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Multiphoton ionization of H ,*
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We present results of calculations of rates for ionization gf iy up to six photons in lowest nonvanishing
order of perturbation theory, for a fixed internuclear separation of 2 a.u. There are numerous intermediate state
resonances, which we identify by united-atom-limit quantum numbers. We also report on ionization rates at
nonperturbative intensities at the wavelength 228 nm, calculated by resumming the Rayleigtir§enro
perturbation series for the ac quasienergy; we compare our results with those of previous calculations.
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PACS numbd(s): 33.80.Rv

I. INTRODUCTION tions. In Sec. Ill we present our results, and in Sec. IV we
conclude with some remarks.
We have calculated, up to fairly high order, terms of the
Rayleigh-Schrdinger perturbation series for the ac quasien- Il. THEORY
ergy of the lowest electronic state of the molecular iofi H ) ) ]
at a fixed internuclear separation. We report, in particular, on Following Bates and Opik4], who studied one-photon
rates for ionization of H" by up to six photons in lowest

ionization of H,", and Plummer and McCani], we use
nonvanishing order of perturbation theory, for the equilib-prOI""te spheroidal coordinates, ., ¢) to represent the elec-
rium internuclear separation 2 a.u. We ignore vibrational an

dron, where ¢ is the azimuthal angléwith the polar axis
rotational motion, and we consider only one orientation of

along the internuclear axislf R is the internuclear separa-
the molecule, the orientation along the polarization axis of“on’ and ifr, andr, are the distances of the electron irom
the (linearly polarized laser field. The ionization rates ex-

nucleia andb, we have

hibit numerous resonances, as the frequency of the light is
varied, and we identify those intermediate electronic states
involved in the resonances by united-atom-limit quantum
numbers. Some of the resonances are prominent at large de-

o Yy 9 P 9 Is (we use atomic units throughout this secjion
state probability density, amplified by the {gh power of
the electr_|c dipole mom_gnt in th_e case of ruphoton reso- 1, (ZatZON—(Za—Zp)p
nance, with the probability density of the resonant state. H=- EV - RO 02 ,

Recently Plummer and McCard] calculated rates for ( )

L v o i
|on|zat|on_ of H,™ by two and three photons within the non whereZ,=Z,=1 in the case of K, and where
perturbative Floquet framework, over the range of frequen-
cies at which excess photon ionization does not occur when
the laser field is weak. Our results for two- and three-photon y2=

N=(ra+trp/R, (1)

pu=(ra=ry)/R, @

()

ool
x| Vo) T am| A #05,

2
ionization agree well with theirs at logperturbative inten- RE(A=p%)
sities, over the entire range of frequencies considered. 1 1 52
Chelkowskiet al.[2] and Mieset al.[3] have also calculated .
(2] 4] i <A2—1)+<1—u2))£4 @

rates for ionization of H* ; they did so by solving the time-
dependent Schdinger equation at the wavelength 228 nm ) ) ,

for various intensities extending well into the nonperturba-"V& €xpand the electronic wave function on a basis com-
tive regime. We have resummed the Rayleigh-Sdimger ~ POSed of functions of the form

perturbation series at this wavelength, using the "Pade ,

method, and we compare our results for the ionization rate em?

with those of Chelkowskét al. and Mieset al. at the inten- UV(}‘)U”('““)E'

sities considered by them.

In the next section we describe how we calculate thegince the volume  element s dr=(RI2)3(\2
Green’s function for the electronic motion of ,fi. The — 12 dNdudé, the electronic Hamiltonian has the follow-
Green'’s function is needed for the evaluation of the terms Ofng simple product representation:
the perturbation series. We exploit the separability of the
electronic Hamiltonian so as to significantly reduce the stor- . _ e
age requirements and the number of computational opera- H, ' =h, s 7+h"7s, )
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where we have not includeoh as an index sinceH has
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cylindrical symmetry about the internuclear axis, and where

the matrix elements on the right side are defined as

2

R [ 2 m
_ZL dru, (N) —()\ 1) N ()\2_1)
+R(Za+Zb)>\)uy(>\). (6)

EV’,V: J\xd)\uv’()\)uv()\)l (7)
1
' R 1 d ]
h77=— Zfldﬂvn'(ﬂ)(%(l—,uz)—ﬂ

m2

e

ue) ®

- R(Za—Zb)M>vn(,u),

1
:f_ld,uv,,r(ﬂ)vn(ﬂ)- 9)
If H denotes the electronic Hamiltonian matrix, whose ele
ments areH:’ 'V, and ifhy, h#, s, , ands*, respectively,

denote the smaller matrices whose elements fare, ,

h7'7, S, ands "7, we can expreskl as a sum of direct
products:

The overlap matrixS of the basis functions has elements
S7"7 where

v v

! —~
Sl M=s, 87 14877, (11)

)

and where

sv/,yz(R/Z)Sfdxuy,(x)(xz—1)uy(>\), (12
1

1
s” ’”=(R/2)3J71dp«v () (1= p?,(n). (13
If s\ ands”, respectively, denote the smaller matrices whos
elements are,, , and s7"7 we have

The reduction oH andS to direct products of smaller ma-

trices, a consequence of the separability of the Hamiltonian,

leads to a significant savings in computational storage.
The Green’s functio(E)=(E—H) ! is represented by
the matrix ES—H) 1. To calculate rates for multiphoton

(Es*—h#)xP=EgPSHxB, (16

with the eigenvectors orthonormalized, that is,
t(xa’)’%)\xazéa’,ai (17)
(xP')SHXE= 541 4, (18)

wheret denotes transpose. }kfﬁ is the joint column vector
that combines, andx?, we have

(ES—H)XE=[(Es,—h)x,1(5#x")
HI(Es*=h)X*IEx.) (19
=(E,+EP)(Brxa) (B#XP) (20
=(E,+EPY55HXE. (21)

Consequently, ik, andx* are the matrices composed of all
column vectorsx, and x?, respectively, ifX=x,x* and
§=§A§“, and if D is the diagonal matrix whose diagonal
elements areq, + &), we have

' (ES—H)X=SXD. (22

To calculatey=(ES—H) ~'b, whereb is a specified vector,
we must solve the set of linear equations

(ES—H)y=b. (23
Writing y=Xz and combining Eqs(22) and (23) gives

SXDz=h.

(24)

From Eqgs.(17) and(18) we have the orthogonality condition

XSx=1, (@9
wherel is the identity matrix. It follows that
y=X(D~1)Xb. (26)

Hence, to determine the action of the Greens function we
need only solve the generalized eigenvalue problems for
X andD, Eq.(22), and this is not difficult to do since Egs.
(15) and(16) are uncoupled so that the number of operations
és reasonably small.

Let e be the unit polarization vectog the frequency, and
F the field strength of the light. The interaction of the elec-
tron with the light isV, e '“'+V_e'“t whereV_=V' and

where, in the length gauge,
V,.=(F/2)e-x, (27)

where x is the electron coordinate, while in the velocity
gauge

ionization, we need to determine the action of the Green’s V., =(Fl2w)e V. (28)

function on a specified vector. Towards this end, we now

consider the following two uncoupled generalized eigen-Writing x=(x,y,z) we have

value problems for eigenvalue®, and £° and eigenvectors

X, andx?: x=(RI2)[(N*~1)(1~ u?)] cosp, (29
(ESy—h)Xa=E.S\Xa s (15 y=(RI2[(\*~1)(1- u?)]"sing, (30)
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FIG. 1. Generalized cross section, in the weak-field limit, for
two-photon ionization of H* (at the equilibrium internuclear sepa-
ration 2 a.u. by linearly polarized light of angular frequenay.
The internuclear axis is oriented along the polarization axis.

z=(RI2)\pu, (31
and writing V= (d/9x,d/ dy,dl 3z) we have
J 2 Cosp d d
I N — T N
sing d
- OE=D(A-p?) o) %
2 sing d d
e
dy R N =1)(1-p?) (7\2_//42) 7\(9)\ “(m
cosp d
O %}’ 9
J 2 ( 21 d N J )
2 ROV—D) (A= )MXWL( —p°) o)
(34)

As mentioned above, we consider the molecule to be ori-
ented along the polarization axis of the laser field, and since
we ignore the motion of the nuclei, the projection of the
electronic angular momentum along the internuclear axis
(the z axig) is conserved. Therefore we need consider only
transitions to>, states, i.e.m=0, and the electron wave
function is independent ap. Plummer and McCann used a
Slater-type basis for the electron wave function. We use an
orthogonal basis:

u,(\)=+—2i kR ROV I—2ixR(A—1)], (35

v () =P, (n), (36)
whereL ,(x) andP,(u) are Laguerre and Legendre polyno-
mials, respectively, withy and » non-negative integers, and
wherek lies in the upper right quadrant of the complex plane
so that the functions,(\) can represent both closéoound
and open(outgoing-wavé channels. The matrix representa-
tions of V.., denoted a%/., can be expressed as sums of
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FIG. 2. Same as Fig. 1 but for three-photon ionization.

direct products of smaller matrices, which are sparse and at
most quintidiagonal. All matrix elements ¢f, S, andV.

can be evaluated in closed form. Furtherm@eands* are
unit matrices, ang, , s#, h, , andh* are also sparse and at
most quintidiagonal. = B

We denote the ac quasienergy of the electronEgs
which we can express &,.=Ey+A—il'/2, wherek, is the
unperturbed initial(ground-state energy and wher& and
I' are the induced shift and width, respectively. The
Rayleigh-Schrdinger perturbation series {see, e.g.[5])

Ea= >, ECVE, (37)
n=0

whereE©©=E, and where IrE?W=0 for n<N,, with N

the minimum number of photons that the molecule must ab-
sorb to ionize. In lowest nonvanishing order the rate for ion-
ization is

Iy, =—2FNo Img?No (38

XV, - --G(Eg+ @)V | bo), 39)
1 T
5pll 6p
4f st flef 3
10-13 [ L 1 P B | .
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FIG. 3. Same as Fig. 1 but for four-photon ionization.
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FIG. 4. Same as Fig. 1 but for five-photon ionization.

where the kef¢,) represents the initial unperturbed elec-
tronic state, and where is positive but infinitesimal. In the
weak-field limit the generalized ionization cross section is

UNOZwFNollNO, (40)

wherel=cF?/(8) is the intensity of the light.

lll. RESULTS

In Figs. 1-5 we show the cross sectiog, for weak-field

ionization of H,* at the equilibrium internuclear separation
of 2 a.u. versus the frequeney of the linearly polarized
light, whereN, (the minimum number of photons that must

FIG. 6. Plots ofz\/P14(p,2) in cylindrical coordinates where
P.s(p,2) is the ground-state electron probability distribution of

be absorbed for ionization to ocguraries from 2 to 6. The

results in Figs. 1 and 2 agree with the cross sections for two
and three-photon ionization calculated at weak fields b;P

Plummer and McCanfl]. There is a lot of resonance struc-

H,* at an internuclear separation of 2 a.u. with(p,z) normal-
ized so that 2r[dpdzPy4(p,z)=1. The horizontal plane is thez
lane, the positive axis points towards the reader and is along the
internuclear axis, and the axis points away from the readdr)
M=1, (b) M=2, (c) M=3, (d) M=4, (e) M=5, and(f) M=6.

ture, and by studying the electronic potential energy curves
from R=0 to R=2 a.u. we can identify the intermediate ] o )
states involved in the resonances; we have labeled them u8ances arise fromNy— 1)-photon excitations to electronic

ing united-atom-limit quantum numbers. Most of the reso-States, but the 2 resonance in Fig. 2 arises from a one-
photon transition, and thesxesonance in Fig. 5 arises from

a four-photon transition—both of these transitions are
(No—2)-photon excitations. Some of the resonances are
very narrow in the sense that they influence the cross section
only at very small detunings from exact resonance, while
other resonances are broad in the sense that they are promi-
nent at quite large detuningéWe cannot speak of a full
width at half maximum since in the weak-field limit the reso-
nance peaks are infinitely highzor example, in Fig. Itwo-
photon ionizatiopwe see that thp resonances are relatively
broad while thef resonances are narrow, in Fig.(tree-
photon ionization the d resonances are relatively broad
while the s resonances are narrow, in Fig.(fur-photon
ionization the p resonances are relatively broad while the

f resonances are narrow, in Fig.(flve-photon ionization

the d resonances are broader than theesonances, and in
Fig. 5 (six-photon ionizatiopthe f resonances are about as
prominent as theg resonances. We can understand these
features, to some extent, if we adopt rather crude approxima-
tions to the Green'’s functionS(Ey+ Lw) for L#Ngy. Thus

if the intermediate resonant state has endfgyand is rep-

4p 5p 6p

4f 5¢ 6f(s.h) 3

-2 [ " " 1 L L L 1 L
0.19 0.20
w(a.u.)

0.21

FIG. 5. Same as Fig. 1 but for six-photon ionization. Tiseafd
6h resonances occur at almost the same frequency asftines6-
nance, but they are much narrower than the latter.
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(d)

FIG. 7. Plots of {P,{p,2) in cylindrical coordinates where
P.edp,2Z) is the electron probability distribution in an intermediate
resonants state, normalized so thatnddpdzP . {p,z)=1. (a)
2s, (b) 3s, (c) 4s, and(d) 5s.

resented byl¢..9, and if the resonance is excited by
photons, we write
|¢res>< ¢I’64
G(E0+Mw)~m, (41)

while for L# M,N, we follow Gold and Beblj6], and make
the closure approximation

G(Eg+Lw)~ (42)

EotLow—Eg’

(d

FIG. 8. Same as Fig. 7 but for an intermediate resopastate.
(@ 2p, (b) 3p, (c) 4p, and(d) 5p.

FIG. 9. Same as Fig. 7 but for an intermediate resodastate.
(a) 3d and(b) 4d.

whereE,, is some average energy. We also note that

(44

- ka d?k| b il

where| ¢, ) is a continuum eigenvector &f (normalized on
the momentum scale with energy eigenvalue
k?/2=Ey+Ngw. Using Egs.(39), (41), (42), and (44) we
have, forEq+Mw~E,,

No—1
0 1

27k Bred VM| o) 2
Eo+tLo—E,,

No (EO+ Mw— Eres)z L=1L#M

x [ KV Mg s
For a fixed but small detuning from resonance, the relative
prominence of a particular resonance depends primarily on
the factor|[( ¢,ed VM| o)[?, Which measures the strength of
excitation from the initial state to the resonant stfig
Within the length gauge, this factor depends strongly on the
degree of overlap of™(x|¢o) and (x| ¢eo. In Fig. 6 we
show three-dimensional plots @ \P,4(p,z) for M=1-6
and z>0, whereP14(p,z)=|(x|$o)|? and p=x*>+y?. In
Figs. 7—10 we show three-dimensional plots\#,.{p,z),
whereP {p,2) =|(X| d,e|?, for s, p, d, andf resonances,
respectively. Inspection of these figures reveals that a rela-
tively large overlap oz \P14(p,z) with \P,e{p,z) corre-
sponds to a relatively prominent resonance.

Up to now we have only shown results for ionization rates
in lowest nonvanishing order of perturbation theory. We
have calculated the coefficient8®™ to higher order,

(b)

FIG. 10. Same as Fig. 7 but for an intermediate resohatdte.
(a) 4f and(b) 5f.
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TABLE |. Rates, in §%, for ionization of H* at an internuclear separation of 2 a.u. and at a wavelength
of 228 nm. Some of the results at lower intensities reported on in [Befwvere recently revisedprivate
communication with K. Kulandgrand we give the revised numbers here.

lonization rate(s™ %)

I (W/cn?) Ref.[3] Ref.[2] Present
5x 10t 6x 107 1.3x1¢°
1x 10" 3x 100 2.1x 101
2x 104 4x 101 1.0x 102
3x 10" 4x 102 3x 1012 5.7x 102
3.9x 10 2% 103 1x 10 1.6x 103
5x 10 3x10% 5x 101 4.5x 10"
6x 10" 2x 108 9.5x 103

n>Ng, but the perturbation series does not converge in thé, the electronic angular momentum about that nucleus
immediate vicinity of a resonan¢&]. However, Chelkowski changes by unity. However, our basis, as defined by Egs.
et al.[2] and Mieset al.[3] have calculated ionization rates (35) and(36), cannot easily represent the centrifugal barrier
at the wavelength 228 nm, i.es=0.2 a.u., for various in- repulsion about this nucleus, i.e., the basis cannot easily de-
tensities of the laser light. At low intensities, and at the fre-scribe the functional fornT'b for r,~0 sinceA—1 and
guencyw=0.2 a.u., the molecule must absorb at least sixu— 1 asr,— 0. Recognizing that.— 1«r, whenr,~0 and
photons to ionize. This frequency is quite far from any reso+that u+ 1=r, whenr,~0, one might think it expedient to
nance, as is evident from Fig. 5, and hence the perturbatiofeplace the basis functio,(u) by functionsv ;7(,u) where
series converges for moderately v_veak values of the i_”tenSitb/;?(,u)=coshQ<’R,u)(1—,u2)”, in the case of even parity, or
[ l:_)ut asl increases 'the electronic energy levels sh|_ft, and, ;(M)=sinh(K’R,u)(1—,u2)” in the case of odd parity. Un-
various levels move in and out of resonance; applying thg, .y nately, the functions /(1) are not orthogonal and are
ratio test, we fmgl that .the ra@us of csonvergzence of the perhearly linearly dependent, as can be seen from Table I
turbation series is the intensity 7xa.ol W/c.m . Ngverthg— here we show the ten eigenvalues of the<I® overlap
less, we can resum the perturbation series using the Pa trix whose elements are
method[9], and, except at intensities in the immediate vicin-
ity of a resonance, we obtain a finiteonverged value for
the ac quasienergy for thiabatic level that originates from 1
the electronic ground state. In Table | we compare our esti- t77=a_,a j duv’ (o' (@), (46)
mates of the rate for ionization from this leuvg¢he internu- 7)o 7 K
clear separation is again 2 g.wvith those of Chelkowski
et al. and Mieset al. At the highest intensity considered, in the case of even parity basis functions with=0.15,
6 10" W/cm?, the shift of the ground-state level relative to where 0<7z',7<9, and wherea’=1/[/ duv *(u)].
the continuum is 0.135 a.u., and six photons are still suffiMany of the eigenvalues are extremely small compared to
cient to ionize the molecule, but at a moderately higher in-unity, indicating the onset of linear dependence.
tensity, 8.8< 10 W/cm?, the shift relative to the continuum  In summary, we have outlined a method for calculating
is 0.2 a.u., and the minimum number of photons which theerms of the Rayleigh-Schdinger perturbation series for
molecule must absorb to ionize is seven. multiphoton ionization of H™, at a fixed internuclear sepa-
ration, and we have presented results of an application. The
method is highly efficient provided thab is neither too
small nor too high; but for small or large values ©f our

The separability of the electronic Hamiltonian in prolate basis, and perhaps even the prolate spheroidal coordinate
spheroidal coordinates, in conjunction with our chosen basissystem, is unsuitable for treating multiphoton ionization of
allowed us to calculate many terms of the Rayleigh-H,". Since we have frozen the positions of the nuclei we
Schralinger perturbation series with considerable efficiencyhave not incorporated dissociation. We note, however, that
and accuracy over a fairly wide frequency range. HoweverChelkowski et al. [10] recently solved the time-dependent
for small or large values of the frequenaythese terms are
more difficult to calculate—convergence with respect to in- TABLE II. Eigenvalues of the overlap matrix whose elements
creasing basis size is hard to achieve. For example, we wetget” 7 (see text
unable to calculate to satisfactory accuracy seven-photos

IV. REMARKS

ionization in lowest nonvanishing order of perturbation 2.3x10° 4 3.9x10°°
theory. To what can we attribute this limitation? We are not 5.0x10 12 8.6x1074
sure of the answer, but it may be useful to note the follow- 5.0x10°10 1.5x 1072
ing. Photoabsorption is most likely to take place near one or 3.1x10°8 2.0x1071
other of the nuclei, particularly at high frequencies. Each 1.3x10°8 3.1x10°

time a photon is absorbed near one of the nuclei, say nucleus
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Schralinger equation for H* in a strong laser field, includ- ACKNOWLEDGMENT
ing the motion of the nuclei; they found that at larger inter-
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