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Effective Raman theory for a three-level atom in theA configuration
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It is shown that a three-level atom in tAeconfiguration with arbitrary detunings can be exactly reduced to
a two-level system with an effective Raman coupling, which depends nonlinearly on the intensity of the two
radiation fields. This is done by exactly evaluating the unitary transformation introduced by Alexanian and
Bose[Phys. Rev. A52, 2218(1995] for a three-level atom coupled to two modes of the radiation field. We
obtain an exact transformed Hamiltonian in which one of the three levels is decoupled for all values of the
detunings. In particular, our result is then valid for any ratios of the coupling constants to detunings, even for
zero detuning, in contrast to earlier work which requires that these ratios be small. We find the the eigenvalues
of the exact transformed Hamiltonian and study its population dynaf8d€50-294{6)08808-1

PACS numbes): 42.50.Hz, 42.50.Ar

[. INTRODUCTION have obtained an effective two-level Raman interaction
Hamiltonian. This effective Raman Hamiltonian has the
Quantum-optical interactions involving one atom with aform of the usual Jaynes-Cummings model but with the
few energy levels and one or more near-resonant modes sfngle-mode field operators replaced by products of an anni-
the quantized electromagnatic fields have been extensivelyilation operator of one mode and a creation operator of the
studied by means of the Jaynes-Cummings model and itsther, i.e., it has a term of the form(ala,o,+ala; o)
various extensions. Such models are shown to exhibit intemwith A\~ —7%g,g,/A. Instead of adiabatic elimination, Alex-
esting nonclassical effects, such as the collapse and revivahian and Bos¢6] have recently proposed an interesting
of the Rabi oscillations of the atomic inversion, antibunchedalternative method—unitary transformation to obtain a simi-
light, and squeezind1-8. Among these extensions are lar Hamiltonian for which one level decouples. Their unitary
those models that include two-photon couplings in singletransformation ig6]
mode and multimode casgs—8]. Models describing Raman
processeg4,5] belong to the latter. In dealing with two- X'=exp(S)Xexp(—S), 2
photon transitions in Raman-type processes, one can con-
sider a three-level system of energleg E,, andE; in the  whereX’ denotes the transformed atomic and photon vari-
A configuration interacting with a pumg,, and a Stokes ables, and
mode w, as shown in Fig. 14—6].The Hamiltonian of the
system is written af4,6] S=a(a;031— 310'13)+ﬁ(320'32_ aZazg), €©)

wherea and B are transformation parameters to be specified

later (again, note that our notation is different from that in

Ref. [6]). Claiming that the exact transformation cannot be
+hgs(asogt a£<723), (1)  found, Ref[6] has evaluated it perturbatively and kept con-

tributions to the second order in coupling constants in the

where symbolsy; (j=1,2) represent the field operators of transformed Hamiltonian. Except for containing intensity-

modes 1 and 27;;=|i)(i| are the level occupation numbers, dependent Stark shift terms, the approximate transformed

andoj;=|i)(j| (i#]) are the transition operators from lev- Hamiltonian turns out to be the same as the one obtained by

elsj to i. Levels 3 and 1(2) are coupled by a dipole- Gerry and Eberly{4] and Cardimoneet al. [5]. With the

coupling constanty; (g,). There is no direct coupling be-

tween levels 1 and 2. The quantitids and A, in Fig. 1

denote detunings given by;=(E;—Ej)/hi—w;, j=1,2. Aii 3>

Note that we have changed some notation with respect to the _Az

previous literature and, in particular, have interchanged the

numbering of levels 2 and 3. Several authors have consid-

3
H= E EiU'ii +ﬁw1ala1+ﬁw2aga2+ ﬁgl(a10'31+ a10'13)
=1

w:
ered the Hamiltonian witth;=A,=0 [7,8]. Under the as- !
sumption thatA;=A,=A, and that level 3 is far off reso- wy
nance(large detuningA) and, hence, can be adiabatically 2 >
eliminated, Gerry and Eberlfj4] and Cardimoneet al. [5]

1>
“Permanent address: Physics Department, Huazhong University of

Science and Technology, Wuhan 430074, P. R. China. FIG. 1. Three-level atom in thA configuration.
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54 EFFECTIVE RAMAN THEORY FOR A THREE-LEVEL ... 1587
inclusion of the Stark effects, Alexanian and Bose haveare two invariant quantities under the unitary transformation
found that the Rabi frequency and the collapse and revival2) [i.e., szafaj+%(ajz+ 1)=Nj’=aj’Taj’+%(aj’Z+ 1)],
times of the atomic inversion have strikingly different and they are also two constants of motion. We only need to
photon-intensity dependence than those found by Gerry angalculate the transformations of the four quantities,,
Eberly. However, all of these resulté—6] are suitable only  ¢,,, q,=(a,04+aj013), and q,=(a,03,+aj0,3) to ob-
when the ratiog);/A; (j=1,2) are small. In fact, as will be  tajn the transformed Hamiltonian. While doing so, the opera-
seen later, these results may need modification in the presorsN, andN, can be treated as if they acenumbers, since
ence of the intense pump or Stokes mode even if the ratiogey commute with the four quantities and the oper&or

9;/A; (j=1,2) are small. In view of the facts that the de-  we now calculate the transformations of the four quanti-
tunings are experimentally adjustable parameters that can Brs by the formula

tuned to any value, and that Raman interactions are impor-

tant when pump and/or Stokes modes are relatively strong, it

seems worthwhile to attempt to find a general solution to this )

problem that describes the situation where coupling con- X’=eSXe*S=E T (7)

stants have arbitrary relation to the detunings. In fact, several n=0 M

authors have already investigated phenomona involving the

opposite limit of zero detuning7,8]. ) ) - (n—1)
In this paper, we first show that all of the relevant unitaryWhere S is given by Eg. (3), X*=[SX""~], and

transformations introduced by Alexanian and Bose can b&”’=X denotesoy,, a2, 01, andg,. After some manipu-

found exactly. Level 3 can be eliminated from the exactlations, we obtain

transformed Hamiltonian to obtain an effective two-level Ra-

man interaction Hamiltonian with an intensity-dependent @ @

coupling between levels 1 and 2 which is valid for any mag- o1 =—2a01; 03 =20, (8

nitude of the ratios of coupling constants to detunings includ-

ing zero detuning. The results reduce to the previous results

[4-6] as the detunings become much greater than coupling o\2=—4a%01,(1— 0,y +2apaq,

constants. Next, we obtain the eigenvalues and the eigen-

states of the exact transformed Hamiltonian. Because unitary

transformat!ons preserve the elge_nva_lues, these are in fact U<222>: — 4820, (1— o) +2aq, (9)
the exact eigenvalues of the Hamiltonian of Et). To our

knowledge, this is the first time these exact eigenvalues have

been calculated by any means. We then calculate the atomic n+2)_

n n
inversion and Rabi fregency by means of the exact trans- T1z (B*+4a?)01y = 3?0y,
formed Hamiltonian. The Rabi frequency is found to have a
different intensity dependence than that obtained by Gerry — —
and Eberly[4], Cardimonaet al. [5], and Alexanian and ooy =~ (4p*+a?)al) - 3p%) (10
Bose[6], although it reduces to the result of Alexanian and
Bose[6] when detuning is much greater than coupling con- _
stants. It also agrees with the known result given by severavheren=1,2,3,. .., a=aN;, 8=pN,, and
other authord7,8] for the zero-detuning case. Finally, we
summarize our results and make concluding remarks.
qE(aIa2012+ agalazﬂ. 11
IIl. THE EXACT TRANSFORMED HAMILTONIAN

Before calculating all the relevant unitary transformationsgqyations(7) and (10) can be written in a more concise
given by Egs.(2) and(3), let us rewrite the Hamiltonian of 5rm

Eg. (1) in a more convenient and symmetric form as

H=%(E1+E2—ﬁwl—ﬁw2)+Hl+H2, (4) ’

(1) 2
017 017
with 0(212) ! B( 0522)) ' (42

Hi=fiw;Ny+ 38001, +hgi (a0 + 31013),
L + whereA andB are two matrices given by
Ho=fiwNo+ 370,05, 1igx(8,05+ 83023),  (5)

Wherealz=1—2011, 0'2221_20'22, and Pn Pnfl

A=2 onim B=Ziomre 13

N1=a1al+%(0'12+1), N2:a;a2+%(ﬂ'22+1). (6)

It is easily shown thalN,; andN, commute with the operator
S given by Eq.(3) and with the Hamiltonian. Therefore, they and the matrixP as well as its diagonal forms are
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B2+4a?,  3d? 9% o
Y —2,—|=C i 52| G

382, 4B%+a 0, (2i§
(14

where
&\ p p

1_( (V2)™4, Ezp_l) .
¢z Bt (19

sin(¢)

—2a——— i (a%cost+ B2 g+ 2a2B(1—

!
017~
—2 02

¢

2

2a
+—7—(1—cost)?op,(1— 01— a (1-

sin(¢)
§3

2_22 2

2p

- —
02;,= 02z
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(B2cost+ a?) g+ 2 B2a(1—

(1—cost)?o1,(1— o) — Sﬁ(l cost)[ B2 L+ cost) + 2a%] o 1— o).

with &=+a?+ 2 and p=+/a*+ 8% The matricesA and

B, then, become

sin(¢)

, 0
A=G™! £ G;
0 sin(2¢) ’
T
1-cog¢) 0
—
_r~-1
B=G ] 1 coq2¢) G. (16
, %

Substituting Eq(16) into Eq.(12) and using Eqs(8) and(9)

as well as the expressions of matric@sindG ~*, we obtain,
after some manipulations, the exact transformation results of
the operatorsr;, and o5, as follows:

sin(¢)

2
cos) §3 g>t+ op

2 (1 cost)(a’cost+ B2)q
cost)[aX(1+cost) + 282 oy (1- 03p),

sin(¢)
qu

2a8

co<) + ?(1—cof)(ﬁco§+?)q

17

The transformed quantitieg; and g, can easily be obtained by the differentiations of the transformed operajgrand

o5, Since one can show

1|d 1
q=— —|— (e Ze—SS} , gy=— | —(eSlope S , (18
17 2aldt 7t 7 2pldtt 7 1
which can equivalently be evaluated by
I __ 1 d ! . ! __ 1 d .
ql__ﬁ aolz(aaat,ﬂﬁﬂt) t:1, Q= — 25 dt(rZZ(a at; B— Bt) - (19
The results are
B2cost+ a?cog 2 ‘a?B[cost—cog2¢) siné —
qi=[B = ;é 120,22 v ]%_'Bgs (2a%cog+B?—a?)q
a?sing —; 282a’sing
+—§r(ﬁ +a?Cos) o 1,(1— 049 — —gr(l COE) oo (1—019),
[@?cost+ B2cog2¢) ] B2afcot—cog2¢)] asiné  — — =
2= 2 P 7 1~ —m(2B°co+a”—B9)q
3 Bé €
2_2 ; . 2—2 n
ig;ng(azﬂLBZCO%)Uzz(l—Un)—%(1 COE)o1,(1—02)). (20

Equations(17)—(20) are the exact unitary transformation results for all the relevant quantities needed to find the exact

transformed Hamiltonian. Noting that’ =

3(E1+Ey,—fhw,—fhw,)+H]+H,, and
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2H =fwN;+ 3 A 01,+h0101,

Hy=fw,No+ 3 1A,05,+79505, (21)
we then get the exact transformed Hamiltonian
H'=Eg+hoiNi+hwNy+ i noggt ik(alayoiptalayos) + 3ho(og— o1y +hyy(aios+aloy)
+hyy(ay03+ ajoy), (22

whereN; andN, are still given by Eq(6) and the other parameters are functiondNgefandN, and are given by

w=(A—A)| 1+ %(mog—?) + ﬁgf (%—%)gsin&ﬁz—gﬁa
02 T2 o
——f[(AzBZJrA a)cog2e) +2| DL 4 9P )gsm&)}. (23
2¢ B
. _ — 2
>\=C;—'f[[A1,82+AZEZ+(A2ﬁ2+AIEZ)cos§](1—cos§)—[(% 91)(—2 /32)+2 gf gf )cosg gsing], (24
~ 38| 3(Asa"+ 458 3<A152+A2ﬂ2> (gﬁz gzﬁ) 3sin2¢)
EO:%(E]_"‘ Ez—ﬁwl—ﬁwz)-i— w_ %, (26)
B ap’lor g — . gia® g
ylz(Az—Al)C;—3sm§+ = (—1—Ez)cosf—%(A232+A132)S|r‘(2§)+§ f + )cos(zg)
A y 2 - -2 2
vz=<A1—A2>@rsm§+@r(%—%) cosi— oy (524 Ayad)sin(2) + | BL 4 9 )cos(za. (27)
3 &\p 2¢ &\ a
[
wherea= aNy, ﬁ—ZB\/N_z and&= JaZ+ B tween levels 1 and 2, while the other terms do not cause any

These equations describe an infinite set of unitary transtransitions among the three levels. This means that as long as
formations. We may now choose the transformation paramvalues ofa and 8 can be found that satisfy E(28), level
etersa and 8 so as to provide the simplest transformedthree can be exactly decoupled and does not contribute to the
Hamiltonian and, in particular, so as to decouple level 3 fronpopulation dynamics. We know from previous results that

the other two levels; i.e., they are chosen such that the approximate solutioa~g;/A;,B8~g,/A, exists if both
the ratiosg; /A, andg,/A, are very small. In the following,
71=72=0. (28)  \ve shall show that there exist solutions without any approxi-

mations for the cas&;=A,=A suitable for any values of

Th he Hamiltonian has the f i
en, the Hamiltonian has the form the ratios g;/A and g,/A. Consequently, we can put

H'=Eg+Aw N, +Aw,Ny+ 2 noas 033=0 in Eq. (29) to obtain an effective two-level Raman
interaction Hamiltonian with levels 1 and 2 subject to an
+hN(a]ayo ot aja op) + 3hw(on 0y), intensity-dependent coupling, i.e., the effective coupling pa-

(290  rameter\ depends on photon numbers.

For the purpose of illustration, let us consider the case of
where the parameters, \, 7, andE, are still given, respec- A;=A,=A. Equation(28) is satisfied in this case if we
tively, by Egs. (23)—(26). The exact transformed Hamil- choose
tonian in Eq.(29) with «, 8 determined by Eq(28) holds for
any magnitudes of the ratiag /A, andg,/A, and is easily
shown to reduce to the previous resiits-6], when both the 91 r(
ratios are very small. Obviously, the and w terms in the = ————arcta

2V91+05
o= re—
Hamiltonian given by Eq(29) only produce transitions be- 2\911 93

A
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% arcta’<2 9i+0;
2Vgi+9; A

=|j)®|ny,n,) represents a state in which the atom is in the
, (30)  state |j), while the photonic state is represented by
Iny,Nn,), with ny,n, being the photon numbers in the two
_ i . _ modes. For simplicity, we consider the cadg=A,=A.
where g;=g;VN; ,j=1.2. We find, after some manipula- The Hamiltonian is rewritten as
tions, that complicated expressions for the parameters in the
transformed HamiltoniaEq. (29)] are greatly simplified H=Hg+Hpq (33
and have the forms

Y , with
91_92 (A — = A}
= V5] 79179~ 5|, H,=Ey+#Aw;N;+hw,No+ LA noaa,
§§+§§ 2 2 d~Eo 1M1 2N2T 3N 17033
SIIE: Al Hig=fiM(2122012+ 8381021) + Hh0(02~ o11), (39)
=2A+3 —| +93+93— =,
g | (2 9170 2 whereleaIalJr 1-o0, N2:a£a2+ 1- 05, and the pa-
. rametersw, \, », and E, are given by Eq.31). Hy and
Eo=2(E1tEx—fiw;—fiw)) H,q have, respectively, diagonal and nondiagonal forms in
- A2 Al the |j;ny,n,) representation, hence the meanings of their
_ lﬁ , /(_ +§z+§z_ =2 subscripts “d” and “nd.”
2| 2 1ezoap Using the facts thali;|3;n;,n,)=(n;+1)[3;ny,n,), and
Hngl3;n1,n2)=0, one sees thdB;n,,n,)(n,=0,1,2,...)
0102 [ A z > — A are eigenvectors of the transformed Hamiltonian, i.e.,
)‘__5;#55 (E ToateT 5 (31 H'|3;n1,n2) =Ej n,[3:01,n2) and

whereg;=g;VN;, j=1,2. Equation29), together with Eq. En, n,=E1tMhot+nie;
(31), gives the exact transformed Hamiltonian for the case

A;=A,=A, valid for any values of ratiog;/A andg,/A et é+ \/ é
even forA=0. It is seen that the absolute value of the effec- ) 2
tive two-level coupling parametex is a monotonically de- (35)
creasing function of the detuning, which means that the

smaller the detuning, the stronger the effective coupling be- The remaining eigenvectors can be expressed as a linear
tween the levels 1 and 2. This is a reasonable result that caiymbination of the vectorkl;n, ,n,) and|2;n;—1n,+1),

be anticipated physically because the smaller the detuningyhich are the eigenvectors df, with eigenvaluen, and of

the stronger the direct couplings between levels 1 and 3 ang2 with eigenvalue ,+ 1), and they are also eigenvectors
between levels 2 and 3, and also the effective coupling begs H4. One can therefore easily show

tween levels 1 and 2. Obviously, our results reduce to the

2

+4 +g2(n+1)+g5(n,+1)|.

i 25 (21 a2) i i i 1Ay + +
previous one$4—6] whenA<>(g{+g3), since, in this case, H |\Ifn1'n2>: Enl,nzl nl,n2>! (36)
0192 ;
N=— AT>(g+g)), (32  with

W Y=—sing|1;ny,n,)+cosh|2;n;—1,n,+ 1),
as found in Refs[4—6]. Note that this implies that the pre- ¥, ;) [Lins.n2) 123m 2+ 1)

vious results[4—6] require both of the ratiosg,/A; and

g,/A, to be very small, and they need modifications if one W5, 0,0 =CO| 1501 o) +sin62;n; — 1y + 1), (37)
of them is not small or when the pump or Stokes mode is

relatively intense such that the quantiy;¢-g3) is compa- Ep, n,=E1tNifiwy+nofiw,

rable to or greater than the square of the detudiAgven if

both of the ratiosg,/A; and g,/A, are themselves En, n,=E1tNifior+Noho;

very small. Note that whenA?<(gZ+g3), we find
)\m—glgzl\/gzﬁgg, which remains finite aa —0, unlike

the previous resulh=—g4,0,/A. Finally, it is pointed out —h
that the intensity-dependent coupling occurs naturally in the

transformed Hamiltonian while previous studies usually in-ynere

troduce it phenomenologically.

2

E

2 2 A
+gin;+g5(n,+1)— it (38

. g2vnzt1
Ill. EIGENVALUES AND EIGENSTATES sing= > > )
. ) . Voini+g5(n,+1)
In this section, we calculate the eigenvalues of the exact
transformed Hamiltonian and express the corresponding gl\/n—l

eigenvectors in terms of the uncoupled basis coy

= . (39
{ljsn1,n5),j=1,2,3n,,n,=0,1,2, .. } where |j;ny,ny) Vgin,+g5(n,+1)
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It is interesting to note that the eigenstat&s. (37)] of * H.d
the exact transformed Hamiltonian turn out to be the same as poolt)= > <2;I1,I2|ex;{ —i 7 )
1,5=0

those of the approximate one given by Alexanian and Bose
[6] [see their Eq(20), noting that we have different nota- Hodt
tion]. However, the eigenvalues given by us differ, of course, X p(O)EX[{ [ T”) [2;14,15). (46)
from theirs becausEntl’nZ in Eq. (38) are the eigenvalues of

the exact transformed Hamiltonian and they are valid for allysing Eq.(34), one can show

possible ratios ofy; /A andg,/A including zero detuning

A=0. Erinz in Eq. (38) reduces to their corresponding re- Hpdt “Hpg SiN(Qt)

sults asA?>[gin; +g3(n,+1)]. As noted above, the eigen- exp(l 7 ) :(1_‘733)( cog) +i—Z=—q )
values obtained here are also the exact eigenvalues of the 47
original Hamiltonian given by Eq(l) (for A;=A,) while

theirs are not, since their unitary transformation is not exactwhere

1 A2
IV. ATOMIC INVERSION AND RABI FREQUENCY QEQ(Nl,Nz): E[ \/(E

2 2 A
+91N1+9g5N,— 5|
Since we have obtained the exact transformed Hamil- (489)
tonian different from previous results, it is worthwhile to
analyze the corresponding population dynamics. Again, Werhe quantityQ) can be called the Rabi operator, since its
consider the casAlez_ for simplicity. The density opera- eigenvalues give the usual Rabi frequencies.
tor p(t) evolves according to the formula Substituting Eq(47) into Eq. (46), and using the expres-
, , sion (41) for p(0) and the expression dfl .4 in Eq. (34)
- i E E together with the parametess and\ given by Eq.(31), we
p(t)=ex i p(0)exp i , (40 _ ) X Y, '
h h finally obtain the expression of the atomic inversion as fol-

lows:
whereH’ is given by Eq.(29) [or Eq.(31)], and the initial
density operatop(0) is assumed to have the for@] *
W(t)=—1+8 E Cn,n ingn
Ny inp=0 1M2:N1N2
p(o):mlmzznlnz lemzinlnzll;mlvm2><1;nl!n2|- (41) nl(n2+1)g§g§ n2 tQ 40
[+ gy + e W) (49

The atomic inversiotW(t) is given by
where the Rabi frequenc@nanZQ(lenl,N2:n2+ 1),

W(t)=p5a() = pi(1), @2
wherep;; are the diagonal elements of reduced density op- 1 A2 A
erators of the atom, i.e., = 5 \/<§ +gin; +g5(n,+1)— > (50

pﬁ-(t)z > (J:l0olpD)]jil1,00), §=1,2,3. (43 It is perhaps not too surprising to note that the expression
11.12=0 (49) for the atomic inversion has the same form as the one
) ] A A A A obtained by Alexanian and Bose using their approximate
It is obvious thatps;(t) + p2,(t) + p3a(t) =1 and p3(1)=0  ransformed Hamiltoniai6] except for different Rabi fre-
because of the particular choice of the opergi®) in EQ.  quencies. The Rabi frequency we find here has an different
(41) and the fact thaH' does not produce a transition be- jntensity dependence than that obtained in R&f. although
tween level 3 and the other two levels. Therefore, the atomig reduces to it correctly in the appropriate limit. However we

inversion becomes do not obtain th¢n,(n,+1)] dependence found in the adia-
A batic elimination approact4,5] in any limit. The “col-
W(t)=—1+2p5y(1). (44 Japse” and “revival’ times of the atomic inversion would,

therefore, differ from the previous resu(t4—6]. The situa-
Noting from Eq.(33) thatH'=Hgy+H,q4, [Hg,H 1,a]=0 and  tion where the atomic inversion is a periodic functiort é6r
|2;14,1,) is the eigenvector oHy with eigenvalueEy [the  particular values of coupling constargs and g, discussed
explicit form of Eg is not needed for calculatingg,(t)], one  in Ref.[6] does not show up here, since the Rabi frequency

obtains here does not have a linear dependence on field intensities as
does the one in Ref6]. Of course, the Rabi frequency here
“H't CEgt CH ot is easily seen to reduce to the one given by Alexanian and
ex 'T) 211, 12)=exp i —=|exq i —=[2]1,12) Bose[6] whenA?>[g2n,+g3(n,+1)], as it should be, and

(45) it becomes the one given in R¢B] whenA =0 (note that
the different references have different definitions of Rabi fre-
and hence qguency that differ from each other by a factor 2
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V. CONCLUSIONS Bose[6] not only provides an interesting alternative for the

In this paper, we have shown that the unitary transforma-ad'abatlc elimination when both are suitable, but also may

tion introduced by Alexanian and Bose can be found withou%ucceed when the adiabatic elimination approach ceases to

anv aporoximation. We have obtained the exact transforme ork. Itis, in our view, surprising and intriguing that there in
y app : act exists a unitary transformation such that one Iéheslel

CH;r:nk')léor?;deigd dzr;(())vllmléhfi[)r%ntﬁeotnmirt?v:/ielek\a/\gégaerll;)hen3% can be totally eliminated regardless of whether or not
P Yhere is far off resonance and regardless of how large the

gz?a?neaer?r:;fr:a?t?\(/jefievrg-rg\?e?)lgaac;t;r}iftzrr?c;et?orljzn;Irlrg(i)l?c;ﬁinatnqield intensities are. The fact that level 3 can be eliminated is
consequence of the exact transformation results but is hard

with an intensity-dependent coupling between levels 1 and 2[% understand physically at first, since it seems to mean that

Ifh ?hga(ma?ngtﬂgﬁliﬁg:;:nIltgnlggeg't\,N 'tggrtrhe;:%mégveor:kthere exist only two-photon processes or processes involving
9 prop y y Yeven photons while a single-photon process is totally absent.

[4]. valid for any magni_tudes_of the ratios (.)f the coupling After much thought, we find out that the conclusion that one
constants to detunings including zero detuning, and reducqgvel can be made to decouple from the other two levels is, in

tore;ht(;rF;Ligogcs)ur(leiiunﬁgg]térgshelnn i%tgigg]rgstﬁéel?i:&cprefact, the result in dressed-state description. In other words,
guenc obtained pb gus become.s the revidus ones as tﬁhe level 3 which can be eliminated is the dressed level, not
q Y O y P ; A5 {ie original bare level 3. The single-photon processes are
detuning is zertﬁ_7,8] a_nd very large compz_ired_W|_th coupling implicitly used to “dress” levels and hence only processes
ff?:r?]tzr;]tji]ér:;{:;sb\;i?jlI%SV\t/L]gn ;heb((ja(ta\}vl:algﬂ%:z;g tsfotv;/iﬁgninvolving photons of even numbers are apparent and high-
9 € gap : hted in such a description. This raises an interesting ques-

cases. We have glso.obtamed the e|genvalu¢s_ of the ©X4n as to why the effective two-level Hamiltonian of the
::)ar\]r;;:‘orr?veedn Hbamélt%q;anTﬁgiagu?hg atlrlleofofclr?elzn?elzlglir:t”- dressed-state description reduces to that of the adiabatic ap-

. 9 y EQLL). . oximation under large detuning conditions while the adia-
unitary transformatlon.s can be obtained exaptly suggests th tic elimination procedure does not seem to introduce any
the Heisenberg equations of the corresponding operators may,

be calculated without any approximations. In fact, this was ansformation from a bare-state description to a dressed-
proven for the special case of the zero-detuning0 (Ref. state one. This question will be thoroughly discussed else-

[8]) and is currently under investigation for the general caséNhere'

of nonzero detuning. Our results are a generalization of the

prev'ious' one$4—6|, anq might find 'th(.air applicatiqns in in'— ACKNOWLEDGMENTS
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