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Multiphoton ionization of H 2
1

Moon-Gu Baik, Marcel Pont, and Robin Shakeshaft
Physics Department, University of Southern California, Los Angeles, California 90089-0484

~Received 21 March 1996!

We present results of calculations of rates for ionization of H2
1 by up to six photons in lowest nonvanishing

order of perturbation theory, for a fixed internuclear separation of 2 a.u. There are numerous intermediate state
resonances, which we identify by united-atom-limit quantum numbers. We also report on ionization rates at
nonperturbative intensities at the wavelength 228 nm, calculated by resumming the Rayleigh-Schro¨dinger
perturbation series for the ac quasienergy; we compare our results with those of previous calculations.
@S1050-2947~96!04808-1#
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I. INTRODUCTION

We have calculated, up to fairly high order, terms of t
Rayleigh-Schro¨dinger perturbation series for the ac quasie
ergy of the lowest electronic state of the molecular ion H2

1

at a fixed internuclear separation. We report, in particular
rates for ionization of H2

1 by up to six photons in lowes
nonvanishing order of perturbation theory, for the equil
rium internuclear separation 2 a.u. We ignore vibrational a
rotational motion, and we consider only one orientation
the molecule, the orientation along the polarization axis
the ~linearly polarized! laser field. The ionization rates ex
hibit numerous resonances, as the frequency of the ligh
varied, and we identify those intermediate electronic sta
involved in the resonances by united-atom-limit quant
numbers. Some of the resonances are prominent at larg
tunings, while others are not, a feature that can be un
stood to some extent by looking at the overlap of the grou
state probability density, amplified by the (2n)th power of
the electric dipole moment in the case of ann-photon reso-
nance, with the probability density of the resonant state.

Recently Plummer and McCann@1# calculated rates for
ionization of H2

1 by two and three photons within the non
perturbative Floquet framework, over the range of frequ
cies at which excess photon ionization does not occur w
the laser field is weak. Our results for two- and three-pho
ionization agree well with theirs at low~perturbative! inten-
sities, over the entire range of frequencies conside
Chelkowskiet al. @2# and Mieset al. @3# have also calculated
rates for ionization of H2

1 ; they did so by solving the time
dependent Schro¨dinger equation at the wavelength 228 n
for various intensities extending well into the nonperturb
tive regime. We have resummed the Rayleigh-Schro¨dinger
perturbation series at this wavelength, using the P´
method, and we compare our results for the ionization r
with those of Chelkowskiet al. and Mieset al. at the inten-
sities considered by them.

In the next section we describe how we calculate
Green’s function for the electronic motion of H2

1 . The
Green’s function is needed for the evaluation of the terms
the perturbation series. We exploit the separability of
electronic Hamiltonian so as to significantly reduce the s
age requirements and the number of computational op
541050-2947/96/54~2!/1570~7!/$10.00
-

n

-
d
f
f

is
s

de-
r-
-

-
n
n

d.

-

e
te

e

f
e
r-
a-

tions. In Sec. III we present our results, and in Sec. IV
conclude with some remarks.

II. THEORY

Following Bates and Opik@4#, who studied one-photon
ionization of H2

1 , and Plummer and McCann@1#, we use
prolate spheroidal coordinates (l,m,f) to represent the elec
tron, wheref is the azimuthal angle~with the polar axis
along the internuclear axis!. If R is the internuclear separa
tion, and if r a and r b are the distances of the electron fro
nuclei a andb, we have

l5~r a1r b!/R, ~1!

m5~r a2r b!/R, ~2!

with 1<l<` and 21<m<1. The electronic Hamiltonian
is ~we use atomic units throughout this section!

H52
1

2
¹222

~Za1Zb!l2~Za2Zb!m

R~l22m2!
, ~3!

whereZa5Zb51 in the case of H2
1 , and where

¹25
4

R2~l22m2! F ]

]l S ~l221!
]

]l D1
]

]m S ~12m2!
]

]m D
1S 1

~l221!
1

1

~12m2! D ]2

]f2G . ~4!

We expand the electronic wave function on a basis co
posed of functions of the form

un~l!vh~m!
eimf

A2p
.

Since the volume element is dt5(R/2)3(l2

2m2)dldmdf, the electronic Hamiltonian has the follow
ing simple product representation:

Hn8,n
h8,h

5hn8,ns̃ h8,h1hh8,hs̃n8,n , ~5!
1570 © 1996 The American Physical Society
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where we have not includedm as an index sinceH has
cylindrical symmetry about the internuclear axis, and wh
the matrix elements on the right side are defined as

hn8,n52
R

4E1

`

dlun8~l!S ]

]l
~l221!

]

]l
2

m2

~l221!

1R~Za1Zb!l Dun~l!, ~6!

s̃n8,n5E
1

`

dlun8~l!un~l!, ~7!

hh8,h52
R

4E21

1

dmvh8~m!S ]

]m
~12m2!

]

]m

2
m2

~12m2!
2R~Za2Zb!m D vh~m!, ~8!

s̃h8,h5E
21

1

dmvh8~m!vh~m!. ~9!

If H denotes the electronic Hamiltonian matrix, whose e

ments areHn8,n
h8,h , and if hl , hm, s̃l , and s̃ m, respectively,

denote the smaller matrices whose elements arehn8,n ,
hh8,h, s̃n8,n , ands̃ h8,h, we can expressH as a sum of direct
products:

H5hls̃m1 s̃lhm. ~10!

The overlap matrixS of the basis functions has elemen

Sn8,n
h8,h , where

Sn8,n
h8,h

5sn8,ns̃ h8,h1sh8,hs̃n8,n , ~11!

and where

sn8,n5~R/2!3E
1

`

dlun8~l!~l221!un~l!, ~12!

sh8,h5~R/2!3E
21

1

dmvh8~m!~12m2!vh~m!. ~13!

If sl andsm, respectively, denote the smaller matrices who
elements aresn8,n andsh8,h, we have

S5sls̃ m1 s̃lsm. ~14!

The reduction ofH andS to direct products of smaller ma
trices, a consequence of the separability of the Hamilton
leads to a significant savings in computational storage.

The Green’s functionG(E)[(E2H)21 is represented by
the matrix (ES2H)21. To calculate rates for multiphoto
ionization, we need to determine the action of the Gree
function on a specified vector. Towards this end, we n
consider the following two uncoupled generalized eige
value problems for eigenvaluesEa andEb and eigenvectors
xa andxb:

~Esl2hl!xa5Eas̃lxa , ~15!
e

-

e

n,

’s

-

~Esm2hm!xb5Ebs̃ mxb, ~16!

with the eigenvectors orthonormalized, that is,

t~xa8!s̃lxa5da8,a , ~17!

t~xb8!s̃ mxb5db8,b , ~18!

where t denotes transpose. Ifxa
b is the joint column vector

that combinesxa andxb, we have

~ES2H !xa
b5@~Esl2hl!xa#~ s̃ mxb!

1@~Esm2hm!xb#~ s̃lxa! ~19!

5~Ea1Eb!~ s̃lxa!~ s̃ mxb! ~20!

5~Ea1Eb!s̃ls̃ mxa
b . ~21!

Consequently, ifxl andxm are the matrices composed of a
column vectorsxa and xb, respectively, ifX[xlxm and

S̃[ s̃ls̃ m, and if D is the diagonal matrix whose diagon
elements are (Ea1Eb), we have

~ES2H !X5S̃X D. ~22!

To calculatey[(ES2H)21b, whereb is a specified vector,
we must solve the set of linear equations

~ES2H !y5b. ~23!

Writing y5Xz and combining Eqs.~22! and ~23! gives

S̃X Dz5b. ~24!

From Eqs.~17! and~18! we have the orthogonality conditio

tX S̃X51, ~25!

where1 is the identity matrix. It follows that

y5X~D21! tXb. ~26!

Hence, to determine the action of the Greens function
need only solve the generalized eigenvalue problems
X andD, Eq. ~22!, and this is not difficult to do since Eqs
~15! and~16! are uncoupled so that the number of operatio
is reasonably small.

Let e be the unit polarization vector,v the frequency, and
F the field strength of the light. The interaction of the ele
tron with the light isV1e2 ivt1V2eivt whereV25V1

† and
where, in the length gauge,

V15~F/2!e•x, ~27!

where x is the electron coordinate, while in the veloci
gauge

V15~F/2v!e•¹. ~28!

Writing x5(x,y,z) we have

x5~R/2!@~l221!~12m2!#1/2cosf, ~29!

y5~R/2!@~l221!~12m2!#1/2sinf, ~30!
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z5~R/2!lm, ~31!

and writing¹5(]/]x,]/]y,]/]z) we have

]

]x
5

2

R
A~l221!~12m2!F cosf

~l22m2! S l
]

]l
2m

]

]m D
2

sinf

~l221!~12m2!

]

]f G , ~32!

]

]y
5

2

R
A~l221!~12m2!F sinf

~l22m2! S l
]

]l
2m

]

]m D
1

cosf

~l221!~12m2!

]

]fG , ~33!

]

]z
5

2

R

1

~l22m2! S ~l221!m
]

]l
1~12m2!l

]

]m D .

~34!

As mentioned above, we consider the molecule to be
ented along the polarization axis of the laser field, and si
we ignore the motion of the nuclei, the projection of t
electronic angular momentum along the internuclear a
~the z axis! is conserved. Therefore we need consider o
transitions toS states, i.e.,m50, and the electron wave
function is independent off. Plummer and McCann used
Slater-type basis for the electron wave function. We use
orthogonal basis:

un~l!5A22ikReikR~l21!Ln@22ikR~l21!#, ~35!

vh~m!5Ph~m!, ~36!

whereLn(x) andPh(m) are Laguerre and Legendre polyn
mials, respectively, withn andh non-negative integers, an
wherek lies in the upper right quadrant of the complex pla
so that the functionsun(l) can represent both closed~bound!
and open~outgoing-wave! channels. The matrix represent
tions of V6 , denoted asV6 , can be expressed as sums

FIG. 1. Generalized cross section, in the weak-field limit,
two-photon ionization of H2

1 ~at the equilibrium internuclear sepa
ration 2 a.u.! by linearly polarized light of angular frequencyv.
The internuclear axis is oriented along the polarization axis.
i-
e

is
y

n

f

direct products of smaller matrices, which are sparse an
most quintidiagonal. All matrix elements ofH, S, and V6

can be evaluated in closed form. Furthermore,s̃l ands̃ m are
unit matrices, andsl , sm, hl , andhm are also sparse and a
most quintidiagonal.

We denote the ac quasienergy of the electron asEac,
which we can express asEac5E01D2 iG/2, whereE0 is the
unperturbed initial~ground-state! energy and whereD and
G are the induced shift and width, respectively. T
Rayleigh-Schro¨dinger perturbation series is~see, e.g.,@5#!

Eac5 (
n50

`

E~2n!F2n, ~37!

whereE(0)5E0 and where ImE(2n)50 for n,N0 , with N0
the minimum number of photons that the molecule must
sorb to ionize. In lowest nonvanishing order the rate for io
ization is

GN0
[22F2N0 ImE~2N0! ~38!

522 Im^f0uV2G~E01v!•••V2G~E01N0v1 i e!

3V1•••G~E01v!V1uf0&, ~39!

r FIG. 2. Same as Fig. 1 but for three-photon ionization.

FIG. 3. Same as Fig. 1 but for four-photon ionization.
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where the ketuf0& represents the initial unperturbed ele
tronic state, and wheree is positive but infinitesimal. In the
weak-field limit the generalized ionization cross section i

sN0
5vGN0

/I N0, ~40!

whereI[cF2/(8p) is the intensity of the light.

III. RESULTS

In Figs. 1–5 we show the cross sectionsN0
for weak-field

ionization of H2
1 at the equilibrium internuclear separatio

of 2 a.u. versus the frequencyv of the linearly polarized
light, whereN0 ~the minimum number of photons that mu
be absorbed for ionization to occur! varies from 2 to 6. The
results in Figs. 1 and 2 agree with the cross sections for t
and three-photon ionization calculated at weak fields
Plummer and McCann@1#. There is a lot of resonance stru
ture, and by studying the electronic potential energy cur
from R50 to R52 a.u. we can identify the intermedia
states involved in the resonances; we have labeled them
ing united-atom-limit quantum numbers. Most of the res

FIG. 4. Same as Fig. 1 but for five-photon ionization.

FIG. 5. Same as Fig. 1 but for six-photon ionization. The 6s and
6h resonances occur at almost the same frequency as the 6f reso-
nance, but they are much narrower than the latter.
o-
y

s

s-
-

nances arise from (N021)-photon excitations to electroni
states, but the 2p resonance in Fig. 2 arises from a on
photon transition, and the 2s resonance in Fig. 5 arises from
a four-photon transition—both of these transitions a
(N022)-photon excitations. Some of the resonances
very narrow in the sense that they influence the cross sec
only at very small detunings from exact resonance, wh
other resonances are broad in the sense that they are p
nent at quite large detunings.~We cannot speak of a ful
width at half maximum since in the weak-field limit the res
nance peaks are infinitely high.! For example, in Fig. 1~two-
photon ionization! we see that thep resonances are relativel
broad while thef resonances are narrow, in Fig. 2~three-
photon ionization! the d resonances are relatively broa
while the s resonances are narrow, in Fig. 3~four-photon
ionization! the p resonances are relatively broad while t
f resonances are narrow, in Fig. 4~five-photon ionization!
the d resonances are broader than thes resonances, and in
Fig. 5 ~six-photon ionization! the f resonances are about a
prominent as thep resonances. We can understand the
features, to some extent, if we adopt rather crude approxi
tions to the Green’s functionsG(E01Lv) for LÞN0 . Thus
if the intermediate resonant state has energyEres and is rep-

FIG. 6. Plots ofzMAP1s(r,z) in cylindrical coordinates where
P1s(r,z) is the ground-state electron probability distribution
H2

1 at an internuclear separation of 2 a.u. withP1s(r,z) normal-
ized so that 2p*drdzP1s(r,z)51. The horizontal plane is therz
plane, the positivez axis points towards the reader and is along t
internuclear axis, and ther axis points away from the reader.~a!
M51, ~b! M52, ~c! M53, ~d! M54, ~e! M55, and~f! M56.
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resented byuf res&, and if the resonance is excited byM
photons, we write

G~E01Mv!'
uf res&^f resu

E01Mv2Eres
, ~41!

while for LÞM ,N0 we follow Gold and Bebb@6#, and make
the closure approximation

G~E01Lv!'
1

E01Lv2Eav
, ~42!

FIG. 7. Plots ofAPres(r,z) in cylindrical coordinates where
Pres(r,z) is the electron probability distribution in an intermediate
resonants state, normalized so that 2p*drdzPres(r,z)51. ~a!
2s, ~b! 3s, ~c! 4s, and~d! 5s.

FIG. 8. Same as Fig. 7 but for an intermediate resonantp state.
~a! 2p, ~b! 3p, ~c! 4p, and~d! 5p.
whereEav is some average energy. We also note that

ImG~E01N0v1 i e!52pd~E01N0v2H ! ~43!

52pkE d2k̂ufk&^fku, ~44!

whereufk& is a continuum eigenvector ofH ~normalized on
the momentum scale! with energy eigenvalue
k2/25E01N0v. Using Eqs.~39!, ~41!, ~42!, and ~44! we
have, forE01Mv'Eres,

GN0
'

2pkz^f resuVMuf0& z2

~E01Mv2Eres!
2 )

L51,LÞM

N021 S 1

E01Lv2Eav
D 2

3E d2k̂z^fkuVN02Muf res& z2. ~45!

For a fixed but small detuning from resonance, the relat
prominence of a particular resonance depends primarily
the factor z^f resuVMuf0& z2, which measures the strength o
excitation from the initial state to the resonant state@7#.
Within the length gauge, this factor depends strongly on
degree of overlap ofzM^xuf0& and ^xuf res&. In Fig. 6 we
show three-dimensional plots ofzMAP1s(r,z) for M51 –6
and z.0, whereP1s(r,z)5 z^xuf0& z2 and r5Ax21y2. In
Figs. 7–10 we show three-dimensional plots ofAPres(r,z),
wherePres(r,z)5 z^xuf res& z2, for s, p, d, and f resonances,
respectively. Inspection of these figures reveals that a r
tively large overlap ofzMAP1s(r,z) with APres(r,z) corre-
sponds to a relatively prominent resonance.

Up to now we have only shown results for ionization rat
in lowest nonvanishing order of perturbation theory. W
have calculated the coefficientsE(2n) to higher order,

FIG. 9. Same as Fig. 7 but for an intermediate resonantd state.
~a! 3d and ~b! 4d.

FIG. 10. Same as Fig. 7 but for an intermediate resonantf state.
~a! 4 f and ~b! 5 f .
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TABLE I. Rates, in s21, for ionization of H2
1 at an internuclear separation of 2 a.u. and at a wavelen

of 228 nm. Some of the results at lower intensities reported on in Ref.@3# were recently revised~private
communication with K. Kulander! and we give the revised numbers here.

Ionization rate~s21!

I (W/cm2) Ref. @3# Ref. @2# Present

531013 63107 1.33108

131014 331010 2.131011

231014 431011 1.031012

331014 431012 331012 5.731012

3.931014 231013 131013 1.631013

531014 331013 531013 4.531013

631014 231013 9.531013
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n.N0 , but the perturbation series does not converge in
immediate vicinity of a resonance@8#. However, Chelkowski
et al. @2# and Mieset al. @3# have calculated ionization rate
at the wavelength 228 nm, i.e.,v50.2 a.u., for various in-
tensities of the laser light. At low intensities, and at the f
quencyv50.2 a.u., the molecule must absorb at least
photons to ionize. This frequency is quite far from any re
nance, as is evident from Fig. 5, and hence the perturba
series converges for moderately weak values of the inten
I , but asI increases the electronic energy levels shift, a
various levels move in and out of resonance; applying
ratio test, we find that the radius of convergence of the p
turbation series is the intensity 7.631013 W/cm2. Neverthe-
less, we can resum the perturbation series using the P´
method@9#, and, except at intensities in the immediate vic
ity of a resonance, we obtain a finite~converged! value for
the ac quasienergy for thediabatic level that originates from
the electronic ground state. In Table I we compare our e
mates of the rate for ionization from this level~the internu-
clear separation is again 2 a.u.! with those of Chelkowski
et al. and Mies et al. At the highest intensity considered
631014 W/cm2, the shift of the ground-state level relative
the continuum is 0.135 a.u., and six photons are still su
cient to ionize the molecule, but at a moderately higher
tensity, 8.831014 W/cm2, the shift relative to the continuum
is 0.2 a.u., and the minimum number of photons which
molecule must absorb to ionize is seven.

IV. REMARKS

The separability of the electronic Hamiltonian in prola
spheroidal coordinates, in conjunction with our chosen ba
allowed us to calculate many terms of the Rayleig
Schrödinger perturbation series with considerable efficien
and accuracy over a fairly wide frequency range. Howev
for small or large values of the frequencyv these terms are
more difficult to calculate—convergence with respect to
creasing basis size is hard to achieve. For example, we w
unable to calculate to satisfactory accuracy seven-pho
ionization in lowest nonvanishing order of perturbati
theory. To what can we attribute this limitation? We are n
sure of the answer, but it may be useful to note the follo
ing. Photoabsorption is most likely to take place near one
other of the nuclei, particularly at high frequencies. Ea
time a photon is absorbed near one of the nuclei, say nuc
e

-
x
-
on
ity
d
e
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de
-

ti-

-
-

e

s,
-
y
r,

-
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n

t
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r

h
us

b, the electronic angular momentum about that nucle
changes by unity. However, our basis, as defined by E
~35! and ~36!, cannot easily represent the centrifugal barr
repulsion about this nucleus, i.e., the basis cannot easily
scribe the functional formr b

l for r b'0 since l→1 and
m→1 asr b→0. Recognizing thatm21}r b whenr b'0 and
that m11}r a when r a'0, one might think it expedient to
replace the basis functionsPh(m) by functionsvh8 (m) where
vh8 (m)5cosh(k8Rm)(12m2)h, in the case of even parity, o
vh8 (m)5sinh(k8Rm)(12m2)h in the case of odd parity. Un
fortunately, the functionsvh8 (m) are not orthogonal and ar
nearly linearly dependent, as can be seen from Table
where we show the ten eigenvalues of the 10310 overlap
matrix whose elements are

th8,h5ah8ahE
21

1

dmvh8
8 ~m!vh8 ~m!, ~46!

in the case of even parity basis functions withk850.15,
where 0<h8,h<9, and where ah

251/@*21
1 dmvh8

2(m)#.
Many of the eigenvalues are extremely small compared
unity, indicating the onset of linear dependence.

In summary, we have outlined a method for calculati
terms of the Rayleigh-Schro¨dinger perturbation series fo
multiphoton ionization of H2

1 , at a fixed internuclear sepa
ration, and we have presented results of an application.
method is highly efficient provided thatv is neither too
small nor too high; but for small or large values ofv, our
basis, and perhaps even the prolate spheroidal coordi
system, is unsuitable for treating multiphoton ionization
H 2

1 . Since we have frozen the positions of the nuclei
have not incorporated dissociation. We note, however,
Chelkowski et al. @10# recently solved the time-depende

TABLE II. Eigenvalues of the overlap matrix whose elemen

are th8,h ~see text!.

2.3310214 3.931025

5.0310212 8.631024

5.0310210 1.531022

3.131028 2.031021

1.331026 3.13100
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Schrödinger equation for H2
1 in a strong laser field, includ

ing the motion of the nuclei; they found that at larger inte
nuclear separations there is a strong interplay between d
ciation and ionization.
r,
-
o-
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