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We develop a transformation theory in quantum physics, where the transformation operators, defined in the
infinite-dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the
properties of state space of such operators. As one application of the right-unitary transformation~RUT!, we
show that using the RUT method, we can solve exactly various interactions of many-level atoms with quan-
tized radiation fields, where the energy of atoms can be two levels, three levels inL, V, and[ configurations,
and up to higher (.3) levels. These interactions have wide applications in atomic physics, quantum optics,
and quantum electronics. In this paper, we focus on two typical systems: one is a two-level generalized
Jaynes-Cummings model, where the cavity field varies with the external source; the other one is the interaction
of a three-level atom with quantized radiation fields, where the atoms haveL-configuration energy levels, and
the radiation fields are one-mode or two-mode cavities.@S1050-2947~96!06307-X#

PACS number~s!: 03.65.2w, 42.50.2p

I. INTRODUCTION

Not only an important method, but also an intrinsic de-
scription of symmetry for the physical systems, transforma-
tion theory is always an interesting topic in physics that has
acquired many studies. The transformations preserving the
measurements are calledphysicaltransformations. We know
that classical mechanics is founded on the symplectic mani-
fold, where the transformations of momentum and position
preserving the symplectomorphism are the physical transfor-
mations, which form a group with composition, called the
symplectic group. These transformations are also calledca-
nonical transformations, because they leave both the canoni-
cal equations of motion and the Poisson brackets invariant.

Along the jump from classical theory to quantum theory,
the Poisson brackets are replaced by the bosonic commuta-
tion relations. The linear transformations of bosons that leave
the bosonic commutation relations invariant were first intro-
duced by Bogoliubov@1#. These bosonic transformations
were found to form the same symplectic group as that in
classical mechanics, even though these two kinds of trans-
formations have different physical meanings essentially@2#.
The quantum canonical transformations of fermions were
first introduced by Valatin@3# in his study of superconduc-
tivity. Since fermions are the purely quantum objects without
classical correspondence, the Lie group formed by the fermi-
onic transformations is no longer the symplectic group, but a
sub-Lie group isomorphic with therotation group @4#. As
linear quantum transformations, the Bogoliubov-Valatin
transformations have wide applications for example in the
Bardeen-Cooper-Schrieffer theory@3# of superconductivity
and in the calculation of black-hole radiation@5#. Recently,
the supersymmetric transformation that mixes boson fields
with fermion fields in a unified form advanced the transfor-
mation theory to a big stage@6#. However, some interesting
physical predictions raised by the supersymmetric theory are

still awaiting experiment to test. In quantum gauge theory,
the Becchi-Rouet-Stora-Tyutin transformations of the gauge
fields and the ghost fields are in the well-known supersym-
metric forms@7#, which play an important role in the renor-
malization proof of the standard model. In sum, the quantum
transformation theory is still under development for various
purposes. We notice that the above transformations areuni-
tary transformations. Since quantum theory is based on Hil-
bert space, and the duality of the Hilbert space is defined
through the Hermitian conjugate, it has been recognized that
only unitary transformations do not change the Hilbert space.
Nonunitary transformations cannot preserve the Hermitian
duality, and they thus break the realities of physical observ-
ables and probabilities. That is why nonunitary transforma-
tions are always rejected in quantum theory@8#.

In a previous paper@9#, we introduced an alternative
method, right-unitary transformation~RUT!, to deal with the
two-level Jaynes-Cummings~JC! model@10#, which is a ba-
sis of the fully quantum description of radiation-matter inter-
action, and widely used in quantum optics, quantum elec-
tronics, etc. It was defined in Ref.@9# that if an operatorU
satisfies the conditionsUU†51,U†UÞ1, it belongs to RUT.
In a strict sense,U is a special nonunitary operator that has a
right-unitary inverse only. In the matrix representation,U
can only be the matrix in an infinite-dimensional space. Such
an operator has been recognized as anirregular operator by
mathematicians. However, in Ref.@9#, we found that various
JC models can be solved exactly by the RUT method. This
method not only shows its own merits such as simplicity and
general applicability, but also leads to a deep understanding
of the JC models. This work further implies that the trans-
formations applicable to quantum systems should not be re-
stricted to unitary transformations. Instead, some nonunitary
transformations which are regarded as irregular objects
might have their particular utilities in physics.

We know that the unitary transformations do not change
the measurements of a quantum system. But the situation is
quite different when using the nonunitary transformations. In
this paper, we attempt to develop a theory of the right-*Electronic address: gt8822b@prism.gatech.edu
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unitary transformation in mathematics, and discuss its appli-
cations in physics.

This paper is arranged as follows. In Sec. II, through six
theorems, we reveal some common properties of the right-
unitary transformation, and conclude a general procedure on
how to apply RUT to quantum systems. Section II is the
foundation of the whole work, it includes three subsections.
In Sec. II A, we reveal that the state space of any operator
UPRUT is composed of two independent subspaces
$uC0&% and $uC1&%, where $uC0&% is called thekernel of
U, which usually has a finite number of basic elements, and
satisfies the equationU$uC0&%50. On the other hand, in the
subspace$uC1&%, U acts as a unitary operator. Similar to the
unitary transformations, all the operatorUPRUT in the
same Hilbert space form a semigroup, which is called a
right-unitary semigroup. For a certain system with Hamil-
tonianH, through a theorem we show that if the kernel of
U is checked to be isomorphic with a subset of the eigenkets
of H, U can be used as a unitary transformation to the re-
maining subspace ofH without changing the spectrum. In
Sec. II B, we briefly discuss the application of RUT to the
nonstationary system. In order to construct the RUT conve-
niently in the Fock space, we employ the recently introduced
inverses (b,b†) of boson creation and annihilation operators
(a†,a) @11# in Sec. II C, and show that the well-known quan-
tum phase operators@12# constructed bya anda† ~or b and
b†) form an Abelian subgroup of the right-unitary semi-
group.

Section III attributes to one of the applications of RUT in
physics, where we use the RUT method to treat the systems
of many-level atoms interacting with the quantized radiation
fields, where the RUT are constructed by the quantum phase
operators. This section contains four subsections. In Sec.
III A, we approach such a model that the atoms have two
energy levels, and the radiation field is designed to be a
one-mode cavity that varies with time. Through this model
we hope to achieve the goal of controlling the effect such as
atomic inversion of the system via the external source. This
model can be regarded as the nonstationary JC model, which
is found to exhibit such a property that there exists a particu-
lar relation between the atomic inversion and the energy ex-
change of the atomic system with the external source. There-
fore, by measuring the energy exchange, we can understand
the dependence of quantities such as the atomic inversion
and the mean photon number on time~on the external
source!.

In recent years, the case of three-level atoms interacting
with quantized electromagnetic field have obtained extensive
studies. The model where the atoms have aL-configuration
energy level has been applied to a number of different con-
texts such as the coherent population trapping, laser cooling
@13#, lasing without inversion@14#, and electromagnetically
induced transparency~EIT! @15#. In Sec. III B, we use the
RUT method to solve exactly the atom-radiation interaction,
where the atoms haveL-configuration energy levels, and the
radiation field is designed to be a one-mode cavity field. The
case of a two-mode cavity is treated in Sec. III C, which is
further divided into two parts: In Sec. III C 1, we consider
such a situation that the detunings of the system are enough
large, then we are able to construct a unitary transformation
to separate the upper level from the system, and the remain-

ing two low levels are still treated by the RUT method. In
Sec. III C 2, we use the RUT method to solve the system
exactly. In Sec. III D, we briefly show how to construct a
RUT to solve the matter-radiation interactions where the at-
oms can be three levels in aV or [ configuration, and up to
four levels. Section IV is the conclusion.

In the present paper, we focus on the RUT method; the
analyses of the quantities related to the interesting phenom-
ena such as lasing without inversion and electromagnetically
induced transparency are not given. Since there are many
formulas and quantities in the paper, the meanings of the
symbols are independent in each section.

II. RIGHT-UNITARY TRANSFORMATION

A. Stationary case

Consider a Hermitian operatorL with a discrete spec-
trum,

Lucn&5lnucn&, n51,2, . . . ,k, ~1!

the eigenketsucn& are orthogonal mutually,̂cmucn&5dmn .
Let us choose an operatorU to transformL into another
frame L8. If L8 is still a Hermitian quantity and has the
same spectrum asL, we callU anapplicable transformation
to L. There raise two questions subsequently: How to trans-
form L into L8 by usingU? Since we require thatL8 still
be a Hermitian quantity, the transformation fromL to L8 is
usually chosen asL85ULU†. Then, what is the basic re-
quirement toU? This question is indeed the crux of the
transformation theory, and does not have a complete answer
yet. Certainly, as we have pointed out in the Introduction, the
unitary transformation is theapplicable transformation.Here
we would like to see how far we can approach beyond the
unitary transformation. As it required thatL8 should have
the same spectrum asL, it is proper to choose an extreme
case,L51, as an invariant in the transformation. This will
result in such a requirement toU thatUU†5I , in order to
maintain the case of unity:L5L851. We know that in the
infinite-dimensional Hilbert space,UU†5I does not mean
thatU is a unitary operator. In fact, there exists the nonuni-
tary transformation

UU†5I ,

U†U5WÞI .
~2!

The aim of the present work is to understand how this kind
of nonunitary transformation works in quantum theory. We
here call the operatorU satisfying Eq.~2! the right-unitary
transformation, in order to distinguish it from the other non-
unitary transformations. We know that RUT are the opera-
tors in the infinite-dimensional space, they can only be ap-
plied to the system having the same infinite-dimensional
state space as RUT, i.e.,k in Eq. ~1! goes to infinity.

Before carrying a theoretical study on RUT, we first give
a simple example of it: the quantum phase operators@12#,

F15
1

Aaa†
a, F1

†5a†
1

Aaa†
, ~3!
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wherea anda† are bosonic annihilation and creation opera-
tors, respectively. It is easily calculated that

F1F1
†5I ,

F1
†F15I2u0&^0u,

~4!

which indicate thatF1 belongs to the right-unitary operators.
This concrete example will be helpful to understand the fol-
lowing mathematical approach. The properties of the quan-
tum phase operators will be carefully discussed in Sec. II C.

We now study the properties of RUT through the follow-
ing several theorems.

Theorem I.For any operatorUPRUT, W[U†U has a
complete set of eigenkets$uC&%, where$uC&% is constituted
by two independent subsets$uC0&% and $uC1&%. For the set
$uC0&%, U acts as an annihilation operator,

UuC i
0&50, uCi

0&P$uC0&%. ~5!

For the other set$uC1&%, U acts as a unitary operator,
namely,

WuC j
1&5uC j

1&, uC j
1&P$uC1&%. ~6!

Proof. For anyUPRUT, it follows from Eq.~2! that

U~12W!50. ~7!

Equation~7! is further left-multiplied byU†; we have

W2W250. ~8!

Equation ~8! indicates that the Hermitian operatorW has
eigenvalues 0 and 1 only, and the corresponding eigenstates,
denoted by$uC0&% and $uC1&%, form a complete set, where
the brackets are used to represent the case of degeneracy if it
exists. For anyuC i

0&P$uC0&%, using Eq. ~7!, we obtain
U(12W)uC i

0&5UuC i
0&50, which proves Eq.~5!. On the

other hand, for any uC j
1&P$uC1&%, we have

U†UuC j
1&5WuC j

1&5uC j
1&, namely,U acts as a unitary op-

erator in the subspace$uC1&%. QED.
As the starting point of our work, the above theorem re-

veals the general structure of the state space of RUT. Apply-
ing this theorem to the phase operatorF1 , we have
$uC0&%5$u0&% and$uC1&%5$uk&,k51,2, . . . ,`%.

The following two corollaries are directly associated with
Theorem I. First, from Eq.~5!, we know the following.

Corollary I.a. For any operatorUPRUT, there exists at
least one vectoruc&Þ0 that satisfies the equationUuc&50.

Second, for an arbitrary vectoruu&, from

U†Uuu&5U†U@ uC0&^C0uu&1uC1&^C1uu&]5^C1uu&uC1&,
~9!

~the brackets are omitted here! we obtain the following.
Corollary I.b.ForUPRUT,U†U is a projection operator

that maps an arbitrary vector into the unitary subspace of
U.

It is well known that all the unitary operators in the same
Hilbert space form a unitary group. Similarly, we have the
following group theorem for the RUT.

Theorem II.All the operators satisfying Eq.~2! in the
same Hilbert space form a semigroup.

Proof. In this proof, the main task is to prove that for two
arbitrary operatorsU1 ,U2PRUT in the same Hilbert space,
thatU5U1U2 should also belong to RUT. It is evident that
UU†51. We now prove U†UÞ1. Let
W15U1

†U1 ,W25U2
†U2 . Then W[U†U5U2

†W1U2 . The
Corollary I.a tells us that forU2 , there exists at least one ket
vector uc&Þ0 to satisfy the equationU2uc&50. Which
meansWuc&50, andWÞ1. Therefore,UP RUT. The asso-
ciative law is easily proved. Since all the RUT have not strict
inverses, we conclude that all these RUT in the same Hilbert
space form a right-unitary semigroup~RUSG!. QED.

The above two theorems reveal some common properties
of RUT, which are independent of the concrete structure of
RUT. In order to study the structure of RUT in detail, we
now introduce a useful quantity: thekernel (K)of the opera-
tor UPRUT:

K5$uF i
0&,i51,2, . . .%, for anyuF i

0&PK, UuF i
0&50.

~10!

Evidently, the subset$uC0&% in Theorem I and the arbitrary
linear combinations of those elements in$uC0&% all belong to
K. Therefore,K has infinite number of elements. Here we
introduce another quantity, thebasic kernel,which includes
only the base ket vectors ofK, namely, these ket vectors are
orthogonal with each other. In most cases, the basic kernel
has a finite number of elements. We sometimes simply call
the basic kernel the kernel. For convenience, we usually de-
noteK5$uF0&% or K5uF0& in the following presentation.

The kernel distinguishes clearly the RUT from the unitary
transformation, since for any unitary transformation,K is an
empty set. In a certain sense,K can be taken as a measure of
the nonunitarity of the operatorUPRUT: the fewer elements
K has, the more nearly unitary isU. The latter discussion
will show that K directly determines the applicability of
RUT to a physical system.

Since RUT has been associated with a structure of a semi-
group, we now prove the following theorem about the kernel
of several RUT’s product.

Theorem III. For thoseU1 ,U2 , . . . ,Un , . . .PRUSG,
the basic kernel of the operator

U~1,2, . . . ,n!5U1U2 . . .Un ~11!

is exactly

K5$uF0~n!&,Un
†uF0~n21!&,Un

†Un21
† uF0~n22!&,Un

†
•••U3

†U2
†uF0~1!&%, ~12!
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where uF0(m)& is the basic kernel ofUm . ~The bracket is
omitted here.!

Proof. The proof includes three steps. First, let

W[U†~1,2, . . . ,n!U~1,2, . . . ,n!

5Un
†
•••U3

†U2
†W1U2U3•••Un , ~13!

using Theorem I, we obtain

WuF0~n!&5W@Un
†uF0~n21!&]

5•••5W@Un
†
•••U3

†U2
†uF0~1!&]50. ~14!

Therefore, all the elements

uF0~n!&,Un
†uF0~n21!&, . . . ,Un

†
•••U3

†U2
†uF0~1!&

in Eq. ~12! belong to the kernel ofU(1,2, . . . ,n).
For the second step, it is easily proved that all the ele-

ments in Eq.~12! are orthogonal with each other. We omit
the proof here.

For the third step, we will show that an arbitrary element
belonging to the kernel ofU is uniquely determined by the
elements in Eq.~12!. Supposing an arbitrary vectorua& that
satisfiesWua&50, by Eq.~13!, we have

W1U2U3•••Unua&50. ~15!

We conclude from the equation above that there are only two
possible choices ofua&, as follows.

~i! U2U3•••Unua&PuF0(1)&. From Theorem I, we ob-
tain that U3•••Unua&5c1U2

†uF0(1)&1c2uF0(2)&, where
ci are the parameters commutative with allUi . By
this result, we further obtain U4•••Unua&
5c1U3

†U2
†uF0(1)&1c2U3

†uF0(2)&1c3uF0(3)&. Following
the same analysis, we eventually
get to ua&5c1Un

†
•••U3

†U2
†uF0(1)&1c2Un

†
•••U3

†uF0(2)&
1•••1cnuF0(n)&, which evidently belongs toK, where
( i51
n uci u251.
~ii ! The other possibility is thatUl•••Unua&50, while

Ul11•••Unua&5dl uF0( l )&Þ0, where 2< l . Using the
same discussion as in ~i!, we obtain
ua&5dlUn

†
•••Ul11

† uF0( l )&1•••1dnuF0(n)&, which still
belongs toK in Eq. ~12!.

The above analysis leads to a conclusion that the expres-
sion ~12! uniquely determines the kernel ofU(1,2, . . . ,n).
QED.

With the help of above several theorems, we now attempt
to establish a connection between RUT andL in Eq. ~1!. It
seems that the above properties of RUT are independent of
L, even though RUT is initiated by its application toL.
Theorem IV expresses a sufficient condition, under which we
can apply RUT toL.

Theorem IV.If the kernel ofU, K5$uF i&%, is linearly
isomorphic with the set$uc l&,l51,2, . . . ,s%, which is a sub-
set of the total eigenkets$ucn&,n51,2, . . . ,`% of the opera-
tor L in Eq. ~1!, thenU can be taken as a unitary transfor-
mation to the remaining subspace ofL without changing the
spectrum.

Proof.We complete the proof by two steps. First, from
the proposition we know thatuc l&5( i51

s dli uF i&, l<s, by
which we obtain further

Uuc l&50, l51,2, . . . ,s,

Uucm&Þ0, m5s11, . . . ,̀ .
~16!

The above equations indicate that the total state space ofL
can be divided into two parts, which are simply denoted as
$uc l&% and$ucm&%, respectively. The subspace$uc l&% can be
determined by both of the kernel ofU andL, but the re-
maining subspace$ucm&% is independent ofK.

Second, we now deal with the remaining subspace
$ucm&%. Let ucm8 &5U†Uucm&. It follows from Eq. ~2! that
U(ucm8 &2ucm&)50. Equation~14! implies

ucm8 &5ucm&1(
l51

s

cmluc l&, ~17!

wherecml are parameters to be determined.ucm8 & is further
left-multiplied by a brâ c l 8u, l 8<s:

^c l 8uU
†Uucm&5^c l 8ucm&1(

l51

s

cml^c l 8uc l&, ~18!

from Eq. ~16! and the orthogonality of the ket vectors
$ucn&% indicated in Eq.~1!, we obtaincml50 in Eq. ~17!.
Then, ucm8 &5U†Uucm&5ucm&. This result evidently shows
that in the subspace$ucm&%, U acts as a unitary operator.

It is easy to prove thatL85ULU† has the same spectrum
as L in the subspace$ucm&%. The new eigenkets ofL8,
uCm&5Uucm&, are also complete, since

(
m5s11

`

uCm&^Cmu5UH 12(
l51

s

uc l&^c l uJU†5UU†51.

~19!

Moreover, byU†uCm&5ucm&, we obtain the eigenkets of
L. QED.

The proposition in above Theorem IV that the kernel of
U should be isomorphic with a subspace ofL is very strong.
How to weaken this proposition is still under investigation.

Notice that in the proof of Theorem IV, we have em-
ployed the eigenstates ofL. Therefore, one may wonder
how to use the RUT method to obtain the spectrum ofL,
provided we do not know these eigenstates at first. To an-
swer this question, we should keep in mind that even when
using the unitary transformation to solve a problem, there
still is not a widely accepted rule on how to construct a
unitary transformation, except some well-known problems in
Ref. @2#. However, for the RUT method, based on Theorem
IV, we conclude a general way on how to apply RUT to a
concrete problem, there are several steps described as fol-
lows.

Consider a Hermitian operator such asL in Eq. ~1!. To
solve the eigenvalue equation, we first attempt to construct a
transformationU in the same Hilbert space asL to simplify
it. For the purpose,U is a right-unitary operator, its kernel is
easily obtained. Then we can directly check whether all the
elements in the kernel~or the combinations of those elements
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in the kernel! are the eigenstates ofL. If they are, the kernel
is called theproper kernel,which guarantees that we can
directly follow Theorem IV to takeU as a unitary transfor-
mation to transformL into L85ULU†, without changing
the spectrum.

We should notice that in the above steps of using a RUT,
we need not know the eigenkets ofL at first. The most
important step is to construct a RUT with aproper kernel,as
Theorem IV required. In practice, the number of the basic
elements in the kernel should be as few as possible, because
~i! with a smaller kernel, it is easier for us to check whether
it is a proper kernel, and~ii ! from Theorem I, we know that
the smaller the kernel, the more nearly unitary is the RUT.

In Sec. III, we will follow the above steps to treat various
matter-radiation interactions.

B. Nonstationary case

We now consider such a case that the Hamiltonian of a
system represented byL varies with time. The evolution of
the state obeys the Schro¨dinger equation (\51)

L~ t !uc~ t !&5 i
]

]t
uc~ t !&, uc~0!&5uc0&. ~20!

We further assume that there exists another variableR̂ in
L(t): L(t)[L(R̂,t), and the state space ofR̂ is an infinite-
dimensional Hilbert space. Consider an operatorUPRUT in
the same Hilbert space asR̂, and independent of time.U has
a finite kernel:K5$uC i

0&,i51,2, . . . ,s%, and a unitary sub-
space$uC i

1&,i5s11,s12, . . . ,̀ % as indicated in Theorem
I. In order to applyU to the systemL(t), we present the
following theorem, which is essentially a revision of Theo-
rem IV.

Theorem V.ForUPRUT, if all the elements or the linear
combinations of those elements in the kernel ofU are ex-
actly the eigenstates ofL(t) in Eq. ~20!, i.e.,

L~ t !ujn&5ln~ t !ujn&, m51,2, . . . ,s, ~21!

where ujn&5(m51
s dnmuCm

0 &, the matrix (dnm) has an in-
verse, andt in Eq. ~21! is taken as a constant parameter, then
U can be applied to the remaining subspace ofL(t) without
changing the Schro¨dinger equation.

Proo f. Since the matrix (dnm) has an inverse, two sub-
spaces$ujn&,n51,2, . . . ,s% and $uCn

0&,n51,2, . . . ,s% are
isomorphic with each other. Theorem I indicates that
there is a complete set of ket vectors
$ujn&,uC i

1&,n51,2, . . . ,s; i5s11,s12, . . . ,̀ % for W
[U†U, where the ket vectors are assumed to be orthogonal
with each other. Then the wave function ofL(t) can be
expressed as

uc~ t !&5 (
m51

s

f m~ t !ujm&1 (
n5s11

`

gn~ t !uCn
1&, ~22!

where the time-dependent parametersf m(t) andgn(t) are to
be determined. Taking this expression~22! into Eq. ~20!, by
Eq. ~21! and the orthogonality of those ket vectors, we obtain
that the parametersf m(t) satisfy the equation

]

]t
f m~ t !52 ilm~ t ! f m~ t !, m51,2, . . . ,s, ~23!

which is solved as

f m~ t !5 f m~0!expF2 i E
0

t

lm~ t8!dt8G , m51,2, . . . ,s.

~24!

In the remaining subspace$uC i
1&,i5s11,s12, . . . ,̀ %,

sinceU acts as a unitary transformation, the Schro¨dinger
equation~20! can be turned into

L8~ t !uc~ t !&85 i
]

]t
uc~ t !&8, ~25!

where L8(t)5UL(t)U†, and uc(t)&8
5( l5s11

` gl(t)UuC l
1&. In the transformed frameL8(t), the

parametersgn(t) are obtained to satisfy the equation

]

]t
gn~ t !52 i (

l5s11

`

gl~ t !^Cn
18uL8~ t !uC l

1&8,

n5s11,s12, . . . ,̀ , ~26!

where uC l
1&85UuC l

1&. Equations~25! and ~26! evidently
show thatU can be applied to the remaining subspace of
L(t). QED.

The condition~21! is the key point of this theorem, by
which the total state space ofL(t) can be divided into two
parts: one part is determined by the kernel ofU; the other
part can be treated byU as a unitary transformation. In the
above proof, the subspace$uC i

1&,i5s11,s12, . . . ,̀ % has
been used to expand the wave function. In fact, for a con-
crete problem, we do not know this subspace at first. Instead,
we can directly applyU to L(t) as shown in Eq.~25! to
obtain this subspace, provided the condition Eq.~21! is sat-
isfied already.

The aboveUPRUT is assumed to be independent of
time, sinceR̂ is a time-independent variable inL(t). One
can extend Theorem V into the case of many variables with-
out difficulty.

C. Inverses of bosonic operators and examples of RUT

As one of the infinite-dimensional Hilbert spaces, the
Fock space has been widely used in quantum physics. In
order to construct RUT conveniently in the Fock space, we
employ the recently introduced inverses of boson creation
and annihilation operatorsa† anda, @a,a†#51. Mehtaet al.
@11# found thata† has a left inverseb, and a has a right
inverseb†,

ba†5ab†51. ~27!

The properties ofb,b† and their applications to squeezed
states, and the Mo¨bius transformation, have obtained detailed
studies in Ref.@12#. In Ref.@9#, we showed thatb andb† can
be formally expressed in terms ofa anda†,
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b5S 1

aa†Da, b†5a†S 1

aa†D . ~28!

From Eq. ~28!, we further obtainbb†51/aa†. Using this
relation, we arrive at an interesting result:a anda† can be
formally expressed in terms ofb andb†, too,

a5S 1

bb†Db, a†5b†S 1

bb†D . ~29!

We know in the scheme of second quantization that an arbi-
trary operator can be expanded bya anda†, namely,a and
a† form a complete operator set.Equation~29! implies that
any operator can also be expanded byb andb†. Therefore,
b and b† form a complete operator set,too, which is con-
nected to that ofa anda† by the nonlinear transformations
~28! or ~29!.

Equation ~28! significantly simplifies the calculation in
the representation ofb andb†. Various results in Ref.@12#
such as the analytic studies ofb andb† in the representation
of Bargmann space are easily obtained by using Eqs.~28!
and ~29!. For example, using Eq.~28!, one can prove the
following useful formulas:

bkb†k5
1

aka†k
5

1

~N11!~N12!•••~N1k!
[

N!

~N1k!!
,

~30!

b†kak5 (
n50

`

b†kun&^nuak5 (
n50

`

un1k&^n1ku

512 (
n50

k21

un&^nu, ~31!

whereN5a†a.
We now look at the well-known operator, namely, the

phase operator~phasor! F1 , as shown in Eq.~3!, which is
initiated from the quantization of the phase factor in quantum
mechanics@12#. In this paper we will use only the photon-
lowering property of these phase operators, and that the
phase properties of the electromagnetic field are not calcu-
lated. The higher-order phase operators are defined as

Fk[~F1!
k5

1

Aaka†k
ak, Fk

†[~F1
†!k5a†k

1

Aaka†k
.

~32!

In the representation ofb and b†, F1 andF1
† are found to

have the same forms as Eq.~3!,

F15
1

Abb†
b, F1

†5b†
1

Abb†
. ~33!

By Eq. ~30!, we have

Fk5
1

Abkb†k
bk, Fk

†5b†k
1

Abkb†k
. ~34!

With these preparations, we now prove the following
theorem.

Theorem VI.All the phase operators defined by Eqs.~3!
and ~32! form a subgroup of the right-unitary semigroup:
$1,Fk ,k51,2, . . .%, RUSG.

Proof. It is clear thatFkFk
†5I . On the other hand, using

Eq. ~31!, we obtain

Fk
†Fk5I2 (

n50

k21

un&^nuÞI . ~35!

These mean thatFkP RUT. Moreover,FkFl5Fk1 lPRUT.
We therefore conclude that$Fk ,k51,2, . . . ,`% form an
Abelian subgroup of RUSG. The kernel of the elementFk is
directly obtained asK(Fk)5$u0&,u1&, . . . ,uk21&%. QED.

Using this explicit example of RUT, one can easily check
the theorems presented above. We are not going to dig
deeper into the theory of RUT here. It is important to see
how to apply RUT to the physical system.

III. APPLICATION OF RUT TO THE SYSTEM
OF MANY-LEVEL ATOMS INTERACTING
WITH QUANTIZED RADIATION FIELDS

Under the rotating-wave approximation, the interaction of
two-level atoms with the quantized radiation field is de-
scribed by the Jaynes-Cummings model@10#, which has been
extensively applied in quantum optics, quantum electronics,
etc. Various modifications and generalizations to the original
JC model have been made to approach quantum effects such
as quantum collapses and revivals of atomic coherence@16#,
squeezing phenomenon@17#, and so on. These JC models
have the common attractive property that they all can be
solved exactly. Since the supersymmetric structure was
found to exist for the JC model, the JC model is viewed as a
generalization of the supersymmetric harmonic oscillator
system, and its solvability may be interpreted in terms of
supersymmetric breaking@18#. Using a deformed oscillator
algebra, Bonatsoset al. @19# gave a unified solvable formu-
lation of various JC Hamiltonians. Yuet al. @20# pointed out
further that there embeds an unusual su~2! algebraic structure
in these JC Hamiltonians.

The methods mentioned above are valid for the two-level
stationary JC models only. It is difficult to extend these
methods to the time-dependent JC models, or to the case
where the atoms have higher (.2) energy levels. In a pre-
vious paper@9#, we employed a right-unitary transformation
to solve exactly a generalized two-level JC model and
pointed out that there exists a geometric phase in the model.

In this section, we will show that the RUT method devel-
oped above can be generally applied to various forms of
atom-radiation interactions, where the atoms can have two,
three, and higher energy levels in different configurations,
and the radiation field can be a one-mode or two-mode cav-
ity. This section includes four subsections. In Sec. III A, by
constructing a RUT, we follow Theorem V to solve such a
model that the two-level atoms interact with a radiation field
which is dependent on time. This model is called the nonsta-
tionary JC model. The importance of three-level matter-
radiation interactions has been pointed out in the Introduc-
tion. However, some interesting characteristics such as the
supersymmetric structure, and the su~2! structure are not em-
bedded in the three-level models. There still is not a gener-
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ally accepted method to treat these models, according to our
knowledge. In Secs. III B–III D, following Theorem IV, we
will show that various interactions of many-level atoms with
one- or two-mode cavities can be unitedly treated by the
RUT method, where the energy of atoms can be two-level
and three-level withL, V, and[-configurations. The proce-
dures of treatment are as simple as those in the two-level JC
model.

A. Two-level nonstationary Jaynes-Cummings model

The approach of the stationary two-level JC models by
using the RUT method can be found in Ref.@9#. In this
section, we consider such a case that the radiation field in-
teracting with the two-level atoms varies with the external
source. Through this model, we hope to achieve the goal of
controlling the effects such as atomic collapse and revival,
and the statistics of photon number through the external
source. Under the rotating-wave approximation, the Hamil-
tonian of the system with densityr(N)-dependent multipho-
ton (l ) interaction has the following general form (\51):

H~ t !5va†a1
1

2
v0s31a†lr~N!g* ~ t !s2

1r~N!alg~ t !s1 , ~36!

wherev andv0 are the field and atomic transition frequen-
cies, respectively.s65(s16 is2)/2, where s1 , s2, and
s3 are three Pauli matrices.g(t) represents the change of
radiation field with the external source,g(t)Þ0. The detun-
ing D5v02 lv should satisfy the conditionuDu!v0 ,v, in
order to preserve the reliability of the rotating-wave approxi-
mation. The evolution of the system with time is described
by the Schro¨dinger equation

H~ t !uC~ t !&5 i
]

]t
uC~ t !&, uC~0!&5uC0&. ~37!

To solve this equation, we construct the following operator
U:

U5S 1 0

0 Fl
D , ~38!

whereFl5(1/Ablb†l)bl is the phase operator given by Eq.
~34!. It should be mentioned that thisU is expressed in the
two-dimensional representation of the Pauli matrices, where
the parameters are phase operators. From Theorem VI, we
know thatU has the properties

UU†5I ,

U†U5S 1, 0

0, 12 (
k50

l21

uk&^ku D , ~39!

which indicate thatU belongs to RUT, and the kernel ofU is

K5H uck
0&5S 0

uk&
D , k50,1, . . . ,l21J . ~40!

One can check that the vectorsuck
0&, k50,1, . . . ,l21, in

K are exactly the eigenstates ofH(t), where the eigenvalues

Ek
05vk2v0/2. ~41!

These results evidently show thatU is covered by Theorem
V. We now follow Theorem V to solve Eq.~37!. The wave
function uC(t)& can be divided into two parts:

uC~ t !&5uC0~ t !&1uC1~ t !&, ~42!

whereuC0(t)& is related to the kernel and given by Eq.~24!
as

uC0~ t !&5 (
k50

l21

f ke
2 i ~vk2v0/2!tuck

0&. ~43!

The other part,uC1(t)&, is determined by the unitary sub-
space ofU. To obtainuC1(t)&, we make a transformation:
H8(t)5UH(t)U†, that is,

H8~ t !5S vN1 1
2 v0 gl~N!g~ t !

gl~N!g* ~ t ! v~N1 l !2 1
2 v0

D , ~44!

where gl(N)5r(N)@(N1 l )!/N! # 12. The Hamiltonian now
turns out to be a function of the photon numberN, where the
creation and annihilation of photon have been erased by the
transformationU.

We know that in the original frameH(t), the transition
from the atomic state 2 to the state 1 is induced by the dipole
terma†lr(N)g* (t), and the transition is always achieved by
creating l photons. On the other hand, the transition from
state 1 to state 2 is achieved by annihilating the samel
photons. However, in the new frameH8(t), all of these tran-
sitions are caused not by the creating or annihilating photon.
The transition induced by dipole can only happen between
those states having the same number of photons, as shown in
Fig. 1. Therefore, the states with different photon numbers
can be treated independently.

H8(t) is further rearranged into the compact form

H8~ t !5B02mW •BW ~ t !, ~45!

where B05v(N1 l /2), B1(t)5 Re@g(t)#gl(N), B2(t)
52 Im@g(t)#gl(N), andB35(v02 l )/2, mW 52sW .

FIG. 1. ~a! shows that in the frameH, the transition from the
atomic state 2 to state 1 is achieved by creating photons.~b! shows
that in the transformed frameH8, there is no photon created or
annihilated in the transition from 2 to 1.
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The above result@Eq. ~45!# reveals that in the transformed
frame, the HamiltonianH8(t) of the nonstationary JC model
describes the motion of a spin-1

2 atom under an effective
magnetic fieldBW (t), which is a function of the photon num-
berN and timet.

The evolution of subspaceuC1(t)&8 is described by the
Schrödinger equation~23!,

H8~ t !uC1~ t !&85 i
]

]t
uC1~ t !&8, ~46!

where

uC1~ t !&85 (
k50

` S ak~ t !uk&

bk~ t !uk&
D ,

the coefficientsak(t) andbk(t) satisfy the equations

ȧk~ t !52 iak~ t !~vk1v0/2!2 ibk~ t !gl~k!g~ t !,
~47!

ḃk~ t !52 ibk~ t !@v~k1 l !1v0/2#2 iak~ t !gl~k!g* ~ t !,

which are further arranged into

äk~ t !1ȧk~ t !Ak8@ l ,g~ t !#1ak~ t !Bk8@ l ,g~ t !#50,
~48!

b̈k~ t !1ḃk~ t !Ak8@ l ,g* ~ t !#1bk~ t !Bk8@ l ,g* ~ t !#50,

where

Ak8@ l ,g~ t !#5 iv~2k1 l !2ġ~ t !/g~ t !,

Bk8@ l ,g~ t !#5gl
2~k!ug~ t !u22 i ~vk1v0/2!ġ~ t !/g~ t !

2v2~k21 lk !2vv0/21v0
2/4.

For a giveng(t), by solving the above two equations, one
can obtain the evolution of the system with time. For in-
stance, we choose a special case,

g~ t !5eilt, ~49!

to approach the dependence of some physical properties in
this model onl. With this particularg(t), ak(t) andbk(t)
are solved to be

ak~ t !5ak
1eivk

1t1ak
2eivk

2t,

bk~ t !52hkak
1ei ~vk

1
2l!t1hk

21ak
2ei ~vk

2
2l!t,

~50!

where

vk
652

1

2
@v~2k1 l !2l#6A1

4
~v02v l1l!21@gl~k!#2,

hk5S vk1
v0

2
1vk

1D Ygl~k!,
~51!

and the coefficientsak
6 andbk

6 are determined by the initial
state in the transformed frame:

uC1~0!&85 (
k50

` S ~ak
11ak

2!uk&

~2hkak
11hk

21ak
2!uk&

D . ~52!

If the initial state in the transformed frame is chosen as

uC1~0!&85 (
k50

` S mkuk&

nkuk&
D , ~53!

then the coefficientsak
6 and mk ,nk are related with each

other by the equations

ak
15

1

11hk
2 ~mk2hknk!,

ak
25

hk
11hk

2 ~hkmk1nk!.
~54!

For convenience, we still use the initial state as Eq.~52! in
the later calculations.

Since the initial state is arbitrarily chosen, Eq.~50! is in
fact the general solution of the nonstationary JC model in the
transformed frame. From Theorem V, we know that the so-
lution can be directly turned into theuntransformedframe by

uC1~ t !&5U†uC1~ t !&8. ~55!

Combining this solution and the kernel part in Eq.~43!, we
obtain the exact solution of the nonstationary JC model for
an arbitrary initial state as

uC~ t !&5 (
n50

l21

f ne
2 i ~vn2v0/2!tS 0

un&D
1 (

k50

` S @ak
1eivk

1t1ak
2eivk

2t#uk&

@2hkak
1eivk

1t1hk
21ak

2eivk
2t#e2 iltuk1 l &

D .
~56!

Using the normalization condition̂C(t)uC(t)&51, we
know that all the coefficients should satisfy the equation

(
n50

l21

u f nu21 (
k50

`

@~11hk
2!uak

1u21~11hk
22!uak

2u2#51.

~57!

The above solution~56! shows that the kernel term is
independent ofg(t), thereby a trivial term. Our interest is in
the second term in the solution~56!, because this term is not
only related tog(t), but also determined by the unitary sub-
space ofU. We now evaluate the following physical quan-
tities associated with the nonstationary JC model by using
RUT.

1. Statistics of the photon number

Let n̄6(t)5^C(t)u(s06s3)N/2uC(t)&, where s0 is a
232 unit matrix, ands3 is the third Pauli matrix. Forn̄1,
sinceU@(s01s3)N/2#U†5(s01s3)N/2, we can treat it by
RUT in the transformed frame,
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n̄1~ t !5@^C1~ t !uU†#~s01s3!N/2@UuC1~ t !&#

5 (
k50

`

k@ uak
1u21uak

2u21jk~ t !#, ~58!

where

jk~ t !5ak
1*ak

2e2 i ~vk
1

2vk
2

!t1ak
1ak

2* ei ~vk
1

2vk
2

!t. ~59!

By the same way, we have

n̄2~ t !5 (
n50

l21

nu f nu21 (
k50

`

~k1 l !@ uak
1u2hk

2

1uak
2u2hk

222jk~ t !#. ~60!

It is proper to refer ton̄1(t) and n̄ 2(t) as the mean photon
number of the field for the cases where the atom is found in
the excited and ground states, respectively.jk(t) is an im-
portant quantity in this model, it measures the collapses and
revivals of the atomic inversion in a single mode with the
frequency

Dk[vk
12vk

25A~v02v l1l!214@gl~k!#2. ~61!

Dk is usually called Rabi frequency, where the parameterl
obviously affects the Rabi frequency.

2. Atomic inversion

The atomic inversion in the JC model is illustrated by the
quantity s̄35^C(t)us3uC(t)&. If we take the two-level at-
oms as the neutro particles with spin12, thens̄3/2 measures
the mean spin value which varies with time. Sinces3 is
invariant underU, namely,Us3U

†5s3 , we can directly
calculate this quantity in the transformed frame. Using the
normalization condition Eq.~57!, we obtain

s̄352(
k50

`

@ uak
1u21uak

2u21jk~ t !#21. ~62!

This result shows that the atomic inversion is measured by
the samejk(t) as that appears in the statistics of photon
number. In order to evaluate explicitly the effect ofl in the
nonstationary JC model, we choose the following special ini-
tial state without the kernel part for an example:

uC~0!&5 (
k50

`

e2uzu2/2S zk

A2k!
uk&

zk

A2k!
uk1 l &

D . ~63!

For this initial state, we have~see Appendix!

jk~ t !52S xke2x

k! D ~D1l!gl~k!

~D1l!214gl
2~k!

3cos@A~D1l!214gl
2~k!t#, ~64!

uak
1u21uak

2u25
xke2x

k! F121
~D1l!gl~k!

~D1l!214gl
2~k!G , ~65!

where the detuningD5v02v l , x5uzu2. With these results,
s̄3 is obtained to be

s̄35 (
k50

` S xke2x

k! D 4~D1l!gl~k!

~D1l!214gl
2~k!

3sin2F12A~D1l!214gl
2~k!t G . ~66!

Equation~66! expresses exactly the collapse and revival of
the atomic coherence in this nonstationary model, wherel
plays the same role as the detuningD. By changingl, we
can effectively control the atomic inversion of the system,
thus meet our original purpose of studying the properties of
the atomic system via the external source. If it is designed:
l'2D, the atomic inversion disappears for the initial state
~63!. On the other hand, even ifD50, from Eq. ~66! we
know that the atomic inversion still exists for the external
sourcelÞ0,

s̄35 (
k50

` S xke2x

k! D 4lgl~k!

l214gl
2~k!

sin2F12Al214gl
2~k!t G .

~67!

3. Energy

The mean energy of the system isĒ(t)
5^C(t)uH(t)uC(t)&. For the state~56!, we divideĒ(t) into
three terms,

Ē~ t !5^C0~ t !uH~ t !uC0~ t !&1@^C1~ t !uH~ t !uC0~ t !&1H.c.#

1^C1~ t !uH~ t !uC1~ t !&, ~68!

where the first term inĒ(t) is easily obtained to be

Ē0~ t !5 (
n50

l21

~vn2v0/2!u f nu2. ~69!

From Theorem I, we know that the kernel are orthogonal to
the unitary subspace, which implies that the second term in
aboveĒ(t) is zero. The third term can be treated by RUT as

Ē1~ t !5@^C1~ t !uU†#@UH~ t !U†#@UuC1~ t !&#. ~70!

A simple calculation gives

Ē1~ t !5 (
k50

`

$uak
1u2@hk

2l2~11hk
2!vk

1#

1uak
2u2@lhk

222~11hk
22!vk

2#2ljk~ t !%. ~71!

The variation of the mean energyĒ(t) with time is still
dominated byjk(t), which measures the energy exchange of
the radiation-matter system with the external source.

From Eqs.~62! and~71!, we abstract the following inter-
esting relation between the mean energy and the atomic in-
version:
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dĒ

dt
52

l

2

ds̄3

dt
. ~72!

This relation expresses such a distinct property of this model
that by measuring the change of energy with time, we can
obtain the information such as the dependence of the atomic
inversion and the mean photon number on time. However,
this property does not mean that the atomic inversion is

caused by the external source. In fact, whenl50, Ē turns
out to be independent of time, but the atomic inversion
shown in Eq.~67! still exists generally.

B. Three-level atoms interacting with one-mode cavity

We now concentrate on the three-level atom-radiation
systems. The three-level atoms are classified by the configu-
rations of their energy levels. Generally, there are three kinds
of configurations,L, V, and[, as shown in Fig. 2, where
the atoms withL-configuration energy level have been
widely used in the subjects such as the coherent population
trapping, laser cooling@13#, lasing without inversion@14#,
and electromagnetically induced transparency~EIT! @15#.

We know that the exact solvability of various two-level
JC models is attributed to a unified formulation of JC models
by a deformed oscillator algebra@19#, or by a su~2! structure
@20#. However, there is not a unified solvable formulation to
these three-level systems. Starting from this section, we will
show that by the RUT method, we can solve the various
three-level models mentioned above. To avoid making the
paper too long, almost all the physical properties associated
with the solutions are not discussed in this paper.

In this section, we consider a system of three-level atoms
with energies«1 , «2, and«3 in theL configuration, which
interacts with a one-mode cavity field as shown in Fig.
2~a!. The interaction is considered to be density
@r1(N),r2(N)#-dependent, and in the multiphoton (l 1 ,l 2)
form. Under the rotating-wave approximation, the Hamil-
tonian of the system is written as

H5(
i51

3

« iSii1va†a1@a†l1r1~N!S121r2~N!al2S231H.c.#,

~73!

wherev is the frequency of the radiation field,Si j are the
atomic operators given bySi j5u i &^ j u, i , j51,2,3. We notice
that various three-level Hamiltonians with one-mode cavity
in the literature are covered by this general one. To solve this
Hamiltonian, we now introduce the following operatorU:

U5S Fl1 0 0

0 1 0

0 0 Fl2

D , ~74!

whereFl1
andFl2

are two phase operators. From Theorem

VI, we know that the operatorU belongs to RUT. The kernel
of U is

K5H uc1
0~k1!&5S uk1&

0

0
D , uc2

0(k2&5S 0

0

uk2&
D ,

k1, l 1 , k2, l 2J . ~75!

Theorem IV tells us that if this kernel is isomorphic to a
subset of the eigenkets ofH, then the operatorU can be
applied toH. It is easily checked that aboveuc1

0(k1)& and
uc2

0(k2)& happen to be the eigenkets ofH. The eigenvalues
corresponding to these eigenkets are

E1
0~k1!5«11vk1 ,

E2
0~k2!5«31vk2 ,

~76!

where we have assumed that the energy spectrum is nonde-
generate between two sets$uc1

0(k1)&% and$uc2
0(k2)&%. These

results indicate that the operatorU is covered by Theorem
IV, and can be applied to the remaining eigenket set ofH
besides those in Eq.~75!.

Let H85UHU†; a direct calculation gives

H85
1

3
~«11«21«3!1vSN1

l 11 l 1
3 D1H1 , ~77!

whereH1 is

H15S h1 g1~N! 0

g1~N! 2~h11h2! g2~N!

0 g2~N! h2
D , ~78!

where h1 and h2 are two constants: h15(2«1
2«22«3)/31(2l 12 l 2)v/3, h25(2«32«12«2)/31(2l 2
2 l 1)v/3; and g1(N)5r1(N)@(N1 l 1)!/N! #

1/2, g2(N)
5r2(N)@(N1 l 2)!/N! #

1/2. Notice thatH1 is constructed to
be a traceless operator matrix; in this form it is easier to
compute its eigenvalues.

The above results show that in the transformed frame, the
Hamiltonian of the three-level matter-radiation interaction
system becomes a 333 matrix which depends on the photon
numberN only. For the ket vector with a single photon num-
ber, this Hamiltonian simply describes the usual three-level
stationary system, which can be solved exactly. We note that
in the transformed frame, the transitions induced by the di-
pole occur only between the states containing the same pho-
ton number. This picture is similar that in the two-level sys-
tem.

FIG. 2. ~a! represents the transitions of the atoms withL con-
figuration energy levels.~b! indicates the V configuration, and~c!
the[ configuration.
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Assuming the eigenket ofH1 as

uC~n!&85S b1

b2

b3

D ^ un&, ~79!

whereb i[b i(n), i51,2,3. The eigenvaluel of H1 is de-
termined by the equation detuH12lu50, that is,

l31lp1q50, ~80!

where

p52@g1
2~n!1g2

2~n!1h1
21h2

21h1h2#,

q5h1g1
2~n!1h2g1

2~n!1~h11h2!h1h2 .
~81!

The solutions of Eq.~80! are given by@21#

l1~n!5A11A2 ,

l2,3~n!5
1

2
~A11A2!6

A3i
2

~A12A2!, ~82!

whereA6[A6(n),

A65A3 1

2
q6S 127p31 1

4
q2D 1/2. ~83!

Combining thesel i with the diagonal term inH8, we obtain
the eigenvalues of the Hamiltonian as

E1~n!5 1
3 ~«11«21«3!1vS n1

l 11 l 1
3 D1l1 ,

E2,3~n!5 1
3 ~«11«21«3!1vS n1

l 11 l 1
3 D1l2,3.

~84!

We assume that the energy spectrum is nondegenerate; then
the eigenkets ofH8 corresponding to the above eigenvalues
are orthogonal mutually, which are obtained to be

uC i~n!&85
1

z i~n! S g1~n!

l i2h1

1

g2~n!

l i2h2

D ^ un&, i51,2,3, ~85!

wherez i(n) are the normalization factors:

z i~n!5F11S g1~n!

l i2h1
D 21S g2~n!

l i2h2
D 2G1/2.

The above solutions of the three-level system with theL
configuration is in the transformed frame. From Theorem IV,
we can directly obtain the eigenkets in the original frame
H by the equationuC i(n)&5U†uC i(n)&8, that is,

uC i~n!&5
1

z i~n! S F g1~n!

l i2h1
G un1 l 1&

un&

F g2~n!

l i2h1
G un1 l 2&

D , i51,2,3.

~86!

For an arbitrary initial stateuw(0)&, the evolution of the state
with time becomes

uw~ t !&5 (
k50

l121

(
i51

2

Ci~k!e2 iEi
0
~k!tuc i

0~k!&

1 (
n50

`

(
j51

3

Dj~n!e2 iE j ~n!tuC j~n!&, ~87!

whereCi(k)5^c i
0(k)uw(0)& andDj (n)5^C j (n)uw(0)&.

Now we conclude that the total eigenstate set of the three-
level atom-radiation system is constituted by two subsets as
in Eqs. ~75! and ~86!, where the subset in Eq.~75! is the
kernel ofU, but for the other subset Eq.~86!, U acts as a
unitary operator.

We recall that for the two-level JC model, there generally
exists a relationH8;sW •BW . However, for the above three-
level system, from the expression ofH8, we know that the
system cannot be taken as a spin-1 particle interacting with
an external magnetic field, that is, the relation such as
H8;SW •BW does not exist here. Therefore, there is no concept
of spin in theL-configuration system, and many methods
developed for the two-level JC model do not fit for the three-
level case. However, for the RUT method, one may notice
that the procedure in solving the three-level model is exactly
the same as the procedure presented in Ref.@9# in solving the
two-level JC model.

To investigate the dynamics of the above system, we usu-
ally use the method of density matrix. Supposing att50 the
density operator as

r~0!5 (
k1 ,k250

`

uw~k1!&^w8~k2!u. ~88!

Using Eq.~87!, one can directly obtain the evolution of the
density operator with time by the equationr(t)
5e2 iHtr(0)eiHt . With r(t), one can calculate some quanti-
ties such as the atomic inversion, population trapping in this
model. We now choose such a special initial state that the
atoms are in the leveli51, and the photon state is repre-
sented by the coherent state. Thenr(0) is written into

r~0!5 (
k1 ,k250

`
e2uzu2zk1z* k2

A~k1!k2! !
uk1&^k2uS11. ~89!

Making use of Eq.~87!, we obtain

r~ t !5uZ~ t !&^Z~ t !u, ~90!

where
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uZ~ t !&5 (
k50

l121
e2~ uzu2/2!zk

Ak!
e2 iE1

0
~k!tuc1

0~k!&

1 (
n50

`

(
j51

3
e2~ uzu2/2!zn1 l1g1~n!e2 iE j ~n!t

A~n1 l 1!! z j~n!@l j~n!2h1#
uC j~n!&.

~91!

Usingr(t), we can obtain the probability of finding the atom
in the state i52 which is initially in the statei51:
P1→2(t)5(k50

` ^ i52,kur(t)uk,i52&,

P1→2~ t !5 (
k50

`
e2xxk1 l1

~k1 l 1!!
U(
i51

3
g1~k!e2 il i ~k!t

z i
2~k!@l i~k!2h1#

U2,
~92!

wherex5uzu2. We know that the above transition (1↔2) is
induced by dipole. A more interesting quantity isP1→3(t),
which is induced by two dipoles: (1↔2) and (2↔3),

P1→3~ t !5(
k

e2xxk1 l1

~k1 l 1!!

3U(
i51

3
g1~k!g2~k!e2 il i ~k!t

z i
2~k!@l i~k!2h1#@l i~k!2h2#

U2.
~93!

The statistics of the photon number at the statei53 is ob-
tained to be

n̄3~ t !5(
k

e2xxk1 l1

~k1 l 1!!
U(
i51

3
g1~k!g2~k!~k1 l 2!e

2 il i ~k!t

z i
2~k!@l i~k!2h1#@l i~k!2h2#

U2.
~94!

The atomic inversion of the system under the special initial
state isS̄3(t)[^S3&, which is explicitly given by

S̄3~ t !5(
k

e2xxk1 l1

~k1 l 1!!
U(
i51

3 g1
2~k!e2 il i ~k!t

z i
2~k!@l i~k!2h1#

2U22P1→3~ t !.

~95!

C. Three-level atoms interacting with a two-mode cavity field

In this section, we consider a system of three-level atoms
with energies«1, «2 , and«3 , which interacts with a two-
mode cavity field: a pump mode (a1 ,a1

†) of frequencyv1

and a Stokes mode (a2 ,a2
†) of frequencyv2 as shown in Fig.

2~a!. The interactions are generalized to be multiphoton
( l 1 ,l 2) forms, and dependent on densitiesr1(N1),r2(N2),
respectively. Therefore, the Hamiltonian is

H5H01H1 , ~96!

where

H05(
i51

3

« iSii1v1a1
†a11v2a2

†a2 ,

H15a1
†l1r1~N1!S121r2~N2!a2

l2S231H.c.
~97!

This Hamiltonian covers various special cases in the litera-
ture. In the above Sec. III B we have shown that the solution
of three-level case is much more complicated than that of the
two-level case. To avoid the complication, one usually treats
H by the perturbation theory in the interaction picture. Espe-
cially in the case that the detunings of the two modes are
very large, the upper level can be eliminated adiabatically
from the three-level system; then the system is reduced into
a simple two-level case with two quantized modes@22#,
where the Stark shift terms appear and give arise to some
interesting physical effects@23#.

We divide this section into two parts. In the first part, we
consider the case that the detunings of the system are large
enough. Then by constructing a unitary transformation, we
separate the upper level from the system to the first-order
approximation; the remaining two low levels are still treated
by the RUT method. We further discuss the relation between
the so-called ‘‘dressed’’ states and ‘‘bare’’ states from the
viewpoint of transformation. In the second part, we use the
same RUT method to solve the system exactly.

1. Approximate treatment in the case of large detunings

In the case that the detunings of two modes are very large,
we accordingly introduce the following unitary transforma-
tion Q,

Q5exp~X!, ~98!

where

X5@2d1a1
†l1r1~N1!S121d2r2~N2!a2

l2S23#2H.c., ~99!

whered1 andd2 are two parameters to be determined. Under
Q, the Hamiltonian~96! is transformed intoH85QHQ†.
Using the Baker-Hausdorff formula,H8 becomes

H85H01H11@X,H0#1@X,H1#1
1

2
†X,@X,H0#‡

1
1

2
†X,@X,H1#‡1•••. ~100!

If we choose d15D1
21[(«22«12v1l 1)

21,d25D2
21

[(«22«32v2l 2)
21, whereD1 andD2 are two detunings,

then

@X,H0#52H1 . ~101!

For the largeD i , i51,2, we expandH8 up to the first order
of 1/D i as

H8'H01@X,H1#1
1

2
†X,@X,H0#‡5H01

1

2
@X,H1#, ~102!

that is,
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H85(
i51

2

v iai
†ai1F«12 1

D1
r1
2~N12 l 1!a1

†l1a1
l1GS111F«32 1

D2
r2
2~N22 l 2!a2

†l2a2
l2GS33

2H F12 S 1D1
1

1

D2
D r1~N12 l 1!r2~N2!a1

†l1a2
l2GS131H.c.J 1F«21 1

D1
r1
2~N1!a1

l1a1
†l11

1

D2
r2
2~N2!a2

l2a2
†l2GS22.

~103!

We have two comments on the above results.
~i! The HamiltonianH8 indicates that if the atomic states

are in the form

uw&85S uw1&

0

uw3&
D , ~104!

the term aboutS22 in H8 does not contribute. Then the sys-
tem is reduced into a two-level atomic system. The two
terms 2(1/D1)r1

2(N12 l 1)a1
†l1a1

l1S11 and 2(1/D2)r2
2(N2

2 l 2)a2
†l2a2

l2S33 appearing in the Hamiltonian are called Stark
effect terms, which are in terms of the photon numbers.

~ii ! We regard the operators in the original frameH as
‘‘bare’’ operators, and the atomic states as ‘‘bare’’ states;
then the operators in the transformed frameH8 are
‘‘dressed’’ operators, and the atomic states are ‘‘dressed’’
states. The state~104! is in fact a dressed state. We know that
all the states prepared in experiment are bare states. There-
fore, turned back to experiment, the bare state corresponding
to Eq. ~104! is

uw&5e2Xuw&8'S uw1&

r1~N1!

D1
a1
l1uw1&1

r2~N2!

D2
a2
l2uw3&

uc3&

D .

~105!

This result shows that the atomic statei52 still contributes
in the original system.

We now solve the HamiltonianH8 by the RUT method
developed above. Consider an operatorV,

V5S Fl1
~1! 0 0

0 1 0

0 0 Fl2
~2!

D , ~106!

where Fl1
(1)5@a1

l1a1
†l1#21/2a1

l1 , Fl2
(2)5@a2

l2a2
†l2#21/2a2

l2

are two phase operators. ThusV belongs to RUT, and its
kernel is

K5H uc1
0~k1 ,k2!&5S uk1 ,k2&

0

0
D , uc2

0~k18 ,k28!&5S 0

0

uk18 ,k28&
D , k1, l 1 ,k28, l 2J . ~107!

We obtain thatuc1
0(k1 ,k2)& are the eigenkets ofH8; the ei-

genvalues are

E1
0~k1 ,k2!5«11v1k11v2k2 ; ~108!

uc2(k18 ,k28)& are the eigenkets ofH8 with the eigenvalues

E2
0~k18 ,k28!5«31v1k181v2k28 , ~109!

where we have assumed that there is no degeneracy between
E1
0(k1 ,k2) andE2

0(k18 ,k28). These results indicate thatV is
covered by Theorem IV, and can be applied toH8 to obtain
the remaining subspace besides Eq.~107!. We make the
transformation

H95VH8V†, ~110!

that is,

H95B0~N1 ,N2!~S111S33!1B3~N1 ,N2!~S112S33!

1B1~N1 ,N2!~S131S31!1B4~N1 ,N2!S22, ~111!

whereBi(N1 ,N2), i50,1,3,4, are given by

B0~N1 ,N2!5
1

2
~«11«3!1(

i51

2 Fv i SNi1
l i
2D2

1

2D i
gi
2~Ni !G ,

~112!

B1~N1 ,N2!52
1

2 S 1D1
1

1

D2
Dg1~N1!g2~N2!,

B3~N1 ,N2!5
1

2
~«12«3!

1
1

2 Fv1l 12v2l 21
g1
2~N1!

D1
2
g2
2~N2!

D2
G ,
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B4~N1 ,N2!5«21(
i51

2 Fv iNi1
1

D i
gi
2~Ni !G ,

wheregi(Ni)5r i(Ni)@(Ni1 l i)!/Ni ! #
1/2, i51,2. The Hamil-

tonianH9 is a function ofN1 andN2 , and composed of two
independent parts:

H19[B0~N1 ,N2!~S111S33!1B3~N1 ,N2!~S112S33!

1B1~N1 ,N2!~S131S31!

is a two-level system containing a two-mode cavity; the
other part isH29[B4(N1 ,N2)S22. The eigenkets ofH19 are
directly written as

uC1~k1 ,k2!&95S cos
u

2
uk1 ,k2&

0

sin
u

2
uk1 ,k2&

D ,

~113!

uC2~k1 ,k2!&95S 2sin
u

2
uk1 ,k2&

0

cos
u

2
uk1 ,k2&

D ,

where

u[u~k1 ,k2!

5cos21$B3~k1 ,k2!/@B1
2~k1 ,k2!1B3

2~k1 ,k2!#
1/2%.

The eigenvalues corresponding to these two kets are, respec-
tively,

E6~k1 ,k2!5B0~k1 ,k2!6@B1
2~k1 ,k2!1B3

2~k1 ,k2!#
1/2.
~114!

The third eigenket set ofH9 is determined byH29 ,

uC3~k1 ,k2!&95S 0

uk1 ,k2&
0

D . ~115!

The eigenvalues are simply

E3~k1 ,k2!5B4~k1 ,k2!. ~116!

UsingV†, we can turn these ket vectors to the original frame
H8. uC3(k1 ,k2)&9 are invariant under V†. But
uC6(k1 ,k2)&9 turn out to be

uC1~k1 ,k2!&85S cos
u

2
uk11 l 1 ,k2&

0

sin
u

2
uk1 ,k21 l 2&

D , ~117!

uC2~k1 ,k2!&85S 2sin
u

2
uk11 l 1 ,k2&

0

cos
u

2
uk1 ,k21 l 2&

D .

The results~114! and ~117! indicate the existence of Rabi
frequency

v~k1 ,k2!5@B1
2~k1 ,k2!1B3

2~k1 ,k2!#
1/2 ~118!

in the systemH8. Therefore, some interesting effects appear-
ing in the usual two-level system can also appear here. How-
ever, the above comment~ii ! has indicated that these ket
vectors~117! are in fact the dressed ket vectors, induced by
the unitary transformationQ as Eq.~98!. For the viewpoint
of experiment, it is meaningful to find these ket vectors in
the bare form. Up to the first-order approximation, we can
use Eq.~105!, and find thatuC3(k1 ,k2)&9 maintain the same
form, but the vectorsuC6(k1 ,k2)&8 turn out to be

uC1~k1 ,k2!&5S cos
u

2
uk11 l 1 ,k2&

x1uk1 ,k2&

sin
u

2
uk1 ,k21 l 2&

D ,

~119!

uC2~k1 ,k2!&5S 2sin
u

2
uk11 l 1 ,k2&

x2uk1 ,k2&

cos
u

2
uk1 ,k21 l 2&

D ,

where

x15
r1~k1!

D1
A~k11 l 1!!

k1
cos

u

2
1

r1~k2!

D2
A~k21 l 2!!

k2
sin

u

2
,

x252
r1~k1!

D1
A~k11 l 1!!

k1
sin

u

2
1

r1~k2!

D2
A~k21 l 2!!

k2
cos

u

2
.

~120!

The normalization factors are not included in the above ket
vectors. Now we can conclude that only for the ket vectors as
Eq. ~119!, the Rabi oscillation can appear in experiment.

Recall that H8 results from the first-order approxi-
mation of H under the condition that
^g1

2(N1)/D1&,^g2
2(N2)/D2&!D1 ,D2 . We now consider the

following two special cases to reduce the above eigenvalues
Eq. ~114!.

First, for the case that is often used in the literature,

D15D25D, ~121!

theseE6(k1 ,k2) are reduced to
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E6~k1 ,k2!5
1

2
~«11«3!1(

i51

2 Fv i S ki1 l i
2D2

1

2D
gi
2~ki !G

6U g12~k1!2g2
2~k2!

2D
U. ~122!

The second case is contrary to Eq.~121! such that

K g12~N1!

D1
L ,K g22~N2!

D2
L !uD12D2u; ~123!

we may accordingly reduceE6(k1 ,k2) into the form

E6~k1 ,k2!5
1

2
~«11«3!1(

i51

2 Fv i S ki1 l i
2D 2

1

2D i
gi
2~ki !G

6
1

2 FD22D11
g1
2~k1!

D1
2
g2
2~k2!

D2

1S 1

D1
1

1

D2
D g1~k1!g2~k2!2~D22D1!

G . ~124!

2. Exact solution

We know that the approximate solution toH in the above
section is based on the condition

K g12~N1!

D1
L ,K g22~N2!

D2
L !D1 ,D2 . ~125!

However, the quantitiesgi(Ni)[r i(Ni)@(Ni1 l i)!/Ni ! #
1/2

i51,2, increase with the photon numbersNi for certain den-
sities, which means that the condition~125! does not hold for
the states of large photon numbers. In this section, we will
solve the Hamiltonian~96! exactly.

We employ again the right-unitary operatorV in Eq.
~106! as a transformation. It is easily checked that the kernel
of V given by Eq.~107! is still a set of the eigenkets ofH.
Since the kernel is invariant under the unitary transformation
Q @Eq. ~98!#, the eigenvalues ofH corresponding to these
eigenkets are still the same as those ofH8 @Eq. ~100!#. Based
on these results, we can useV as a unitary transformation to
H to obtain its remaining subspace. Let

H̄5VHV†. ~126!

A direct calculation gives

H̄5H̄01H̄1 , ~127!

where

H̄05(
i51

3

« i /31(
j51

2

v j~Nj1 l j /3!, ~128!

and H̄1 is a traceless matrix,

H̄15S f 1 g1~N1! 0

g1~N1! 2~ f 11 f 2! g2~N2!

0 g2~N2! f 2
D , ~129!

whereg1(N1) andg2(N2) are given in Eq.~112!, and

f 15
1
3 ~2«12«22«312v1l 12v2l 2!5 1

3 ~D222D1!,
~130!

f 25
1
3 ~2«32«12«212v2l 22v1l 1!5 1

3 ~D122D2!.

The Hamiltonian now becomes a function of photon num-
bersN1 andN2 , where the creation and annihilation of the
photon in the transitions between the atomic states are erased
by the transformationV. Therefore, in the new frame, the
transitions can only happen between the atomic states having
the same photon numberN1 ~andN2). For a ket vector with
photon numbersk1 andk2

uC~k1 ,k2!&85S b1

b2

b3

D ^ uk1 ,k2&, ~131!

whereb i[b i(k1 ,k2), i51,2,3, H̄ becomes the usual sta-
tionary three-level system, where the eigenvalues ofH̄1 are
determined by the equation detuH̄12lu50, namely,

l31lp11q150, ~132!

where

p152@g1
2~k1!1g2

2~k2!1 f 1
21 f 2

21 f 1f 2#,

q15 f 1g2
2~k2!1 f 2g1

2~k1!1~ f 11 f 2! f 1f 2 .
~133!

The solutions of this equation are@21#

l1[l1~k1 ,k2!5C11C2 ,

l2,3[l2,3~k1 ,k2!5
1

2
~C11C2!6

A3i
2

~C12C2!,

~134!

whereC6[C6(k1 ,k2) are given by

C65A3 1

2
q16S 127p131 1

4
q1
2D 1/2. ~135!

Combining the abovel i with the termH̄0 in H̄, we obtain
the exact eigenvalues of the three-level system,

E1~k1 ,k2!5(
i51

3

« i /31(
j51

2

v j~kj1 l j /3!1l1 ,

E2,3~k1 ,k2!5(
i51

3

« i /31(
j51

2

v j~kj1 l j /3!1l2,3.

~136!

We assume that there is no degeneracy in the energy spec-
trum. Then, the eigenstates ofH̄ corresponding to the above
eigenvalues are orthogonal mutually, which are given by
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uC i~k1 ,k2!&85
1

j i S g1
l i2 f 1

1

g2
l i2 f 2

D ^ uk1 ,k2&, i51,2,3, ~137!

wherej i are the normalization factors:

j i5F11S g1
l i2 f 1

D 21S g2
l i2 f 2

D 2G1/2.
Using Theorem IV, we obtain the eigenkets in the original
frame as

uC i~k1 ,k2!&5
1

j i S S g1
l i2 f 1

D uk11 l 1 ,k2&

uk1 ,k2&

S g2
l i2 f 2

D uk1 ,k21 l 2&
D , i51,2,3.

~138!

Up to now, we have solved exactly the system of
L-configuration atoms interacting with a two-mode cavity
field by the RUT method. One may notice that the above
procedure is almost the same as that in Sec. III B; this means
that to the RUT method, that the system contains one-mode
cavity or two-mode cavity has no difference, even though the
physical meanings of solutions are quite different. Using the
expression off 1 and f 2 , one can expand the above solution
according to the condition of large detunings, and compare
the result with the approximate solution obtained in preced-
ing section. Based on the above solution, one can further
study the physical effects in this model.

In the literature, one studies the three-level system where
the cavity fields change with time, i.e., the nonstationary
case. We should point out that one can follow Theorem V to
treat this nonstationary system, and the procedure is similar
to that in Sec. III A.

D. Application of RUT to the atoms with other configurations

The above approach concentrates on the system where the
atoms haveL-configuration energy levels only. Recently,
V-configuration atoms were found to exhibit some interest-
ing effects @24#. In principle, under the condition that the
detunings are very large, a system of V-configuration atoms
interacting with cavity fields can be treated by the same way
as the above approximate treatment toL-configuration at-
oms. Unfortunately, for the[-configuration atomic system,
this treatment becomes invalid.

However, as we have pointed out, the detunings are not
always very large for various atomic systems. Moreover,
gi(Ni) in Eq. ~112! always increase with the photon number
Ni , but the detunings are invariant withNi . Therefore, the
perturbation treatment introduced above is valid only for the
situation of large detunings and low photon number state.
One may notice that the exact treatment of three-level atomic
system by the RUT method is evidently simpler than the
perturbation treatment, and suitable to various situations. In

this section, we briefly show how to apply the RUT method
to the systems of V- and[-configuration atoms.

We first look at a system of V-configuration atoms inter-
acting with a one-mode cavity field, shown in Fig. 2~b!. The
generalized Hamiltonian is

H5(
i51

3

« iSii1va†a1@r1~N!al1S121a†l2r2~N!S231H.c.#,

~139!

where we assumel 1< l 2 . To solve this Hamiltonian, we here
construct an operatorU,

U5S Fl22 l1 0 0

0 Fl2 0

0 0 1
D , ~140!

whereFl22 l1
andFl2

are two phaser operators.U belongs to

RUT, and the kernel ofU is

K5H uc1
0~k1!&5S uk1&

0

0
D , uc2

0~k2!&5S 0

uk2&
0
D ,

k1, l 22 l 1 , k2, l 2J . ~141!

We can take uC&5x1uc1
0(k1)&1x2uc2

0(k2)& to check
whetheruC& is the eigenket ofH. Without difficulty, we find
that the following sets of vectors,

uc1~k1!&5S cos
uk1
2

uk1&

sin
uk1
2

uk11 l 1&

0

D ,

uc2~k1!&5S 2sin
uk1
2

uk1&

cos
uk1
2

uk11 l 1&

0

D ,

uc3~k2!&5S 0

uk2&
0
D , ~142!

are the eigenkets ofH, where k1, l 22 l 1 ,k2, l 1 ,
uk15tan21@2gl1(k1)/(«12«22v l 1)#, and gl1(k1)5

r1(k1)@(k11 l 1)!/k1! #
1/2. The eigenvalues corresponding to

above eigenkets are obtained to be
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E1
0~k1!5 1

2 ~«11«21v l 1!1vk1

1A 1
4 ~«12«22v l 1!

21gl1~k1!
2,

~143!
E2
0~k1!5 1

2 ~«11«21v l 1!1vk1

2A 1
4 ~«12«22v l 1!

21gl1~k1!
2,

E3
0~k2!5«21vk2 .

On the other hand, one can check that each element in the
kernel can be written as a linear combination of eigenkets in
Eq. ~141!. These results indicate thatU can be applied to
H to obtain its remaining subspace. A simple calculation
gives

H85UHU†

5S «11v~N1 l 22 l 1! gl1~N1 l 22 l 1! 0

gl1~N1 l 22 l 1! «21v~N1 l 2! gl2~N!

0 gl2~N! «31vN
D .

~144!

The Hamiltonian now becomes a matrix function of photon
numberN. One can follow the procedure in the above sec-
tions to obtain the eigenvalues and eigenkets ofH8. We omit
these here.

We now look at a system of three-level atoms with a
[-configuration energy level, which interact with a one-
mode cavity as shown in Fig. 2~c!. The Hamiltonian is

H5(
i51

3

« iSii1va†a1@r1~N!al1S121r2~N!al2S231H.c.#.

~145!

To solve the Hamiltonian, we introduce an operator matrix
V as

V5S 1 0 0

0 Fl1 0

0 0 Fl11 l2

D , ~146!

V evidently belongs to RUT. The kernel ofV is

K5H uc1
0~k1!&5S 0

uk1&
0
D , uc2

0~k2!&5S 0

0

uk2&
D ,

k1< l 1 , k2< l 11 l 2J . ~147!

Using the same method as in the above case of the V con-
figuration, we obtain that this kernel is isomorphic with to
subset of the eigenkets ofH, where the eigenkets are

uc1~k1!&5S 0

cos
uk1
2

uk1&

sin
uk1
2

uk11 l 2&
D ,

uc2~k1!&5S 0

2sin
uk1
2

uk1&

cos
uk1
2

uk11 l 2&
D ,uc3~k2!&5S 0

0

uk2&
D ,

~148!

where k1, l 1 , k2, l 2 , and uk15tan21@2gl2(k1)/

(«22«32v l 2)]. The eigenvalues corresponding to above
eigenkets are

E1
0~k1!5 1

2 ~«21«31v l 2!1vk1

1A 1
4 ~«22«32v l 2!

21gl2~k1!
2,

~149!

E2
0~k1!5 1

2 ~«21«31v l 2!1vk1

2A 1
4 ~«22«32v l 2!

21gl2~k1!
2,

E3
0~k2!5«31vk2 .

One can prove that an arbitrary element in the kernelK can
be expressed by the aboveuc1(k)&, uc2(k)&, anduc3(k)& in
linear form. This means thatK is isomorphic with one set of
the eigenkets ofH. Therefore, the operatorU satisfies Theo-
rem IV, and can be applied to the remaining eigenket set of
H. We obtain

H85VHV†

5S «11vN gl1~N! 0

gl1~N! «21v~N1 l 1! gl2~N1 l 1!

0 gl2~N1 l 1! «31v~N1 l 11 l 2!
D .

~150!

FIG. 3. Four-level atoms with ladder-configuration energies.
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H8 is a matrix whose matrix elements are functions of pho-
ton numberN. H8 can be solved by the regular way. We
omit these here.

The above approach shows that all theL-, V-, and
[-configuration atoms interacting with quantized cavity
fields can be treated unitedly by RUT method, where the
right-unitary operators are simply diagonal matrices con-
structed by phaser operators.

In the last part of this section, we would like to show how
to apply the RUT method to the atom-radiation interaction
system where the atoms have a higher (.3) energy level.
For an example, we here choose a simple case: four-level
atoms with the configuration shown in Fig. 3. Under the
rotating-wave approximation, the generalized Hamiltonian of
the atoms interacting with one-mode cavity field is

H5(
i51

4

« iSii1va†a

1@r1a
l1S121r2a

l2S231r3a
l1S341H.c.#. ~151!

For simplicity, we assumer i , i51,2,3, be constants. To
solve this Hamiltonian, we construct a right unitary operator
as

V45S 1 0 0 0

0 Fl1 0 0

0 0 Fl11 l2 0

0 0 0 Fl11 l21 l3

D . ~152!

The kernel ofV4 is

K55 uc1
0~k1!&5S 0

uk1&
0

0

D , uc2
0~k2!&5S 0

0

uk2&
0

D , uc3
0~k3!&5S 0

0

0

uk3&
D 6 , ~153!

wherek1< l 1 ,k2< l 11 l 2 ,k3< l 11 l 21 l 3 . Within these ket vectors, the four-level system is reduced into a three-level case.
One can further check that these ket vectors are isomorphic with a subset of the eigenkets ofH. Which means that we can use
V4 as a unitary operator to the other subspace ofH. Let H85V4HV4

† ; then

H85S «11vN g1~N! 0 0

g1~N! «21v~N1 l 1! g2~N! 0

0 g2~N! «31v~N1 l 11 l 2! g3~N!

0 0 g3~N! «41v~N1 l 11 l 21 l 3!

D , ~154!

where

g1~N!5r1@~N1 l 1!!/N! #
1/2,

g2~N!5r2@~N1 l 11 l 2!!/ ~N1 l 1!! #
1/2,

g3~N!5r2@~N1 l 11 l 21 l 3!!/ ~N1 l 11 l 2!! #
1/2.

For the ket with a fixed photon numberN, H8 is simply a
434 constant matrix. Thus, its eigenkets and eigenvalues
are easily obtained.

One can further follow this method to solve other con-
figurations of four-level systems. These are omitted here.

IV. CONCLUSION

In conclusion, we have developed the right-unitary trans-
formation theory, and initially discussed its applications in
physics. The first part of this paper discusses to the theory.
We found that the state space of any operatorUPRUT ~pre-
ciselyW) is composed of two independent parts,$uC0&% and
$uC1&%, where$uC0&% is called thekernelof U, which sat-
isfies U$uC0&%50. On the other hand, in the subspace
$uC1&%, U acts as a unitary operator. The properties of RUT

such as semigroup, kernel, etc., were discussed through sev-
eral theorems. Based on these properties, we concluded a
general way on how to apply the RUT to a physical system.
For a physical quantity such as the HamiltonianH, suppose
its eigenstates asS5$uF i&,i51,2, . . . ,`%; then

H5(
i51

`

Ei uF i&^F i u, ~155!

where Ei are eigenvalues. If a subset ofS: S1
5$uF i&,i51,2, . . . ,s% is checked to be isomorphic with the
kernel ofU, then the supplement set ofS1 is evidently iso-
morphic with the unitary subspace ofU. Therefore,

H85UHU†5 (
i5s11

`

Ei uF i8&^F i8u, ~156!

where uF i8&5UuF i&. The state space S8
5$uF i8&,i5s11, . . . ,̀ % is proved to be complete. Equation
~156! shows that the frameH8 has the same spectrum~pre-
cisely a subset of the spectrum! asH.

Based on the above results, in the second part of this
paper we used the RUT method to deal with the systems of
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many-level atoms interacting with the quantized radiation
fields, where the RUT are the matrices constructed by the
well-known phase operators. We have studied two typical
systems: One involves the Jaynes-Cummings models, which
were found to exhibit some interesting effects, and have ob-
tained much study in recent years. We solved a nonstationary
generalized JC model, and found that atomic inversion of the
system can be controlled through the external source. An-
other system carefully studied is the interaction of the three-
level atoms with one- or two-mode cavity field. This system
has been widely applied in various contexts of quantum op-
tics such as lasing without inversion, electromagnetically in-
duced transparency, etc. This paper provides a unified
method for these topics.

We would like to point out that the RUT method can be
applied to some simplified quantum electrodynamic~QED!
system, such as the photon-electron and phonon-electron in-
teractions. It will be discussed in a forthcoming presentation.
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APPENDIX

For the initial state, Eq.~63!,

mk5nk5e2uzu2/2 zk

A2k!
[ f ~z!. ~A1!

Then,

ak
15S 12hk

11hk
2D f ~z!, ak

25S hk1hk
2

11hk
2 D f ~z!. ~A2!

From Eq.~51!, we have

hk5

vk
11vk1

v0

2

gl~k!
5

2gl~k!

vk
21vk1

v0

2

~A3!

and

hk
252

vk
11vk1

v0

2

vk
21vk1

v0

2

. ~A4!

Using these results, we rearrangeak
6 as

ak
15S vk

21vk1
v0

2
1gl~k!

vk
22vk

1
D f ~z!,

ak
252S vk

11vk1
v0

2
1gl~k!

vk
22vk

1
D f ~z!. ~A5!

With these expressions, we directly obtain Eqs.~64! and
~65!.
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