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Transverse patterns in degenerate optical parametric oscillation
and degenerate four-wave mixing

G. J. de ValCecel'* K. Staliunas:*' Eugenio Rolda,' and V. J. Sachez-Morcilld
!Department d’'@tica, Universitat de Valecia, Dr. Moliner 50 E-46100 Burjassot, Spain
2Laboratory 4.42, Physikalisch Technische Bundesantstalt, Bundesalle 100, 38116 Braunschweig, Germany
(Received 14 February 1996

Transverse pattern formation in both degenerate optical parametric oscillation and degenerate four-wave
mixing is considered both theoretically and numerically. In the limit of small signal detuning both systems are
shown to be described by the real Swift-Hohenberg equation. Contrarily, for small signal and large pump
detunings the Swift-Hohenberg equation is modified differently in both systems, by the appearance of addi-
tional nonlinear terms, which signal the existence of nonlinear resonances that are theoretically studied through
the derivation of the amplitude equation for the roll pattern in both systems. Numerical analysis supports the
theoretical predictiond.S1050-294®6)07907-3

PACS numbes): 42.65.Sf, 42.65.Y]

[. INTRODUCTION tween rolls and other steady patterns such as rhomboids,
. . . . hexagons, and even dodecagons. Finally, StalilBasas
When studying the spatiotemporal dynamics of a nonlinisessed the derivation of OPE's for the singly and doubly
ear system inside a resonator with flat mirrors from the theoreggnant OPO and has obtained a complex Ginzburg-Landau
retical viewpoint there exist two basic alternatives thatequation for the first case and a Swiﬂ-Honhenberg type
complement each other. One of them is the study of somequation for the second case, similar to that obtained by
special patterns such as, e.g., rolls, rhomboids, or hexagonislandel, Georgiou and Erney®] for nascent optical bista-
The equations that govern the time evolution of the ampli-bility and by some of us for nascent two-photon optical bi-
tudes of the different componentis the wave-number do- stability [10]. The treatment i8] is based on a simple ap-
main) of these patterns are called amplitude equations. Th@roach of the adiabatic elimination of variables. Here we
other approach consists in the reduction, under some limitd€ve the OPE’s using mathematically rigorous techniques

: - : : ; f multiscale expansions.
tions, of the originaimicroscopicequations of the system to 0
a unique (when possible equation: the order-parameter The reason for the parallel study of DOPO and degenerate

. - o o four-wave mixing(DFWM) are the well-known similarities
equauon(OPE). The derivation of §h|s Kind of equation Is of xisting between both systems that have been revealed both
great practical and fundamental importance, since the OPE1

S ) their temporal instabilities and in their quantum properties
allows a simplified treatment of the system space-time dyaspects P q prop

namics (not constrained to special cases as the amplitude The paper is organized as follows. In Sec. Il we derive
equation and also interconnects different pattern-forming ope's for DOPO and for DFWM for small signal detuning
systems(either optical, hydrodynamical, chemical, biologi- iy the cases of moderate and large pump detuning. For mod-
cal, etc) [1]. In the field of nonlinear optics both approacheserate pump detuning the real Swift-Hohenberg equation
have been used since Coullet, Gil, and RofZpoffered a  (SHE) is obtained for both systems, revealing that DOPO
derivation of the Ginzburg-Landau equation in optics. and DFWM are isomorphic systems for pattern formation in
Optical parametric oscillatio®OPO has proven to be a this limit. As rolls are the basic pattern supported by the
rich system from the point of view of the spatiotemporal SHE, our derivation provides a basis for the understanding of
dynamicg3-8]. It is a particularly attractive system becausethe central role played by rolls in DOPO transverse dynam-
of its relatively simple mathematical description and becausécs. For large pump detuning we derive a modified SHE that
of its technological and fundamental relevance. In particularcontains additional nonlinear terms that signal the appear-
the work of Oppo and co-workef8,4] has shown that rolls ance of a nonlinear resonance that has a huge importance in
play a central role in the pattern formation in degeneratehe properties of both systems. In this second case the OPE’s
OPO (DOPO, and Lugiato and Grynberfi’] have related are different for DOPO and DFWM revealing that the men-
the emergence of spatial structures with the well-known cationed isomorphism is limited to a restricted parameter
pability of DOPO for generating squeezed states of light. Irrange. In order to study this nonlinear resonance several am-
a recent work, Brambilla, Camesasca, and Opfphave plitude equations for rolls are derived in Sec. llI, correspond-
also shown the appearance of complicated dynamics wheing to the cases of small and large pump detuning. An inter-
the Hopf bifurcation for large pump values is reached. Oppgolated amplitude equation for rolls is given, which allows
and co-workerg6] have described the relative stability be- one to study the passage from regimes of negligible nonlin-
ear resonance to those where the nonlinear resonance is fully
appreciated. In Sec. IV a humerical analysis is carried out in

*Electronic address: goval@vm.ci.uv.es order to illustrate the main conclusions following from the
OPE’s and the amplitude equations. Finally, in Sec. V the
"Electronic address: kestutis.staliunas@ptb.de main conclusions are outlined.
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Il. DERIVATION OF THE ORDER taken to be real and uniform in space. In writing E@8.the
PARAMETER EQUATIONS relationa,y;=2aqy, has been taken into account.

In this section we present the derivation of the OPE’s for Equations(4) have the trivial homogeneous solution

DOPO(Sec. Il A) and DFWM(Sec. Il B. In both cases we X=Y=0, (5)
consider the limit of small signal detuning and leave to Ap-
pendix A the case of finite positive detuning. whose linear stability analysis against space-dependent per-

turbations of wave vectdk yields the eigenvalues

: - : I Nix(K)=—1xJE*— (A +K?)?,
The microscopic equations for DOPO inside a resonator

consisting of plane mirrors, in the paraxial approximation Nox(K)=—y[1xi(Ay+K32y)], (6)
and mean-field limit, reaf3] B

A. Order parameter equations for DOPO

_ with k?=k-k. Ay and A, are the growth exponents of
dAo= Yol —(1+iAg)Ag+E' —Al+iagV?Agl, (18  (pump field andY (signal field, respectivelythey have this
_ simple meaning due to the structure of the stability matrix,
WAL= yi[— (L+iA)) A+ AT Ag+ia;V2A ], (1b)  which decoupleX and Y). A, always has a negative real
N B _ part, while\; becomes positive for pump amplitude values
where Ag(x,y,t) and A,(x,y,t) are the normalized slowly =g (k) with
varying complex amplitudes of the pump and signal fields,
respectively. The external coherent field has a normalized Eg(K)=vV1+(A;+k?)?, )
amplitudeE’ and oscillates at a frequeney, . Two longi-
tudinal modes of the resonator of frequenaigsandw, are  thus indicating the existence of a bifurcationegi(k).
assumed to be close tg andw /2. Ag=(wo— w )/ v, and This function(7) has a minimum ak=Kk, with
A1=(2w;— w)/2y, are the detunings, wheng, andy, are
the cavity decay rates for each mods,=c/2k,y, and Ko=0 for 4,>0, (8a)
a;=c/k,y, are the diffraction parameter&(is the longitu- o
dinal wave vector of the external figldFinally, V2 repre- ko=v=4y for 4,<0. (8b)
sents the transverse Laplacian operator referred to the spatifhis second case is the most interesting one since the non-
coordinatesX,y). . . .. zero value ok, implies the formation of nonuniform spatial
The validity limits of Egs.(1) are discussed in detail in  stryctures(Turing patterns above the bifurcation threshold

Refs.[3,4]. The more restrictive approximation is the single- (7) and we will concentrate on this case. Kt k, the pump
longitudinal mode operation for the subharmofibat ap-  threshold reduces tBg(Ko) =E, with

proximation usually holds for the pump wave because of the

use of an external cw injectigrsince the relatively broad Eo= ‘/1+A?1 for A;>0, (9a)
phase synchronization line for DOPO @1.0'? Hz) forces
the length of the resonator to be correspondingly sitfiei/ E,=1 for A,;<O0, (9b)

millimeters and less
In order to simplify as much as possible the forthcomingwhich is the threshold for DOPO generation.
calculations it is convenient to rescale time and space coor- For deriving order-parameter equations we will next make
dinates as asymptotic expansions of the fields in terms of a smallness
o o parametere. For doing that it is necessary to know how a
r=yt, x=x\a;, y=yl\a,, (2)  small increase in the pump amplitude above the threshold
value
and to introduce new field§, X, andY through the changes
E=Ey+&%E, (10)
Ag=E+(1-iAg)X, A;=V1+AJY, E'=(1+iA()E.
3 influences the largest eigenvalug, (6). Substitution of

, , _ i ) L (10) into (6) leads to
The inclusion of a factor involving\, in the definition of all

three fields prevents them from growing to infinity Ag EoE,
increases in modulus. This greatly simplifies the study of the Ay, (K)=—1+ VE5—(A,+k?)%+ s
large A, limit, and also has the advantage that the threshold VEG— (A1 +k%)

for signal generation becomes, independent, as will be +0(s%). (11)

seen. In this way Eq41) become

) e 1oo Particularly, the largesk is \;. (ko) =E,&? for both signs
9 X==y(1+idg)(X+Y)+i3 VX, (48 of A,, which suggests the introduction of a slow time scale

a.Y=—(1+iA)Y+[E+(1—iAg)X]Y* +iV?3Y, T=¢%r. (12
(4b)
We analyze the case of negative detuning here and leave the
whereV? is the Laplacian operator referred to the new spa<case of positive detuning to Appendix A. The derivation of
tial coordinates X,y), andy=y,/v;. In the followingE is  an OPE requires that the Laplacian operator does not appear
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in the asymptotic expansion &t(e), since in that case only Equation(20) is the real Swift-Hohenberg equatidSHE)
special spatial structures can be treated. Thus we impose tHdtl], and describes the space-time dynamics of DOPO close
the spatial part scales as to threshold under small detuning conditions.

szgvi_ (13 2. Case of large pump detuning: Nonlinear resonance
. . We consider next the case of small signal detuning as
Since forA;<0 ky#0 [Eqg. (8b)], a necessary condition for ; g g
] above but now with
the Laplacian operator to be regarded as a small operator Is

ko=0(&?, or, equivalently, Ag=e"15,. (21)

Aj=¢g6;. (14 Following the same procedures as in the preceding sub-

) o o . section, from the first and second orderseirone obtains
This restriction turns out to be sufficient for ensuring that theagain Eqs(16), (174, and

width (in k space of unstable modes is al€d(¢/?), as can

be easily deduced from E¢ll), and so for ensuring that X3=—-2Y1Y,, (229
(13) holds.
Finally, let us notice that the order df, is not fixed by Y- Y5=i(6,— V23— 8,Y2)Y;. (22b)

the linear stability analysis. Then, we will consider two dif- _
ferent cases for deriving the order-parameter equations: th&tinally, at third order one gets, after E§21) and(223 have
A, be of order one and that, be of ordere 1. been used,

1. Case of finite pump detuning: Real Swift-Hohenberg equation dTY1= _Y3+Y§ —16,Y,+180(2Y,+Y3) + EZYI_Yi

Now we proceed to make an asymptotic expansion of +iV"{Y2. (23
Egs. (1) around the homogeneous steady-state soly&in
By adding Eq.(23) to its complex conjugate and by using
- - Eq. (22b) one finally finds
X=> &"X,, Y=, &"Y,. (15) a.(22b Y
n=1 n=1 aNY=pY—3(A;—VZ—AYD)2Y Y3, (24)

Let us consider the case of small signal detuning. So w
substitute Eqs(10) and(15) into Eqgs.(4), apply the scalings
(12-(14), and solve at the successively increasing orders o,
€. At ordere we find

% leading order ire. It is remarkable that Eq24) contains
fifth-order nonlinearity £ A,Y®/2) and also appears a dif-
erential nonlinearity £ A,Y2V?2Y/2), which produce a non-
linear resonance. This equation was first obtained by one of
us in Ref.[8] by assuming conditions for adiabatic elimina-
tion of the pump field in the DOPO. Notice that one can
think of Eq. (24) as the OPE for DOPO for small signal
detuning and close to threshold, independently of the magni-
tude of the pump detuning: i, is moderatg(say order 1
then the term\,Y? is O(e?) and thus negligible with respect

X;=0, (163
Y=Y, (16b)

soY, is real. At orders2 we obtain, taking into account Egs.

(16), to the other termgin this way the SHE Eq(21) is recov-
Yo — Y2 (17 ered. Incidentally, we note that in the absence of transverse
2 L effects V?—0) Eq. (24) reproduces the well-known bista-
. ) 2 bility between the trivial solution and the DOPO solution for
Y2_Y2 = _|(51_V1)Y1. (17b) AOA1>1

At order £2 we only need the equation for the signal field .
that, taking into account Eq$16) and (173, reads B. Order-parameter equations for DFWM
The simplest microscopic model for DFWM2] inside a
1Y 1=YE—=Y3—i(61- Vi)Y, +E,Y 1+ (1—iAg) Y5, resonator consisting of plane mirrors, including diffraction,
(18)  can be written as

Finally, by adding Eq(18) with its complex conjugate and 3Ao= Yol — (L+iAg)Ag+E’ —A3A§+iaoﬁA0],
using (17b) we obtain (254
aY1=E,Y1—Y3—3(8,—V?)?Y,, (19 GAL= yol —(L+iA)A;+AZAY +ia,V2A,]. (25D
which can be written in terms of the initial parameters and of Equations(25) describe the two-photon interaction be-
the signal amplitude¢Y to leading order ire as tween two fieldsA, (pump and A; (signa) of the same
frequencyw, with a nonlineary® medium.A, andA; may
9,Y=pY—3(A;—VHZY-Y3, (209 differ, for instance, in their polarization. In Eq&25) the

relation between diffractions ia;y;=2aqvy, the signal de-
p=E—1. (20p  tuningA;=(w;,—w)/y;1, and the rest of symbols keep the
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same meaning and definitions as in E¢y. The same re- For large values of the pump detuning, a modified SHE
marks that were made after E¢%) regarding the validity of has been obtained, the modification consisting in the appear-
the model apply here. ance of additional nonlinear termEgs.(24) and(28)]. The

It is again convenient to use the rescaled time and spatiabomorphism between DOPO and DFWM is no longer veri-
coordinates defined in Eq2) as well as the rescaled and fied in this limit although their respective OPE’s continue to
shifted variables defined in E@3). The rescaled equations be similar. Recall that Eq24) was obtained by one of (8]

read by following an adiabatic elimination procedure. Here we
have shown that this equation is valid independently of the
I X=—y(1+iA){X+[E+(1+iAg)X* YA +iV?3X, values of the relaxation constants. These equations have a

(268 special interest since the presence of the additional higher-

order nonlinearities signals the existence of a nonlinear reso-

9.Y=—(1+iA)Y+[E+(1—iA)X]2Y* +iV2Y. nance in the system which is investigated in the next section

(26D for the roll pattern.
] N o Let us finally comment that along all the previous deriva-

It can be seen that the linear stability analysis if E@$)  (ions the relative decay ratehas been implicitly assumed to

leads to the same result as for the DOPO equatlogs with thge 0(1), although we have checked that the derivations are
only difference being thaE® must be replaced biE™ and 5156 valid for arbitrarily largey (that would correspond to

consequently the same scalings must be adopted for thge adiabatic elimination of the pump figl®n the contrary,

DFWM. Thus we will not give details of the derivation since i the casey<O(e) no OPE can be derived.
it is carried out by following the same lines that have been
followed for the DOPO case. For the sake of brevity, we give Ill. AMPLITUDE EQUATIONS FOR ROLLS
the final result. For small signal detuning one obtains '

In this section we derive the amplitude equation for rolls

9.Y=2pY—3(A;—V?)2Y—-2Y3, (270 for both DOPO and DFWM. We make this derivation start-

ing from the microscopic equations and not with the OPE’s.

and for large pump detuning one obtains The main reason for deriving the amplitude equation from
the microscopic equations is that we need not limit ourselves
9,Y=2pY—3(A,—V2=2A,Y?)2Y - 2Y3+ AZVYS, to the case of small signal detuning and thus a more general

(28)  amplitude equation can be obtained if one derives it starting
from the microscopic equations. In the following the signal

with p=E—1 small. Both Eqgs(24) and (25 are valid to  detuningA, is assumed to be negative since only in that case
|eading order ire. Notice that Eq(27) is isomorphic to Eq. may nonuniform patterns appe[ﬁq (8b)]
(20) after change of the variabléé—Y/\2 andp—p/2 in For deriving the amplitude equation for rolls we assume a
Eqg. (24). Thus, both DOPO and DFWM are isomorphic assmall value of the pump above thresh§ih. (10)] and in-
pattern-forming systems when signal detuning is small. Controduce into the microscopic equatiof® an expansion of
trarily, Eq. (28) is not isomorphic to Eq(24) because of the the signal field of the form
presence of an additional fifth-order tefast term in the

right-hand side of Eq(28)], denoting that the isomorphism Y= (Weko+ w* e~ koX) + O(g?), (299
does not exist for arbitrary conditions. As will be shown
below, this additional fifth-order term can cause the irregular V=¢B (29h)

behavior of(28) for large values of the pump paramepeor

pump detuning,. that is a one-dimensionélD) structure consisting of rolls of

_ _ spatial frequency, oriented parallel to they direction to
C. Discussion leading order ire when the amplitud® is constant. Never-

The OPE's that we have derived in the previous subsectheless apart from th&, mode (the most unstable mogle
tions for both DOPO and DFWM suggest a number ofother modes with spatial frequencies clos&gjhave a posi-
straightforward conclusions. On the one hand, both systentéve eigenvalugsee Eq(11)]. As usual[13], in the vicinity
are isomorphic for not too large pump detuning values, veriOf Ko=(ko,0) the domain of these amplifiddmodes has a
fying in this case the real SHEEQs.(20) and(27)]. It is well width &k along the direction parallel t&, of order e/kg
known that the real SHE exhibits stable roll patterns for(provided that the pump above threshold is of orefér, and
negative detuning, and that these rolls destabilize for nona width 5k, along the direction perpendicular kg of order
resonant wave numbers through zigzag or Eckhaus instabilie, as can be deduced from EG.1). Then we must intro-
ties (see, e.g.[1]). Thus, this result provides analytical sup- duce a multiple spatial scaling in order to take into account
port to the numerical observation of roll patterns by Oppothe appearance of very different spatial scales. Of course this
and co-workerg3,4]. In fact their results show that, for the multiple spatial scaling will be different depending on the
DOPO, the validity of the prediction that the rolls are the order of magnitude of the signal detunidg, which governs
basic stable pattern goes beyond the limits of applicability othe magnitude ok, , and thus that obk; .
the OPE, although other patterns can also be folifl. For A;=0(1) [ko=0(1)], the appropriate multiscale
This indicates the structural robustness of the OPE foexpansion is
DOPO, which is also illustrated by our numerical examples
below. x—Xx+¢& " tu, (308
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y—e Y%, (30b) the Swift-Hohenberg equatiof20) and its generalization to
nonlinear resonance, E(4), when the corresponding limits
that leads to the expansion of the Laplacian operator are taken in Eqs(34a and(34b).

We can look now for an exact stationary solution of Eq.

Vi=Lotelitele, (31a (343. Given the rotational invariance of the problem we
Lo:07>2<, (31b) choose to study a roll oriented along thalirection:
Ly=20,9,+ 2, (310 W xy)= e, (35
L2=aﬁ. (310 taking ¢ as a real quantity without loss of generality. One

easily gets

Alternatively forA;=0(e 1) [ko=0O(e 3] the appro-

priate multiscale expansion is (2+ a)2A5W*+2[2+ a® = 28(2+ a)kok] W2

Xx—e xot+e 3, (329 ~2(p~2kk?)=0. (36)
y—g~ 12 (32b) This stationary solution can be shown to coincide with the
’ resonantroll solution (k=0) derived in[3], for not large
that leads to the expansion of the Laplacian operator Ap.
In Figs. 1@ and Xb) the squared amplitudg? of the roll
V2=g"L_,;+el,+e%Ls, (3339  solution, as given by36), is plotted vsk for different values
of the pumpp given in the figures. For low pump detunings
where [Ao=0 in Fig. @] the usual dependence as observed in the
L= 35 , (330) Swift-Hohen_ber_g moddll] is noted. Nevertheless increasing
0 pump detuningin modulug causes the nonlinear resonance

o ) to appear in Fig. ) (Ag=—5): the maximum emission is

L, is given by Eq(319 andL; has the same expression as o gptained fork=0 (linear resonandebut varies as the

Lz in Eq. (310 , pump increases; the larger the pump, the further the maxi-
_Apart from the order of magnitude df; we must also 1y, s located from the linear resonance. For posifige

d|st|ngmsh between two basic .p053|b|I|t|es for the order ofiye penavior is similar to that displayed in FigbLbut with

magnitude of the pump detuning, (order one or order he cyrves extending towards positikés consistent with

1/e) related to the absence or existence of a nonlinear reSPE (24): since the linear operatdthe second one on the
nance, as suggested by the previous OPE's. Consequentlyyhi hand side(rhs of (24)] is negative(it is a squared
we can derive several dn‘fgrent amplitude equations depe”‘ﬁuantity affected by a minus sigihe maximum emission
ing on the orders of magnitude of both detunings. Althoughj pe reached when it is null, and this depends on the sign
none of the amplitude equations will be valid for all the o A ' \with the aim of illustrating this point in a simple but

possible orders of magnitude of the signal and pump detuny¢ rigorous way we can substitute the Laplaciariad) by
ings, it will be possible to construct by interpolation an am-_(k0+k)z wherekéz —A,, assuming that the largest con-

plitude equation that is valid in all the limits of interest. tribution to it is due to a pure roll of spatial frequency

, . ) (ko+ k). Then the linear operator is approximately written as
A. Amplltude equation for rolls in DOPO _ (1/2)[_ ké+ (k0+ k)Z_AOYZ]Z and one concludes that
As shown in Appendixes B and C, the amplitude equatiorthe squared amplitude of the roll at its maximuminax
for rolls in DOPO reads, in terms of unscaled variables, o[ (ko+k)?—k3]/Ao. Thus A, andk must have the same
2 2 La2 2iereld sign at the maximum of/?. This simple reasoning is consis-
IV (X,y)=pW¥ = (2+a”) |W[*W = 745(2+ a)*[ W |*W tent with the actual value of the wavenumiefior which the
— L2 — 1A [(2— @) WAL* W* + 24|V |2L W intensity ¢ i; maximurzn: It i; simple to obtain from E¢36)
that the maximum of)“ is given by

+(2+ a)L(|¥|2¥)], (34a
whereV is defined by(293, and ¢2max=—22+pa (37a
1+A§ 2 A . _
=13 (Ag—28,/7)2) ° (34b  and is reached dt=Kky. g, with
. 2+a pA
L=2ikody+32. (340 - F2o
e KNR= 557 a?) g (370

Equation(344a is an interpolation of the amplitude equations

obtained in the cases, and A; of order one[Eq. (B5) in  thusk and Ay must have the same sign at the maximum of
Appendix Bl andAy and A, of order 1£ [Eq. (C9) in Ap- 2. As a further illustration of the nonlinear resonance we
pendix J and is valid for any value of the detunings, when- plot in Fig. 1(c) the dependence of the roll intensigf as a
everp=E—1 is small. The same E¢343 is obtained from function of pumpp for different values of the spatial fre-
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FIG. 1. (a) Dependence of the DOPO roll intensity [Eq. (36)]
on k for resonant pump4,=0), A;=—5 and the four values of
the pump above threshoptlgiven in the figure(b) As in (a) but for
Ao=—5. (c) Dependence ofi® with p for the same parameters as
in (b) and the four values df given in the figure.

roll solution exists forp<<0 thus preventing the existence of
bistability between the trivial and the roll solutions, as can be
deduced from Eq(36).

B. Amplitude equation for rolls in DFWM

In the case of DFWM the amplitude equation for rolls
reads, as shown in Appendixes D and E, in terms of unscaled
variables,

3, ¥ (x,y)=2p¥ —2(2+ B%)| V|2V — 4A3(1+ B)| ¥ |*¥
— L2V — A [(2— B)W2L*P* + 28|V 2LV
+(2+B)L(|¥|*W)], (383

where

1442 |22
P15 (ag—aa,17)?) °

(38b

andL is given by Eq.(340. As before, Eq(38) is an inter-
polation of the amplitude equations obtained in the cases
Ay and A, of order one[Eqg. (D3) in Appendix D] and A
andA; of order 1£ [Eq.(E7) in Appendix B and is valid, in
principle, for any value of the detunings.

Again we look now for the stationary solution of Eg.

(38a:

2(1+ B)AJY+[2+ B2—2Ao(2+ B)kok] 2 — (p—k3k?)
=0. (39)

Although Eq. (39) looks very similar to the amplitude
equation Eq.36) for rolls in DOPO, their solutions differ
qualitatively for some parameter sets. Figure 2 shows the
predictions of Eq(39). For small values of the pump detun-
ing A, the same behavior as in the DOPO cH&ig. 1(a)] is
observed, while for increasing, (in modulug qualitative
differences are observed. In FigiaRwe plot the roll inten-
sity ? as a function of the roll spatial frequen&yfor sev-
eral values of the pumpp indicated in the figure and
Ay=A,=-5. If for small pumps the nonlinear resonance
manifests itself in a way similar to the DOPO cébey. 1(b)]
for larger pumpgbut as small as 0.02he prediction of Eq.
(39) clearly fails since it gives rise to divergent solutions for
negativek’s. Moreover, any “sensible” curve in Fig. (8
has a nonsense compani@ng., the upper-left curves corre-
sponding top=0.013 and 0.016 These spurious curves ex-
ist even for smaller pump®.g., forp = 0.005, not shown in
the figure and correspond to large negative valuek @fnd
large intensities, thus not fulfilling the smallness require-
ments assumed in the derivation of the amplitude equation
(39). We can understand this negative result as a direct con-
sequence of the structure of the OPE for DFW28). Dif-

guencyk indicated in the figure, for the same parameters agerently from the OPE for DOPQEQq. (24)] in the DFWM

in Fig. 1(b). Except for the linearly resonant rolk&0) the

case there exists an additional fifth-order nonlinealiast

intensities of the rest of the rolls show two branches, théerm on the rhs of Eq(28)] which is positive and destabi-
lower one always being unstable. It is to be remarked that nizes the solution for sufficiently large pump and pump
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, IV. NUMERICS

0013 (a) We have performed a series of numerical experiments in

0.02 - 002 order to test the predictions derived from the OPE’s and

amplitude equations derived in the preceding section for
DOPO and DFWM. We have numerically integrated the ini-
tial set of microscopic equations for both DOPO and DFWM
by using the split-step technique. In this method the local
terms (pump, losses, nonlinear couplingre calculated in
the space domain while the nonlocal ter(d#fraction for all
waves are calculated in the spatial wave-vector domain. A
fast Fourier transformation is used to shift from the space to
the spatial wave-number domain in every time step. Several
spatial grids were used ranging from (684) to
(128x128). Periodic boundaries were used in all the nu-
merical calculations. In order to have a larger flexibility in
the numerical calculations we have integrated the original
equationg1) for DOPO and(25) for DFWM, instead of the
normalized ones, Eqg4) and (26) respectively, which are
more suited for theoretical treatments. Thus, in this section
the wave numbers are referred to the unscaled space vari-
ables, and the value of the diffraction coefficiemts and

a, must be specified. In order to avoid misunderstandings we
denote byK a generic wave number and g, the wave
number corresponding to the linear resonance.

We built the numerical experiments with the intention of
checking the following aspects of the OPE'’s.

(i) Show that the roll pattern of the initial DOPO micro-
scopic equations behave similarly to the rolls of the SHE.
For this purpose we numerically calculated the stability lim-
00 04 08 its of the rolls in DOPO, and compared with those for rolls in

p the SHE. As in the SHE, we have found that the rolls lose
their stability through zigzag and Eckhaus instabilities.

FIG. 2. (a) Dependence of the DFWM roll intensity? [Eq. The stability analysis of the rolls only provides informa-
(38)] onk for Ag=—5, A;,=—5 and the four values of the pump tion about where the rolls are stable or not in the parameter
above thresholg given in the figure(b) Dependenceg?® with p for ~ space, but it says little about the final states after the occur-
the same parameters as(@ and the four values df given in the  rence of the instability. We also investigated numerically the
figure. “post-zigzag” and the “post-Eckhaus” states.

(i) As found recently by Price and co-workdr4] the
purely cubic SHE, besides the rolls, also supports stable
detuningA,. Thus we conclude that both the OPE and theh€xagons. These hexagons are characterized by the presence
amplitude equation for rolls in DFWM are of limited valid- ©f & plane-wave componenk<0) in addition to the three-
ity. roll components with an angle ofi23 in between. We have

Let us finally discuss the phenomenon of bistability pe-also found these.hexagons by direct numericgl integratio_n of
tween rolls and the trivial solution in DFWM. In Fig(td we the DOPO equations. We show that there exists a domain of

plot the pump dependence of the roll intensity as given b)})istability between the hexagon and the roll patterns in the

. DOPO, exactly as follows from the analysis of SIHE].
Eq. (38) for Fhe pargmeters_of Fl_g.(ﬁ) and several v_alues o_f Regarding the DFWM, its isomorphism with DOPO close
k indicated in the figure. It is evident that roll solutions exist

) B . to the generation threshold for small pump detuning indi-
below the DFWM generation thresholg=0), differently cates that the behavior of both systems must be similar. In

from the DOPO case. Nevertheless this bistability occurs fobur numerical analysis of DFWM the same patterns and phe-
large values ofK| thus corresponding to badly behaved reso-nomena occurring in DOPO were observed: rolls, Price
hance curves, as discussed above in F{g). 20 it is not  pexagons, Eckhaus and zigzag instabilities. Thus the presen-
clear whether these bistable states can actually be found #ation of these calculations for DFWM would be simply a
DFWM. repetition of the results for DOPO. For this reason we will
Up to here we have elaborated on a theoretical approachnly present some numerical results emphasizing not the
to the description of both DOPO and DFWM. In the next similarities, but the differences between these systems:
section we show numerical results obtained by integration of (iii) As shown in Sec. Il there is a nonlinear resonance in
the microscopic equations, illustrating the theoretical predicthe spatial wave-number domain for both DOPO and DFWM
tions and also showing some other features. when the pump detuning is large enough. This nonlinear
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resonance means that the value of the resonant wave number
for a particular roll solution depends on the amplitude of that
roll. We have checked this particular form of the resonance L
curve by integrating numerically the microscopic equations
for large pump detuning. We have found good correspon- 06—
dence with the curves of the nonlinear resonance that follow

from the amplitude equations for rol[€gs. (36) and (38)].

The comparison of the nonlinear resonance curves for DOPO A? 04
and DFWM shows that the already noted similarity between 1
both systems is limited and new phenomena appear. -

A. Rolls and their instabilities

The stability of the roll pattern in DOPO is a quite well i
established fadt3,4]. We have also found that rolls are the 00 ,
very basic pattern of DOPO in most of the numerical experi- 50
ments. This fact already allows one to expect some further
relation between the DOPO and the SHgven that the
basic solutions of the SHE are rollsot only restricted to FIG. 3. The total signal field intensity of one dimensional roll
the small signal detuning limit where the SHE was derivedyaitern as a function of the signal detuning. Empty (filled)
for DOPO. The next step in checking this DOPO-SHE analsquares indicate unstablstable rolls. The values of the pump
ogy is to compare the stability region of the rolls in both parameter are, from the lower to the upper cupre.25, 0.5, and
systems of equations. We concentrate on the resonant punggrs. The analytical resulfsbtained from Eq(36)] are represented
caseA =0 since in this limit the nonlinear resonance is notby the solid lines. The rest of the parameters are=0.002, a,

expected. =a;/2, Ay =0, andy,=y,=1.
The roll solution to the SHE
Y= (k% + y* e KX) + O(s2) (40) easily done in the equations by simply canceling the second
’ derivative with respect to thg coordinate.
with #=0(e) and p=0(e?), has an intensity In Fig. 3 the stability analysis of the rolls is presented.

y2=p—(K—Ky)? [1]. In particular, steady states exist Keeping a constant value of the purp@nd a constant value
whenever K—K)2<p, and the equality defines the so- of K (which was taken to be the resonant mode for
called neutral stability curve. In the optical context we haved1= —2.842 43, we slowly changed the value of the signal

K2=—A,/a (the resonant rol] and thus the intensity reads detuning(and, consequently, the value ip) and measured
the intensity of the rolls. We found that the rolls were stable

P2=p—(K——A,/a;)% (41  foranyK (when they existexf the fields were not perturbed
during the calculation. These perturbation-free computations
so its maximum valuejy?,,=p is reached ak=K,. The allowed us to plot the dependence of the intensity of the roll

standard analysis of rolls in the SHE] yields that they are Patterns on the signal detuning both in Eckhaus-stiled
Eckhaus-unstable if squares and unstablgopen squargsdomains. To observe

the instability of the rolls, a small external perturbation is
p>(K—Kg)2>p/3, (429 necessary, since the split-step technique yields no noise in
the spatial wave-number domain except maybe on the spatial
or, alternatively, if subharmonics. The external perturbations seed the possible
Eckhaus instability. As the filled squares in Fig. 3 indicate,
Y2<2pl3=2y2 /3. (42b)  the rolls are Eckhaus-stable fg°>2y?_ /3ca. For large
enough detuningpositive and negatiyei.e., when the am-

In the numerical integrations the allowed values for theplitude of rolls is ><2y?2_./3ca, the Eckhaus instability
wave numberK are discrete, so in order to check the aboveoccurs. We thus find that the numerically calculated instabil-
predictions in a continuous way it is more convenient tojty limits coincide well with those following from the theo-
perform the integrations by fixing and varying the signal retical analysis not only for small pump values, but also for
detuningA; (or, equivalently, varyingKo,=+—A;/a;). In  quite moderate one&@ few times over threshold, see cap-
order to fix K an initial seed of the form tion).

(Y=cos/Kx), X=0) is used. Thus, according to the SHE For the sake of comparison the analytically calculated
result rolls must be Eckhaus-unstable when signal detuningesonance curves of the ro[l&qg. (36)] (solid lineg are also

A, is large enough for their intensity? [Eq. (41)] to verify ~ shown. A surprisingly good correspondence is observed
condition (42b). As is well known, the Eckhaus instability [note the values of the pump parameter and the large varia-
occurs equally for the rolls with wave numbers shortertions of the detuning\; with respect to its centrdtesonant
(K<Ky) or larger K>K,) than the resonant one. Neverthe- valugl. The main differences are quantitative and concern the
less, in the former case the zigzag instability is also preserfact that in general the numerically calculated roll-intensity
[1] and so, in order to check the Eckhaus instability alone weversus detuning curves are broader than those obtained from
have initially restricted ourselves to a pure 1D cébes is  the amplitude equation. This fact signals the presence of
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[1] we know that the zigzag instability affects any roll solu-
tion with a wave vector shorter than the resonant one:
K<Kg,. However, little is known about the “post-zigzag”
states even in the SHE. It is not clear in general whether the
zigzags are stable solutions, or they are only an intermediate
solution until the system reaches a different roll pattern that
is closer to the resonance.

We cannot give a definitive answer to this question. Our
numerical simulations indicate that zigzagged rolls in DOPO
are stable if their original wave numbé&t is close to the
zigzag instability boundank =K, (but inside of the zigzag
instability domain and that they are unstable wh&nfalls
deep inside the zigzag instability domain, thus playing only
an intermediate role in the last case.

The scenario we have observed in the case of unstable
zigzagged rolls is the followingi) the appearance of two

_ _ B _ ~ resonant roll components K.,;=(K,*K,,), with
FIG. 4. Scenario of Eckhaus instability for one-dlmen5|onaI|K+l|:K0 (or, equivalentlyKﬁZ: Kg_Kz), due to the zig-

rolls. (Left) temporal evolution of the spatial distribution of the
signal field,(right) its spatial Fourier spectra. The spatial coordinate
is horizontal(128 pixelg and the time runs from top to bottom over
At =3.5.p = 0.75,A;=—3.9 and the rest of the parameters as in
Fig. 3

zag mechanism, in addition to the initial nonresonant roll
(K,0); (ii) the decay of the initial roll due to competition
with the growing resonant componerKs.; and the growth
of other weak “harmonics” K,=(K,nK,,),
n==*=2+3,...; and(iii) the competition between the two
resonant components..,;, and the survival of only one of
some “innocent” higher-order nonlinearities in DOPO, them, thus the original roll of spatial frequenkybeing re-
which bring some quantitative discrepancies, but do not leaglaced by aresonantroll with different orientation with re-
to any qualitative change. spect to the original one. The series of plots in Fig. 5 illus-
We note that, in agreement with the SHE predicfit], trates this scenario.
the Eckhaus instability in DOPO manifests itself through a Figure 6 shows an example of a stable zigzagged roll. In
transient in which the initial off-resonant roll pattern is sub- all the cases in which we have found these stable zigzags not
stituted by a different roll pattern that is closer to resonancenly were the two strong components<at ; present but also
(although, in general, not necessarily by the resonant. roll relatively strong components Kt. ,, at least, were apparent,
Figure 4 illustrates the scenario of this process of substitugifferently from the transient scenario described above in
tion, mediated by the Eckhaus instability. which these “harmonics” were much weak@ompare Fig.
As commented above, in the 2D case in addition to thes with Fig. 5. This leads to the suggestion that the presence
Eckhaus instability there exists another type of instability forof at least five relatively strong roll components is necessary
the rolls: the zigzag instability. From the analysis of the SHEfor stabilizing the zigzags. This would happen when the

FIG. 5. Unstable zigzag for
A;=-3 and p=0.75. (left) the
series of spatial distributions of
field intensity, (right) their corre-
sponding 2D spatial Fourier spec-
tra. The other parameters are as in
Fig. 3. The time interval between
the plots isA7=28. The dimen-
sion of the spatial grid is 3X 32
pixels.
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FIG. 6. Stable zigzag foA,;=—2.2, andp =0.75. (Left) the
spatial distribution of field intensity(Right) its corresponding spa- -
tial Fourier spectra. The rest of the parameters as in Fig. 3. Note, | | | |
however, that rolls with a different value of vectkrhave been 00, . 5 3 z 0
analyzed in this 2D case, which results in a different value for the A
resonant signal detunindy; = —1.85. The dimension of the spatial 1

grid is 32X 32 pixels. ) ) .
FIG. 7. Total intensity of numerically calculated hexagonal pat-

higher roll components fall inside the instability ring which terns (squares and rolls(solid line), as a function of the signal

in its turn requires the initial roll to be close to resonance. detuning. The emptifilled) squares indicate unstatigtable hexa-
Our numerical calculations support this conclusion. Fordons. The values of the pump paramegeare 0.5, 1, and 1.5 from

instance, the unstable zigzagged roll in Fig. 5 was obtaine§°tom to top. The rest of the parameters aag=0.004,

for an initial wave numbelK more off-resonant than that 20~ 21/2: 40=0, andyo=y,=1.

corresponding to the stable zigzagged roll in Figsée cap-

tions). However, the boundary of the stability of the zigzag By varying the signal detuning the Price hexagons lose

has not been calculated precisely, because of the drastictleir stability against the rolls. One scenario of the substitu-

slowing down of the zigzag decay processes close to thdéon of hexagons by rolls for a detuning larg@maller in

expected boundary, and as a consequence the increasiagsolute valugthan the resonant one for hexagons is illus-

computer time consumption. trated by the series of plots in Fig. 8. We note that the hexa-
gons lose their stability with respect to a roll with a smaller
B. Price hexagons(hexagons through zero-mode coupling value of the spatial wave numbirthan that of the hexagon

As shown by Pricg14(a)] and extended by Dewett al. (compare the first and the last plots in Fig. 8hen the
[14(b)] a system with a purely cubic nonlinearity, such as thehexagons are detuned towards smaller values of signal de-
Swift-Hohenberg model, can also support stable hexagonguning (larger in absolute valyethen they lose their stability
These hexagons consist of three roll components at mutualfith respect to one of the roll components already present in
angles of 27/3, plus a non-null plane-wavézero-modg  the hexagon.
component. The presence of the plane wave creates the The series of plots in Fig. 8 may be viewed as one of the
squared nonlinearity necessary for supporting the mutual ininstability scenarios of the hexagon pattern. The hexagons,
teraction of the roll components in the hexagghk being more complicated than rolls, possibly contain also a

In order to obtain these hexagons one must necessarilycher family of instabilities. However, the detailed analysis
seed them into the initial conditions for the numerical calcu-of the instabilities of hexagons falls outside the scope of the
lations. Our numerical simulations starting from random ini-present paper.
tial distributions lead to the excitation of rolls, because only
the resonant spatial wave numbers survive in the initial stage
of the linear growth.

We investigated numerically the stability of these Price As has been discussed in Sec. lll both DOPO and DFWM
hexagons. Figure 7 shows that the hexagons can coexist tgontain nonlinear resonances. We have checked the form of
gether with the rolls in DOPO for a sufficiently large range the nonlinear resonance numerically. For this purpose we
of the pump and detuning values. The domain of bistabilityfixed the number of stripes in the roll pattern in the integra-
between both patterns becomes smaller as the pump is dgen domain(thus fixing a constant value of the vect¢y by
creased, and eventually disappears for a small enough pumgeeding a particular roll pattern in the initial distribution for
leaving only rolls in this case, in agreement wjitt¥]. the signal wave, as we have done in the previous numerics.

We investigated in more detail the roll-hexagon competi-The interactive interface for numerical programs allowed us
tion by varying the signal detuning. As Fig. 7 indicates theto vary the values of the puntp and the detuning\; during
resonant signal detuningy; for hexagongthat for which the  the calculations, which enabled us to find not only the stable
pattern reaches its maximum intensiiy shifted with respect but also the unstable branches of the resonance curve. The
to that for rolls. The reason for this resonance shift for hexahumerical integration was performed without perturbing the
gons is the presence of the zero mode: this mode requiresfields in order to avoid possible instabilities of the rolls. In
not very depressed gain in order to grow up, which is prothe following two subsections we show the results obtained
duced by bringing the detuninfy; closer to zero. both in DOPO and DFWM.

C. Nonlinear resonance
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FIG. 8. The scenario of the in-
stability of hexagons forp=1,
A;=—1.25 and the rest of the pa-
rameters as in Fig. 7. The time in-
terval between first and last plot is
A7=170 and the plots are equi-
distant in time. The dimension of
the spatial grid is 32< 32 pixels.

1. Nonlinear resonance in DOPO (34b)]. Neverthelessy does not vary sensitively unless large

As discussed in Sec. IIl A rolls in DOPO are described byvariations of the detunings are made.
Eq. (36). The behavior of the intensity of these rolls is Figure 9 displays the resonance curves for DOPO on the
clearly influenced by the nonlinear resonance, as shown iflane(A;,A) for different values of the pump. The reso-
Fig. 1(b). Particularly Eq.(37b) shows that the roll whose nance curves are tilted as expected. The numerical results
intensity is maximum for a given pumphas a wave number (symbol3 fit well with those obtained from Eq.36) (solid
Ko+ knir - This means that a roll of fixed wave numbéiin  lines) even for pump values far beyond the assumptions
the numerical integrations will reach its maximum intensitymade in  deriving Eq. (36): for instance,
at a signal detuning valuaY® given by K=K,+Kygr, p=0.2 [=0.44=0(1)] in the upper curve. This indicates
with K yir=Kknir/va; and Ko=+(—A,/a;) [due to the the structural robustness of the amplitude equation for
normalization(2) of transverse variables used in the theoreti-DOPO.
cal treatment Sinceky,r is small, as has been assumed in  One of the consequences of the nonlinear resonance is the
the derivation of the amplitude equations for rolls, E86),  appearance of bistability in DOPO between the roll solution
we can writeK?=K3+ 2K K y g which, making use of Eq. at a givenK and the trivial solution for sufficiently large

(37b) yields values of the pump. Nevertheless, any small perturbation
will destabilize the trivial solution and a roll pattern with the
ANR=p[(2+ a)/(2+ a?)]Ag—a K2 (43)  appropriate wave number will grow.

The other consequence is that the boundaries of the Eck-
This means that the roll of wave numbiéris resonant for haus and zigzag instabilities are expected to be also tilted,
signal detuning values that grow linearly with pumppand  which can initiate long and complicated transients. The terms
pump detuningA,. The previous reasoning does not takeof differential nonlinearity in Eq(34) can also lead to dif-
into account thata is both Ay- and A;-dependenfEq. ferent instabilities of rolls with respect to the SHE case, as
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FIG. 9. Total intensity of the signal field for a one-dimensional
roll pattern of spatial frequend= 10 as a function of the signal FIG. 10. Numerical(symbol$ and analytical(lines) nonlinear
detuningA; for nonzero pump detuning,=5 (nonlinear reso- resonance curves for DFWM, for a roll pattern of spatial frequency
nancg. The values of the pump parameterare 0.025, 0.05, 0.1, K=10w, and different pump detuning valued,=0 (circles,
and 0.2 from bottom to top. The analytical resdlebtained from  A,=1 (open squargsandA,= 1.5 (filled squares The analytical
Eq. (36)] are represented by the solid lines. The rest of the paramresults come from E¢(38). The rest of the parameters ge=0.2,
eters area; = 0.005 065a5=a,/2, andy,=7y;=1. a,=ay=0.005 065 andy,= vy, =1. Note that the normalized inten-

sity 4 of the signal field is plotted herey?=A%/(1+A2)], dif-

skew-varicose or othergl]. We also note that the terms ferently from Fig. 9 for the DOPO case, for the sake of better
causing the nonlinear resonance are nonvariational ones: tkemparing the curves.
modified SHE Eq.24) does not posses an action integral,
differently from the SHE[1]. Consequently, one can also —3.8. At this detuning value this branch of solutions became
expect dynamical solutiondike periodic or maybe chaotic unstable and a sudden transition to a different branch of so-
regimes in the modified SHE, differently from the SHE case lutions (open squares in Fig. 1ivas observed, a domain of
where all the end solutions are stationary and correspond toistability existing between the two branches of solutions.

local or global potential minima. The appearance of a new branch of solutionkich ac-
tually seems to have exactly the same spatial distribution as
2. Nonlinear resonance in DFWM the usual rolls is impossible for the SHE as well as for the

As already commented, the differences between DOP OPO equations, and signals the end of the similarity_ be-
and DFWM are expected to occur for large pump detunings ween thdefDOPOIand thEWM Thg rt1ew brznf\z of scl)lgtlondsz
when the nonlinear resonance appears, as has been |Ilustra?e%neare oravajue of thé pump detuning between an

Inour numerical calculations. This can be related to the

in Figs. 1b) and Za).
Wge have obtained numerically the nonlinear reSonancgreakdown of the amplitude equation for rolls in DFWM that

curves for DFWM in order to check the validity limits of Eq.
(39). Figure 10 displays a family of nonlinear resonances of
the roll pattern for three differenimoderate values of the
pump detuningd,, corresponding to both numericedym-
bols) and analytical result@ines). In this case the agreement
is not so good as in the DOPO case but it is still reasonable,
especially for the smaller values of the pump deturisee
caption. Note that the inclination angles of the resonance
curves are roughly inversely proportional to the pump detun-
ing exactly as predicted in the DOPO cis;kfna,jkNLR from
Egs.(37)]. Contrarily, the maximum value of the amplitude
of the rolls was found to be strongly dependent on the pump
detuning, differently from the DOPO case in which this
value depends only slightly of,.

For larger values of the pump detuning also qualitative
differences between DOPO and DFWM appear. This is illus-
trated in Fig. 11 which has been calculated ky=2. We
note that the whole resonance curve could not be traced.
Also the presence of another branch of solutions is shown. FIG. 11. As Fig. 10 but forA,=2. The nonlinear resonance
By increasing detuning from approximately6 the branch curve is brokencompare with Fig. 10 and a new stable solution
of (roll) solutions could be followed up to a value of around branch(open squarésappears.
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FIG. 12. Temporal evolution of the spatial
distribution of the signal fieldleft) and of its
spatial Fourier spectrunfright) in the DFWM
chaotic regime. The parameters ape=0.27,
Ag=—5,A;=—3, and the rest of the parameters
as in Fig. 10. The time changes from top to bot-
tom overAt=2.5 and the spatial scalborizon-
tal) has 128 pixels.

was noted in Fig. @) and can be seen in Figs. 10 and 11: asfrom the microscopic equations in both systems, under a va-
Ay is increased from 1.%upper curve in Fig. 10to 2 (Fig.  riety of different scales for the detuning parameters. Particu-
11), the resonance curve gets broken. larly, for large pump detuning the amplitude equation con-
Which is the behavior of DFWM for parameters far away tains terms corresponding to the nonlinear resonance
from the range of validity of its OPE? The answer to thispredicted by the modified SHE. An interpolating amplitude
question falls outside the scope of the present paper and dgguation has been given, which covers all the analyzed cases,
serves a separate study. Our preliminary numerical calculggng, in particular, the amplitude equation obtained from the

tions show the following features, different from those ex-mnodified SHE if pump detuning is made large. These inter-
pected from the analysis of the OPE and amplitude equatiofy|ateq amplitude equations are different for DOPO and
of DFWM: (i) stationary rolls with an additional zero com- He\wm.

ponent in the 1D caseii) coexistence of two rolls with two
different spatial wave numbers in the 1D cag¢é; Price
hexagons in the 2D case that do not coexist with the rolls bu
win in a roll-hexagon competition; an@v) oscillatory re-
gimes involving different spatial degrees of freedom.

In order to test the analytical predictions numerical inte-
ration of the microscopic equations have been carried out.
good agreement has been found, even for parameter values
far from those considered in the theoretical analysis. The roll

As an example, Fig. 12 displays a space-time plot of 6{n_stabilities _(I_Eckhaus and zigzag the hexagonal patterns
nonstationary regime of DFWM in the 1D case, after tran-With an additional zero compone(frice hexagonsand the
sients have decayed. This nonstationary regime involves i€0mpetition between these hexagons and rolls have also been

regu]ar Spatiotempora| Osci"ationsy resemb”ng the SpaanalyZEd. The numerical analySiS has also evidenced the ex-
tiotemporal intermittency. istence of nontrivial dynamical patterns in DFWM, which

will be studied in the future.
Note added in proofRecently a paper by H. Sakaguchi
V. CONCLUSIONS [Prog. Theor. Phys86, 759(1991)] has come to our knowl-

Transverse pattern formation in degenerate optical parae_dge. In it the post-zigzag states of thg SHE_are investigated.
metric oscillation(DOPO) and degenerate four-wave mixing He shows that for smalllarge k the zigzag is stabléun-
(DFWM) have been considered. For small signal detuningtable. This is in agreement with our calculations.
the Swift-Hohenberg equatiadi8HE) has been shown to de-
scribe both systems. Nevertheless, this isomorphism breaks
down for large values of the pump detuning. This manifests ACKNOWLEDGMENTS
itself through a modification of the SHE involving the ap- ) )
pearance of higher-order nonlinearities, that are different for /e gratefully acknowledge Massimo Brambilla for shar-
DOPO and DFWM. The role played by these extra terms id"d Ref.[5] with us prior to its publication, Gian-Luca Oppo
to produce a nonlinear resonance in both systems. In the calgr informing us about his calculations on resonant structures
of DFWM the modified SHE shows a pathological behaviorin DOPO, and J. M. Ajenjo for help in some preliminary
since it does not saturate for large values of the intensity ofalculations. This work has been supported by the Spanish
the signal field, far above the generation threshold. For posiPGICYT through Contract No. PB92-0600-C03-02. K.S. ac-
tive signal detuning the real Ginzburg-Landau equation iknowledges a grant from the Generalitat Valencigvialen-
obtained for both DOPO and DFWM. cian Government and financial support from the Deutsche

Amplitude equations for roll patterns have been obtained-orschungsgemeinschaft.
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APPENDIX A i

1+iA, _

. . _ _ L X,=—|2|B|?+ — (B2e? 0%+ c.c)|,
In this appendix we discuss briefly the derivation of 1+i(Ag—2A41y)
OPE’s for the case of finite positive detuning. With respect (B33
to the linear stability analysis, substitution (&) into (11) _
shows that the largest eigenvalue is of ordérfor k? of Y,=Y5 Velkox+ v Dekox, (B3b)
ordere. Then, in this case the spatial part scales as
with
V2=¢2V5 (A1)
Yo Y=y, U 4L B. (B30
andA; can beO(1). The scaling is applicable to both DOPO
and DFWM. Finally, at ordere® we find
For DOPO the order-parameter equation for finite positive
detuning reads, to leading order dn . Y1=E Y1+ 3[(1—iAg)Xo+ (1+iAg) X5V,
9.Y=EopY—2Eq(1—Eg)(1—AgA,)Y3+A,V2Y, + 3L, (o= Y5) + 3i(Lo—Ap)(Ya—Y3),

(A2) (B4)

with , .
which evaluated at the frequengy leads to the amplitude
p=E-E,, (A3a) equation for rolls that read
and 9,B(u,v)=E,B—(2+a?)|B|?B—1LIB (B5)
Y=[A;+i(1-Ep)]Y. (A3b)  with a=/(1+A2)/[1+(Ag—2A,/7)2].

Equation(A2) is the real Ginzburg-Landau equation. Notice
that this equation is not valid whehyA,>1, since in this APPENDIX C
case the cubic term becomes positive and the solutions di- |, this appendix we derive the amplitude equation for

verge. This fact is due to the existence of bistability of the,y|is in DOPO in the case of large pump and signal detuning.
homogeneous solutions close to threshold that just occurs fof 5 we put

ApgA>1.
For DFWM the order-parameter equation for finite posi- Aj=g"15], (Cla
tive detuning reads
_ _ — _ Ag=e"168,, Cib
9.Y=2E2pY—4E2(E2—1)(1—AgA;) Y3+A,V2Y, 0=E "% (Clo
(A4) which implies
with iven by Eq.(A3a), and s—
[o¢ y Eq.(A39) B ko— o~ Vg, (10
Y=[A;+i(1-E3)]Y, (A5)

apply the expansion of the Laplacian operator given in Eq.
which is isomorphic to Eq(A2), as can be seen by making (33) and proceed as in Appendix B, but now we put
Y—Y/y2 and /2 in Eq. (A4). — —
—YINZ andp—pi2 in Eq. () Y,;=Be 'kofo+Bre ko%o, (C2)

APPENDIX B . .
At order one we find{;=0. At ordere we find

In this appendix we derive the amplitude equation for

rolls in DOPO in the case of pump and signal detuning of [L,1—2y50]X2=2y50Y§, (C39
order one. For that we make an expansion of E4jsassum-
ing an increase of the pump over threshold of orefrEq. (L_1=81)Y,=—i(Y,—Y¥), (C3b

(10), applying the expansion of the Laplacian operator given

in Egs.(31), and using the expansidab) for the fields, but  \which by using Eq(C2) give the solutions
now we impose

Y, =B(u,v)e*o* + B* (u,v)e kox, (B1) Xp=—[2|B[*+a’(Be* 00+ c.c)], (C4a

At order e we find X;=0. At ordere? we find Y2=Y(2+1)eik7°’<°+ Y(z_l)e_”axo, (C4b
[Lo+2ip(1+iAg)]Xo=—2i ¥(1+iAg)Y2, (B2  with

[1+i(A1—Lo)]Yo=Y: +iLl Yy, (B2b) o' =1/1-28,1y8,). (C49

which by using Eq(B1) give the solutions Notice thatX, is a real quantity.
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At order £2 we find

(L_1—2y80)X3=—2i (Xo+ Y2+ 2i y5,Y1Y5),
1

(C53
(Lo1=81)Y3=—i(Y2=Y3) = (L1— 6X2) Y.
(C5b
Solving Eq.(C53 gives
Xg=X§2eizko0 4+ X0 1 X ~2e2ikoo,  (C6a
with
o (17 \(+1)
Xy “=ia 3 B+2iY, VB, (Ceb
XQ=—-2(BY, V+B*Y,Y), (C60
o (1T | e
XgP=ial| B2y B, (C6d

Equation(C5b) does not need to be solved gk since it
will not appear in the solvability conditiofsee below. We

only need to evaluate this equation at the frequdqgyThe
result is

Yo Y- Yo D* =i B+idg(2+a)|B[?B.  (C7)

Finally, at ordere® we find
9, Y1=EoY1+XoY 1+ 30 (Li+ 80Xo) (Yo~ Y3)
—3i00(X3=X3)Y1+3i1(L_1—8) (Y4~ YZ),
(C8)

which evaluated at the frequen@ leads to the amplitude
equation for rolls

9,B(u,v)=E,B—(2+a'?)|B|?B—355(2+a’)?|B|*B
—3L?B—36[(2—a')B2L*B* +2a'|B|’LB
+(2+a’)L(|B|?B)]. (C9)
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APPENDIX D

In this appendix we derive the amplitude equation for
rolls in DFWM in the case of pump and signal detuning of
order one. The derivation follows the same lines as for the
DOPO casdAppendix B.

At order & we find X;=0. At ordere? we find

[iLo— ¥(1+iAg)IXo=y(1+iAg) Y2 (D1)

and Eq.(B3b) which, by using Eq(B1), give the solution

1+iAg

__ 2
Xo= | 2B TR =24, 1)

(B2e?kox+ c.c.)},
(D2)

and the same expression gy as in Appendix A.

Finally, at orders® we find the same equation as for the
DOPO cas€Eq. (B4)] but replacingE, by 2E,, which
evaluated at the frequendy leads finally to the rolls’ am-
plitude equation

9,B(u,v)=2E,B—2(2+8?)|B|’B—3L?B  (D3)

with B=(1+A8)/[1+(Ag—4A,/y)?]. Notice that this
equation is isomorphic to the corresponding one for DOPO.

APPENDIX E

In this appendix we derive the amplitude equation for
rolls in DFWM in the case of large pump and signal detun-
ing. Again we follow the same lines as for the DORA&p-
pendix Q.

At order one we find{;=0. At ordere we find

[L_1—y80]Xo=7y8,Y7, (ED)
and the same Eq.C3b) that, by using Eq(C2) give the
solutions Eq.{C4b) and

X,=—[2|B|?>+ B’ (B&¥ 0¥+ ¢.0)], (E2a

with
o 1 E2b
Ay (=2

Now, let us simply comment that a third amplitude equa-thys X, being a real quantity.

tion can be derived if we considex; of order one and

At order £2 we find

Ao=¢"18,. In this case one must apply the same scalings as
in Appendix B but the one corresponding to pump detuning. (L, — y5,)X3=—iy(X,+ Y3~ S2X,Y3+ 20 85Y1Y5),

The amplitude equation obtained in this way is the same as (E33
Eq. (C9 but replacinga’ by 1. This is consistent since in

this caseAy>A; and in this limit @’ —1. This amplitude (L_1—81)Y3=—i(Y,—Y3)—(L1—2680X,)Y;.
equation is the same that one obtains by starting directly with (E3b)

the OPE Eq(24).

On the other hand, EqC9) and Eq.(B5) do not connect
completely. It is verified thak— o’ whenAgy and A, are
large but if both detunings are made of order one in(E9)
one obtains Eq(5) but with a’ instead ofa. Nevertheless,
we can construct an interpolated equation by puténgn-
steade’ in Eq. (C9), this equatior[that is Eq.(3438] being
valid in all the three limits that have been considered.

Solving Eqg.(E33 gives
X3:X(3+4)ei4k_0x0+X(3+2)ei2k_oxo+x(20)+X(372)e72ik_oxo
+X<3_4)e_i4k0"0, (E4a)

with
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1-8' At order £2 we find the equation
X5 =ip'| ——B+2iYy ™ +25(1+5")[B|’B|B,
0

(E4b)

9.Y1=2E,Y1+2X,Y,— 53X3Y,

+ 1Ly +280X) (Yo~ Y5) =i 8o(Xz—X3)Y
XO=—2(BY, Y+ B* YL V) +2i 55(2+ 8')|BI%, 2imT el Tz T2/t s T

(E40 +3i(L_1=8)(Y4—Y3) +3i[0,— 2E,— 2X,
1-p — 65X5— 21 8pXsl(L 1= 81) Y, (E6)
xg“):iﬁ'(g—ﬂsuzivg1>+250(1+3')|B|ZB*)B*. _
0 which evaluated at the frequenky leads finally to the am-

(E4d plitude equation for rolls that read
As in the DOPO case, EqE3b) does not need to be J.B(u v)=2EzB—2(2+B’2)|B|28—45§(1+,8’)|B|4B
solved forYj since it will not appear in the solvability con- "’
dition (see below. The same occurs with{ ) andX§ 4. —1L2B—6,[(2—B')B?LY¥B* +25'|B|?L,B
We only need to evaluate this equation at the frequency , )
+(2+B")La(|B|*B)]. (E7)

k_o. The result is
1) A1) s . N Here the same considerations that were made in the DOPO
Yy =Yy F=iLiB+2i6y(2+B")|B[*B.  (ED  case with respect to the interpolation must be applied.
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