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Transverse patterns in degenerate optical parametric oscillation
and degenerate four-wave mixing

G. J. de Valca´rcel,1,* K. Staliunas,1,2,† Eugenio Rolda´n,1 and V. J. Sa´nchez-Morcillo1
1Department d’Òptica, Universitat de Vale`ncia, Dr. Moliner 50 E-46100 Burjassot, Spain

2Laboratory 4.42, Physikalisch Technische Bundesantstalt, Bundesalle 100, 38116 Braunschweig, Germany
~Received 14 February 1996!

Transverse pattern formation in both degenerate optical parametric oscillation and degenerate four-wave
mixing is considered both theoretically and numerically. In the limit of small signal detuning both systems are
shown to be described by the real Swift-Hohenberg equation. Contrarily, for small signal and large pump
detunings the Swift-Hohenberg equation is modified differently in both systems, by the appearance of addi-
tional nonlinear terms, which signal the existence of nonlinear resonances that are theoretically studied through
the derivation of the amplitude equation for the roll pattern in both systems. Numerical analysis supports the
theoretical predictions.@S1050-2947~96!07907-3#

PACS number~s!: 42.65.Sf, 42.65.Yj
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I. INTRODUCTION

When studying the spatiotemporal dynamics of a non
ear system inside a resonator with flat mirrors from the th
retical viewpoint there exist two basic alternatives th
complement each other. One of them is the study of so
special patterns such as, e.g., rolls, rhomboids, or hexag
The equations that govern the time evolution of the am
tudes of the different components~in the wave-number do
main! of these patterns are called amplitude equations.
other approach consists in the reduction, under some lim
tions, of the originalmicroscopicequations of the system t
a unique ~when possible! equation: the order-paramete
equation~OPE!. The derivation of this kind of equation is o
great practical and fundamental importance, since the O
allows a simplified treatment of the system space-time
namics ~not constrained to special cases as the amplit
equations! and also interconnects different pattern-formi
systems~either optical, hydrodynamical, chemical, biolog
cal, etc.! @1#. In the field of nonlinear optics both approach
have been used since Coullet, Gil, and Rocca@2# offered a
derivation of the Ginzburg-Landau equation in optics.

Optical parametric oscillation~OPO! has proven to be a
rich system from the point of view of the spatiotempo
dynamics@3–8#. It is a particularly attractive system becau
of its relatively simple mathematical description and beca
of its technological and fundamental relevance. In particu
the work of Oppo and co-workers@3,4# has shown that rolls
play a central role in the pattern formation in degener
OPO ~DOPO!, and Lugiato and Grynberg@7# have related
the emergence of spatial structures with the well-known
pability of DOPO for generating squeezed states of light
a recent work, Brambilla, Camesasca, and Oppo@5# have
also shown the appearance of complicated dynamics w
the Hopf bifurcation for large pump values is reached. Op
and co-workers@6# have described the relative stability b
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tween rolls and other steady patterns such as rhombo
hexagons, and even dodecagons. Finally, Staliunas@8# has
discussed the derivation of OPE’s for the singly and dou
resonant OPO and has obtained a complex Ginzburg-Lan
equation for the first case and a Swift-Honhenberg ty
equation for the second case, similar to that obtained
Mandel, Georgiou and Erneux@9# for nascent optical bista
bility and by some of us for nascent two-photon optical
stability @10#. The treatment in@8# is based on a simple ap
proach of the adiabatic elimination of variables. Here
derive the OPE’s using mathematically rigorous techniq
of multiscale expansions.

The reason for the parallel study of DOPO and degene
four-wave mixing~DFWM! are the well-known similarities
existing between both systems that have been revealed
in their temporal instabilities and in their quantum propert
aspects.

The paper is organized as follows. In Sec. II we der
OPE’s for DOPO and for DFWM for small signal detunin
in the cases of moderate and large pump detuning. For m
erate pump detuning the real Swift-Hohenberg equat
~SHE! is obtained for both systems, revealing that DOP
and DFWM are isomorphic systems for pattern formation
this limit. As rolls are the basic pattern supported by t
SHE, our derivation provides a basis for the understandin
the central role played by rolls in DOPO transverse dyna
ics. For large pump detuning we derive a modified SHE t
contains additional nonlinear terms that signal the appe
ance of a nonlinear resonance that has a huge importan
the properties of both systems. In this second case the O
are different for DOPO and DFWM revealing that the me
tioned isomorphism is limited to a restricted parame
range. In order to study this nonlinear resonance several
plitude equations for rolls are derived in Sec. III, correspon
ing to the cases of small and large pump detuning. An in
polated amplitude equation for rolls is given, which allow
one to study the passage from regimes of negligible non
ear resonance to those where the nonlinear resonance is
appreciated. In Sec. IV a numerical analysis is carried ou
order to illustrate the main conclusions following from th
OPE’s and the amplitude equations. Finally, in Sec. V
main conclusions are outlined.
1609 © 1996 The American Physical Society
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II. DERIVATION OF THE ORDER
PARAMETER EQUATIONS

In this section we present the derivation of the OPE’s
DOPO~Sec. II A! and DFWM~Sec. II B!. In both cases we
consider the limit of small signal detuning and leave to A
pendix A the case of finite positive detuning.

A. Order parameter equations for DOPO

The microscopic equations for DOPO inside a resona
consisting of plane mirrors, in the paraxial approximati
and mean-field limit, read@3#

] tA05g0@2~11 iD0!A01E82A1
21 ia0¹̄2A0#, ~1a!

] tA15g1@2~11 iD1!A11A1* A01 ia1¹̄2A1#, ~1b!

where A0( x̄,ȳ,t) and A1( x̄,ȳ,t) are the normalized slowly
varying complex amplitudes of the pump and signal fiel
respectively. The external coherent field has a normali
amplitudeE8 and oscillates at a frequencyvL . Two longi-
tudinal modes of the resonator of frequenciesv0 andv1 are
assumed to be close tovL andvL/2. D05(v02vL)/g0 and
D15(2v12vL)/2g1 are the detunings, whereg0 andg1 are
the cavity decay rates for each mode.a05c/2kzg0 and
a15c/kzg1 are the diffraction parameters (kz is the longitu-
dinal wave vector of the external field!. Finally, ¹̄2 repre-
sents the transverse Laplacian operator referred to the sp
coordinates (x̄,ȳ).

The validity limits of Eqs.~1! are discussed in detail in
Refs.@3,4#. The more restrictive approximation is the singl
longitudinal mode operation for the subharmonic~that ap-
proximation usually holds for the pump wave because of
use of an external cw injection! since the relatively broad
phase synchronization line for DOPO (109–1012 Hz! forces
the length of the resonator to be correspondingly small~few
millimeters and less!.

In order to simplify as much as possible the forthcomi
calculations it is convenient to rescale time and space c
dinates as

t5g1t, x5 x̄/Aa1, y5 ȳ/Aa1, ~2!

and to introduce new fields,E,X, andY through the change

A05E1~12 iD0!X, A15A11D0
2Y, E85~11 iD0!E.

~3!

The inclusion of a factor involvingD0 in the definition of all
three fields prevents them from growing to infinity asD0
increases in modulus. This greatly simplifies the study of
largeD0 limit, and also has the advantage that the thresh
for signal generation becomesD0 independent, as will be
seen. In this way Eqs.~1! become

]tX52g~11 iD0!~X1Y2!1 i 1
2 ¹2X, ~4a!

]tY52~11 iD1!Y1@E1~12 iD0!X#Y* 1 i¹2Y,
~4b!

where¹2 is the Laplacian operator referred to the new s
tial coordinates (x,y), andg5g0 /g1 . In the followingE is
r

-

r

,
d

tial

e

r-

e
ld

-

taken to be real and uniform in space. In writing Eqs.~4! the
relationa1g152a0g0 has been taken into account.

Equations~4! have the trivial homogeneous solution

X5Y50, ~5!

whose linear stability analysis against space-dependent
turbations of wave vectork yields the eigenvalues

l16~k!5216AE22~D11k2!2,

l06~k!52g@16 i ~D01k2/2g!#, ~6!

with k25k–k. l0 and l1 are the growth exponents ofX
~pump field! andY ~signal field!, respectively~they have this
simple meaning due to the structure of the stability matr
which decouplesX and Y). l0 always has a negative rea
part, whilel1 becomes positive for pump amplitude valu
E>EB(k) with

EB~k!5A11~D11k2!2, ~7!

thus indicating the existence of a bifurcation atEB(k).
This function~7! has a minimum atk5k0 with

k050 for D1.0, ~8a!

k05A2D1 for D1,0. ~8b!

This second case is the most interesting one since the
zero value ofk0 implies the formation of nonuniform spatia
structures~Turing patterns! above the bifurcation threshol
~7! and we will concentrate on this case. Atk5k0 the pump
threshold reduces toEB(k0)[E0 with

E05A11D1
2 for D1.0, ~9a!

E051 for D1,0, ~9b!

which is the threshold for DOPO generation.
For deriving order-parameter equations we will next ma

asymptotic expansions of the fields in terms of a smalln
parameter«. For doing that it is necessary to know how
small increase in the pump amplitude above the thresh
value

E5E01«2E2 ~10!

influences the largest eigenvaluel11 ~6!. Substitution of
~10! into ~6! leads to

l11~k!5211AE0
22~D11k2!21

E0E2

AE0
22~D11k2!2

«2

1O~«4!. ~11!

Particularly, the largestl is l11(k0)5E2«2 for both signs
of D1 , which suggests the introduction of a slow time sca

T5«2t. ~12!

We analyze the case of negative detuning here and leave
case of positive detuning to Appendix A. The derivation
an OPE requires that the Laplacian operator does not ap
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54 1611TRANSVERSE PATTERNS IN DEGENERATE OPTICAL . . .
in the asymptotic expansion atO(«), since in that case only
special spatial structures can be treated. Thus we impose
the spatial part scales as

¹25«¹1
2 . ~13!

Since forD1,0 k0Þ0 @Eq. ~8b!#, a necessary condition fo
the Laplacian operator to be regarded as a small operat
k05O(«1/2), or, equivalently,

D15«d1 . ~14!

This restriction turns out to be sufficient for ensuring that
width ~in k space! of unstable modes is alsoO(«1/2), as can
be easily deduced from Eq.~11!, and so for ensuring tha
~13! holds.

Finally, let us notice that the order ofD0 is not fixed by
the linear stability analysis. Then, we will consider two d
ferent cases for deriving the order-parameter equations:
D0 be of order one and thatD0 be of order«21.

1. Case of finite pump detuning: Real Swift-Hohenberg equatio

Now we proceed to make an asymptotic expansion
Eqs.~1! around the homogeneous steady-state solution~5!:

X5 (
n51

`

«nXn , Y5 (
n51

`

«nYn . ~15!

Let us consider the case of small signal detuning. So
substitute Eqs.~10! and~15! into Eqs.~4!, apply the scalings
~12!–~14!, and solve at the successively increasing order
«. At order« we find

X150, ~16a!

Y15Y1* , ~16b!

soY1 is real. At order«2 we obtain, taking into account Eqs
~16!,

X252Y1
2 , ~17a!

Y22Y2* 52 i ~d12¹1
2!Y1 . ~17b!

At order«3 we only need the equation for the signal fie
that, taking into account Eqs.~16! and ~17a!, reads

]TY15Y3* 2Y32 i ~d12¹1
2!Y21E2Y11~12 iD0!Y1

3 .
~18!

Finally, by adding Eq.~18! with its complex conjugate and
using ~17b! we obtain

]TY15E2Y12Y1
32 1

2 ~d12¹1
2!2Y1 , ~19!

which can be written in terms of the initial parameters and
the signal amplitudeY to leading order in« as

]tY5pY2 1
2 ~D12¹2!2Y2Y3, ~20a!

p5E21. ~20b!
hat

is

e

at

f

e

of

f

Equation~20! is the real Swift-Hohenberg equation~SHE!
@11#, and describes the space-time dynamics of DOPO c
to threshold under small detuning conditions.

2. Case of large pump detuning: Nonlinear resonance

We consider next the case of small signal detuning
above but now with

D05«21d0 . ~21!

Following the same procedures as in the preceding s
section, from the first and second orders in« one obtains
again Eqs.~16!, ~17a!, and

X3522Y1Y2 , ~22a!

Y22Y2* 5 i ~d12¹1
22d0Y1

2!Y1 . ~22b!

Finally, at third order one gets, after Eqs.~21! and~22a! have
been used,

]TY152Y31Y3* 2 id1Y21 id0~2Y21Y2* !1E2Y12Y1
3

1 i¹1
2Y2 . ~23!

By adding Eq.~23! to its complex conjugate and by usin
Eq. ~22b! one finally finds

]tY5pY2 1
2 ~D12¹22D0Y2!2Y2Y3, ~24!

to leading order in«. It is remarkable that Eq.~24! contains
a fifth-order nonlinearity (2D0Y5/2) and also appears a dif
ferential nonlinearity (2D0Y2¹2Y/2), which produce a non-
linear resonance. This equation was first obtained by on
us in Ref.@8# by assuming conditions for adiabatic elimin
tion of the pump field in the DOPO. Notice that one c
think of Eq. ~24! as the OPE for DOPO for small signa
detuning and close to threshold, independently of the ma
tude of the pump detuning: ifD0 is moderate~say order 1!
then the termD0Y2 is O(«2) and thus negligible with respec
to the other terms@in this way the SHE Eq.~21! is recov-
ered#. Incidentally, we note that in the absence of transve
effects (¹2→0) Eq. ~24! reproduces the well-known bista
bility between the trivial solution and the DOPO solution f
D0D1.1.

B. Order-parameter equations for DFWM

The simplest microscopic model for DFWM@12# inside a
resonator consisting of plane mirrors, including diffractio
can be written as

] tA05g0@2~11 iD0!A01E82A0* A1
21 ia0¹̄2A0#,

~25a!

] tA15g0@2~11 iD1!A11A0
2A1* 1 ia1¹̄2A1#. ~25b!

Equations~25! describe the two-photon interaction b
tween two fieldsA0 ~pump! and A1 ~signal! of the same
frequencyvL with a nonlinearx (3) medium.A0 andA1 may
differ, for instance, in their polarization. In Eqs.~25! the
relation between diffractions isa1g15a0g0 , the signal de-
tuning D15(v12vL)/g1 , and the rest of symbols keep th
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same meaning and definitions as in Eqs.~1!. The same re-
marks that were made after Eqs.~1! regarding the validity of
the model apply here.

It is again convenient to use the rescaled time and sp
coordinates defined in Eq.~2! as well as the rescaled an
shifted variables defined in Eq.~3!. The rescaled equation
read

]tX52g~11 iD0!$X1@E1~11 iD0!X* #Y2%1 i¹2X,
~26a!

]tY52~11 iD1!Y1@E1~12 iD1!X#2Y* 1 i¹2Y.
~26b!

It can be seen that the linear stability analysis if Eqs.~26!
leads to the same result as for the DOPO equations with
only difference being thatE2 must be replaced byE4 and
consequently the same scalings must be adopted for
DFWM. Thus we will not give details of the derivation sinc
it is carried out by following the same lines that have be
followed for the DOPO case. For the sake of brevity, we g
the final result. For small signal detuning one obtains

]tY52pY2 1
2 ~D12¹2!2Y22Y3, ~27!

and for large pump detuning one obtains

]tY52pY2 1
2 ~D12¹222D0Y2!2Y22Y31D0

2Y5,
~28!

with p5E21 small. Both Eqs.~24! and ~25! are valid to
leading order in«. Notice that Eq.~27! is isomorphic to Eq.
~20! after change of the variablesY→Y/A2 andp→p/2 in
Eq. ~24!. Thus, both DOPO and DFWM are isomorphic
pattern-forming systems when signal detuning is small. C
trarily, Eq. ~28! is not isomorphic to Eq.~24! because of the
presence of an additional fifth-order term@last term in the
right-hand side of Eq.~28!#, denoting that the isomorphism
does not exist for arbitrary conditions. As will be show
below, this additional fifth-order term can cause the irregu
behavior of~28! for large values of the pump parameterp or
pump detuningD0 .

C. Discussion

The OPE’s that we have derived in the previous subs
tions for both DOPO and DFWM suggest a number
straightforward conclusions. On the one hand, both syst
are isomorphic for not too large pump detuning values, v
fying in this case the real SHE@Eqs.~20! and~27!#. It is well
known that the real SHE exhibits stable roll patterns
negative detuning, and that these rolls destabilize for n
resonant wave numbers through zigzag or Eckhaus insta
ties ~see, e.g.,@1#!. Thus, this result provides analytical su
port to the numerical observation of roll patterns by Op
and co-workers@3,4#. In fact their results show that, for th
DOPO, the validity of the prediction that the rolls are t
basic stable pattern goes beyond the limits of applicability
the OPE, although other patterns can also be found@5,6#.
This indicates the structural robustness of the OPE
DOPO, which is also illustrated by our numerical examp
below.
ial

he

he

n
e

-

r

c-
f
s

i-

r
n-
ili-

f

r
s

For large values of the pump detuning, a modified SH
has been obtained, the modification consisting in the app
ance of additional nonlinear terms@Eqs.~24! and ~28!#. The
isomorphism between DOPO and DFWM is no longer ve
fied in this limit although their respective OPE’s continue
be similar. Recall that Eq.~24! was obtained by one of us@8#
by following an adiabatic elimination procedure. Here w
have shown that this equation is valid independently of
values of the relaxation constants. These equations ha
special interest since the presence of the additional hig
order nonlinearities signals the existence of a nonlinear re
nance in the system which is investigated in the next sec
for the roll pattern.

Let us finally comment that along all the previous deriv
tions the relative decay rateg has been implicitly assumed t
be O(1), although we have checked that the derivations
also valid for arbitrarily largeg ~that would correspond to
the adiabatic elimination of the pump field!. On the contrary,
in the caseg<O(«) no OPE can be derived.

III. AMPLITUDE EQUATIONS FOR ROLLS

In this section we derive the amplitude equation for ro
for both DOPO and DFWM. We make this derivation sta
ing from the microscopic equations and not with the OPE
The main reason for deriving the amplitude equation fro
the microscopic equations is that we need not limit oursel
to the case of small signal detuning and thus a more gen
amplitude equation can be obtained if one derives it star
from the microscopic equations. In the following the sign
detuningD1 is assumed to be negative since only in that c
may nonuniform patterns appear@Eq. ~8b!#.

For deriving the amplitude equation for rolls we assum
small value of the pump above threshold@Eq. ~10!# and in-
troduce into the microscopic equations~4! an expansion of
the signal field of the form

Y5~Ceik0x1C* e2 ik0x!1O~«2!, ~29a!

C5«B, ~29b!

that is a one-dimensional~1D! structure consisting of rolls o
spatial frequencyk0 oriented parallel to they direction to
leading order in« when the amplitudeB is constant. Never-
theless apart from thek0 mode ~the most unstable mode!
other modes with spatial frequencies close tok0 have a posi-
tive eigenvalue@see Eq.~11!#. As usual@13#, in the vicinity
of k05(k0,0) the domain of these amplifiedk modes has a
width dki along the direction parallel tok0 of order «/k0
~provided that the pump above threshold is of order«2), and
a widthdk' along the direction perpendicular tok0 of order
A«, as can be deduced from Eq.~11!. Then we must intro-
duce a multiple spatial scaling in order to take into acco
the appearance of very different spatial scales. Of course
multiple spatial scaling will be different depending on th
order of magnitude of the signal detuningD1 , which governs
the magnitude ofk0 , and thus that ofdki .

For D15O(1) @k05O(1)#, the appropriate multiscale
expansion is

x→x1«21u, ~30a!
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y→«21/2v, ~30b!

that leads to the expansion of the Laplacian operator

¹25L01«L11«2L2 , ~31a!

L05]x
2 , ~31b!

L152]x]u1]v
2 , ~31c!

L25]u
2 . ~31d!

Alternatively forD15O(«21) @k05O(«21/2)# the appro-
priate multiscale expansion is

x→«21x01«23/2u, ~32a!

y→«21/2v, ~32b!

that leads to the expansion of the Laplacian operator

¹25«21L211«L11«3L3 , ~33a!

where

L215]x0

2 , ~33b!

L1 is given by Eq.~31c! andL3 has the same expression
L2 in Eq. ~31d!.

Apart from the order of magnitude ofD1 we must also
distinguish between two basic possibilities for the order
magnitude of the pump detuningD0 ~order one or order
1/«) related to the absence or existence of a nonlinear r
nance, as suggested by the previous OPE’s. Conseque
we can derive several different amplitude equations depe
ing on the orders of magnitude of both detunings. Althou
none of the amplitude equations will be valid for all th
possible orders of magnitude of the signal and pump de
ings, it will be possible to construct by interpolation an a
plitude equation that is valid in all the limits of interest.

A. Amplitude equation for rolls in DOPO

As shown in Appendixes B and C, the amplitude equat
for rolls in DOPO reads, in terms of unscaled variables,

]tC~x,y!5pC2~21a2!uCu2C2 1
2 D0

2~21a!2uCu4C

2 1
2 L2C2 1

2 D0@~22a!C2L* C* 12auCu2LC

1~21a!L~ uCu2C!#, ~34a!

whereC is defined by~29a!, and

a5S 11D0
2

11~D022D1 /g!2D 1/2

, ~34b!

L52ik0]x1]y
2 . ~34c!

Equation~34a! is an interpolation of the amplitude equatio
obtained in the casesD0 and D1 of order one@Eq. ~B5! in
Appendix B# andD0 andD1 of order 1/« @Eq. ~C9! in Ap-
pendix C# and is valid for any value of the detunings, whe
everp5E21 is small. The same Eq.~34a! is obtained from
f

o-
tly,
d-
h

n-
-

n

the Swift-Hohenberg equation~20! and its generalization to
nonlinear resonance, Eq.~24!, when the corresponding limits
are taken in Eqs.~34a! and ~34b!.

We can look now for an exact stationary solution of E
~34a!. Given the rotational invariance of the problem w
choose to study a roll oriented along they direction:

C~x,y!5ceikx, ~35!

taking c as a real quantity without loss of generality. On
easily gets

~21a!2D0
2C412@21a222D0~21a!k0k#C2

22~p22k0
2k2!50. ~36!

This stationary solution can be shown to coincide with t
resonantroll solution (k50) derived in @3#, for not large
D0 .

In Figs. 1~a! and 1~b! the squared amplitudec2 of the roll
solution, as given by~36!, is plotted vsk for different values
of the pumpp given in the figures. For low pump detuning
@D050 in Fig. 1~a!# the usual dependence as observed in
Swift-Hohenberg model@1# is noted. Nevertheless increasin
pump detuning~in modulus! causes the nonlinear resonan
to appear in Fig. 1~b! (D0525): the maximum emission is
not obtained fork50 ~linear resonance! but varies as the
pump increases; the larger the pump, the further the m
mum is located from the linear resonance. For positiveD0
the behavior is similar to that displayed in Fig. 1~b! but with
the curves extending towards positivek’s consistent with
OPE ~24!: since the linear operator@the second one on th
right-hand side~rhs! of ~24!# is negative~it is a squared
quantity affected by a minus sign! the maximum emission
will be reached when it is null, and this depends on the s
of D0 . With the aim of illustrating this point in a simple bu
not rigorous way we can substitute the Laplacian in~24! by
2(k01k)2, wherek0

252D1 , assuming that the largest con
tribution to it is due to a pure roll of spatial frequenc
(k01k). Then the linear operator is approximately written
2(1/2)@2k0

21(k01k)22D0Y2#2 and one concludes tha
the squared amplitude of the roll at its maximumcmax

2

}@(k01k)22k0
2#/D0 . Thus D0 and k must have the same

sign at the maximum ofc2. This simple reasoning is consis
tent with the actual value of the wavenumberk for which the
intensityc2 is maximum. It is simple to obtain from Eq.~36!
that the maximum ofc2 is given by

cmax
2 5

p

21a2 ~37a!

and is reached atk5kNLR , with

kNLR5
21a

2~21a2!

pD0

k0
, ~37b!

thusk andD0 must have the same sign at the maximum
c2. As a further illustration of the nonlinear resonance w
plot in Fig. 1~c! the dependence of the roll intensityc2 as a
function of pumpp for different values of the spatial fre
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quencyk indicated in the figure, for the same parameters
in Fig. 1~b!. Except for the linearly resonant roll (k50) the
intensities of the rest of the rolls show two branches,
lower one always being unstable. It is to be remarked tha

FIG. 1. ~a! Dependence of the DOPO roll intensityc2 @Eq. ~36!#
on k for resonant pump (D050), D1525 and the four values o
the pump above thresholdp given in the figure.~b! As in ~a! but for
D0525. ~c! Dependence ofc2 with p for the same parameters a
in ~b! and the four values ofk given in the figure.
s

e
o

roll solution exists forp,0 thus preventing the existence o
bistability between the trivial and the roll solutions, as can
deduced from Eq.~36!.

B. Amplitude equation for rolls in DFWM

In the case of DFWM the amplitude equation for ro
reads, as shown in Appendixes D and E, in terms of unsc
variables,

]tC~x,y!52pC22~21b2!uCu2C24D0
2~11b!uCu4C

2 1
2 L2C2D0@~22b!C2L* C* 12buCu2LC

1~21b!L~ uCu2C!#, ~38a!

where

b5S 11D0
2

11~D024D1 /g!2D 1/2

, ~38b!

andL is given by Eq.~34c!. As before, Eq.~38! is an inter-
polation of the amplitude equations obtained in the ca
D0 and D1 of order one@Eq. ~D3! in Appendix D# and D0
andD1 of order 1/« @Eq. ~E7! in Appendix E# and is valid, in
principle, for any value of the detunings.

Again we look now for the stationary solution of Eq
~38a!:

2~11b!D0
2c41@21b222D0~21b!k0k#c22~p2k0

2k2!

50. ~39!

Although Eq. ~39! looks very similar to the amplitude
equation Eq.~36! for rolls in DOPO, their solutions differ
qualitatively for some parameter sets. Figure 2 shows
predictions of Eq.~39!. For small values of the pump detun
ing D0 the same behavior as in the DOPO case@Fig. 1~a!# is
observed, while for increasingD0 ~in modulus! qualitative
differences are observed. In Fig. 2~a! we plot the roll inten-
sity c2 as a function of the roll spatial frequencyk for sev-
eral values of the pumpp indicated in the figure and
D05D1525. If for small pumps the nonlinear resonan
manifests itself in a way similar to the DOPO case@Fig. 1~b!#
for larger pumps~but as small as 0.02! the prediction of Eq.
~39! clearly fails since it gives rise to divergent solutions f
negativek’s. Moreover, any ‘‘sensible’’ curve in Fig. 2~a!
has a nonsense companion~e.g., the upper-left curves corre
sponding top50.013 and 0.016!. These spurious curves ex
ist even for smaller pumps~e.g., forp 5 0.005, not shown in
the figure! and correspond to large negative values ofk and
large intensities, thus not fulfilling the smallness requi
ments assumed in the derivation of the amplitude equa
~39!. We can understand this negative result as a direct c
sequence of the structure of the OPE for DFWM~28!. Dif-
ferently from the OPE for DOPO@Eq. ~24!# in the DFWM
case there exists an additional fifth-order nonlinearity@last
term on the rhs of Eq.~28!# which is positive and destabi
lizes the solution for sufficiently large pumpp and pump
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detuningD0 . Thus we conclude that both the OPE and t
amplitude equation for rolls in DFWM are of limited valid
ity.

Let us finally discuss the phenomenon of bistability b
tween rolls and the trivial solution in DFWM. In Fig. 2~b! we
plot the pump dependence of the roll intensity as given
Eq. ~38! for the parameters of Fig. 2~a! and several values o
k indicated in the figure. It is evident that roll solutions ex
below the DFWM generation threshold~p50!, differently
from the DOPO case. Nevertheless this bistability occurs
large values ofuku thus corresponding to badly behaved res
nance curves, as discussed above in Fig. 2~a!. So it is not
clear whether these bistable states can actually be foun
DFWM.

Up to here we have elaborated on a theoretical appro
to the description of both DOPO and DFWM. In the ne
section we show numerical results obtained by integration
the microscopic equations, illustrating the theoretical pred
tions and also showing some other features.

FIG. 2. ~a! Dependence of the DFWM roll intensityc2 @Eq.
~38!# on k for D0525, D1525 and the four values of the pum
above thresholdp given in the figure.~b! Dependencec2 with p for
the same parameters as in~a! and the four values ofk given in the
figure.
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IV. NUMERICS

We have performed a series of numerical experiment
order to test the predictions derived from the OPE’s a
amplitude equations derived in the preceding section
DOPO and DFWM. We have numerically integrated the i
tial set of microscopic equations for both DOPO and DFW
by using the split-step technique. In this method the lo
terms ~pump, losses, nonlinear coupling! are calculated in
the space domain while the nonlocal terms~diffraction for all
waves! are calculated in the spatial wave-vector domain.
fast Fourier transformation is used to shift from the space
the spatial wave-number domain in every time step. Sev
spatial grids were used ranging from (64364) to
(1283128). Periodic boundaries were used in all the n
merical calculations. In order to have a larger flexibility
the numerical calculations we have integrated the origi
equations~1! for DOPO and~25! for DFWM, instead of the
normalized ones, Eqs.~4! and ~26! respectively, which are
more suited for theoretical treatments. Thus, in this sec
the wave numbers are referred to the unscaled space
ables, and the value of the diffraction coefficientsa0 and
a1 must be specified. In order to avoid misunderstandings
denote byK a generic wave number and byK0 the wave
number corresponding to the linear resonance.

We built the numerical experiments with the intention
checking the following aspects of the OPE’s.

~i! Show that the roll pattern of the initial DOPO micro
scopic equations behave similarly to the rolls of the SH
For this purpose we numerically calculated the stability li
its of the rolls in DOPO, and compared with those for rolls
the SHE. As in the SHE, we have found that the rolls lo
their stability through zigzag and Eckhaus instabilities.

The stability analysis of the rolls only provides inform
tion about where the rolls are stable or not in the param
space, but it says little about the final states after the oc
rence of the instability. We also investigated numerically t
‘‘post-zigzag’’ and the ‘‘post-Eckhaus’’ states.

~ii ! As found recently by Price and co-workers@14# the
purely cubic SHE, besides the rolls, also supports sta
hexagons. These hexagons are characterized by the pre
of a plane-wave component (k50) in addition to the three-
roll components with an angle of 2p/3 in between. We have
also found these hexagons by direct numerical integration
the DOPO equations. We show that there exists a domai
bistability between the hexagon and the roll patterns in
DOPO, exactly as follows from the analysis of SHE@14#.

Regarding the DFWM, its isomorphism with DOPO clo
to the generation threshold for small pump detuning in
cates that the behavior of both systems must be similar
our numerical analysis of DFWM the same patterns and p
nomena occurring in DOPO were observed: rolls, Pr
hexagons, Eckhaus and zigzag instabilities. Thus the pre
tation of these calculations for DFWM would be simply
repetition of the results for DOPO. For this reason we w
only present some numerical results emphasizing not
similarities, but the differences between these systems:

~iii ! As shown in Sec. III there is a nonlinear resonance
the spatial wave-number domain for both DOPO and DFW
when the pump detuning is large enough. This nonlin
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resonance means that the value of the resonant wave nu
for a particular roll solution depends on the amplitude of t
roll. We have checked this particular form of the resonan
curve by integrating numerically the microscopic equatio
for large pump detuning. We have found good corresp
dence with the curves of the nonlinear resonance that fol
from the amplitude equations for rolls@Eqs. ~36! and ~38!#.
The comparison of the nonlinear resonance curves for DO
and DFWM shows that the already noted similarity betwe
both systems is limited and new phenomena appear.

A. Rolls and their instabilities

The stability of the roll pattern in DOPO is a quite we
established fact@3,4#. We have also found that rolls are th
very basic pattern of DOPO in most of the numerical expe
ments. This fact already allows one to expect some furt
relation between the DOPO and the SHE~given that the
basic solutions of the SHE are rolls!, not only restricted to
the small signal detuning limit where the SHE was deriv
for DOPO. The next step in checking this DOPO-SHE an
ogy is to compare the stability region of the rolls in bo
systems of equations. We concentrate on the resonant p
caseD050 since in this limit the nonlinear resonance is n
expected.

The roll solution to the SHE

Y5~ceiKx1c* e2 iKx!1O~«2!, ~40!

with c5O(«) and p5O(«2), has an intensity
c25p2(K2K0)2 @1#. In particular, steady states exi
whenever (K2K0)2<p, and the equality defines the so
called neutral stability curve. In the optical context we ha
K0

252D1 /a1 ~the resonant roll!, and thus the intensity read

c25p2~K2A2D1 /a1!2, ~41!

so its maximum valuecmax
2 5p is reached atK5K0 . The

standard analysis of rolls in the SHE@1# yields that they are
Eckhaus-unstable if

p.~K2K0!2.p/3, ~42a!

or, alternatively, if

c2,2p/352cmax
2 /3. ~42b!

In the numerical integrations the allowed values for t
wave numbersK are discrete, so in order to check the abo
predictions in a continuous way it is more convenient
perform the integrations by fixingK and varying the signa
detuningD1 ~or, equivalently, varyingK05A2D1 /a1). In
order to fix K an initial seed of the form
„Y5cos/(Kx), X50… is used. Thus, according to the SH
result rolls must be Eckhaus-unstable when signal detun
D1 is large enough for their intensityc2 @Eq. ~41!# to verify
condition ~42b!. As is well known, the Eckhaus instabilit
occurs equally for the rolls with wave numbers shor
(K,K0) or larger (K.K0) than the resonant one. Neverth
less, in the former case the zigzag instability is also pres
@1# and so, in order to check the Eckhaus instability alone
have initially restricted ourselves to a pure 1D case~this is
ber
t
e
s
-

w

O
n

i-
er

d
l-

mp
t

e

e

g

r

nt
e

easily done in the equations by simply canceling the sec
derivative with respect to they coordinate!.

In Fig. 3 the stability analysis of the rolls is presente
Keeping a constant value of the pumpp and a constant value
of K ~which was taken to be the resonant mode
D1522.842 45!, we slowly changed the value of the sign
detuning~and, consequently, the value ofK0) and measured
the intensity of the rolls. We found that the rolls were stab
for anyK ~when they existed! if the fields were not perturbed
during the calculation. These perturbation-free computati
allowed us to plot the dependence of the intensity of the
patterns on the signal detuning both in Eckhaus-stable~filled
squares! and unstable~open squares! domains. To observe
the instability of the rolls, a small external perturbation
necessary, since the split-step technique yields no nois
the spatial wave-number domain except maybe on the sp
subharmonics. The external perturbations seed the pos
Eckhaus instability. As the filled squares in Fig. 3 indica
the rolls are Eckhaus-stable forc2.2cmax

2 /3ca. For large
enough detuning~positive and negative!, i.e., when the am-
plitude of rolls is c2,2cmax

2 /3ca, the Eckhaus instability
occurs. We thus find that the numerically calculated insta
ity limits coincide well with those following from the theo
retical analysis not only for small pump values, but also
quite moderate ones~a few times over threshold, see ca
tion!.

For the sake of comparison the analytically calcula
resonance curves of the rolls@Eq. ~36!# ~solid lines! are also
shown. A surprisingly good correspondence is obser
@note the values of the pump parameter and the large va
tions of the detuningD1 with respect to its central~resonant!
value#. The main differences are quantitative and concern
fact that in general the numerically calculated roll-intens
versus detuning curves are broader than those obtained
the amplitude equation. This fact signals the presence

FIG. 3. The total signal field intensity of one dimensional ro
pattern as a function of the signal detuningD1 . Empty ~filled!
squares indicate unstable~stable! rolls. The values of the pump
parameter are, from the lower to the upper curve,p50.25, 0.5, and
0.75. The analytical results@obtained from Eq.~36!# are represented
by the solid lines. The rest of the parameters area150.002, a0

5a1/2, D0 50, andg05g151.
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some ‘‘innocent’’ higher-order nonlinearities in DOPO
which bring some quantitative discrepancies, but do not l
to any qualitative change.

We note that, in agreement with the SHE prediction@15#,
the Eckhaus instability in DOPO manifests itself through
transient in which the initial off-resonant roll pattern is su
stituted by a different roll pattern that is closer to resona
~although, in general, not necessarily by the resonant r!.
Figure 4 illustrates the scenario of this process of subs
tion, mediated by the Eckhaus instability.

As commented above, in the 2D case in addition to
Eckhaus instability there exists another type of instability
the rolls: the zigzag instability. From the analysis of the SH

FIG. 4. Scenario of Eckhaus instability for one-dimension
rolls. ~Left! temporal evolution of the spatial distribution of th
signal field,~right! its spatial Fourier spectra. The spatial coordina
is horizontal~128 pixels! and the time runs from top to bottom ove
Dt 53.5. p 5 0.75,D1523.9 and the rest of the parameters as
Fig. 3
d

e
l
-

e
r

@1# we know that the zigzag instability affects any roll sol
tion with a wave vector shorter than the resonant o
K,K0 . However, little is known about the ‘‘post-zigzag
states even in the SHE. It is not clear in general whether
zigzags are stable solutions, or they are only an intermed
solution until the system reaches a different roll pattern t
is closer to the resonance.

We cannot give a definitive answer to this question. O
numerical simulations indicate that zigzagged rolls in DOP
are stable if their original wave numberK is close to the
zigzag instability boundaryK5K0 ~but inside of the zigzag
instability domain! and that they are unstable whenK falls
deep inside the zigzag instability domain, thus playing o
an intermediate role in the last case.

The scenario we have observed in the case of unst
zigzagged rolls is the following:~i! the appearance of two
resonant roll components K615(K,6Kzz), with
uK61u5K0 ~or, equivalentlyKzz

2 5K0
22K2), due to the zig-

zag mechanism, in addition to the initial nonresonant r
(K,0); ~ii ! the decay of the initial roll due to competitio
with the growing resonant componentsK61 and the growth
of other weak ‘‘harmonics’’ Kn5(K,nKzz),
n562,63, . . . ; and~iii ! the competition between the tw
resonant componentsK61 , and the survival of only one o
them, thus the original roll of spatial frequencyK being re-
placed by aresonantroll with different orientation with re-
spect to the original one. The series of plots in Fig. 5 illu
trates this scenario.

Figure 6 shows an example of a stable zigzagged roll
all the cases in which we have found these stable zigzags
only were the two strong components atK61 present but also
relatively strong components atK62 , at least, were apparen
differently from the transient scenario described above
which these ‘‘harmonics’’ were much weaker~compare Fig.
6 with Fig. 5!. This leads to the suggestion that the prese
of at least five relatively strong roll components is necess
for stabilizing the zigzags. This would happen when t

l

f

-
in
FIG. 5. Unstable zigzag for
D1523 and p50.75. ~left! the
series of spatial distributions o
field intensity, ~right! their corre-
sponding 2D spatial Fourier spec
tra. The other parameters are as
Fig. 3. The time interval between
the plots isDt528. The dimen-
sion of the spatial grid is 323 32
pixels.
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1618 54G. J. de VALCÁRCEL et al.
higher roll components fall inside the instability ring whic
in its turn requires the initial roll to be close to resonance

Our numerical calculations support this conclusion. F
instance, the unstable zigzagged roll in Fig. 5 was obtai
for an initial wave numberK more off-resonant than tha
corresponding to the stable zigzagged roll in Fig. 6~see cap-
tions!. However, the boundary of the stability of the zigz
has not been calculated precisely, because of the dras
slowing down of the zigzag decay processes close to
expected boundary, and as a consequence the incre
computer time consumption.

B. Price hexagons„hexagons through zero-mode coupling…

As shown by Price@14~a!# and extended by Dewellet al.
@14~b!# a system with a purely cubic nonlinearity, such as
Swift-Hohenberg model, can also support stable hexag
These hexagons consist of three roll components at mu
angles of 2p/3, plus a non-null plane-wave~zero-mode!
component. The presence of the plane wave creates
squared nonlinearity necessary for supporting the mutua
teraction of the roll components in the hexagons@1#.

In order to obtain these hexagons one must necess
seed them into the initial conditions for the numerical calc
lations. Our numerical simulations starting from random i
tial distributions lead to the excitation of rolls, because o
the resonant spatial wave numbers survive in the initial st
of the linear growth.

We investigated numerically the stability of these Pr
hexagons. Figure 7 shows that the hexagons can coexis
gether with the rolls in DOPO for a sufficiently large ran
of the pump and detuning values. The domain of bistabi
between both patterns becomes smaller as the pump is
creased, and eventually disappears for a small enough p
leaving only rolls in this case, in agreement with@14#.

We investigated in more detail the roll-hexagon compe
tion by varying the signal detuning. As Fig. 7 indicates t
resonant signal detuningD1 for hexagons~that for which the
pattern reaches its maximum intensity! is shifted with respect
to that for rolls. The reason for this resonance shift for he
gons is the presence of the zero mode: this mode requir
not very depressed gain in order to grow up, which is p
duced by bringing the detuningD1 closer to zero.

FIG. 6. Stable zigzag forD1522.2, andp 50.75. ~Left! the
spatial distribution of field intensity.~Right! its corresponding spa
tial Fourier spectra. The rest of the parameters as in Fig. 3. N
however, that rolls with a different value of vectork have been
analyzed in this 2D case, which results in a different value for
resonant signal detuningD1521.85. The dimension of the spatia
grid is 323 32 pixels.
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By varying the signal detuning the Price hexagons lo
their stability against the rolls. One scenario of the subst
tion of hexagons by rolls for a detuning larger~smaller in
absolute value! than the resonant one for hexagons is illu
trated by the series of plots in Fig. 8. We note that the he
gons lose their stability with respect to a roll with a smal
value of the spatial wave numberK than that of the hexagon
~compare the first and the last plots in Fig. 8!. When the
hexagons are detuned towards smaller values of signal
tuning~larger in absolute value!, then they lose their stability
with respect to one of the roll components already presen
the hexagon.

The series of plots in Fig. 8 may be viewed as one of
instability scenarios of the hexagon pattern. The hexago
being more complicated than rolls, possibly contain als
richer family of instabilities. However, the detailed analys
of the instabilities of hexagons falls outside the scope of
present paper.

C. Nonlinear resonance

As has been discussed in Sec. III both DOPO and DFW
contain nonlinear resonances. We have checked the form
the nonlinear resonance numerically. For this purpose
fixed the number of stripes in the roll pattern in the integ
tion domain~thus fixing a constant value of the vectorK) by
seeding a particular roll pattern in the initial distribution f
the signal wave, as we have done in the previous nume
The interactive interface for numerical programs allowed
to vary the values of the pumpE and the detuningD1 during
the calculations, which enabled us to find not only the sta
but also the unstable branches of the resonance curve.
numerical integration was performed without perturbing t
fields in order to avoid possible instabilities of the rolls.
the following two subsections we show the results obtain
both in DOPO and DFWM.

e,

e

FIG. 7. Total intensity of numerically calculated hexagonal p
terns ~squares!, and rolls ~solid line!, as a function of the signa
detuning. The empty~filled! squares indicate unstable~stable! hexa-
gons. The values of the pump parameterp are 0.5, 1, and 1.5 from
bottom to top. The rest of the parameters area150.004,
a05a1/2, D050, andg05g151.
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FIG. 8. The scenario of the in
stability of hexagons forp51,
D1521.25 and the rest of the pa
rameters as in Fig. 7. The time in
terval between first and last plot i
Dt5170 and the plots are equi
distant in time. The dimension o
the spatial grid is 323 32 pixels.
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1. Nonlinear resonance in DOPO

As discussed in Sec. III A rolls in DOPO are described
Eq. ~36!. The behavior of the intensity of these rolls
clearly influenced by the nonlinear resonance, as show
Fig. 1~b!. Particularly Eq.~37b! shows that the roll whose
intensity is maximum for a given pumpp has a wave numbe
k01kNLR . This means that a roll of fixed wave numberK in
the numerical integrations will reach its maximum intens
at a signal detuning valueD1

NLR given by K5K01KNLR ,
with K NLR5kNLR /Aa1 and K05A(2D1 /a1) @due to the
normalization~2! of transverse variables used in the theore
cal treatment#. SincekNLR is small, as has been assumed
the derivation of the amplitude equations for rolls, Eq.~36!,
we can writeK2>K0

212K0K NLR which, making use of Eq
~37b! yields

D1
NLR5p@~21a!/~21a2!#D02a1K2. ~43!

This means that the roll of wave numberK is resonant for
signal detuning values that grow linearly with pumpp and
pump detuningD0 . The previous reasoning does not ta
into account thata is both D0- and D1-dependent@Eq.
y

in

-

~34b!#. Nevertheless,a does not vary sensitively unless larg
variations of the detunings are made.

Figure 9 displays the resonance curves for DOPO on
plane ^D1 ,A1

2& for different values of the pump. The reso
nance curves are tilted as expected. The numerical res
~symbols! fit well with those obtained from Eq.~36! ~solid
lines! even for pump values far beyond the assumptio
made in deriving Eq. ~36!: for instance,
p50.2 @«>0.445O(1)# in the upper curve. This indicate
the structural robustness of the amplitude equation
DOPO.

One of the consequences of the nonlinear resonance i
appearance of bistability in DOPO between the roll solut
at a givenK and the trivial solution for sufficiently large
values of the pump. Nevertheless, any small perturba
will destabilize the trivial solution and a roll pattern with th
appropriate wave number will grow.

The other consequence is that the boundaries of the E
haus and zigzag instabilities are expected to be also til
which can initiate long and complicated transients. The ter
of differential nonlinearity in Eq.~34! can also lead to dif-
ferent instabilities of rolls with respect to the SHE case,
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1620 54G. J. de VALCÁRCEL et al.
skew-varicose or others@1#. We also note that the term
causing the nonlinear resonance are nonvariational ones
modified SHE Eq.~24! does not posses an action integr
differently from the SHE@1#. Consequently, one can als
expect dynamical solutions~like periodic or maybe chaotic
regimes! in the modified SHE, differently from the SHE cas
where all the end solutions are stationary and correspon
local or global potential minima.

2. Nonlinear resonance in DFWM

As already commented, the differences between DO
and DFWM are expected to occur for large pump detunin
when the nonlinear resonance appears, as has been illus
in Figs. 1~b! and 2~a!.

We have obtained numerically the nonlinear resona
curves for DFWM in order to check the validity limits of Eq
~39!. Figure 10 displays a family of nonlinear resonances
the roll pattern for three different~moderate! values of the
pump detuningD0 , corresponding to both numerical~sym-
bols! and analytical results~lines!. In this case the agreemen
is not so good as in the DOPO case but it is still reasona
especially for the smaller values of the pump detuning~see
caption!. Note that the inclination angles of the resonan
curves are roughly inversely proportional to the pump det
ing exactly as predicted in the DOPO case@cmax

2 /kNLR from
Eqs.~37!#. Contrarily, the maximum value of the amplitud
of the rolls was found to be strongly dependent on the pu
detuning, differently from the DOPO case in which th
value depends only slightly onD0 .

For larger values of the pump detuning also qualitat
differences between DOPO and DFWM appear. This is ill
trated in Fig. 11 which has been calculated forD052. We
note that the whole resonance curve could not be tra
Also the presence of another branch of solutions is sho
By increasing detuning from approximately26 the branch
of ~roll! solutions could be followed up to a value of arou

FIG. 9. Total intensity of the signal field for a one-dimension
roll pattern of spatial frequencyK510p as a function of the signa
detuning D1 for nonzero pump detuningD055 ~nonlinear reso-
nance!. The values of the pump parameterp are 0.025, 0.05, 0.1
and 0.2 from bottom to top. The analytical results@obtained from
Eq. ~36!# are represented by the solid lines. The rest of the par
eters area1 5 0.005 065,a05a1/2, andg05g151.
the
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to
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s,
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e
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e
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23.8. At this detuning value this branch of solutions beca
unstable and a sudden transition to a different branch of
lutions ~open squares in Fig. 11! was observed, a domain o
bistability existing between the two branches of solutions

The appearance of a new branch of solutions~which ac-
tually seems to have exactly the same spatial distribution
the usual rolls! is impossible for the SHE as well as for th
DOPO equations, and signals the end of the similarity
tween the DOPO and DFWM. The new branch of solutio
appeared for a value of the pump detuning between 1.5 a
in our numerical calculations. This can be related to
breakdown of the amplitude equation for rolls in DFWM th

l

-

FIG. 10. Numerical~symbols! and analytical~lines! nonlinear
resonance curves for DFWM, for a roll pattern of spatial frequen
K510p, and different pump detuning values:D050 ~circles!,
D051 ~open squares!, andD051.5 ~filled squares!. The analytical
results come from Eq.~38!. The rest of the parameters arep50.2,
a15a050.005 065 andg05g151. Note that the normalized inten
sity c2 of the signal field is plotted here@c25A1

2/(11D0
2)#, dif-

ferently from Fig. 9 for the DOPO case, for the sake of bet
comparing the curves.

FIG. 11. As Fig. 10 but forD052. The nonlinear resonanc
curve is broken~compare with Fig. 10!, and a new stable solution
branch~open squares! appears.
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FIG. 12. Temporal evolution of the spatia
distribution of the signal field~left! and of its
spatial Fourier spectrum~right! in the DFWM
chaotic regime. The parameters arep50.27,
D0525, D1523, and the rest of the paramete
as in Fig. 10. The time changes from top to bo
tom overDt52.5 and the spatial scale~horizon-
tal! has 128 pixels.
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was noted in Fig. 2~a! and can be seen in Figs. 10 and 11:
D0 is increased from 1.5~upper curve in Fig. 10! to 2 ~Fig.
11!, the resonance curve gets broken.

Which is the behavior of DFWM for parameters far aw
from the range of validity of its OPE? The answer to th
question falls outside the scope of the present paper and
serves a separate study. Our preliminary numerical calc
tions show the following features, different from those e
pected from the analysis of the OPE and amplitude equa
of DFWM: ~i! stationary rolls with an additional zero com
ponent in the 1D case;~ii ! coexistence of two rolls with two
different spatial wave numbers in the 1D case;~iii ! Price
hexagons in the 2D case that do not coexist with the rolls
win in a roll-hexagon competition; and~iv! oscillatory re-
gimes involving different spatial degrees of freedom.

As an example, Fig. 12 displays a space-time plot o
nonstationary regime of DFWM in the 1D case, after tra
sients have decayed. This nonstationary regime involve
regular spatiotemporal oscillations, resembling the s
tiotemporal intermittency.

V. CONCLUSIONS

Transverse pattern formation in degenerate optical p
metric oscillation~DOPO! and degenerate four-wave mixin
~DFWM! have been considered. For small signal detun
the Swift-Hohenberg equation~SHE! has been shown to de
scribe both systems. Nevertheless, this isomorphism br
down for large values of the pump detuning. This manife
itself through a modification of the SHE involving the a
pearance of higher-order nonlinearities, that are different
DOPO and DFWM. The role played by these extra terms
to produce a nonlinear resonance in both systems. In the
of DFWM the modified SHE shows a pathological behav
since it does not saturate for large values of the intensity
the signal field, far above the generation threshold. For p
tive signal detuning the real Ginzburg-Landau equation
obtained for both DOPO and DFWM.

Amplitude equations for roll patterns have been obtain
s

e-
a-
-
n

ut

a
-
ir-
-

a-

g

ks
s

r
is
se

r
f
i-
s

d

from the microscopic equations in both systems, under a
riety of different scales for the detuning parameters. Parti
larly, for large pump detuning the amplitude equation co
tains terms corresponding to the nonlinear resona
predicted by the modified SHE. An interpolating amplitu
equation has been given, which covers all the analyzed ca
and, in particular, the amplitude equation obtained from
modified SHE if pump detuning is made large. These int
polated amplitude equations are different for DOPO a
DFWM.

In order to test the analytical predictions numerical in
gration of the microscopic equations have been carried
A good agreement has been found, even for parameter va
far from those considered in the theoretical analysis. The
instabilities ~Eckhaus and zigzag!, the hexagonal pattern
with an additional zero component~Price hexagons!, and the
competition between these hexagons and rolls have also
analyzed. The numerical analysis has also evidenced the
istence of nontrivial dynamical patterns in DFWM, whic
will be studied in the future.

Note added in proof. Recently a paper by H. Sakaguc
@Prog. Theor. Phys.86, 759 ~1991!# has come to our knowl-
edge. In it the post-zigzag states of the SHE are investiga
He shows that for small~large! k the zigzag is stable~un-
stable!. This is in agreement with our calculations.
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APPENDIX A

In this appendix we discuss briefly the derivation
OPE’s for the case of finite positive detuning. With resp
to the linear stability analysis, substitution of~9b! into ~11!
shows that the largest eigenvalue is of order«2 for k2 of
order«. Then, in this case the spatial part scales as

¹25«2¹2
2 ~A1!

andD1 can beO~1!. The scaling is applicable to both DOP
and DFWM.

For DOPO the order-parameter equation for finite posit
detuning reads, to leading order in«,

]tȲ5E0pȲ22E0~12E0!~12D0D1!Ȳ31D1¹2Ȳ,
~A2!

with

p5E2E0 , ~A3a!

and

Y5@D11 i ~12E0!#Ȳ. ~A3b!

Equation~A2! is the real Ginzburg-Landau equation. Noti
that this equation is not valid whenD0D1.1, since in this
case the cubic term becomes positive and the solutions
verge. This fact is due to the existence of bistability of t
homogeneous solutions close to threshold that just occur
D0D1.1.

For DFWM the order-parameter equation for finite po
tive detuning reads

]tȲ52E0
2pȲ24E0

2~E0
221!~12D0D1!Ȳ31D1¹2Ȳ,

~A4!

with p given by Eq.~A3a!, and

Y5@D11 i ~12E0
2!#Ȳ, ~A5!

which is isomorphic to Eq.~A2!, as can be seen by makin

Ȳ→Ȳ/A2 andp→p/2 in Eq. ~A4!.

APPENDIX B

In this appendix we derive the amplitude equation
rolls in DOPO in the case of pump and signal detuning
order one. For that we make an expansion of Eqs.~4! assum-
ing an increase of the pump over threshold of order«2, Eq.
~10!, applying the expansion of the Laplacian operator giv
in Eqs.~31!, and using the expansion~15! for the fields, but
now we impose

Y15B~u,v !eik0x1B* ~u,v !e2 ik0x. ~B1!

At order « we find X150. At order«2 we find

@L012ig~11 iD0!#X2522ig~11 iD0!Y1
2 , ~B2a!

@11 i ~D12L0!#Y25Y2* 1 iL 1Y1 , ~B2b!

which by using Eq.~B1! give the solutions
t

e

i-

or

-

r
f

n

X252F2uBu21
11 iD0

11 i ~D022D1 /g!
~B2e2ik0x1 c.c.!G ,

~B3a!

Y25Y2
~11!eik0x1Y2

~21!e2k0x, ~B3b!

with

Y2
~11!5Y2

~21!* 1 iL 1B. ~B3c!

Finally, at order«3 we find

]tY15E2Y11 1
2 @~12 iD0!X21~11 iD0!X2* #Y1

1 1
2 iL 1~Y22Y2* !1 1

2 i ~L02D1!~Y32Y3* !,

~B4!

which evaluated at the frequencyk0 leads to the amplitude
equation for rolls that read

]tB~u,v !5E2B2~21a2!uBu2B2 1
2 L1

2B ~B5!

with a5A(11D0
2)/@11(D022D1 /g)2#.

APPENDIX C

In this appendix we derive the amplitude equation
rolls in DOPO in the case of large pump and signal detuni
Thus we put

D15«21d1 , ~C1a!

D05«21d0 , ~C1b!

which implies

k05«21/2k̄0 , ~C1c!

apply the expansion of the Laplacian operator given in E
~33! and proceed as in Appendix B, but now we put

Y15Be2 i k̄ 0x01B* e2 i k̄ 0x0. ~C2!

At order one we findX150. At order« we find

@L2122gd0#X252gd0Y1
2 , ~C3a!

~L212d1!Y252 i ~Y12Y1* !, ~C3b!

which by using Eq.~C2! give the solutions

X252@2uBu21a8~Be2ik0x01 c.c.!#, ~C4a!

Y25Y2
~11!ei k̄ 0x01Y2

~21!e2 i k̄ 0x0, ~C4b!

with

a851/~122d1 /gd0!. ~C4c!

Notice thatX2 is a real quantity.
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At order «2 we find

~L2122gd0!X3522ig~X21Y1
212igd0Y1Y2!,

~C5a!

~L212d1!Y352 i ~Y22Y2* !2~L12d0X2!Y1 .
~C5b!

Solving Eq.~C5a! gives

X35X3
~12!ei2 k̄ 0x01X3

~0!1X3
~22!e22i k̄ 0x0, ~C6a!

with

X3
~12!5 ia8S 12a8

d0
B12iY2

~11!DB, ~C6b!

X3
~0!522~BY2

~21!1B* Y2
~11!!, ~C6c!

X3
~22!5 ia8S 12a8

d0
B* 12iY2

~21!DB* . ~C6d!

Equation~C5b! does not need to be solved forY3 since it
will not appear in the solvability condition~see below!. We
only need to evaluate this equation at the frequencyk̄0 . The
result is

Y2
~11!2Y2

~21!* 5 iL 1B1 id0~21a8!uBu2B. ~C7!

Finally, at order«3 we find

]tY15E2Y11X2Y11 1
2 i ~L11d0X2!~Y22Y2* !

2 1
2 id0~X32X3* !Y11 1

2 i ~L212d1!~Y42Y4* !,

~C8!

which evaluated at the frequencyk̄0 leads to the amplitude
equation for rolls

]tB~u,v !5E2B2~21a82!uBu2B2 1
2 d0

2~21a8!2uBu4B

2 1
2 L2B2 1

2 d0@~22a8!B2L* B* 12a8uBu2LB

1~21a8!L~ uBu2B!#. ~C9!

Now, let us simply comment that a third amplitude equ
tion can be derived if we considerD1 of order one and
D05«21d0 . In this case one must apply the same scaling
in Appendix B but the one corresponding to pump detuni
The amplitude equation obtained in this way is the same
Eq. ~C9! but replacinga8 by 1. This is consistent since i
this caseD0@D1 and in this limit a8→1. This amplitude
equation is the same that one obtains by starting directly w
the OPE Eq.~24!.

On the other hand, Eq.~C9! and Eq.~B5! do not connect
completely. It is verified thata→a8 when D0 and D1 are
large but if both detunings are made of order one in Eq.~C9!
one obtains Eq.~5! but with a8 instead ofa. Nevertheless,
we can construct an interpolated equation by puttinga in-
steada8 in Eq. ~C9!, this equation@that is Eq.~34a!# being
valid in all the three limits that have been considered.
-

s
.
s

th

APPENDIX D

In this appendix we derive the amplitude equation
rolls in DFWM in the case of pump and signal detuning
order one. The derivation follows the same lines as for
DOPO case~Appendix B!.

At order « we find X150. At order«2 we find

@ iL 02g~11 iD0!#X25g~11 iD0!Y1
2 ~D1!

and Eq.~B3b! which, by using Eq.~B1!, give the solution

X252F2uBu21
11 iD0

11 i ~D024D1 /g!
~B2e2ik0x1c.c.!G ,

~D2!

and the same expression forY2 as in Appendix A.
Finally, at order«3 we find the same equation as for th

DOPO case@Eq. ~B4!# but replacingE2 by 2E2 , which
evaluated at the frequencyk0 leads finally to the rolls’ am-
plitude equation

]tB~u,v !52E2B22~21b2!uBu2B2 1
2 L2B ~D3!

with b5A(11D0
2)/@11(D024D1 /g)2#. Notice that this

equation is isomorphic to the corresponding one for DOP

APPENDIX E

In this appendix we derive the amplitude equation
rolls in DFWM in the case of large pump and signal detu
ing. Again we follow the same lines as for the DOPO~Ap-
pendix C!.

At order one we findX150. At order« we find

@L212gd0#X25gd0Y1
2 , ~E1!

and the same Eq.~C3b! that, by using Eq.~C2! give the
solutions Eq.~C4b! and

X252@2uBu21b8~Be2i k̄ 0x01c.c!#, ~E2a!

with

b85
1

124d1 /gd0
, ~E2b!

thusX2 being a real quantity.
At order «2 we find

~L212gd0!X352 ig~X21Y1
22d0

2X2Y1
212id0Y1Y2!,

~E3a!

~L212d1!Y352 i ~Y22Y2* !2~L122d0X2!Y1 .
~E3b!

Solving Eq.~E3a! gives

X35X3
~14!ei4 k̄ 0x01X3

~12!ei2 k̄ 0x01X2
~0!1X3

~22!e22i k̄ 0x0

1X3
~24!e2 i4 k̄ 0x0, ~E4a!

with
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X3
~12!5 ib8S 12b8

d0
B12iY2

~11!12d0~11b8!uBu2BDB,

~E4b!

X3
~0!522~BY2

~21!1B* Y2
~11!!12id0~21b8!uBu4,

~E4c!

X3
~12!5 ib8S 12b8

d0
B* 12iY2

~21!12d0~11b8!uBu2B* DB* .

~E4d!

As in the DOPO case, Eq.~E3b! does not need to be
solved forY3 since it will not appear in the solvability con
dition ~see below!. The same occurs withX3

(14) andX3
(24) .

We only need to evaluate this equation at the freque

k̄ 0 . The result is

Y2
~11!2Y2

~21!* 5 iL 1B12id0~21b8!uBu2B. ~E5!
A

A.
y

At order «3 we find the equation

]tY152E2Y112X2Y12d0
2X2

2Y1

1 1
2 i ~L112d0X2!~Y22Y2* !2 id0~X32X3* !Y1

1 1
2 i ~L212d1!~Y42Y4* !1 1

2 i @]t22E222X2

2d0
2X2

222id0X3#~L212d1!Y2 , ~E6!

which evaluated at the frequencyk̄0 leads finally to the am-
plitude equation for rolls that read

]tB~u,v !52E2B22~21b82!uBu2B24d0
2~11b8!uBu4B

2 1
2 L1

2B2d0@~22b8!B2L1* B* 12b8uBu2L1B

1~21b8!L1~ uBu2B!#. ~E7!

Here the same considerations that were made in the DO
case with respect to the interpolation must be applied.
ce
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