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Right-unitary transformation theory and applications
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We develop a transformation theory in quantum physics, where the transformation operators, defined in the
infinite-dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the
properties of state space of such operators. As one application of the right-unitary transfoiRaionwe
show that using the RUT method, we can solve exactly various interactions of many-level atoms with quan-
tized radiation fields, where the energy of atoms can be two levels, three leve]sMnand= configurations,
and up to higher ¥3) levels. These interactions have wide applications in atomic physics, quantum optics,
and quantum electronics. In this paper, we focus on two typical systems: one is a two-level generalized
Jaynes-Cummings model, where the cavity field varies with the external source; the other one is the interaction
of a three-level atom with quantized radiation fields, where the atoms haanfiguration energy levels, and
the radiation fields are one-mode or two-mode cavifi§2050-29406)06307-X]

PACS numbegps): 03.65—~w, 42.50—p

[. INTRODUCTION still awaiting experiment to test. In quantum gauge theory,
the Becchi-Rouet-Stora-Tyutin transformations of the gauge
Not only an important method, but also an intrinsic de-fields and the ghost fields are in the well-known supersym-
scription of symmetry for the physical systems, transformametric forms[7], which play an important role in the renor-
tion theory is always an interesting topic in physics that hasnalization proof of the standard model. In sum, the quantum
acquired many studies. The transformations preserving thiansformation theory is still under development for various
measurements are callptiysicaltransformations. We know purposes. We notice that the above transformationsiare
that classical mechanics is founded on the symplectic maniary transformations. Since quantum theory is based on Hil-
fold, where the transformations of momentum and positiorbert space, and the duality of the Hilbert space is defined
preserving the symplectomorphism are the physical transfotthrough the Hermitian conjugate, it has been recognized that
mations, which form a group with composition, called the only unitary transformations do not change the Hilbert space.
symplectic group. These transformations are also called Nonunitary transformations cannot preserve the Hermitian
nonical transformations, because they leave both the canonduality, and they thus break the realities of physical observ-
cal equations of motion and the Poisson brackets invariantables and probabilities. That is why nonunitary transforma-
Along the jump from classical theory to quantum theory,tions are always rejected in quantum thepsy.
the Poisson brackets are replaced by the bosonic commuta- In a previous papef9], we introduced an alternative
tion relations. The linear transformations of bosons that leavenethod, right-unitary transformatidiRUT), to deal with the
the bosonic commutation relations invariant were first intro-two-level Jaynes-CumminggC) model[10], which is a ba-
duced by Bogoliubov{1]. These bosonic transformations sis of the fully quantum description of radiation-matter inter-
were found to form the same symplectic group as that iraction, and widely used in quantum optics, quantum elec-
classical mechanics, even though these two kinds of trangronics, etc. It was defined in R€®] that if an operatot)
formations have different physical meanings essentj@ly  satisfies the conditiondUT=1,UTU #1, it belongs to RUT.
The quantum canonical transformations of fermions werdn a strict sensd, is a special nonunitary operator that has a
first introduced by Valatii3] in his study of superconduc- right-unitary inverse only. In the matrix representatidh,
tivity. Since fermions are the purely quantum objects withoutcan only be the matrix in an infinite-dimensional space. Such
classical correspondence, the Lie group formed by the fermian operator has been recognized asragular operator by
onic transformations is no longer the symplectic group, but anathematicians. However, in Réfl], we found that various
sub-Lie group isomorphic with theotation group [4]. As  JC models can be solved exactly by the RUT method. This
linear quantum transformations, the Bogoliubov-Valatinmethod not only shows its own merits such as simplicity and
transformations have wide applications for example in thegeneral applicability, but also leads to a deep understanding
Bardeen-Cooper-Schrieffer theof@] of superconductivity of the JC models. This work further implies that the trans-
and in the calculation of black-hole radiatipB]. Recently, formations applicable to quantum systems should not be re-
the supersymmetric transformation that mixes boson fieldstricted to unitary transformations. Instead, some nonunitary
with fermion fields in a unified form advanced the transfor-transformations which are regarded as irregular objects
mation theory to a big stadé]. However, some interesting might have their particular utilities in physics.
physical predictions raised by the supersymmetric theory are We know that the unitary transformations do not change
the measurements of a quantum system. But the situation is
quite different when using the nonunitary transformations. In
“Electronic address: gt8822b@prism.gatech.edu this paper, we attempt to develop a theory of the right-
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unitary transformation in mathematics, and discuss its appling two low levels are still treated by the RUT method. In
cations in physics. Sec. IlIC 2, we use the RUT method to solve the system
This paper is arranged as follows. In Sec. Il, through sixexactly. In Sec. Ill D, we briefly show how to construct a
theorems, we reveal some common properties of the rightRUT to solve the matter-radiation interactions where the at-
unitary transformation, and conclude a general procedure oPms can be three levels invaor = configuration, and up to
how to apply RUT to quantum systems. Section Il is thefour levels. Section IV is the conclusion.
foundation of the whole work, it includes three subsections. In the present paper, we focus on the RUT method; the
In Sec. Il A, we reveal that the state space of any operatoanalyses of the quantities related to the interesting phenom-
UeRUT is composed of two independent subspace&na such as lasing without inversion and electromagnetically
{|¥%} and {|¥1)}, where{|¥°)} is called thekernel of ~ induced transparency are not given. Since there are many
U, which usually has a finite number of basic elements, andormulas and quantities in the paper, the meanings of the
satisfies the equatiod{|¥°)}=0. On the other hand, in the Symbols are independent in each section.
subspacé|¥1)}, U acts as a unitary operator. Similar to the

unitary transformations, all the operattte RUT in the Il. RIGHT-UNITARY TRANSFORMATION
same Hilbert space form a semigroup, which is called a _
right-unitary semigroup. For a certain system with Hamil- A. Stationary case

tonian H, through a theorem we show that if the kernel of Consider a Hermitian operatm with a discrete spec-
U is checked to be isomorphic with a subset of the eigenketgym,
of H, U can be used as a unitary transformation to the re-
maining subspace dfi without changing the spectrum. In Algmy=Nnlgn), n=12,... Kk, (1)
Sec. II B, we briefly discuss the application of RUT to the
nonstationary system. In order to construct the RUT convethe eigenket$y,) are orthogonal mutually,m| ¥, = Smn-
niently in the Fock space, we employ the recently introduced et us choose an operatat to transformA into another
inverses b,b") of boson creation and annihilation operatorsframe A’. If A’ is still a Hermitian quantity and has the
(a%,a) [11]in Sec. Il C, and show that the well-known quan- same spectrum a8, we callU anapplicable transformation
tum phase operatofd 2] constructed bya anda® (orb and  to A. There raise two questions subsequently: How to trans-
b") form an Abelian subgroup of the right-unitary semi- form A into A’ by usingU? Since we require that’ still
group. be a Hermitian quantity, the transformation frofnto A’ is
Section IlI attributes to one of the applications of RUT in ysually chosen ad’=UAU". Then, what is the basic re-
physics, where we use the RUT method to treat the systemguirement toU? This question is indeed the crux of the
of many-level atoms interacting with the quantized radiationransformation theory, and does not have a complete answer
fields, where the RUT are constructed by the quantum phasget. Certainly, as we have pointed out in the Introduction, the
operators. This section contains four subsections. In Segnitary transformation is thapplicable transformationHere
Il A, we approach such a model that the atoms have twave would like to see how far we can approach beyond the
energy levels, and the radiation field is designed to be @nitary transformation. As it required that’ should have
One'mode CaVity that Val’ieS W|th t|me Through th|S modelthe same Spectrum as, |t iS proper to Choose an extreme
we hope to achieve the goal of controlling the effect such agase A =1, as an invariant in the transformation. This will
atomic inversion of the system via the external source. Thigsesylt in such a requirement td thatUUT=1, in order to
model can be regarded as the nonstationary JC model, whiGQaintain the case of unityA =A’=1. We know that in the
is found to exhibit such a property that there exists a particUpfinjte-dimensional Hilbert spac&JUT=1 does not mean

lar relation between the atomic inversion and the energy exmat U is a unitary operator. In fact, there exists the nonuni-
change of the atomic system with the external source. Thergayy transformation

fore, by measuring the energy exchange, we can understand
the dependence of quantities such as the atomic inversion uut=1
and the mean photon number on tinfen the external ' @
Source_ UTU:W?EI

In recent years, the case of three-level atoms interacting
with quantized electromagnetic field have obtained extensivdhe aim of the present work is to understand how this kind
studies. The model where the atoms havk-aonfiguration  of nonunitary transformation works in quantum theory. We
energy level has been applied to a number of different conhere call the operatdd satisfying Eq.(2) the right-unitary
texts such as the coherent population trapping, laser coolingansformation, in order to distinguish it from the other non-
[13], lasing without inversiorj14], and electromagnetically unitary transformations. We know that RUT are the opera-
induced transparenc§EIT) [15]. In Sec. lll B, we use the tors in the infinite-dimensional space, they can only be ap-
RUT method to solve exactly the atom-radiation interactionplied to the system having the same infinite-dimensional
where the atoms havk-configuration energy levels, and the state space as RUT, i.é,in Eq. (1) goes to infinity.
radiation field is designed to be a one-mode cavity field. The Before carrying a theoretical study on RUT, we first give
case of a two-mode cavity is treated in Sec. Ill C, which isa simple example of it: the quantum phase operdtb2}
further divided into two parts: In Sec. Il C 1, we consider
such a situation that the detunings of the system are enough 1
large, then we are able to construct a unitary transformation F,= a, Fl=al—, 3
to separate the upper level from the system, and the remain- Jaa' Jaa®
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wherea anda' are bosonic annihilation and creation opera-(the brackets are omitted hgnee obtain the following.

tors, respectively. It is easily calculated that Corollary I.b. ForU e RUT, U'U is a projection operator
that maps an arbitrary vector into the unitary subspace of
u.
FlFI: I (4) It is well known that all the unitary operators in the same
FIF1=I —|0)(0], Hilbert space form a unitary group. Similarly, we have the

following group theorem for the RUT.
Theorem Il.All the operators satisfying Eq2) in the
which indicate that, belongs to the right-unitary operators. same Hilbert space form a semigroup.
This concrete example will be helpful to understand the fol-  Proof. In this proof, the main task is to prove that for two
lowing mathematical approach. The properties of the quanarbitrary operators),,U, e RUT in the same Hilbert space,
tum phase operators will be carefully discussed in Sec. Il Cthat U= U, U, should also belong to RUT. It is evident that
We now study the properties of RUT through the follow- yyf=1. We now prove UTU=#1. Let
ing several theorems. W,=UlU,,W,=UJU,. Then w=UTU=UIW,U,. The
Theorem I.For any operatot) e RUT, W=U'U has a  corollary I.a tells us that fotl,, there exists at least one ket
complete set of eigenke{$¥)}, where{| W)} is constituted  yector |)+0 to satisfy the equatior,|y)=0. Which
by two independent subsefs¥°)} and{|¥*)}. For the set meansw|y)=0, andw+ 1. Thereforel) € RUT. The asso-
{7}, U acts as an annihilation operator, ciative law is easily proved. Since all the RUT have not strict
o\ _ 0 0 inverses, we conclude that all these RUT in the same Hilbert
U[W7)=0, [¥7)e{lv). ®) space form a right-unitary semigroiRUSG. QED.
The above two theorems reveal some common properties
of RUT, which are independent of the concrete structure of
RUT. In order to study the structure of RUT in detail, we

now introduce a useful quantity: tikernel (K)of the opera-
WwH=[w5), ¥ e{vh. ®)  torUeRUT:

Proof. For anyU e RUT, it follows from Eq.(2) that

For the other sef|W1)}, U acts as a unitary operator,
namely,

K={|®),i=1,2,..}, forany®dekK, U|®)=0.

U(1-w)=0. 7 (10
Equation(7) is further left-multiplied byU™; we have Evidently, the subsef| %)} in Theorem | and the arbitrary
linear combinations of those elementg j& %} all belong to
W—W2=0. 8y K. Therefore,K has infinite number of elements. Here we

introduce another quantity, theasic kernelwhich includes
Equation (8) indicates that the Hermitian operatv has only the base ket vectors &f, namely, these ket vectors are
eigenvalues 0 and 1 only, and the corresponding eigenstatesithogonal with each other. In most cases, the basic kernel
denoted by{|¥°)} and{|¥?)}, form a complete set, where has a finite number of elements. We sometimes simply call
the brackets are used to represent the case of degeneracy iftie basic kernel the kernel. For convenience, we usually de-
exists. For any|¥% e{|Ww%}, using Eq.(7), we obtain noteK={|®°%} or K=|®°) in the following presentation.

U(1-W)|¥=U|¥% =0, which proves Eq(5). On the The kernel distinguishes clearly the RUT from the unitary
other hand, for any |\Ifjl> c{|¥Hl, we have transformation, since for any unitary transformatiéhis an

UTU|‘II-1):W|\II-1>= |‘Pl> namely,U acts as a unitary op- empty set. In a certain seng¢,can be taken as a measure of
erator in the sut;spa({(él\lf’l)} QED’ the nonunitarity of the operatdt e RUT: the fewer elements

As the starting point of our work, the above theorem re-K has, the more nc_early unitary lg The latter (_jiscqssion
veals the general structure of the state space of RUT. Applyill_show that K directly determines the applicability of

ing this theorem to the phase operaibh, we have RU;r:(?eaRpLT'IYSrigzlbsé/:;eg]s.sociated with a structure of a semi
{|¥%)}={|0)} and{|¥wh)}={[k) k=1,2,... o}.

The following two corollaries are directly associated with 9r0UP. We now prove the following theorem about the kernel
Theorem |. First, from Eq(5), we know the following. of several RUT's product.

Corollary l.a. For any operatot) e RUT, there exists at Theo.rem lll. For thoseU;,Up, ... Uy, ... €RUSG,
least one vectoy)#0 that satisfies the equatiany)=0, "€ Pasic kernel of the operator

Second, for an arbitrary vectp6), from

U(L2,...,n=UU,...U, (11)
UTU[6)=UTUL| WO WO ) + [ W) (W Y 6)] = (] 6)| W),
(9) is exactly

K={|®°(n)),ul|®°(n—1)),uTU] ,|®%n-2)),u]. - Ulul|®1))}, (12)
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where|®°%(m)) is the basic kernel ol,,. (The bracket is Proof. We complete the proof by two steps. First, from
omitted here. the proposition we know thdty)==7_,d,;|®;), I<s, by
Proof. The proof includes three steps. First, let which we obtain further
w=U'(1,2,... ,mUL2,...n) Ul#)=0, 1=12,...s, (16)
U #0, m=s+1,... .
=ul...ululw,u,u, - U, (13) |$hm) oo
. . The above equations indicate that the total state spade of
using Theorem I, we obtain can be divided into two parts, which are simply denoted as
{l#)} and{| )}, respectively. The subspaéky,)} can be
W|®°(n))=W[U]|d°(n—1))] determined by both of the kernel &f and A, but the re-

maining subspacfl ¢,,)} is independent oK.

Second, we now deal with the remaining subspace
{lm)}. Let |l y=UTU| ). It follows from Eq. (2) that
Therefore, all the elements U(| ) —| ) =0. Equation(14) implies

=...=WU!...uluj|®°1))]1=0. (14

|©°(n)),Uj|@°(n—1)), ... U} -ULUI@O(1)) °
[ =1m) + 2, Conl ), (17)
in Eq. (12) belong to the kernel ofJ(1,2,. .. ,n). -

For _the second step, it is easny proved that all the e,leWherecm are parameters to be determinég’ ) is further
ments in Eq.(12) are orthogonal with each other. We omit left-multiplied by a bra(y;|, I <s:
the proof here. ’

For the third step, we will show that an arbitrary element s
belonging to the kernel df) is uniquely determined by the <¢|,|UTu|¢m>=<¢|,|¢m>+2 cml |y, (18
elements in Eq(12). Supposing an arbitrary vectpw) that =1

satisfiesw|a)=0, by Eq.(13), we have from Eqg. (16) and the orthogonality of the ket vectors

{|#n)} indicated in Eq.(1), we obtainc,,=0 in Eq. (17).
Then, | ¢y =UTU| ) =|¢m). This result evidently shows
that in the subspacf )}, U acts as a unitary operator.

0 tis easy to prove that’=UAU" has the same spectrum
as A in the subspacd|,)}. The new eigenkets of\’,
| =Ul| ¢, are also complete, since

W1U2U3"‘Un|a>:0. (15)

We conclude from the equation above that there are only twi
possible choices dfx), as follows.

(i) UoUs---U |a)e|®(1)). From Theorem I, we ob-
tain that Ug- - -Upya)=c,U|®°(1))+c,|®°(2)), where

c; are the parameters commutative with dll;. By * s

this  result, we further obtain U, ---Uyja) > |\Ifm><\lfm|:U[l—E |¢|><¢,|]UT:UUT=1.

=c,UUJ|®°(1)) +c,Ul|®°(2)) +c5| ®O(3)). Following m=s+1 =1 19
the same analysis, we eventually (19

get to |a)=cyU]-- '_U§U£|‘_DO(1)>+C2UE”‘U£|‘DO(2)> Moreover, byU'|¥ )=|y,), we obtain the eigenkets of

+ .- +¢,|PO(n)), which evidently belongs tK, where A QED.

Ein=_1.|ci|2:1- o . The proposition in above Theorem IV that the kernel of
(i) The other PO%SW)'“W is that);- - -Up|a)=0, while U should be isomorphic with a subspace/ofs very strong.

Ujp1---Upla)=d||®°(1))#0, where 2<I. Using the How to weaken this proposition is still under investigation.

same  discussion as in (i), we  obtain Notice that in the proof of Theorem IV, we have em-
lay=dUl-- U, | @)+ +d,|®O(n)), which stil ployed the eigenstates of. Therefore, one may wonder
belongs toK in Eqg. (12). how to use the RUT method to obtain the spectrum\of
The above analysis leads to a conclusion that the expregrovided we do not know these eigenstates at first. To an-
sion (12) uniquely determines the kernel &f(1,2,. .. ,n). swer this question, we should keep in mind that even when
QED. using the unitary transformation to solve a problem, there

With the help of above several theorems, we now attempétill is not a widely accepted rule on how to construct a
to establish a connection between RUT andn Eq. (1). It unitary transformation, except some well-known problems in
seems that the above properties of RUT are independent ®&ef.[2]. However, for the RUT method, based on Theorem

A, even though RUT is initiated by its application fo. IV, we conclude a general way on how to apply RUT to a
Theorem IV expresses a sufficient condition, under which wesoncrete problem, there are several steps described as fol-
can apply RUT toA. lows.

Theorem IV.If the kernel of U, K={|®;)}, is linearly Consider a Hermitian operator such Asin Eq. (1). To
isomorphic with the sef|4,),1=1,2,. .. s}, which is a sub-  solve the eigenvalue equation, we first attempt to construct a
set of the total eigenkef$y,),n=1,2,. ..} of the opera- transformatiorl in the same Hilbert space @sto simplify

tor A in Eq. (), thenU can be taken as a unitary transfor- it. For the purposé) is a right-unitary operator, its kernel is
mation to the remaining subspace/ofwithout changing the easily obtained. Then we can directly check whether all the
spectrum. elements in the kernébr the combinations of those elements
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in the kernel are the eigenstates d&f. If they are, the kernel 9 .
is called theproper kernel,which guarantees that we can 2 fm(O=—IAn(DFm(), m=12,....s, (23
directly follow Theorem IV to takdJ as a unitary transfor-
mation to transformA into A’=UAU", without changing which is solved as
the spectrum.
We should notice that in the above steps of using a RUT, ¢
we need not know the eigenkets af at first. The most fm(t):fm(o)ex{—if )\m(t’)dt’}, m=1.2,...s.
important step is to construct a RUT withpeoper kernelas 0

Theorem IV required. In practice, the number of the basic (24)
elements in the kernel should be as few as possible, because o 1
(i) with a smaller kernel, it is easier for us to check whetherln the remaining subspacg|¥;),i=s+1s+2,... %},

it is a proper kernel, andi) from Theorem I, we know that since U acts as a unitary transformation, the Scfinger
the smaller the kernel, the more nearly unitary is the RUT. equation(20) can be turned into
In Sec. I, we will follow the above steps to treat various

matter-radiation interactions. d ,
AT OLp()" =1 [9(1)", (25
B. Nonstationary case
' _ 1 ’
We now consider such a case that the Hamiltonian of é(vhere AT =UAHUT, and |9(1)

=37 o 10/(OU|TY. In the transformed framd ' (t), the

system represented by varies with time. The evolution of X _ _
parameterg,(t) are obtained to satisfy the equation

the state obeys the Scldinger equation#=1)

9 J .
ADIPO)=i [V, |9(0)=|y). (20 FOn(0==1 X gi(O(¥ A O],
We further assume that there exists another varigblie n=s+1s+2, ..., (26)

A(t): A(t)EA(Ii,t), and the state space Bfis an infinite-

dimensional Hilbert space. Consider an operaterRUT in  \yhere | Wy =U|¥l). Equations(25) and (26) evidently

the same Hilbert space & and independent of timél has  show thatU can be applied to the remaining subspace of

a finite kernelK={|¥}),i=1,2,...,s}, and a unitary sub- A(t). QED.

space{|¥),i=s+1s+2,...~} as indicated in Theorem  The condition(21) is the key point of this theorem, by

I. In order to applyU to the systemA(t), we present the which the total state space af(t) can be divided into two

following theorem, which is essentially a revision of Theo- parts: one part is determined by the kernellsfthe other

rem IV. part can be treated by as a unitary transformation. In the
Theorem VForU € RUT, if all the elements or the linear gpove proof, the subspa({@qf}),i =s+1s+2,... >} has

combinations of those elements in the kernellbfare ex- been used to expand the wave function. In fac[, for a con-

actly the eigenstates of(t) in Eq. (20), i.e., crete problem, we do not know this subspace at first. Instead,
we can directly apphU to A(t) as shown in Eq(25) to
A& =Na(D]&), m=12,...s, (21)  obtain this subspace, provided the condition 1) is sat-
isfied already.
where |&) =% _,d,n|P2), the matrix €,,) has an in- The aboveU e RUT is assumed to be independent of

verse, and in Eq. (21) is taken as a constant parameter, thentime, sinceR is a time-independent variable ii(t). One
U can be applied to the remaining subspaceé\ ¢f) without  can extend Theorem V into the case of many variables with-
changing the Schdbinger equation. out difficulty.

Proof. Since the matrixd,,) has an inverse, two sub-
spaces{|¢,),n=1,2,...,s} and {|¥%) n=1,2,...,s} are

isomorphic with each other. Theorem | indicates that o ) )
there is a complete set of ket vectors As one of the infinite-dimensional Hilbert spaces, the

(e ¥ n=12 ... si=s+1s+2,...2} for W Fock space has been widely used in quantum physics. In
=utu {Nhere the ket vectors are assumed to be orthogoncﬂrder to construct RUT conveniently in the Fock space, we

with each other. Then the wave function Af(t) can be employ the recently introduced inverses of boson creation
expressed as and annihilation operatoa’ anda, [a,a']=1. Mehtaet al.

[11] found thata' has a left inversé, anda has a right
inverseb’,

— 1
(0= 2 fmOlém)+ 2 g(OI¥r), (22 ba'—abi=1. 27

C. Inverses of bosonic operators and examples of RUT

where the time-dependent parametigét) andg,(t) areto  The properties ob,b™ and their applications to squeezed
be determined. Taking this expressi@®) into Eq.(20), by  states, and the Mzus transformation, have obtained detailed
Eq.(21) and the orthogonality of those ket vectors, we obtainstudies in Ref[12]. In Ref.[9], we showed thab andb™ can
that the parameterf,(t) satisfy the equation be formally expressed in terms afanda,
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Theorem VIAIl the phase operators defined by E¢3)
: (28)  and (32 form a subgroup of the right-unitary semigroup:
{1F.,k=1.2, ...}C RUSG.
From Eq.(28), we further obtainbb"=1/aa’. Using this Proof. It is clear thatF,F}=1. On the other hand, using
relation, we arrive at an interesting resudtanda’ can be  Eq.(31), we obtain
formally expressed in terms &f andb, too,

b= a, b'=a'
aa’ aal

k—1

Fle=|—n§O In)(n|#1. (35)

a= . (29

1 f ot 1
o /> @ =P pp

. o These mean thd, e RUT. Moreover,F F,=F, ., e RUT.

We know in the scheme of second quantization that an arbigye therefore conclude thaftF .k=1,2 ! form an
T ) 1=y n

tr?ry operator can be expanded ayanda’, namely,a and  apgjian subgroup of RUSG. The kernel of the elemEpis
a' form acomplete operator seEquatlon(29)T|mpI|es that directly obtained a& (Fy)={|0),|1), ... |k—1)}. QED.
any opeTrator can also be expandedtbgndb’. Therefore, Using this explicit example of RUT, one can easily check
b andb’ form acomple;(e operator setpo, which is con-  {he theorems presented above. We are not going to dig
nected to that ok anda' by the nonlinear transformations deeper into the theory of RUT here. It is important to see

(28) or (29). o S _ . how to apply RUT to the physical system.
Equation (28) significantly simplifies the calculation in

the representation df andb'. Various results in Ref{12]
such as the analytic studieslofandb’ in the representation
of Bargmann space are easily obtained by using E2R.
and (29). For example, using Eq28), one can prove the
following useful formulas: Under the rotating-wave approximation, the interaction of
1 1 NI two-level atoms with the quantized radiation field is de-
_ — : scribed by the Jaynes-Cummings modél], which has been
aa™  (N+1)(N+2)---(N+k) (N+k)!’ extensively applied in quantum optics, quantum electronics,
(30 etc. Various modifications and generalizations to the original
JC model have been made to approach quantum effects such
as quantum collapses and revivals of atomic coherghgke
squeezing phenomendd?], and so on. These JC models
have the common attractive property that they all can be
K1 solved exactly. Since the supersymmetric structure was
= 1—20 In)(nl, (31 found to exist for the JC model, the JC model is viewed as a
generalization of the supersymmetric harmonic oscillator
whereN=a'a. system, and its solvability may be interpreted in terms of
We now look at the well-known operator, namely, the SUPersymmetric breakingl8]. Using a deformed oscillator
phase operatofphasof F;, as shown in Eq(3), which is algebra, Bo_natsoet al. [19] gave a unified solval_ale formu-
initiated from the quantization of the phase factor in quantunfation of various JC Hamiltonians. Yet al.[20] pointed out
mechanicgd12]. In this paper we will use only the photon- further that there embeds an unusuaPsalgebraic structure
lowering property of these phase operators, and that thé these JC Hamiltonians. ,
phase properties of the electromagnetic field are not calcu- e methods mentioned above are valid for the two-level

lated. The higher-order phase operators are defined as stationary JC models only. It is difficult to extend these
methods to the time-dependent JC models, or to the case

Ill. APPLICATION OF RUT TO THE SYSTEM
OF MANY-LEVEL ATOMS INTERACTING
WITH QUANTIZED RADIATION FIELDS

bkb'l'k:

bfkak= >\ b™|n)(n|ak= >, |n+k)(n+Kk|
n=0 n=0

1 1 where the atoms have higher@) energy levels. In a pre-
FkE(Fl)k=\/_—k_ﬂzak, Fl=(Fhk=ak——. vious papef9], we employed a right-unitary transformation
aza a‘a to solve exactly a generalized two-level JC model and

(32 pointed out that there exists a geometric phase in the model.
In this section, we will show that the RUT method devel-
oped above can be generally applied to various forms of
atom-radiation interactions, where the atoms can have two,
three, and higher energy levels in different configurations,

In the representation df andb', F; and FI are found to
have the same forms as E@),

F,= ! b, FJ{zb*L. (33  and the radiation field can be a one-mode or two-mode cav-

JVbb? Vbb? ity. This section includes four subsections. In Sec. Il A, by

constructing a RUT, we follow Theorem V to solve such a

By Eq. (30), we have model that the two-level atoms interact with a radiation field
which is dependent on time. This model is called the nonsta-

Eo= 1 bk  El=ptk 1 (34) tionary JC model. The importance of three-level matter-

K JokpT& ™ k N radiation interactions has been pointed out in the Introduc-

tion. However, some interesting characteristics such as the
With these preparations, we now prove the following supersymmetric structure, and théustructure are not em-
theorem. bedded in the three-level models. There still is not a gener-
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ally accepted method to treat these models, according to our 2
knowledge. In Secs. Ill B-Ill D, following Theorem IV, we
will show that various interactions of many-level atoms with
one- or two-mode cavities can be unitedly treated by the
RUT method, where the energy of atoms can be two-level
and three-level with\, V, and=-configurations. The proce-
dures of treatment are as simple as those in the two-level JC
model. 1 @) 1

(b)

A. Two-level nonstationary Jaynes-Cummings model
FIG. 1. (a) shows that in the framél, the transition from the

The approach of the stationary two-level JC models byatomic state 2 to state 1 is achieved by creating phot@shows
using the RUT method can be found in RE®]. In this  that in the transformed framil’, there is no photon created or
section, we consider such a case that the radiation field irannihilated in the transition from 2 to 1.
teracting with the two-level atoms varies with the external
source. Through this model, we hope to achieve the goal abne can check that the vecto|r$k) k=0,1,...,|—1,in

controlling the effects such as atomic collapse and revivalk are exactly the eigenstatesidft), where the elgenvalues
and the statistics of photon number through the external

source. Under the rotating-wave approximation, the Hamil- EE=wk—w0/2. (41
tonian of the system with densip(N)-dependent multipho-
ton (1) interaction has the following general formi € 1): These results evidently show thdtis covered by Theorem

1 V. We now follow Theorem V to solve Eq37). The wave
H(t)=wa'a+ §w00'3+aﬂp(N)'y*(t)0'_ function | ¥ (t)) can be divided into two parts:
[P (1) =[WO(t))+[¥H(t)), (42)
+p(N)a'y(t)o, (36)
where|¥O(t)) is related to the kernel and given by Eg4)
wherew and w, are the field and atomic transition frequen- 53¢
cies, respectivelyo.=(o1*xi0,)/2, where oy, o,, and
o4 are three Pauli matrices(t) represents the change of -1 _
radiation field with the external sourcg(t) +#0. The detun- |WO(t))= >, f e (wkmwo2t 0y, (43
ing A= wy—lw should satisfy the conditiofA|<wq,, in k=0
order to preserve the reliability of the rotating-wave approxi- 1
mation. The evolution of the system with time is described! N€ Other part| W (1)), 'f determined by the unitary sub-
by the Schidinger equation space ofU. To obtain|¥*(t)), we make a transformation:
H'(t)=UH(t)U", that is,

J
HO[W () =i—[W(t), [V(0)=|¥g). (37 oN+2wo  G(N) (D)
PO ar ) o= to)

To solve this equation, we construct the following operator Gty o(N+h -z
U: where g;(N)=p(N)[(N+1)!/N!]3. The Hamiltonian now

1 0 turns out to be a function of the photon numbErwhere the
Uz( ’ (38) creation and annihilation of photon have been erased by the
0 F transformationy.

We know that in the original frameéi(t), the transition
whereF,=(1/\b’b™)b' is the phase operator given by Eq. from the atomic state 2 to the state 1 is induced by the dipole
(34). It should be mentioned that thig is expressed in the terma' p(N)y*(t), and the transition is always achieved by
two-dimensional representation of the Pauli matrices, wherereatingl photons. On the other hand, the transition from
the parameters are phase operators. From Theorem VI, wgate 1 to state 2 is achieved by annihilating the same
know thatU has the properties photons. However, in the new frank¥ (t), all of these tran-

sitions are caused not by the creating or annihilating photon.
uut=l, The transition induced by dipole can only happen between
1, 0 those states having the same number of photons, as shown in
UTU= -1 , (39 Fig. 1. Therefore, the states with different photon numbers
10, 1= |kK can be treated independently.
k=0 H’(t) is further rearranged into the compact form

which indicate that) belongs to RUT, and the kernel bf is H'(t)=By— u-B(t), (45)

N ) ) where Bo=w(N+112), By()= RE7(DIN), Ba(D)
K‘[""”‘(l@)’ K=0L.. =1 B0 i y0)]aiN), andBs=(wo—1)/2, 4=
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The above resultEq. (45)] reveals that in the transformed o (a; +ay)|K)
frame, the Hamiltoniamd ' (t) of the nonstationary JC model |[wi0)) = v L1 - ) (52
describes the motion of a spinatom under an effective =0 \ (= heay +hi"e)[k)

magnetic field§(t), which is a function of the photon num-

- If the initial state in the transformed frame is chosen as
berN and timet.

Tt\e evolution of subspadall(t))’ is described by the k)
Schralinger equation(23), IwL0)) = E ( k ) (53)
=0 | k)
J
’ 1 P 1 ’
H'(O1TA(V) _'EN’ ()", (46) then the coefficientsy, and w,,v, are related with each
other by the equations
where
2 [ ag(D)]K) a;:mz(ﬂk—hkvk),
[wh(1) =2 , k
=0 | B(t)[K) _ h (54)
- _ _ ay :mz(hkﬂk+Vk)-
the coefficientsy, (t) and By (t) satisfy the equations k
()= —i a (1) (wk+ wo/2) =i (1) gy (K) (1), For convenience, we still use the initial state as &§) in
(47) the later calculations.
B.(1) = —iBu(t K+ 1)+ wo/2]—i an() g (K) v* (1), Since the initial state is arbitrarily chosen, Eg0) is in
Adt) AL )+ wof2]“len(ei k)Y () fact the general solution of the nonstationary JC model in the
which are further arranged into transformed frame. From Theorem V, we know that the so-

lution can be directly turned into thentransformedrame by

ay(t) +aOALL Y1)+ an()BiL1L ¥(1)]=0,
(49) w0y =UTwH(D)". (55)
Bi(t) + BDALLL ¥ (1)]+ BB, ¥* (1)]=0,
AdD*+ BOALL Y O]+ BB Y (1)] Combining this solution and the kernel part in E43), we
obtain the exact solution of the nonstationary JC model for

where . o
an arbitrary initial state as
Al YD) ]=To(2k+1) = ¥/ ¥(1), -
- | 0
Bill, ¥(1)]=g(K) [ 7(1) 2= i (wk-+ wo/2) ¥(1)/ ¥(1) W)= 2 1 ne"“"“““‘)’z”( |n>)
— (K> +1K) — wwo/2+ wi/4. - -
S [y e+ a € k)

For a giveny(t), by solving the above two equations, one + < P U S T D :
can obtain the evolution of the system with time. For in- O [—heay e hy ek e k4
stance, we choose a special case, (56)

y(t)=e™, (49 Using the normalization conditiof W (t)|¥(t))=1, we

) ~ know that all the coefficients should satisfy the equation
to approach the dependence of some physical properties in

this model on\. With this particulary(t), a(t) and B,(t) -1 o
are solved to be 2 2+ 2 [(A+hDay [P+ (1+h D) [2]=1.
n=0 k=0
ak(t)=a;ei“’k+t+ a;ei“’;t, (57
50

(o oMt 1 (e -t 50 The above solution(56) shows that the kernel term is
Br(t) = —hyay € "M+ hy Tay etk T independent ofy(t), thereby a trivial term. Our interest is in
the second term in the solutigh6), because this term is not
where only related toy(t), but also determined by the unitary sub-

1 I space ofU. We now evaluate the following physical quan-
f__ = _ S 2 2 tities associated with the nonstationary JC model by using
wy 2[a)(2k+|) A= \/4(w0 ol +N)“+[g,(k)]*, RUT.

(2]

hk= 2

(51)
ok+ — + o, /g|(k), 1. Statistics of the photon number

Let n=(t)=(¥(t)|(oo= o3)N/2JW(t)), where o, is a
2X 2 unit matrix, ando is the third Pauli matrix. Fon™,

and the coefficients, andg, are determined by the initial sinceU[(oq+ o3)N/2]UT=(0¢+ 03)N/2, we can treat it by
state in the transformed frame: RUT in the transformed frame,
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nT(O=[VD)|U(o0+o3)N2LU[WL(1))] o e Xe L ANk
_ +)2 -2
.ZO klenc [*+ len I*+ &(0)], (58 where the detunind = wy— wl, x=|z|2. With these results,
o3 is obtained to be
where .
oy xke ™\ 4(A+N)g(k)
£V = * ap e 1@ 90 gf g * el et (59) & Tk (AN Eragi(k)
1
By the same way, we have < Sir? 5\/(A+>\)2+49|2(k)t . 66)
-1 o
n-(t)=2 n|f ]2+ > (k+D)[|ag|?h2 Equation(66) expresses exactly the collapse and revival of
n=0 k=0 the atomic coherence in this nonstationary model, where
+|a[|2h[2—§k(t)]- (60) plays the same role as the detuniftg By changing\, we

can effectively control the atomic inversion of the system,
thus meet our original purpose of studying the properties of
rjihe atomic system via the external source. If it is designed:
A=~ —A, the atomic inversion disappears for the initial state
3). On the other hand, even K=0, from Eq.(66) we
now that the atomic inversion still exists for the external

It is proper to refer tan™ (t) andn ~(t) as the mean photon
number of the field for the cases where the atom is found i
the excited and ground states, respectivé|yt) is an im-
portant quantity in this model, it measures the collapses an
revivals of the atomic inversion in a single mode with the

frequency source\ #0,

- <& [X%eTX) 4ang(k) 1

A=) —op = (wg— ol +\)2+4 k)]2. 61 = xe ' sirdl =4\ 2 2
k=0 — o =\ (g ) HA[gk)]% (61 3 kZO | 37 agh in? SN +4gi(kt.
A, is usually called Rabi frequency, where the paramgter (67)
obviously affects the Rabi frequency.
3. Energy
2. Atomic inversion The mean energy of the system_isE_(t)

The atomic inversion in the JC model is illustrated by the= (W (t)|H(t)|W(t)). For the stat€56), we divideE(t) into
quantity o3=(W(t)| o3| ¥(t)). If we take the two-level at- three terms,
oms as the neutro particles with sgintheno3/2 measures __
the mean spin value which varies with time. Singg is E(t)=(WO(t)[H(t)|WO(t)) +[(¥L(t)|H(t)|¥O(t))+ H.c]
invariant underU, namely,Uo3UT=03, we can directly 1 1
calculate this quantity in the transformed frame. Using the HPAOHOPHD), (68)
normalization condition Eq57), we obtain where the first term ir’E—(t) is easily obtained to be

il -1

03:2;0 [y 12+ e [P+ &(D]- 1. (62) E%) = (on—wy2)|f,|2 (69)
- n=0

This result shows that the atomic inversion is measured bf¥rom Theorem |, we know that the kernel are orthogonal to
the same¢,(t) as that appears in the statistics of photonthe unitary subspace, which implies that the second term in

number. In order to evaluate explicitly the effect)oin the aboveE(t) is zero. The third term can be treated by RUT as
nonstationary JC model, we choose the following special ini-

tial state without the kernel part for an example: EXt)=[(¥XH)|UTUHMUTIU|PL1))]. (70
7K A simple calculation gives
. 1K) .
W (0))=, e 42 ' . (63) =T PP 2
P Zk E D=2 {laThix - (1+h o]
S|k 1) -
| _ _ _ _
V2K + g [P 2= (L4 D 1N E(D). (7D)

For this initial state, we havésee Appendix The variation of the mean enerdg(t) with time is still

dominated by, (t), which measures the energy exchange of
(A+N)gi(k) the radiation-matter system with the external source.
(A+N)%+ 4g|2(k) From Egs.(62) and(71), we abstract the following inter-

N . esting relation between the mean energy and the atomic in-
xcog V(A+N\)*+4gf(k)t], (64 version:

xKe ™%

&)= —( X
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2 _ . 3 —/ 1 Fi, 0 0
, u=[ 0 1 0], (74)
; 0O O |:|2
IR 3 P 3 whereF|1 and F,, are two phase operators. From Theorem
(@ ) © VI, we know that the operatdy belongs to RUT. The kernel
of U is
FIG. 2. (a) represents the transitions of the atoms witlcon-
figuration energy levelgb) indicates the V configuration, and@) |k1> 0
the = configuration. K= |'J/g(k1)>= 0 |, |z,/1(2)(k2>= 0 |,
— _ 0 k
dE_ X dog . ey
dt 2 dt’ (72
kKi<li, ko<l,t. (75

This relation expresses such a distinct property of this model
that by measuring the change of energy with time, we can
obtain the information such as the dependence of the atomigheorem IV tells us that if this kernel is isomorphic to a
inversion and the mean photon number on time. Howevergpset of the eigenkets ®f, then the operatol) can be
this property does not mean that the atomic im/ersion isapplied toH. It is easily checked that abowf‘f(km and
caused by the external source. In fact, whenO, E turns | y9(k,)) happen to be the eigenkets ldf The eigenvalues
out to be independent of time, but the atomic inversioncorresponding to these eigenkets are
shown in Eq.(67) still exists generally.

EY(ky) =1+ wky,

(76)
B. Three-level atoms interacting with one-mode cavity Eg(k2)= g3+ wky

We now concentrate on the three-level atom-radiation
systems. The three-level atoms are classified by the configu-

rations of their energy levels. Generally, there are three kind\évhere we have assumed that the energy spectrum is nonde-

of configurationsA, V, and=, as shown in Fig. 2, where generatg b.etween two Se{wg(kl»}. and{|¢//g(k2)>}. These
the atoms with A-configuration energy level have been results indicate that _the operator is _cqvere(_j by Theorem
widely used in the subjects such as the coherent populatioW' _and can be_ applied to the remaining eigenket sekof
trapping, laser cooling13], lasing without inversiorf14], besides ’those 'nTI_E(WQ' . .
and electromagnetically induced transparefEyT) [15]. LetH'=UHU; a direct calculation gives

We know that the exact solvability of various two-level

JC models is attributed to a unified formulation of JC models H’ :E(Sl+82+83)+ ol N+ Il+|1) +H,, (7D
by a deformed oscillator algebfa9], or by a s(2) structure 3 3

[20]. However, there is not a unified solvable formulation to )

these three-level systems. Starting from this section, we willVneréH is

show that by the RUT method, we can solve the various h N 0

three-level models mentioned above. To avoid making the 1 91(N)

paper too long, almost all the physical properties associated Hi=| 91(N) —(hi+hy) gx(N) |, (78
with the solutions are not discussed in this paper. 0 9x(N) h,

In this section, we consider a system of three-level atoms
with energiese, £, andes in the A configuration, which  where h; and h, are two constants: hy=(2¢;
interacts with a one-mode cavity field as shown in Fig. o, ¢.)/3+ (21,-1,)w/3, h,=(2e3—e;—e,)/3+(2l,
2(a). The interaction is considered to be density _|)u/3: and gy(N)=py(N)[(N+1)1/NITY2  gu(N)

[p1(N),p2(N)]-dependent, and in the multiphotot; () = 5 (N)[(N+1,)!/N!]¥2. Notice thatH, is constructed to
form. Under the rotating-wave approximation, the Hamil-pe 3 traceless operator matrix; in this form it is easier to
tonian of the system is written as compute its eigenvalues.

3 The above results show that in the transformed frame, the

— t 11 [ Hamiltonian of the three-level matter-radiation interaction
H _;1 eiSitoaat{ato(N)Sitpa(N)azSetHel, system becomes @33 matrix which depends on the photon
(73 numberN only. For the ket vector with a single photon hum-
ber, this Hamiltonian simply describes the usual three-level
where  is the frequency of the radiation fiel&; are the stationary system, which can be solved exactly. We note that
atomic operators given b§;=|i)(j|, i,j=1,2,3. We notice in the transformed frame, the transitions induced by the di-
that various three-level Hamiltonians with one-mode cavitypole occur only between the states containing the same pho-
in the literature are covered by this general one. To solve thiton number. This picture is similar that in the two-level sys-
Hamiltonian, we now introduce the following operatdr tem.
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Assuming the eigenket dl; as

B1
|w(n)) =| B2
B3

®|n), (79

where 8;=g;(n), i=1,2,3. The eigenvalug of H; is de-
termined by the equation det; —\|=0, that is,
A3+ Ap+q=0, (80)
where
p=—[gi(n)+g5(n)+hi+h3+hh,], @1
q="h;9%(n) +h,g3(n)+(hy+hy)hshy.
The solutions of Eq(80) are given by[21]
A(N)=A,+A_,
V3i
)\23(n)— (A++A )+T(A+_A—)y (82)
whereA.=A.(n),
A_s\/1+13121’2 83
== \30%| 7P7+ 797 - (83

Combining these; with the diagonal term ifd’, we obtain
the eigenvalues of the Hamiltonian as

[1+1
El(n):%(81+82+83)+w n+ 3 l)+)\1,
y I+, (84)
E23(n)—§ 81+82+83)+(1) n+ )\2'3.

We assume that the energy spectrum is nondegenerate; then
the eigenkets oH' corresponding to the above eigenvalues

are orthogonal mutually, which are obtained to be

g1(n)
Ni—hy

L Jeln),

g2(n)
Ni—h;

|Wi(n)) = i=1,2,3, (85

1
gi(n)

where{;(n) are the normalization factors:

gi(n) |
) _?\i—hl_|n+ll>
I‘I’i(n)>=m _g(nlm . i=123.
2
_)\i_h1_|n+lz>
(86)

For an arbitrary initial statep(0)), the evolution of the state
with time becomes

-1 2

)= 3 3 Ci(kye ERY yO(k))

© 3
+22 (me™ M Wwy(n)), (87

whereC;(k) = (4 (k)| ¢(0)) andD;(n)=(¥;(n)|(0)).

Now we conclude that the total eigenstate set of the three-
level atom-radiation system is constituted by two subsets as
in Egs. (75 and (86), where the subset in Eq75) is the
kernel of U, but for the other subset E¢86), U acts as a
unitary operator.

We recall that for the two-level JC model, there generally
exists a relatiorH’ ~¢-B. However, for the above three-
level system, from the expression df , we know that the
system cannot be taken as a spin-1 particle interacting with
an external magnetic field, that is, the relation such as
H’~S-B does not exist here. Therefore, there is no concept
of spin in the A-configuration system, and many methods
developed for the two-level JC model do not fit for the three-
level case. However, for the RUT method, one may notice
that the procedure in solving the three-level model is exactly
the same as the procedure presented in[R&fn solving the
two-level JC model.

To investigate the dynamics of the above system, we usu-
ally use the method of density matrix. Supposing=ad the
density operator as

= > letkp)e' (ko). (88)
kq k=0

Using Eq.(87), one can directly obtain the evolution of the
density operator with time by the equation(t)

=e Htp(0)e'Mt. With p(t), one can calculate some quanti-
ties such as the atomic inversion, population trapping in this
model. We now choose such a special initial state that the
atoms are in the levdl=1, and the photon state is repre-
sented by the coherent state. Thg®) is written into

e~ ‘lezklz* ko

p(0)= X

——— |k ){k,|S13. 89
C(n): 14 gl(n) 2+ gz(n) 21172 K do=0 /—(kl'kzl) | l>< 2| 11 ( )
' Ai—hy Ai—h;
Making use of Eq(87), we obtain
The above solutions of the three-level system with the
configuration is in the transformed frame. From Theorem IV, p(1)=|Z(t){(Z(1)], (90

we can directly obtain the eigenkets in the original frame
H by the equatiofW¥;(n))=U"|¥;(n))’, that is, where
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-1

1Z(t)) = go

_ 2
e~ (12%12) 5k

Tqug(k)W Pp(k))

(|z\2/2 n+Ilg (n)e iEj(n)t

s Tz mingm =y M

91

3,3

n=0 j

Usingp(t), we can obtain the probability of finding the atom

in the statei=2 which is initially in the statei=1:
Pio(t)=2_o(i=2K|p(t)|k,i=2),

]

e *x gi(k)e
Pi_o(t)= 2 (k+1)! = 1é’|(k)[)\ (k)—hq]

k+l,| 3 e~ Nkt 2

(92

wherex=|z|2. We know that the above transition {12) is
induced by dipole. A more interesting quantityRg_,s(t),
which is induced by two dipoles: (+:2) and (2—3),

e—xXk+I1

Pra®=3 Gorr

§ 91(K)ga(k)e ik

& 20K —haln (K=o

2

(93

The statistics of the photon number at the siate is ob-
tained to be

e Xxk+l1 2

N 91(K)g,(K) (k+1,)e Mkt
Na(0=2 Gy 5

1 GO (K) —ha]INi () —h]

(99

The atomic inversion of the system under the special initiaQ, the Hamiltonian(96) is transformed intoH’

state isS;(t)=(S;), which is explicitly given by

2
—Pi_3(1).
(95

7><Xk+|l

= e % gike Mk
S:0=2 Gy

>

<1 ZZ(KINi(k)—hy]?

C. Three-level atoms interacting with a two-mode cavity field

This Hamiltonian covers various special cases in the litera-
ture. In the above Sec. Ill B we have shown that the solution
of three-level case is much more complicated than that of the
two-level case. To avoid the complication, one usually treats
H by the perturbation theory in the interaction picture. Espe-
cially in the case that the detunings of the two modes are
very large, the upper level can be eliminated adiabatically
from the three-level system; then the system is reduced into
a simple two-level case with two quantized modeg],
where the Stark shift terms appear and give arise to some
interesting physical effecf3].

We divide this section into two parts. In the first part, we
consider the case that the detunings of the system are large
enough. Then by constructing a unitary transformation, we
separate the upper level from the system to the first-order
approximation; the remaining two low levels are still treated
by the RUT method. We further discuss the relation between
the so-called “dressed” states and “bare” states from the
viewpoint of transformation. In the second part, we use the
same RUT method to solve the system exactly.

1. Approximate treatment in the case of large detunings

In the case that the detunings of two modes are very large,
we accordingly introduce the following unitary transforma-
tion Q,

Q=expX), (98
where
X=[~- 513T|1P1( N1)Sio+ 92p( N2)a|22823] —H.c, (99

where§; andd, are two parameters to be determined. Under

=QHQ".

Using the Baker-Hausdorff formul#]’ becomes

H,:H0+H1+[X,Ho]+[X,H1]+ %[X,[X,Ho]]

In this section, we consider a system of three-level atoms

with energiese4, €5, andes, which interacts with a two-

mode cavity field: a pump moda(,a{) of frequencyw;

and a Stokes modaﬁ,ag) of frequencyw, as shown in Fig.

1
If we choose 51:AIlE(82_81_wlll)il,(sZ:Azil
=(e,—e3—w,l,) "1, whereA; andA, are two detunings,
then

2(a). The interactions are generalized to be multiphoton

(I4,15) forms, and dependent on densitiegN),p>(N,),
respectively. Therefore, the Hamiltonian is

H=Hq+H,, (96)

where

3
— T T
Ho—z siSii+w1a1a1+ woa5ay,

97)
Hy=a, 2p1(Ny) S+ pa(Np)a2Syt H.c.

[X,Ho]l=—H; (109

For the large);, i=
of 1/A; as

1,2, we expandHi’ up to the first order

H ~Hg+[X,H{]+ %[X,[X,Ho]]IHO—i- %[X,Hl], (102

that is,
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2

1
=S wala | e1— cpd(Ny—Ipalal| Sy ey~ p3N— )8l 7ak |55,
=1 Ay A
A Ny 1 pa(NpaT a2 st H + 2 p2(Npal “1+i N)aiza) 2
2\, " A, p1(N1—=11)pa(Ny)a, *a) Szt H.cp + &y A, pi( 1)aja Pz( 2)aza, ?|Sy.
(103
|
We have two comments on the above results. lo1)
(i) The HamiltonianH' indicates that if the atomic states pa(Ny) p (
: _ , 1N 2(Na)
are in the form l)=e X|¢)’ ~ i, a1 pp)+ a2 oy)
|<P1> |¢3>
le)'=| 0 |, (104 (105

lo3)
This result shows that the atomic state2 still contributes

the term about,, in H' does not contribute. Then the sys- in the original system.
tem is reduced into a two IeveI atomic system. The two We now solve the Hamiltoniakl’ by the RUT method
terms —(1/A1)p1(N1—I1)a 19! 1'S1; and —(1/A,)p5(N,  developed above. Consider an operafor

=1 )azlza'22833 appearing in the Hamiltonian are called Stark
effect terms, which are in terms of the photon numbers. F.(1) o 0
(i) We regard the operators in the original frardeas
“bare” operators, and the atomic states as “bare” states; V= 0 1 0 ' (106
then the operators in the transformed frank¥ are 0 0 F|2(2)
“dressed” operators, and the atomic states are “dressed”
states. The statd04) is in fact a dressed state. We know that It 1 Lty 1/
all the states prepared in experiment are bare states. Thehere Fy (1)=[afa,*]""af', F(2)=[afa,?] &y
fore, turned back to experiment, the bare state correspondiraye two phase operators. Thisbelongs to RUT, and its

to Eq.(104) is kernel is
Ky ,kz) 0
K=1 [4lkko)=| O |, [yalkiko))=| O |, ky<ly,ks<lsp. (107)
0 |k1.ka)
|
We obtain thaty9(k; k)) are the eigenkets df’; the ei- H"=Bo(N1,N2)(S11+ S33) +B3(N1,N2)(Sy1~ S3a)

genvalues are
+B1(N1,N2)(Si3t S50 +Ba(N1,N2) Sy, (110
E2(ky,kp) =1+ 01K+ woky; 108
itk ko) = et wrkat ozl (108 whereB;(N.,N,), i=0,1,3,4, are given by

|42(k7,k3)) are the eigenkets dfi’ with the eigenvalues )

1
Bo(N1,No)= 5 (et 2a)+ 2,

Wj

|i) 1,
Ni+§ _Z_Aigi(Ni) .
(112

EJ(k; kb)) =3+ wik] + wok), (109

where we have assumed that there is no degeneracy between
E2(ky,ko) and ES(k] k;). These results indicate that is Bi(N1,No)=—5
covered by Theorem IV, and can be appliedHb to obtain
the remaining subspace besides Ef07). We make the
transformation

B3(N1.N2) =5

1
A_1+ A, 91(N1)g2(Ny),

(81 €3)

H"=VH'V', (110

+ J—
that is, 2

w1l —wol,

gi(N1)  g5(Ny)
Ay A, )
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2
1 N
B4(N1,Ny)=e,+ >, [wiNi"'A_giz(Ni)}y _3|n§|k1+|1,k2>
= i

whereg;(N;) = p;(N)[(N;+1;)1/N;! 12, i=1,2. The Hamil- V7 (ko))"= 0

tonianH"” is a function ofN; andN,, and composed of two

0
cos: Ky, ko +1
independent parts: %' 1k tl2)

H1=Bo(N1,N2)(S11+ Sz3) + B3(N1,N2)(S11— Szo) The results(114) and (117) indicate the existence of Rabi
frequenc
+B1(N,Ny)(Sia+ Sa) aueney
is a two-level system containing a two-mode cavity; the o(ky, ko) =[BF(ky, ko) +B3(ky k)12 (118
other part isH5=B4(N;,N,)S,,. The eigenkets oH] are
directly written as in the systenH’. Therefore, some interesting effects appear-

ing in the usual two-level system can also appear here. How-
0 ever, the above commeltii) has indicated that these ket
CO%|k1’k2> vectors(117) are in fact the dressed ket vectors, induced by
the unitary transformatio® as Eq.(98). For the viewpoint

+ " _—
(W (ky k)= 0 ' of experiment, it is meaningful to find these ket vectors in
0 K k the bare form. Up to the first-order approximation, we can
S'nil 1.K2) use Eq.(105), and find that ¥ 5(k, ,k,))” maintain the same
(113  form, but the vectors¥ * (kq,k,))’ turn out to be
0
—S|n§|k1,kz> P
cos§|k1+ll,k2)
|¥ ™ (k1 ko))"= 0 :
0 (W (ky ko)) = | xalkikz)
003|k1,k2) 8
5'n§|k17k2+|2>
where (119
= 0
0_0(k11k2) —Sin§|k1+|l,k2>
=c0s HYBj(Ky,kp) /[ BI(Ky, k) + B3(Ky ko) 12
{Ba(ky ko) /[BI(ky ko) + B3(ky kz)]¥2) o=l k) |,
The eigenvalues corresponding to these two kets are, respec- 0
tively, cos; [k, kot 1)
Et(klykz):Bo(klykz)i[Bi(klakz)"‘Bg(kl,kz)]ll(zi14) where
The third eigenket set dfi” is determined byH?, pl(kl) /(kl+ll)' 0 pl(kz) /(k2+I2)' ng
B 2’
0
k k +I ! 0 k [(k +I !
|\If3(kl,k2)>”= |k1,k2> _ (115 ,= P1( 1) [(ky 1) Pl( 2) 2 2)
0
. . (120
The eigenvalues are simply The normalization factors are not included in the above ket
Ea(ky,Ky) =Bu(Ky,Kp) (116 vectors. Now we can conclude that only for the ket vectors as

Eqg. (119, the Rabi oscillation can appear in experiment.
Using VT, we can turn these ket vectors to the original frame ~ Recall that H' results from the first-order approxi-

H. W, (ki,kp))" are invariant under vl But matlon of H under the condltlon that
following two special cases to reduce the above eigenvalues
0 Eq. (114.
COSz|k1+|1,k2> First, for the case that is often used in the literature,
| (kg ko)) = 0 , (117 Aj=A,=A, (121)

.0
Slnilkl’k2+|2> theseE* (ky,k,) are reduced to
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2
N 1
E* (ki ko) =5 (o1t 8a)+ 2

e a5o
wi| kit 5| = 57gi(k)

93(ky) —g3(ko)

oA . (122

- ‘

The second case is contrary to Ef§21) such that

92(Np)\ [ g3(Ny)
A 7\ A,

><|A1_A2|; (123

we may accordingly reducé™(k, ,k,) into the form

2

(e1+e3)+ 2,

c I 1 2
it _Z_Aigi( i)

N| =

E*(ky.kp)=

Wj
gitk)  gi(ky)
Ay A,
i i) gl(kl)QZ(kZ)}

2(A;—Ay)

1
ii AZ_A1+

_|_

(124

A, A,

2. Exact solution

We know that the approximate solutionkbin the above
section is based on the condition

92(Np)\ [ g3(Ny)
Ay [\ A

><A1,A2. (125
However, the quantitiesy;(N;)=p;(N;)[(N;+1;)!/N;!]*2
i=1,2, increase with the photon numbésfor certain den-
sities, which means that the conditit®5) does not hold for
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whereg;(N;) andg,(N,) are given in Eq(112), and

f1=3(2e1—ep—e3+ 2wl — wyl) =5 (A, —2A),
(130
f,=3(283— 61— 62+ 20yl — w4l1) = 5 (A1 —2A,).

The Hamiltonian now becomes a function of photon num-
bersN; andN,, where the creation and annihilation of the

photon in the transitions between the atomic states are erased

by the transformation/. Therefore, in the new frame, the

transitions can only happen between the atomic states having

the same photon numbé¥; (andN,). For a ket vector with
photon numberg; andk,

B1
BZ ®|klvk2>'
Bs

|W(ky,kp)) = (131

where Bi=8;(k1,k,), 1=1,2,3, H becomes the usual sta-
tionary three-level system, where the eigenvaluesl pfare
determined by the equation ¢t —\|=0, namely,

the states of large photon numbers. In this section, we will

solve the Hamiltoniar{96) exactly.
We employ again the right-unitary operatdf in Eq.

(106) as a transformation. It is easily checked that the kernel

of V given by Eq.(107) is still a set of the eigenkets &f.

Since the kernel is invariant under the unitary transformation

Q [Eq. (989)], the eigenvalues ofl corresponding to these

eigenkets are still the same as thosél6f Eq. (100)]. Based

on these results, we can ugeas a unitary transformation to whereC.=C..(k,,k,) are given by

H to obtain its remaining subspace. Let

H=VHV'. (126
A direct calculation gives
H=Hg+Hy, (127
where
o 3 2
Ho=2, &i/3+ >, w;(N;+1;/3), (128
=1 =1
andH_l is a traceless matrix,
fa 91(Ny) 0
Hi=| 91(Ny) —(f1+f5) 9a(Ny) |, (129
0 92(N2) f2

A3+Api+0;=0, (132
where
1= —[03(ky) +95(ky) + T3+ 15+ 411, 133
q1=f105(Kkp) + f205 (k) + (f1+ ) 1 f .
The solutions of this equation af21]
N=Nq1(ky,ky)=C,.+C_,
1 1(11 2) + \/§ (134)
i
)\2,35)\2,3(k1,k2)=E(C++C,)t7(c+—c,),
C_s\/1+13121’2 13
== E‘h— 2_7p1+ZQ1 . (139

Combining the above; with the termH_o in H_ we obtain
the exact eigenvalues of the three-level system,

3 2

Ea(ky ko) =2, &i/3+ >, wj(k+1;/3)+Aq,
i=1 i=1
3 2

Eoakyka)=2, &/3+ >, wj(kj+1/3)+\,3.
i=1 =1

(136

We assume that there is no degeneracy in the energy spec-

trum. Then, the eigenstates ldf corresponding to the above
eigenvalues are orthogonal mutually, which are given by
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o1 this section, we briefly show how to apply the RUT method
N T to the systems of V- aneg-configuration atoms.
1 Pt _ We first look at a system of V-configuration atoms inter-
|Wi(ky,kp)) = 1 | olky,ky), =123, (137  acting with a one-mode cavity field, shown in FigbR The
& 9> generalized Hamiltonian is
)\i - f2 3
o H=2, &S;+wa'a+[pi(N)al1S+a™2ps(N)SstH.el,
where¢; are the normalization factors: i=1
(139
g; 2 g, 27172
§i=|1+ ( x—f;) IN—1, } where we assumig<I,. To solve this Hamiltonian, we here

construct an operatdy,
Using Theorem IV, we obtain the eigenkets in the original

frame as Fi,.i, 0 0
0 U= 0 F, 0f, (140
) T, [k +11,ko) 0o o0 1
|Wi(k ko)) =& |k1,k2) , i=1,23.
& whereF|2,,1 andF|2 are two phaser operatotd. belongs to
(A 92 )|k1,k2+|2> RUT, and the kernel ob) is
1
(138 k) 0
Up to now, we have solved exactly the system of K=1| lﬁg(kl)): o |, |,/,g(k2)>: ko) |,
A-configuration atoms interacting with a two-mode cavity 0 0

field by the RUT method. One may notice that the above
procedure is almost the same as that in Sec. Il B; this means
that to the RUT method, that the system contains one-mode
cavity or two-mode cavity has no difference, even though the
physical meanings of solutions are quite different. Using the
expression of ; andf,, one can expand the above solution
according to the condition of large detunings, and comparéVe can take | W)= y1|#3(k1))+ x2|#3(ks)) to check
the result with the approximate solution obtained in precedwhether| W) is the eigenket oH. Without difficulty, we find
ing section. Based on the above solution, one can furthethat the following sets of vectors,
study the physical effects in this model.

In the literature, one studies the three-level system where

kl<|2_|11 k2<|2 . (141)

0
the cavity fields change with time, i.e., the nonstationary cosﬁ|k1)
case. We should point out that one can follow Theorem V to 2
treat this nonstationary system, and the procedure is similar lh1(ky))= k
to that in Sec. Il A. 3in71|k1+|1>
D. Application of RUT to the atoms with other configurations 0

The above approach concentrates on the system where the
atoms haveA -configuration energy levels only. Recently, Ok

V-configuration atoms were found to exhibit some interest- —sin—-ky)
ing effects[24]. In principle, under the condition that the

detunings are very large, a system of V-configuration atoms |2(k1)) = O, Kot |
interacting with cavity fields can be treated by the same way COS?' 1+
as the above approximate treatmentAeconfiguration at- 0

oms. Unfortunately, for the=-configuration atomic system,
this treatment becomes invalid.

However, as we have pointed out, the detunings are not 0
always very large for various atomic systems. Moreover, |ha(Kp)) = ko)
gi(N;) in Eg. (112 always increase with the photon number 0
N;, but the detunings are invariant willy . Therefore, the
perturbation treatment introduced above is valid only for the ]
situation of large detunings and low photon number stated’® the eigenkets ofH, where k;<l,—I;,k<ly,
One may notice that the exact treatment of three-level atomik, =tan '[29; (k1)/(e1—s,—wl1)],  and g (ky)=
system by the RUT method is evidently simpler than thep(ki)[(kqi+] )'/kll]l’2 The eigenvalues corresponding to
perturbation treatment, and suitable to various situations. labove eigenkets are obtained to be

: (142
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EX(ky)=3(e1+ e+ oly) + wk, |
+\ e sa— 0l )+ g (k)2 /
(143 2
Eg(kl):%(81+82+(l)ll)+wkl /

_\/%(81_82_w|1)2+9|1(k1)2, 3 /
E(ky) =&+ wks,. 4

On the other hand. one can check that each element in the FIG. 3. Four-level atoms with ladder-configuration energies.
kernel can be written as a linear combination of eigenkets in

Eqg. (141). These results indicate that can be applied to 0
H to obtain its remaining subspace. A simple calculation
gives cosﬁ|k )
1
|1 (ke))= 2 :
H'=UHU'

ky
sin— |k, +1
s1to(N+l—1y) g, (N+lp=1) 0 7 [kt l2)

= 9,(N+la=l1)  e+a(N+ly) 9, (N)

0
0 g|2(N) g3t wN b, 0
. 1
—sin—|kq)
WD k)= 2™ ] ustka=| O |,

The Hamiltonian now becomes a matrix function of photon kq |k2)
numberN. One can follow the procedure in the above sec- cos- |k +12)
tions to obtain the eigenvalues and eigenkets bf We omit (148

these here.
We now look at a system of three-level atoms with ayhere k,<I,, k,<l,, and 6 =tan [2g, (k;)/
=-configuration energy level, which interact with a one-( ! 2

mode cavity as shown in Fig(®. The Hamiltonian is g2~ 23— wly)]. The eigenvalues corresponding to above

eigenkets are
3

H=> &S+wa'a+[pi(N)a'1S,+p,(N)a'2Sy+H.cl. EJ(ky) = 3(ep+ 83+ wlp) + wk,
=1
(149 e e3— 01+, (k)2
To solve the Hamiltonian, we introduce an operator matrix (149
VaS Eg(kl)z%(82+83+w|2)+ﬁ)kl
1 0 0 —\/%(82—83—w|2)2+9|2(k1)2.
v=(0 F, 0 | (146 .
O 0 F|1+|2 E3(k2):83+wk2.
. ; One can prove that an arbitrary element in the kekhelan
V evidently belongs to RUT. The kernel dfis be expressed by the abolz; (K)), |#7,(K)), and| (k) in
0 0 linear form. This means thdt is isomorphic with one set of
the eigenkets ofl. Therefore, the operatdt satisfies Theo-
K=1{ [#2k))=]| |k |, [43(k))=| O |, rem 1V, and can be applied to the remaining eigenket set of
0 Ik,) H. We obtain
H'=VHV'
kisly, kosli+lyp. (147 g1+ oN gll(N) 0
= gll(N) 82+0)(N+|1) g|2(N+|1)
Using the same method as in the above case of the V con- 0 9, (N+11) ezt o(N+1;+1,)

figuration, we obtain that this kernel is isomorphic with to
subset of the eigenkets &f, where the eigenkets are (150
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H’ is a matrix whose matrix elements are functions of pho- 4
ton numberN. H' can be solved by the regular way. We H:Z &S+ wa'a
omit these here. =
The above approach shows that all the, V-, and +[p1a'1S;,+ pra2Syst+ psaiSy+H.c]. (151)

=-configuration atoms interacting with quantized cavityFor simplicity, we assume;, i=1,2,3, be constants. To
’ i — 44,9, .

fields can be treated unitedly by RUT method, where thesolve this Hamiltonian, we construct a right unitary operator

right-unitary operators are simply diagonal matrices con-

as
structed by phaser operators.
In the last part of this section, we would like to show how 1 0 0 0
to apply the RUT method to the atom-radiation interaction 0 F 0 0
system where the atoms have a highet3() energy level. V,= ! (152
For an example, we here choose a simple case: four-level 0 0 Fi, 0
atoms with the configuration shown in Fig. 3. Under the 0 0 0 Flootsl
rotating-wave approximation, the generalized Hamiltonian of 12
the atoms interacting with one-mode cavity field is The kernel ofV, is
0 0 0
k1) 0
K= loitkan=| g | ludte=| o | 1Watka)=| | p (153
0 0 |ks)

wherek,<I1,k,=<l,+1,,ks<Il,+1,+15. Within these ket vectors, the four-level system is reduced into a three-level case.
One can further check that these ket vectors are isomorphic with a subset of the eigeikeWith means that we can use
V, as a unitary operator to the other subspaceélolLet H’ =V4HV£; then

g1t wN g1(N) 0 0
91(N) et wo(N+Iy) 92(N) 0
H' = , (154
0 g2(N) ezt w(N+1+15) gs(N)
O O gg(N) 84+(D(N+Il+|2+|3)
|
where such as semigroup, kernel, etc., were discussed through sev-
eral theorems. Based on these properties, we concluded a
g1(N)=pa[ (N+I)I/NITH2, general way on how to apply the RUT to a physical system.
For a physical quantity such as the Hamiltontdn suppose
92(N)=po[ (N+1+1)1/ (N+11)!]H2, its eigenstates a8={|®;),i=1,2,... o}, then

oo

N)=po[(N+1+ 1,415/ (N+1,+1,)1]1Y2
93(N)=pal( 11+ 1) 1+12)!] H=E E|B)(®], (155
For the ket with a fixed photon numbét, H' is simply a =1
4X 4 constant matrix. Thus, its eigenkets and eigenvalue
are easily obtained.

One can further follow this method to solve other con-

figurations of four-level systems. These are omitted here.

Where E; are eigenvalues. If a subset o0& S
={|®;),i=1,2,...,s} is checked to be isomorphic with the
kernel ofU, then the supplement set 8f is evidently iso-
morphic with the unitary subspace bf. Therefore,

IV. CONCLUSION *

. . _ H'=UHU'= X E|®/}®/], (156)
In conclusion, we have developed the right-unitary trans- iZst+1
formation theory, and initially discussed its applications in
physics. The first part of this paper discusses to the theorgvhere  |®/)=U|®;).  The  state  space S
We found that the state space of any operfterRUT (pre-  ={|®/),i=s+1,... =} is proved to be complete. Equation
ciselyW) is composed of two independent paftsV®)} and  (156) shows that the framkl’ has the same spectrufpre-
{|why}, where{| WO} is called thekernelof U, which sat- cisely a subset of the spectrimsH.
isfies U{|W%}=0. On the other hand, in the subspace Based on the above results, in the second part of this
{|w1H}, U acts as a unitary operator. The properties of RUTpaper we used the RUT method to deal with the systems of
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many-level atoms interacting with the quantized radiationThen,

fields, where the RUT are the matrices constructed by the
well-known phase operators. We have studied two typical
systems: One involves the Jaynes-Cummings models, which
were found to exhibit some interesting effects, and have ob-

ZHONG TANG

tained much study in recent years. We solved a nonstationaiyrom Eq.(51), we have

generalized JC model, and found that atomic inversion of the
system can be controlled through the external source. An-
other system carefully studied is the interaction of the three-
level atoms with one- or two-mode cavity field. This system

has been widely applied in various contexts of quantum op-
tics such as lasing without inversion, electromagnetically in-
duced transparency, etc. This paper provides a unified

hk:

a);+wk+

wo
2

—gi(k)

ai(k)

w, + ok+

o

2

(A2)

(A3)

method for these topics.
We would like to point out that the RUT method can be
applied to some simplified quantum electrodynaf@ED)

system, such as the photon-electron and phonon-electron in-
teractions. It will be discussed in a forthcoming presentation.
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APPENDIX
For the initial state, Eq(63),

Zk

V2k!

p=ne=e 12— =1(2). (A1)

_ wo
o, + ok+ 7+g|(k)

;: - + f(z)!
Wy — Wy

o, + ok+ %+g|(k)

f(2). (A5)

ak7:_ — +
Wy — Wy

With these expressions, we directly obtain E¢84) and
(65).
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