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Effective Raman theory for a three-level atom in theL configuration

Ying Wu*

Applied Physics, Yale University, P.O. Box 208284, New Haven, Connecticut 06520
~Received 30 January 1996; revised manuscript received 19 March 1996!

It is shown that a three-level atom in theL configuration with arbitrary detunings can be exactly reduced to
a two-level system with an effective Raman coupling, which depends nonlinearly on the intensity of the two
radiation fields. This is done by exactly evaluating the unitary transformation introduced by Alexanian and
Bose@Phys. Rev. A52, 2218~1995!# for a three-level atom coupled to two modes of the radiation field. We
obtain an exact transformed Hamiltonian in which one of the three levels is decoupled for all values of the
detunings. In particular, our result is then valid for any ratios of the coupling constants to detunings, even for
zero detuning, in contrast to earlier work which requires that these ratios be small. We find the the eigenvalues
of the exact transformed Hamiltonian and study its population dynamics.@S1050-2947~96!08808-7#

PACS number~s!: 42.50.Hz, 42.50.Ar
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I. INTRODUCTION

Quantum-optical interactions involving one atom with
few energy levels and one or more near-resonant mode
the quantized electromagnatic fields have been extensi
studied by means of the Jaynes-Cummings model and
various extensions. Such models are shown to exhibit in
esting nonclassical effects, such as the collapse and re
of the Rabi oscillations of the atomic inversion, antibunch
light, and squeezing@1–8#. Among these extensions ar
those models that include two-photon couplings in sing
mode and multimode cases@1–8#. Models describing Raman
processes@4,5# belong to the latter. In dealing with two
photon transitions in Raman-type processes, one can
sider a three-level system of energiesE1, E2, andE3 in the
L configuration interacting with a pumpv1, and a Stokes
modev2 as shown in Fig. 1@4–6#.The Hamiltonian of the
system is written as@4,6#

H5(
i 51

3

Eis i i 1\v1a1
†a11\v2a2

†a21\g1~a1s311a1
†s13!

1\g2~a2s321a2
†s23!, ~1!

where symbolsaj ( j 51,2) represent the field operators
modes 1 and 2,s i i 5u i &^ i u are the level occupation number
ands i j 5u i &^ j u ( iÞ j ) are the transition operators from lev
els j to i . Levels 3 and 1~2! are coupled by a dipole
coupling constantg1 (g2). There is no direct coupling be
tween levels 1 and 2. The quantitiesD1 and D2 in Fig. 1
denote detunings given byD j5(E32Ej )/\2v j , j 51,2.
Note that we have changed some notation with respect to
previous literature and, in particular, have interchanged
numbering of levels 2 and 3. Several authors have con
ered the Hamiltonian withD15D250 @7,8#. Under the as-
sumption thatD15D25D, and that level 3 is far off reso
nance~large detuningD) and, hence, can be adiabatica
eliminated, Gerry and Eberly@4# and Cardimonaet al. @5#
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have obtained an effective two-level Raman interact
Hamiltonian. This effective Raman Hamiltonian has t
form of the usual Jaynes-Cummings model but with t
single-mode field operators replaced by products of an a
hilation operator of one mode and a creation operator of
other, i.e., it has a term of the forml(a1

†a2s121a2
†a1s21)

with l;2\g1g2 /D. Instead of adiabatic elimination, Alex
anian and Bose@6# have recently proposed an interestin
alternative method—unitary transformation to obtain a sim
lar Hamiltonian for which one level decouples. Their unita
transformation is@6#

X85exp~S!Xexp~2S!, ~2!

whereX8 denotes the transformed atomic and photon va
ables, and

S5a~a1s312a1
†s13!1b~a2s322a2

†s23!, ~3!

wherea andb are transformation parameters to be specifi
later ~again, note that our notation is different from that
Ref. @6#!. Claiming that the exact transformation cannot
found, Ref.@6# has evaluated it perturbatively and kept co
tributions to the second order in coupling constants in
transformed Hamiltonian. Except for containing intensit
dependent Stark shift terms, the approximate transform
Hamiltonian turns out to be the same as the one obtained
Gerry and Eberly@4# and Cardimonaet al. @5#. With the

of
FIG. 1. Three-level atom in theL configuration.
1586 © 1996 The American Physical Society



v
iv
nt
a

re
ti
e-
n
po
g,
th
on
er
th

ry
b
c
a
n
g

ud
u
lin
ge
ita
f

a
m
n

r

nd
n

er
e

n
f

r
y

ion

to

ra-

ti-

e

54 1587EFFECTIVE RAMAN THEORY FOR A THREE-LEVEL . . .
inclusion of the Stark effects, Alexanian and Bose ha
found that the Rabi frequency and the collapse and rev
times of the atomic inversion have strikingly differe
photon-intensity dependence than those found by Gerry
Eberly. However, all of these results@4–6# are suitable only
when the ratiosgj /D j ( j 51,2) are small. In fact, as will be
seen later, these results may need modification in the p
ence of the intense pump or Stokes mode even if the ra
gj /D j ( j 51,2) are small. In view of the facts that the d
tunings are experimentally adjustable parameters that ca
tuned to any value, and that Raman interactions are im
tant when pump and/or Stokes modes are relatively stron
seems worthwhile to attempt to find a general solution to
problem that describes the situation where coupling c
stants have arbitrary relation to the detunings. In fact, sev
authors have already investigated phenomona involving
opposite limit of zero detuning@7,8#.

In this paper, we first show that all of the relevant unita
transformations introduced by Alexanian and Bose can
found exactly. Level 3 can be eliminated from the exa
transformed Hamiltonian to obtain an effective two-level R
man interaction Hamiltonian with an intensity-depende
coupling between levels 1 and 2 which is valid for any ma
nitude of the ratios of coupling constants to detunings incl
ing zero detuning. The results reduce to the previous res
@4–6# as the detunings become much greater than coup
constants. Next, we obtain the eigenvalues and the ei
states of the exact transformed Hamiltonian. Because un
transformations preserve the eigenvalues, these are in
the exact eigenvalues of the Hamiltonian of Eq.~1!. To our
knowledge, this is the first time these exact eigenvalues h
been calculated by any means. We then calculate the ato
inversion and Rabi freqency by means of the exact tra
formed Hamiltonian. The Rabi frequency is found to have
different intensity dependence than that obtained by Ge
and Eberly @4#, Cardimonaet al. @5#, and Alexanian and
Bose@6#, although it reduces to the result of Alexanian a
Bose@6# when detuning is much greater than coupling co
stants. It also agrees with the known result given by sev
other authors@7,8# for the zero-detuning case. Finally, w
summarize our results and make concluding remarks.

II. THE EXACT TRANSFORMED HAMILTONIAN

Before calculating all the relevant unitary transformatio
given by Eqs.~2! and ~3!, let us rewrite the Hamiltonian o
Eq. ~1! in a more convenient and symmetric form as

H5 1
2 ~E11E22\v12\v2!1H11H2 , ~4!

with

H15\v1N11 1
2 \D1s1z1\g1~a1s311a1

†s13!,

H25\v2N21 1
2 \D2s2z1\g2~a2s321a2

†s23!, ~5!

wheres1z5122s11, s2z5122s22, and

N15a1
†a11 1

2 ~s1z11!, N25a2
†a21 1

2 ~s2z11!. ~6!

It is easily shown thatN1 andN2 commute with the operato
S given by Eq.~3! and with the Hamiltonian. Therefore, the
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are two invariant quantities under the unitary transformat
~2! @i.e., Nj5aj

†aj1
1
2(s jz11)5Nj85aj8

†aj81 1
2(s jz8 11)#,

and they are also two constants of motion. We only need
calculate the transformations of the four quantitiess1z ,
s2z , q1[(a1s311a1

†s13), and q2[(a2s321a2
†s23) to ob-

tain the transformed Hamiltonian. While doing so, the ope
torsN1 andN2 can be treated as if they arec numbers, since
they commute with the four quantities and the operatorS.

We now calculate the transformations of the four quan
ties by the formula

X85eSXe2S5 (
n50

`
X~n!

n!
, ~7!

where S is given by Eq. ~3!, X(n)5@S,X(n21)#, and
X(0)[X denotess1z , s2z , q1, andq2. After some manipu-
lations, we obtain

s1z
~1!522aq1 ; s2z

~1!522bq2 , ~8!

s1z
~2!524ā2s1z~12s22!12abq,

s2z
~2!524b̄2s2z~12s11!12abq, ~9!

s1z
~n12!52~ b̄214ā2!s1z

~n!23ā2s2z
~n! ,

s2z
~n12!52~4b̄21ā2!s2z

~n!23b̄2s1z
~n! , ~10!

wheren51,2,3,. . . , ā5aAN1, b̄5bAN2, and

q[~a1
†a2s121a2

†a1s21!. ~11!

Equations~7! and ~10! can be written in a more concis
form,

S s1z8

s2z8
D 5S s1z

s2z
D 1AS s1z

~1!

s2z
~1!D 1BS s1z

~2!

s2z
~2!D , ~12!

whereA andB are two matrices given by

A5 (
n50

`
Pn

~2n11!!
, B5 (

n51

`
Pn21

~2n!!
, ~13!

and the matrixP as well as its diagonal forms are
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P52S b̄214ā2, 3ā2

3b̄2, 4b̄21ā2D 5G21S ~ i j!2, 0

0, ~2i j!2D G,

~14!

where

G5
1

j2 S A2b̄2, 2A2ā2

r, r
D ;

G215S ~A2!21, ā2r21

2~A2!21, b̄2r21D , ~15!
with j5Aā21b̄2 and r5Aā41b̄4. The matricesA and
B, then, become

A5G21S sin~j!

j
, 0

0,
sin~2j!

2j

D G;

B5G21S 12cos~j!

j
, 0

0,
12cos~2j!

2j

D G. ~16!

Substituting Eq.~16! into Eq.~12! and using Eqs.~8! and~9!
as well as the expressions of matricesG andG21, we obtain,
after some manipulations, the exact transformation result
the operatorss1z8 ands2z8 as follows:
exact
s1z8 5s1z22a
sin~j!

j3 ~ ā2cosj1b̄2!q112ā2b~12cosj!
sin~j!

j3 q21
2ab

j4 ~12cosj!~ā2cosj1b̄2!q

1
2ā2b̄2

j4 ~12cosj!2s2z~12s11!2
2ā2

j4 ~12cosj!@ā2~11cosj!12b̄2#s1z~12s22!,

s2z8 5s2z22b
sin~j!

j3 ~ b̄2cosj1ā2!q212b̄2a~12cosj!
sin~j!

j3 q11
2ab

j4 ~12cosj!~b̄2cosj1ā2!q

1
2ā2b̄2

j4 ~12cosj!2s1z~12s22!2
2b̄2

j4 ~12cosj!@b̄2~11cosj!12ā2#s2z~12s11!. ~17!

The transformed quantitiesq18 and q28 can easily be obtained by the differentiations of the transformed operatorss1z8 and
s2z8 since one can show

q1852
1

2a F d

dt
~eSts1ze

2St!G
t51

, q2852
1

2b F d

dt
~eSts2ze

2St!G
t51

, ~18!

which can equivalently be evaluated by

q1852
1

2a F d

dt
s1z8 ~a→at;b→bt !G

t51

, q2852
1

2b F d

dt
s2z8 ~a→at;b→bt !G

t51

. ~19!

The results are

q185
@b̄2cosj1ā2cos~2j!#

j2 q12
ā2b@cosj2cos~2j!#

aj2 q22
bsinj

j3 ~2ā2cosj1b̄22ā2!q

1
2ā2sinj

aj3 ~ b̄21ā2cosj!s1z~12s22!2
2b̄2ā2sinj

aj3 ~12cosj!s2z~12s11!,

q285
@ā2cosj1b̄2cos~2j!#

j2 q22
b̄2a@cosj2cos~2j!#

bj2 q12
asinj

j3 ~2b̄2cosj1ā22b̄2!q

1
2b̄2sinj

bj3 ~ ā21b̄2cosj!s2z~12s11!2
2b̄2ā2sinj

bj3 ~12cosj!s1z~12s22!. ~20!

Equations~17!–~20! are the exact unitary transformation results for all the relevant quantities needed to find the
transformed Hamiltonian. Noting thatH85 1

2(E11E22\v12\v2)1H181H28 , and
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2H185\v1N11 1
2 \D1s1z8 1\g1q18 ,

H285\v2N21 1
2 \D2s2z8 1\g2q28 , ~21!

we then get the exact transformed Hamiltonian

H85E01\v1N11\v2N21 1
2 \hs331\l~a1

†a2s121a2
†a1s21!1 1

2 \v~s222s11!1\g1~a1s311a1
†s13!

1\g2~a2s321a2
†s23!, ~22!

whereN1 andN2 are still given by Eq.~6! and the other parameters are functions ofN1 andN2 and are given by

v5~D12D2!F11
b̄2ā2

2j4 ~8cosj27!G1
4b̄2ā2

j4 S g1

a
2

g2

b D jsinj1
D2b̄42D1ā4

2j4

2
b̄22ā2

2j4 F ~D2b̄21D1ā2!cos~2j!12S g1ā2

a
1

g2b̄2

b D jsin~2j!G , ~23!

l5
ab

j4 H @D1b̄21D2ā21~D2b̄21D1ā2!cosj#~12cosj!2F S g2

b
2

g1

a D ~ ā22b̄2!12S g1ā2

a
1

g2b̄2

b D cosjGjsinjJ , ~24!

h5~D11D2!S 12
3ā2b̄2

2j4 D 2
3~D1ā41D2b̄4!

2j4 1
3~D1ā21D2b̄2!

2j2 cos~2j!1S g1ā2

a
1

g2b̄2

b D 3sin~2j!

j
, ~25!

E05 1
2 ~E11E22\v12\v2!1

\~D11D2!

6
2

\h

6
, ~26!

g15~D22D1!
ab̄2

j3 sinj1
ab̄2

j2 S g1

a
2

g2

b D cosj2
a

2j3 ~D2b̄21D1ā2!sin~2j!1
a

j2 S g1ā2

a
1

g2b̄2

b D cos~2j!,

g25~D12D2!
bā2

j3 sinj1
bā2

j2 S g2

b
2

g1

a D cosj2
b

2j3 ~D2b̄21D1ā2!sin~2j!1
b

j2 S g1ā2

a
1

g2b̄2

b D cos~2j!, ~27!
n
m

ed
om

-

-
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whereā5aAN1, b̄5bAN2, andj5Aā21b̄2.
These equations describe an infinite set of unitary tra

formations. We may now choose the transformation para
eters a and b so as to provide the simplest transform
Hamiltonian and, in particular, so as to decouple level 3 fr
the other two levels; i.e., they are chosen such that

g15g250. ~28!

Then, the Hamiltonian has the form

H85E01\v1N11\v2N21 1
2 \hs33

1\l~a1
†a2s121a2

†a1s21!1 1
2 \v~s222s11!,

~29!

where the parametersv, l, h, andE0 are still given, respec-
tively, by Eqs. ~23!–~26!. The exact transformed Hamil
tonian in Eq.~29! with a, b determined by Eq.~28! holds for
any magnitudes of the ratiosg1 /D1 andg2 /D2 and is easily
shown to reduce to the previous results@4–6#, when both the
ratios are very small. Obviously, thel and v terms in the
Hamiltonian given by Eq.~29! only produce transitions be
s-
-

tween levels 1 and 2, while the other terms do not cause
transitions among the three levels. This means that as lon
values ofa and b can be found that satisfy Eq.~28!, level
three can be exactly decoupled and does not contribute to
population dynamics. We know from previous results th
the approximate solutiona'g1 /D1 ,b'g2 /D2 exists if both
the ratiosg1 /D1 andg2 /D2 are very small. In the following,
we shall show that there exist solutions without any appro
mations for the caseD15D2[D suitable for any values o
the ratios g1 /D and g2 /D. Consequently, we can pu
s3350 in Eq. ~29! to obtain an effective two-level Rama
interaction Hamiltonian with levels 1 and 2 subject to
intensity-dependent coupling, i.e., the effective coupling
rameterl depends on photon numbers.

For the purpose of illustration, let us consider the case
D15D2[D. Equation ~28! is satisfied in this case if we
choose

a5
g1

2Aḡ1
21ḡ2

2
arctanS 2Aḡ1

21ḡ2
2

D
D ,
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b5
g2

2Aḡ1
21ḡ2

2
arctanS 2Aḡ1

21ḡ2
2

D
D , ~30!

where ḡ j5gjANj , j 51,2. We find, after some manipula
tions, that complicated expressions for the parameters in
transformed Hamiltonian@Eq. ~29!# are greatly simplified
and have the forms

v5
ḡ1

22ḡ2
2

ḡ1
21ḡ2

2 FAS D

2 D 2

1ḡ1
21ḡ2

22
D

2 G ,
h52D13FAS D

2 D 2

1ḡ1
21ḡ2

22
D

2 G ,
E05 1

2 ~E11E22\v12\v2!

2
1

2
\FAS D

2 D 2

1ḡ1
21ḡ2

22
D

2 G ,
l52

g1g2

ḡ1
21ḡ2

2 FAS D

2 D 2

1ḡ1
21ḡ2

22
D

2 G , ~31!

whereḡ j5gjANj , j 51,2. Equation~29!, together with Eq.
~31!, gives the exact transformed Hamiltonian for the ca
D15D2[D, valid for any values of ratiosg1 /D and g2 /D
even forD50. It is seen that the absolute value of the effe
tive two-level coupling parameterl is a monotonically de-
creasing function of the detuning, which means that
smaller the detuning, the stronger the effective coupling
tween the levels 1 and 2. This is a reasonable result that
be anticipated physically because the smaller the detun
the stronger the direct couplings between levels 1 and 3
between levels 2 and 3, and also the effective coupling
tween levels 1 and 2. Obviously, our results reduce to
previous ones@4–6# whenD2@(ḡ1

21ḡ2
2), since, in this case

l'2
g1g2

D
, D2@~ ḡ1

21ḡ2
2!, ~32!

as found in Refs.@4–6#. Note that this implies that the pre
vious results@4–6# require both of the ratiosg1 /D1 and
g2 /D2 to be very small, and they need modifications if o
of them is not small or when the pump or Stokes mode
relatively intense such that the quantity (ḡ1

21ḡ2
2) is compa-

rable to or greater than the square of the detuningD2 even if
both of the ratios g1 /D1 and g2 /D2 are themselves
very small. Note that whenD2!(ḡ1

21ḡ2
2), we find

l'2g1g2 /Aḡ1
21ḡ2

2, which remains finite asD→0, unlike
the previous resultl52g1g2 /D. Finally, it is pointed out
that the intensity-dependent coupling occurs naturally in
transformed Hamiltonian while previous studies usually
troduce it phenomenologically.

III. EIGENVALUES AND EIGENSTATES

In this section, we calculate the eigenvalues of the ex
transformed Hamiltonian and express the correspond
eigenvectors in terms of the uncoupled ba
$u j ;n1 ,n2&, j 51,2,3;n1 ,n250,1,2, . . .% where u j ;n1 ,n2&
he

e

-

e
-

an
g,
nd
e-
e

s

e
-

ct
g

s

5u j & ^ un1 ,n2& represents a state in which the atom is in t
state u j &, while the photonic state is represented
un1 ,n2&, with n1 ,n2 being the photon numbers in the tw
modes. For simplicity, we consider the caseD15D2[D.
The Hamiltonian is rewritten as

H5Hd1Hnd ~33!

with

Hd5E01\v1N11\v2N21 1
2 \hs33,

Hnd5\l~a1
†a2s121a2

†a1s21!1 1
2 \v~s222s11!, ~34!

whereN15a1
†a1112s11, N25a2

†a2112s22, and the pa-
rametersv, l, h, and E0 are given by Eq.~31!. Hd and
Hnd have, respectively, diagonal and nondiagonal forms
the u j ;n1 ,n2& representation, hence the meanings of th
subscripts ‘‘d’’ and ‘‘nd.’’

Using the facts thatNj u3;n1 ,n2&5(nj11)u3;n1 ,n2&, and
Hndu3;n1 ,n2&50, one sees thatu3;n1 ,n2&(n250,1,2,. . . )
are eigenvectors of the transformed Hamiltonian, i
H8u3;n1 ,n2&5En1 ,n2

u3;n1 ,n2& and

En1 ,n2
5E11n1\v11n2\v2

1\Fv11
D

2
1AS D

2 D 2

1g1
2~n111!1g2

2~n211!G .
~35!

The remaining eigenvectors can be expressed as a li
combination of the vectorsu1;n1 ,n2& and u2;n121,n211&,
which are the eigenvectors ofN1 with eigenvaluen1 and of
N2 with eigenvalue (n211), and they are also eigenvecto
of Hd . One can therefore easily show

H8uCn1 ,n2

6 &5En1 ,n2

6 uCn1 ,n2

6 &, ~36!

with

uCn1 ,n2

1 &52sinuu1;n1 ,n2&1cosuu2;n121,n211&,

uCn1 ,n2

2 &5cosuu1;n1 ,n2&1sinuu2;n121,n211&, ~37!

En1 ,n2

1 5E11n1\v11n2\v2

En1 ,n2

2 5E11n1\v11n2\v2

2\FAS D

2 D 2

1g1
2n11g2

2~n211!2
D

2 G , ~38!

where

sinu5
g2An211

Ag1
2n11g2

2~n211!
,

cosu5
g1An1

Ag1
2n11g2

2~n211!
. ~39!
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It is interesting to note that the eigenstates@Eq. ~37!# of
the exact transformed Hamiltonian turn out to be the sam
those of the approximate one given by Alexanian and B
@6# @see their Eq.~20!, noting that we have different nota
tion#. However, the eigenvalues given by us differ, of cour
from theirs becauseEn1 ,n2

6 in Eq. ~38! are the eigenvalues o

the exact transformed Hamiltonian and they are valid for
possible ratios ofg1 /D and g2 /D including zero detuning
D50. En1 ,n2

6 in Eq. ~38! reduces to their corresponding r

sults asD2@@g1
2n11g2

2(n211)#. As noted above, the eigen
values obtained here are also the exact eigenvalues o
original Hamiltonian given by Eq.~1! ~for D15D2) while
theirs are not, since their unitary transformation is not ex

IV. ATOMIC INVERSION AND RABI FREQUENCY

Since we have obtained the exact transformed Ham
tonian different from previous results, it is worthwhile
analyze the corresponding population dynamics. Again,
consider the caseD15D2 for simplicity. The density opera
tor r(t) evolves according to the formula

r~ t !5expS 2 i
H8t

\ D r~0!expS i
H8t

\ D , ~40!

whereH8 is given by Eq.~29! @or Eq. ~31!#, and the initial
density operatorr(0) is assumed to have the form@6#

r~0!5 (
m1m2n1n2

Cm1m2 ;n1n2
u1;m1 ,m2&^1;n1 ,n2u. ~41!

The atomic inversionW(t) is given by

W~ t !5r22
A ~ t !2r11

A ~ t !, ~42!

wherer j j are the diagonal elements of reduced density
erators of the atom, i.e.,

r j j
A ~ t !5 (

l 1 ,l 250

`

^ j ; l 1 ,l 2ur~ t !u j ; l 1 ,l 2&, j 51,2,3. ~43!

It is obvious thatr11
A (t)1r22

A (t)1r33
A (t)51 and r33

A (t)50
because of the particular choice of the operatorr(0) in Eq.
~41! and the fact thatH8 does not produce a transition b
tween level 3 and the other two levels. Therefore, the ato
inversion becomes

W~ t !52112r22
A ~ t !. ~44!

Noting from Eq.~33! thatH85Hd1Hnd, @Hd ,H nd#50 and
u2;l 1 ,l 2& is the eigenvector ofHd with eigenvalueEd @the
explicit form of Ed is not needed for calculatingr22

A (t)#, one
obtains

expS i
H8t

\ D u2;l 1 ,l 2&5expS i
Edt

\ DexpS i
H ndt

\ D u2;l 1 ,l 2&

~45!

and hence
as
e

,

ll

the

t.

l-

e

-

ic

r22
A ~ t !5 (

l 1 ,l 250

`

^2;l 1 ,l 2uexpS 2 i
Hndt

\ D
3r~0!expS i

Hndt

\ D u2;l 1 ,l 2&. ~46!

Using Eq.~34!, one can show

expS i
Hndt

\ D5~12s33!S cos~Vt !1 i
Hnd

\

sin~Vt !

V D ,

~47!

where

V[V~N1 ,N2!5
1

2 FAS D

2 D 2

1g1
2N11g2

2N22
D

2 G .
~48!

The quantityV can be called the Rabi operator, since
eigenvalues give the usual Rabi frequencies.

Substituting Eq.~47! into Eq. ~46!, and using the expres
sion ~41! for r(0) and the expression ofHnd in Eq. ~34!
together with the parametersv andl given by Eq.~31!, we
finally obtain the expression of the atomic inversion as f
lows:

W~ t !52118 (
n1 ,n250

`

Cn1n2 ;n1n2

3
n1~n211!g1

2g2
2

@g1
2n11g2

2~n211!#2sin2~ tVn1n2
!, ~49!

where the Rabi frequencyVn1n2
5V(N15n1 ,N25n211) ,

i.e.,

Vn1n2
5

1

2 FAS D

2 D 2

1g1
2n11g2

2~n211!2
D

2 G . ~50!

It is perhaps not too surprising to note that the express
~49! for the atomic inversion has the same form as the o
obtained by Alexanian and Bose using their approxim
transformed Hamiltonian@6# except for different Rabi fre-
quencies. The Rabi frequency we find here has an diffe
intensity dependence than that obtained in Ref.@6#, although
it reduces to it correctly in the appropriate limit. However w
do not obtain the@n1(n211)# dependence found in the adia
batic elimination approach@4,5# in any limit. The ‘‘col-
lapse’’ and ‘‘revival’’ times of the atomic inversion would
therefore, differ from the previous results@4–6#. The situa-
tion where the atomic inversion is a periodic function oft for
particular values of coupling constantsg1 and g2 discussed
in Ref. @6# does not show up here, since the Rabi frequen
here does not have a linear dependence on field intensitie
does the one in Ref.@6#. Of course, the Rabi frequency he
is easily seen to reduce to the one given by Alexanian
Bose@6# whenD2@@g1

2n11g2
2(n211)#, as it should be, and

it becomes the one given in Ref.@8# when D50 ~note that
the different references have different definitions of Rabi f
quency that differ from each other by a factor 2!.
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V. CONCLUSIONS

In this paper, we have shown that the unitary transform
tion introduced by Alexanian and Bose can be found with
any approximation. We have obtained the exact transform
Hamiltonian and shown that one of the three levels~level 3!
can be made to decouple from the other two levels and he
can be eliminated from the exact transformed Hamiltonian
obtain an effective two-level Raman interaction Hamiltoni
with an intensity-dependent coupling between levels 1 an
The Raman interaction Hamiltonian is, within the framewo
of the original Hamiltonian proposed by Gerry and Ebe
@4#, valid for any magnitudes of the ratios of the couplin
constants to detunings including zero detuning, and redu
to the previous results@4–6#, when detunings are muc
greater than coupling constants. In addition, the Rabi
quency obtained by us becomes the previous ones as
detuning is zero@7,8# and very large compared with couplin
constants@6#. It is valid, when the detuning is in betwee
them and hence bridges the gap between these two lim
cases. We have also obtained the eigenvalues of the e
transformed Hamiltonian and thus of the original Ham
tonian given by Eq.~1!. The fact that all of the relevan
unitary transformations can be obtained exactly suggests
the Heisenberg equations of the corresponding operators
be calculated without any approximations. In fact, this w
proven for the special case of the zero-detuningD50 ~Ref.
@8#! and is currently under investigation for the general c
of nonzero detuning. Our results are a generalization of
previous ones@4–6#, and might find their applications in in
vestigating the dynamics and statistics of atomic and fi
quantities in situations of strong couplings~large g), small
detunings, and intense field. Our results also show that
unitary transformation method proposed by Alexanian a
on

J

el,
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.
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Bose@6# not only provides an interesting alternative for th
adiabatic elimination when both are suitable, but also m
succeed when the adiabatic elimination approach cease
work. It is, in our view, surprising and intriguing that there
fact exists a unitary transformation such that one level~level
3! can be totally eliminated regardless of whether or n
there is far off resonance and regardless of how large
field intensities are. The fact that level 3 can be eliminated
a consequence of the exact transformation results but is
to understand physically at first, since it seems to mean
there exist only two-photon processes or processes invol
even photons while a single-photon process is totally abs
After much thought, we find out that the conclusion that o
level can be made to decouple from the other two levels is
fact, the result in dressed-state description. In other wo
the level 3 which can be eliminated is the dressed level,
the original bare level 3. The single-photon processes
implicitly used to ‘‘dress’’ levels and hence only process
involving photons of even numbers are apparent and h
lighted in such a description. This raises an interesting qu
tion as to why the effective two-level Hamiltonian of th
dressed-state description reduces to that of the adiabatic
proximation under large detuning conditions while the ad
batic elimination procedure does not seem to introduce
transformation from a bare-state description to a dress
state one. This question will be thoroughly discussed e
where.
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