As previously, wé) drop the time derivatives and the

noise in Eq.(2.6), (ii) degrade operators  numbersiii)

fix an arbitrary phase to make all stationary means real, and

(iv) employ the pump parametprand the coupling strength — Ny

¢ [cf. Egs.(3.D)]. Froma=0, Sy;=S;;=0 we then express a= 13 CX,

a, S, andSyin terms ofSy;=xN andS,,, obtaining

S1o= = (N/e) VX2 — Sl N2, (6.4)

Note that the incoherent correction in the radicand is of order

1/N. We should also mention that in contrast to the fully This is to be confronted with the first of Eq2.12). Here we
cooperative case without spontaneous emission we must nolmave, in fact, two different equations corresponding to two
keep track of thet alternative. In the strict absence of spon- different signs, upper and lower, which stem, in turn, from
taneous emission this alternative also formally arises; howtwo different signs in the mean polarizati®j, in (6.4).

ever, the minus sign leads to a physically unacceptable solu- Solving(6.7) with the lower sign, we obtain the following
tion in conflict with the Schwartz inequalitbsij|2s3i8” . result forx which we shall call the “gamma” solution:

, (6.9

2
_ X
822/N=(1/3)[1tc—p(—2+cp2/x2+c)

with x defined by the following equation:

2(1+c)x*+cep(cpF1)x®+c?pd(p£1)=0. (6.7
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0.75

field intensity
o
logyoS(w)

0.25

0.0 0.25 0.5 0.75 1.0 -10.0 -7.5 -5.0 -2.5 0.0

pump strength p logyo(w/ k)

FIG. 6. Stationary intracavity intensity of the superradiant laser
vs pump strengtip without (uppermost curveand with (o, 8 and
) spontaneous emission for the coupling strerg#D.1.

FIG. 7. Squeezing spectrum witho(dot9 and with spontane-
ous emission(solid curvé for a solution; y,/Ny=5x10"1,
Ny/k,=0.01, c=0.9, p=0.03.

cp(l+c 8(1+c)p(1—p)\ :
= PreD 4 BE IR ) —1). (Bl @) Bl "))
©3 St o) NP @INY)?
o
Obviously, this solution exists for€9p=<1 as does the so- O (5 INy) P+ dy (0N Y+ dp(w/Ny) *+ -
lution (3.3 for full cooperativity. Equation(6.7) with the (6.1
upper sign has two solutions which we shall call “alpha” ) o )
and “beta,” with dimensionless coefficients, . . . in thenumerator and
d;.d,, ... in thedenominator, all of which are independent
, cp(l1—cp) 8(1+c)p(1+p)\¥? of ys. One sees that thé-function peak indeed arises as
Xa,B:m 1= (1——09)2_ : ys— 0. However, forys=0 one power of»? cancels where-

(6.9 upon one comes back to the case of Sec. Ill. A second peak

in the spectrum of Fig. 7 reflects relaxation oscillations typi-
where “+” corresponds to the alpha solution and the cal of the bad-cavity limit to which the figure pertains. Most
“ —" to the beta solution. These two solutions exist for theimportantly, there is a broad intermediate frequency range
pump strengttp in the limits 0<p=p,, wherep,, is equal to ~ Where the squeezing is strong and not qualitatively changed

from the one obtained foy,=0.
1
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A full understanding of why several stationary solutions  We here list the output fluctuations of the active and the
can arise and of their stability properties is possible onlypassive mode. There are three contributions to each of these
after a discussion of submaximal cooperativity =0, fluctuations resulting from the vacuum fluctuating forces of
when c,=<1, cz=<1. This will be treated in a forthcoming the active mode#n,=3,+iA,, the vacuum fluctuating
publication. forces of the passive modg,=2,+iA, and the pump fluc-

While in general multistability turns out to be possible tuationsxz\/;/(EpriAp). In order to save space we here
there is one simple limit, that of weak pumping<€1) and use the abbreviation=w/yN. The output fluctuations of
a bad cavity £€<1), where only thex solution is stable. For the active mode read as
that case we have determined the squeezing spectrum. Figure
7 compares this squeezing spectrum with that of the solution N3(X)3 o(w) + NB(X)Eb(w) + Nﬁ(x)Ep(w)
without spontaneous emission. Obviously, spontaneous U w)= Dy(x) ,
emission leads to the appearence of a new high narrow peak u
around zero frequency. That peak has a heigNty/ v, and
a width= y4, such that the area underneath remains constant S50 gy @) =
in the limit ys— 0, indicating an asymptotié-function peak, ou

APPENDIX: THE OUTPUT FLUCTUATIONS

N2(x)A (@) +N2(X) Ap( @) +NP(X)A 5 )
D,(x) ’




1636 FRITZ HAAKE et al. 54

where N2 S a( @)+ NEX)Sp(@) +NE(X)S o)
é(l:iout((‘)): D ’
4 . ,[p(l+2c)-c 1 u(X)
Dy(x) = (ix)*=(ix) Tivc
N2(X)A (@) + N2(X)Ap( @)+ NE(X)A o( @)
~[pc(3+c—2p) p ) 4pc(1-p) 80 ouf ) = D.(x) :
with
Nf}(x)z—Du(x)JrE (ix)2—ixw 2¢c) ix(1—p)+p(1l—c+2cp)
§ Lre Ng() = 3 1+c ’
N pc(3+c—2p)>
1te /' N%(x)zDu(x)JrZ(ix)zp(l%z?_c
2¢) ix(1—p)—p(c—1+2
NS(X)=—(?C)IX( P) 12(;: i p), oi 2cp(l-p) p(l+2c)—c
B 1+c  &1+c)
2p(1-p)| ™/ c - 2¢ p(4p+2cp—c—3
NE(X):_(? (E (2—4p+ix), +?CI0( p+1ipc c )’
N PP p(1+20)—c_£) )\ 12
S g0 (22 T i 121

c(c—1+2
+ p(—p) _ E(l— C) , 2C
1+c & — ?(1—2p) ,
2 .. p(1+2c)-c ,
N2(x)=—D,(X)+ =| —(iX)*+ix ——— 2c\ix(1—p)—p(1—c+2p)
v 3 1+c NE(x)=—|— ,
v & 1+c
pc(c—1+2p)
- 1+c ' by ) 2p(1+20)—c
N=(X) =D, (x)+2(ix) —17c
2c) ix(1—p)—p(1—c+2pc)
NS(X)=—(? 17c : i 2pc(1—p) p(1+2c)—c
1+c &(1+0)
2p(1-p)\ ¥ c
Ng(x)z(piTcp) —)(ix)z. N pc(1—c+2cp)
3 &(1+0) '
The polynomiald ,(x), D,(x) areP,(ix) andP,(ix) from 2
Eq. (3.8), divided byix. N2y = | 2P e i SR C72P) 1)_
The output fluctuations of the passive mode are v 1+c 1+c 3
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