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High-order harmonic generation in a bichromatic elliptically polarized laser field
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The quantum theory of high-order harmonic generation by a low-frequency laser field is generalized to the
case of a bichromatic elliptically polarized laser field. The quasiclassical cutoff law is analyzed. Numerical
results for a linearly polarized bichromatic laser field are presented and analyzed for different laser field
frequencies, intensities, and relative phases. Harmonic intensity is many orders of magnitude higher in the
bichromatic case than in the monochromatic one, but the cutoff is shifted toward the lower harmonics. The
plateau height can be controlled by changing the relative phase of the fields. A qualitative agreement with the
recent experiments is shown.@S1050-2947~96!09207-4#

PACS number~s!: 42.50.Hz, 42.65.Ky
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I. INTRODUCTION

High-order harmonic generation~HOHG! is one of the
major topics of multiphoton physics@1,2#. During the inter-
action with a short-pulse intense laser atoms emit cohe
radiation at frequencies that are multiples of the laser
quency v. The emitted harmonics are characterized by
rapid drop at low orders, followed by a broad plateau wh
all the harmonics have the same strength and a sharp c
at frequencykv'I p13Up , whereI p is the atomic ioniza-
tion potential andUp5A0

2/4 ~in a.u.! is the electron pondero
motive energy in the laser field with the vector potent
amplitudeA0 . In the last few years the possibility of contro
of HOHG using elliptically polarized laser field or using tw
independent laser fields has attract special attention@3–11#.
Recently, Lewensteinet al. @12# proposed a fully quantum
theory of HOHG by a low-frequency laser field. Their resu
confirmed the two-step semiclassical picture of HOHG~@2#,
pp. 95–110 and@13#! and are valid in the tunneling regim
„Keldysh parameterg5(I p/2Up)1/2,1 @14#…. The HOHG in
the multiphoton regime (g.1) was considered by other au
thors~see, for example,@15# and references therein!. Lewen-
stein et al. @12# presented results for a monochromatic li
early polarized laser field. These results can be generalize
the case of a bichromatic elliptically polarized laser fie
This is the first aim of our paper. In Sec. II we present g
eral theory. The generalized cutoff law and its classical lim
are presented in Sec. III. Numerical results and compar
with experiments for a bichromatic linearly polarized las
field are given in Sec. IV and finally Sec. V contains t
conclusions.

II. THEORY

A bichromatic elliptically polarized laser field is de
scribed by the electric field vector
541050-2947/96/54~2!/1522~10!/$10.00
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EW ~ t !5 (
j 51,2

E0 j@eŴ xcosj jcos~v j t1w j !

1eŴ ysinj jsin~v j t1w j !#, ~1!

wherev j , E0 j , andw j , j 51,2, are the laser field compo

nents’ frequency, amplitude, and phase, respectively.eŴ x and

eŴ y are the unit polarization vectors and thej th component
polarization is characterized by the anglej j ~for j j50 po-
larization is linear, while forj j5p/4 it is circular; ellipticity
can be defined as the ratio of the electric-field strength of
minor to the major axis of the ellipse,Rj5Ey j /Ex j
5tanj j ). The vector potential of the laser field is

AW ~ t !52E
t0

t

EW ~ t8!dt8

52A0 (
j 51,2

aj@eWT xcosj jsin~v j t1w j !

2eŴ ysinj jcos~v j t1w j !#, ~2!

where we extract the vector potential amplitudeA0 and in-
troduce relative amplitudesaj (A0 j5E0 j /v j5A0aj ,
j 51,2). t0 is the initial time for whichA050. Generalization
of the results by Lewensteinet al. @12# to the laser field
defined by Eqs.~1! and~2! is straightforward and we will not
repeat details of derivation. It should be mentioned that th
theory ~and therefore our generalization of this theory! can
be applied when there are no intermediate resonances a
the tunneling regime~Keldysh parameterg,1). They ne-
glected the contribution to the evolution of the system of
bound states except the ground state. The generalizatio
the presence of other bound states and to the laser field
the time-dependent pulse envelope can also be done an
plan to consider these problems in the near future. We s
1522 © 1996 The American Physical Society
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54 1523HIGH-ORDER HARMONIC GENERATION IN A . . .
pose that frequenciesv1 and v2 are commensurate, i.e
v15pv, v25qv with p,q integers. The harmonic strengt
Dk is defined as the Fourier component of the tim
dependent dipole moment

Dk~nŴ !5E
0

Tdt

T
DnŴ ~ t !eikvt, T52p/v. ~3!

We use the indexk instead of 2k11 ~see@12#! because in
the presence of a bichromatic laser field generation of b
even and odd harmonic is possible.DnŴ (t) is the time-
dependent dipole moment along an arbitrary directionnŴ ~in
a.u.; c.c. denotes a complex conjugate part!

DnŴ ~ t !5 i E
0

t2t0
dtE d3pW FnŴ ~ t,t;pW !e2 iS~ t,t;pW !1c.c., ~4!

where FnŴ (t,t;pW ) denotes the product of dipole matrix el
ments

FnŴ ~ t,t;pW !5nŴ •dW * „pW 2AW ~ t !…EW ~ t2t!•dW „pW 2AW ~ t2t!…,
~5!

andS(t,t;pW ) is the quasiclassical action
-

th

S~ t,t;pW !5E
t2t

t

dt8$ 1
2 @pW 2AW ~ t8!#21I p%. ~6!

In Eq. ~4! the integration is over the return timet.
dW (pW )5^pW uxW u0& denotes the atomic dipole matrix element f
the bound-free transition. The explicit form ofdW (pW ) for the
Gaussian model and for hydrogenlike atoms is given in@12#.
In the general case the integral overpW can be solved using
the saddle-point method. If the exponent of the subinteg
function ~in our case it is the actionS) is proportional to a
large parameterx, then we search for a stationary point
S and obtain a power series in 1/x. In @12# it was supposed
that the ponderomotive potentialUp , ionization potential
I p , and velocities are large. In that paper there was no
plicit expansion parameter and no correction to the zero
order term is obtained. We will present this here. If one do
not introduce the atomic system of units, then, instead
S, one obtainsS/\, where\ is the Planck constant devide
by 2p. If we suppose that\ is small ~this is a variant of
the WBK method! and use 1/\ as a large parameter
then the solution for the triple integral *d3pW
5*2`

` dpx*2`
` dpy*2`

` dpz takes the form,
he
e2 iS~ t,t;pW !/\ (
nx ,ny ,nz50

`
e2 i ~nx1ny1nz!p/2

~2t/\!nx1ny1nznx!ny!nz!
F

nŴ

~2nx,2ny,2nz!
~ t,t;pW !pW 5pW s

, ~7!

where index (2nx,2ny,2nz) denotes partial derivatives overpx , py , and pz , respectively. The zeroth-order term and t
first-order corrections are

e2 iS~ t,t;pW !/\S 12 i
\

2t

]2

]pW 2DFn̂~ t,t;pW !pW 5pW s
. ~8!

The pW s is the solution of the equation¹pWS(t,t;pW )50, which is

pW s~ t,t!5
1

tEt2t

t

dt8AW ~ t8!. ~9!

In this case the stationary action is~in a.u.!

Ss~ t,t![S~ t,t;pW s!5I pt2
t

2
pW s

2~ t,t!1
1

2Et2t

t

dt8AW 2~ t8!, ~10!

andDnŴ(t) is given by (e→01, t0→2`)

Dn̂~ t !5 i E
0

`

dtS p

e1 i t/2D 3/2

e2 iSs~ t,t!S 12
i

2t

]2

]pW 2DFnŴ ~ t,t;pW !pW 5pW s
1c.c. ~11!

Let us introduce the following notation:

j65j16j2 , v65v16v2 , w65w16w2 ,

cn5vnS t2
t

2D1wn , n51,2,6. ~12!

After some elementary calculations we obtain the following expression for the quasiclassical action:
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Ss~ t,t!5S0~t!1 (
j 51,2

Sj~t!cos2c j~ t,t!1 (
n56

Sn~t!coscn~ t,t!, ~13!

where

S0~t!5I pt1Up (
j 51,2

aj
2

v j
Fv jt2

2~12cosv jt!

v jt
G ,

Sj~t!5Upcos2j j

aj
2

v j
F2~12cosv jt!

v jt
2sinv jt G , j 51,2,

Sn~t!524nUpa1a2cosjnS 1

vn
sin

vnt

2
1

1

v1v2t (
n856

n8cos
vn8t

2 D , n56. ~14!

In the case of a linearly polarized monochromatic laser field the interference termsS6 disappear and the result of paper@12#
can be easily reproduced. In the general case the final result for the harmonic strength is

Dk~nŴ !5I k~nŴ !1I 2k* ~nŴ !, ~15!

where

I k~nŴ !5 i E
0

`

dtS p

e1 i t/2D 3/2

e2 iS0~t!E
0

Tdt

T S 12
i

2t

]2

]pW 2DFnŴ~ t,t;pW !pW 5pW s

3expH i Fkvt2 (
j 51,2

Sj~t!cos2c j~ t,t!2 (
n56

Sn~t!coscn~ t,t!G J . ~16!

According to Eq.~5! termspW s2AW (t) andpW s2AW (t2t) appear inFn̂(t,t;pW s). They can be written as

pW ~ t8![pW s~ t,t!2AW ~ t8!5A0(
j

aj$eŴ xcosj j@sin~v j t81w j !2bj~t!sinc j~ t,t!#1eŴ ysinj j@2cos~v j t81w j !1bj~t!cosc j~ t,t!#%,

~17!

with bj (t)5(2/v jt)sin(vjt/2). The explicit form ofFnŴ(t,t;pW s) can be obtained using the expression fordW (pW ) from @12#, but

we will not present it here. The conclusion is that the corrections to the result forDk(nŴ ) depend on the chosen model. W

computed numericallyDk(nŴ ) for the Gaussian model and for the hydrogenlike atoms. In the Gaussian case the correc
the zeroth-order term are really small. Furthermore, for the Gaussian model we computed the integral overpW analytically and
the comparison of these results with the saddle-point method results also shows a very good agreement. In the
hydrogenlike atoms our results show that the corrections cannot be neglected~the difference is about 30%!. Nevertheless, the
qualitative behavior of the harmonic strength as a function of the harmonic order is completely determined by the qu
sical actionSs , which does not depend on the chosen model.

Each of the terms withS1 , S2 , S1 , andS2 in Eq. ~16! can be expanded in a series of the Bessel functions and,
introducing the Fourier components of the product of dipole moments,

(
m52`

`

Bm~t!e2 imt5S 12
i

2t

]2

]pW 2DFnŴ~ t,t;pW !pW 5pW s
, ~18!

the integral overt can be computed analytically. The final expression is cumbersome. It contains a fourfold sum with a p
of the four Bessel functions~for a similar approach see@11#, where a zero-range potential model was considered!. It is simpler
to compute the double integral in Eq.~16! numerically. In the special case of a monochromatic elliptically polarized laser fi
similarly as in@12#, one obtains

I k~nŴ !v15v2515 i (
n52`

` E
0

`

dtS p

e1 i t/2D
3/2

ei @nt2S0~t!#i nJn„Upcos2jC~t!…Bk22n~t!, ~19!



2

-
lt

ld

t

a

t
e

u
h

r
d
r
p

a
d
e

n

e
am

ke
e

te

ic

on
ac
th
th

le

ned

.
arly

nd
n is
at
me

n

54 1525HIGH-ORDER HARMONIC GENERATION IN A . . .
where now

S0~t!5~ I p1Up!t22Up~12cost!/t,

C~t!5sint22~12cost!/t. ~20!

It is important that the argument of the Bessel functionJn
depends on the polarization through a simple factor cosj.
For the linear polarization it is cos2j51 and the only differ-
ence between the zeroth-order term of our result~15! with
~18!–~20! and the result~18! from @12# is that we have the
term I 2k* @which originates from the c.c. part in Eq.~11!# and
that the sum overn goes from2` to 1`, while the result
of Ref. @12# contains only the non-negativen. For Up@1
andn,0 the factor exp$i@nt2S0(t)#% introduces a fast oscil
lation in the integral overt and the contribution to the resu
~19! from the terms withn,0 is small. Forn>0 andk,0
the Fourier componentsBk22n(t)5B2uku22n(t) are small
and therefore the contributionI 2k to the final result is small.
The conclusion is that for a high-intensity laser fie
(Up@1) and for high-order harmonics (k@1) the result of
Lewensteinet al. „Eq. ~20! in @12#… is recovered. Our exac
numerical computations@using the double integral, Eqs.~15!
and ~16!# confirm this conclusion. We compute the integr
overt from zero to infinity as a Pade´ series of integrals from
2pm to 2p(m11), m50,1,2,. . . . The series shows fas
convergence and the main contribution to the integral com
from the first return of the ionized electron to the nucle
(m50). For an elliptically polarized laser field with a hig
ellipticity ~close to circular! one has cos2j50, Jn(0)5dn,0 ,
and the sum overn in Eq. ~19! is canceled. The Fourie
components’Bk are small for high-order harmonics an
function exp@2iS0(t)# has fast oscillations. Therefore, fo
such an elliptically polarized laser field the HOHG is su
pressed, which is in agreement with the experiments@3,8#. In
the circular polarization case it can be explicitly shown th
Bk(t)50, kÞ61, and therefore no harmonics are emitte
which is in accordance with the angular momentum cons
vation.

The case of an elliptically polarized laser field was co
sidered recently@16#. The result similar to~19! was obtained
in the case of hydrogenlike atoms and transition from ths
state. The argument of the Bessel function contains the s
factor Upcos2j5Up(12«2)/(11«2) ~parameter«5tanj de-
fines polarization in Ref.@16#!. In Appendix A of @16# an
analytic form of the Fourier coefficients for the hydrogenli
atoms is presented. In the circular polarization case th
coefficients are equal to zero and no harmonic is emit
Numerical results presented in@16# confirm the conclusions
of our analysis:~i! a strong suppression of the harmon
strength with the increase of the ellipticity and~ii ! an in-
crease of this suppression with the increase of the harm
order. In@16# the propagation effects are also taken into
count. This is not considered in our paper, but we expect
the main influence of the propagation will be in the smoo
ing of the quantum interference.

III. CUTOFF LAW

The cutoff law can be obtained by applying the sadd
point method for computing the remaining integrals in~16!,
l
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Dk;E dtE dtexp$ i @kvt2Ss~ t,t!#%

3FnŴ ~ t,t!~e1 i t/2!23/2. ~21!

One obtains ]Ss(t,t)/]t50 and ]Ss(t,t)/]t2kv50,
which, according to Eqs.~10! and ~17!, gives

pW 2~ t !522I p , pW 2~ t !2pW 2~ t2t!52kv. ~22!

An expanded form of~22! is

F (
j 51,2

ajcosj j~cjsinc j2sjcosc j !G2

1F (
j 51,2

ajsinj j~cjcosc j1sjsinc j !G2

52I p /~2Up!, ~23!

kv

8Up
5 (

i 51,2
aicosj isicosc i (

j 51,2
ajcosj j cjsinc j

2 (
i 51,2

aisinj isisinc i (
j 51,2

ajsinj j cjcosc j , ~24!

where

cj~t!5cos
v jt

2
2bj~t!, sj~t!5sin

v jt

2
. ~25!

Equations~23! and ~24! depend ont through the functions
sincj(t,t) and coscj(t,t) @see Eq.~12!#, which also should
satisfy the condition sin2cj1cos2cj51. The right-hand side
of Eq. ~23! is negative, so that the solutions fort andt are
complex. In the general case the cutoff law can be obtai
by finding the maximum of the function Re(kv/8Up) under
the constraint Im(kv/8Up)50 ~see @12# for a monochro-
matic linearly polarized laser field!. This is not an easy task
For our purpose we consider only a special case of a line
polarized bichromatic laser field. In the limitI p→0, Eq.~23!
gives

(
j 51,2

aj~cjsinc j2sjcosc j !50, ~26!

so that

kv58UpS (
j 51,2

ajsjcosc j D 2

. ~27!

In this case one should find the realt andt for which kv is
maximal. We suppose that at some timet5t t ~i.e.,
t t5t2t t50) the electron tunnels into the continuum a
moves in the presence of the laser field only. The electro
most likely to emit the harmonic photon when it is back
the atomic binding potential origin. This happens at so
time t5te , i.e., after the return timete . The electron can
tunnel at different instantst t5t2t. In order to find for
which t t kv has maximum, we start from the conditio
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FIG. 1. Harmonic intensity as a function o
the harmonic order for the Gaussian model a
for v15v2 ~short-dashed line: curve 1-1!,
v252v1 ~solid line: curve 1-2, even harmonics
filled circles, odd harmonics: open triangles! and
v253v1 @curve 1-3: long-dashed line, resu
obtained using Pade´ method ~see text!; dot-
dashed line, result obtained by integrating ov
t from zero to 2p#. The other parameters
are w15w250, a15a250.5, Up520v1 , I p

513.6v1 (v151 eV).
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]kv(te ,t t)/]t t50. In order to apply this condition one has
expresskv, Eq. ~27!, through the variablet t5t2t. The
result is

kv~ te ,t t!52UpH (
j 51,2

aj@sin~v j te1w j !2sin~v j t t1w j !#J 2

.

~28!

Similarly, the condition~26! can be expressed as

(
j 51,2

aj@cos~v j te1w j !2cos~v j t t1w j !

1v j~ te2t t!sin~v j t t1w j !]/v j50. ~29!

Differentiating this equation with respect tot t , we find the
condition for ]te /]t t , which we will use to compute
](kv)/]t t50. The last equation gives the following cond
tion ~written again through our variablesc andt):

(
j 51,2

ajv j~sjsinc j2cjcosc j !50. ~30!

Equations~26! and~30! represent a system of two equatio
for two real variablest and t, which can be easily solved
Introducing these solutions into Eq.~27! one obtains the
looked-for (kv)max. We will use this method in the nex
section in order to predict the cutoff position. From Eqs.~26!
and ~30! it follows that the cutoff position depends on th
laser field components’ intensities (a1 ,a2), frequencies
(v1 ,v2), and phases (w1 ,w2).

It should be mentioned that Eqs.~26!–~30! can be ob-
tained using the classical model developed by Kulander
co-workers@18# ~see also@19#!. In this case we start from th
classical equation of motionmẍ(t)5eE(t) and the model
assumption that att5t t the electron is set free in the con
tinuum with the velocity zero@ ẋ(t t)50#. We obtain an equa
d

tion equivalent to~26!. The harmonic photon energykv cor-
responds to the kinetic energyEk and the condition~30! can
be obtained from the condition]Ek /]t t50. As a conclusion
we can say that the result for the cutoff law obtained us
the classical model is equivalent to the semiclassical resu
the limit when the atomic ionization potential tends to ze

IV. NUMERICAL RESULTS

Harmonic strength depends on many parameters: freq
ciesv1 andv2 , vector potential amplitudeA0 ~i.e., the pon-
deromotive potentialUp5A0

2/4), relative amplitudesa1 and
a2 , phasesw1 and w2 ~usually it is enough to analyze th
dependence ona1 /a2 and relative phasew5w12w2), polar-

ization parametersj1 and j2 , direction nŴ on which one

projects dipole moment ~parameters nx5eŴ x•nŴ and

ny5eŴ y•nŴ ) and ionization potentialI p ~or other parameters
that characterize the model chosen to describe the ato!.
Experiments@3,8# and theory„see factor cos2j in Eq. ~19!
and @16#… showed that the harmonic strength is the high
for a linearly polarized laser field. Taking this into accou
and in order to decrease the number of parameters we
lyze numerically only the case of a linearly polarized bichr

matic laser field. We computeDk(eŴ x) by applying formulas
~15!–~17!, which are now simplified (j j50). We first ana-
lyze the results presented in Fig. 1. The harmonic intensity
a function of the harmonic order is shown for three cas
v15v25v ~short-dashed line: curve 1-1!, v15v,
v252v ~solid line: curve 1-2!, andv15v, v253v ~long-
dashed line: curve 1-3!. In all three cases the phases are ze
(w15w250), relative amplitudes are a15a250.5,
Up520v, I p513.6v, and a Gaussian model@12# is chosen.
The result forv15v2 is in an agreement with the previou
result @12#, except for the low-order harmonics@see com-
ments below Eq.~20!#. For v252v1 we observe even and
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FIG. 2. Harmonic intensity~a!
~curves 1–3! and phase~b! as
functions of the ponderomotive
potential Up for the v253v1

case. Harmonic intensity for the
monochromatic case@lower curve:
1-1 at ~a!# is also shown. The
hydrogenlike atom model is use
and w15w250, a15a250.5, I p

513.6v1 (v151 eV).
ea

od
.
w

r

ic
te

is

-

y

ic

e of

d
ith

-

ff
en-
nce

the
th

of
he

ted
ng
is,
odd harmonics as one can expect from the symmetry br
ing @2,5#. The intensities of the even harmonics~filled
circles! are of the same magnitude as the intensity of the
harmonics~open triangles! and they follow the same curve
The harmonic intensity in the plateau region is about t
orders of magnitude greater in thev252v1 than in the
v15v2 case. The cutoff is shifted towards the lower ha
monics. This is expected because, as the solution of Eqs.~26!
and ~30!, we obtained max(kv)v53.17Up1I p577v and
max(kv)v22v52.52Up1I p564v. In the v253v1 case the
symmetry is conserved and we have only odd harmon
The harmonic intensity is four orders of magnitude grea
than in thev15v2 case and the position of the cutoff
shifted toward the lower harmonics@max(kv)v23v

52.24Up1I p558.4v→k557#. We compared the exact re
sult ~integration overt from zero to infinity is done using the
Padémethod, long-dashed line! and the result obtained b
integrating over the first return (tP@0,2p#, dot-dashed line!.
The difference between these two results is small, wh
shows that the effect of the electron rescattering~see Ref.
@12#! is small in this case.
k-

d

o

-

s.
r

h

As the next result we chose to present the dependenc
the harmonic intensity and phase~for a fixed harmonic! on
the ponderomotive potentialUp . These results are presente
in Fig. 2 and correspond to hydrogenlike atoms w
I p513.6v, v253v1 , w15w250, a15a250.5, and
k535. The upper harmonic intensity curve at Fig. 2~a! cor-
responds to thev253v1 case, while the lower one corre
sponds to thev15v2 case. With the increase ofUp the
harmonic intensity first rapidly increases. After this cuto
region there is a plateau region in which the harmonic int
sity saturates and is dominated by the quantum interfere
effect. The interference oscillations are more rapid in
v15v2 case. Figure 2~b! shows the dependence of the 35
harmonic phase onUp for the v253v1 case. In the cutoff
region the phase decreases linearly with the increase
Up . The slope of the curve is much smaller than in t
monochromatic case where it is'23.2 @17#. The explana-
tion of this slope in the monochromatic case is connec
with the approximate value of the action acquired alo
the most relevant saddle-point trajectory, that
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FIG. 3. Harmonic intensity
as a function of the harmonic
order for the Gaussian
model, v253v1 , a15a250.5,
Up520v1 , I p513.6v1 , v151
eV, and for the different values
of the relative phasew5w12w2:
~a! w5$0,3p/2,p/2% and ~b!
w5$p,p/3,2p/3%.
ic
ple

al
-
nic

ic
nce
os-
it is
Ss'Upts1•••, so that the harmonic phasef52Ss
'24.086Up /v „see @17# and our Eq. ~20! with
vts54.086…. An even better estimation of the harmon
phase can be obtained if one takes into account the com
monochromatic stationary action

Ss'Upts2
2Up

v

12cosvts

vts

1
Up

v F2~12cosvts!

vts
2sinvtsGcosv~2ts2ts!

'3.31Up /v,

where cosv(2ts2ts)50. In the bichromaticv253v1 case,
te

according to Eqs.~13! and ~14!, it is

Ss~ ts ,ts!'S0~ts!1 (
j 51,2

Sj~ts!cos2c j~ ts ,ts!

1 (
n56

Sn~ts!coscn~ ts ,ts!

'1.226Up /v,

where we usedvts53.540 andv(2ts2ts)53.8466 ~ob-
tained by solving the cutoff law equations!. The line
f521.226Up /v is in poorer agreement with our numeric
results (fnum'20.84Up /v) than it was in the monochro
matic case. This indicates that the method of the harmo
phase estimation from@17# is less accurate in the bichromat
v253v1 case. In the plateau region, at each interfere
oscillation of the harmonic intensity, the phase also has
cillation. Moreover, the phase changes more rapidly and
difficult to determine the slope.
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FIG. 4. Harmonic intensity as
a function of the harmonic orde
for monochromatic~v51.664 eV,
dashed line, open circles! and
bichromatic v23v ~full line,
filled triangles! laser fields. Other
parameters correspond to the e
periment of Kondo et al. ~see
text!.
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The next example that we present concerns the de
dence of the harmonic intensity on the relative pha
w5w12w2 for the v253v1 case. For a fixed harmonic or
der the harmonic intensity changes rapidly with the cha
of the relative phasew over the interval@0,2p#. We will not
present these results, but it should be mentioned that
general conclusion of our analysis is that the behavior of
harmonic intensity with the change of the relative phase d
not depend on the chosen atomic model~hydrogenlike or
Gaussian!. This behavior is completely determined by th
quasiclassical actionSs . In Fig. 3 we present the dependen
of the harmonic intensity on the harmonic order for the fix
relative phases: w5$0,3p/2,p/2% @Fig. 3~a!# and
w5$p,p/3,2p/3% @Fig. 3~b!#. From these figures one ca
see that both the height of the plateau and the position of
cutoff change with the change ofw. The cutoff position is
slightly shifted toward the higher harmonics forw53p/2
and w5p in comparison with thew50 case, while for
w5p/3, p/2, and 2p/3 the shift is toward the lower har
monics. This is in agreement with the solution of Eqs.~26!
and~30!, which gives the following factors in the cutoff law
equation:

~kv!max5cUp1I p :

c5$2.24,2.716,2.07,2.55,1.86,2.23%

for w5$0,3p/2,p/2,p,p/3,2p/3%. From Fig. 3 it follows
that by changing the relative phase it is possible to con
the height of the plateau. For example, the intensity of
harmonics of order 21–39 is the highest forw53p/2 and
w5p, while for k'41251 it is the highest forw5p/2 and
w52p/3.

In order to check the validity of our theory we compu
the harmonic spectrum for recent experiments with
bichromatic laser field@5,7#. The comparison can be onl
qualitative because we are not able to include the propa
tion effects@16,17#. In the first experiment Kondoet al. @5#
n-
e

e

he
e
s

e

l
e

e

a-

used a Ti:sapphire laser (l5745 nm,v51.664 eV) and its
third harmonics. The laser field intensity wa
I v5531014 W/cm2 ~so thatUp515.59v), the ratio of the
electric-field strengths wasE3v /Ev50.3 ~and therefore our
parameters a3v50.1av), and Ne atoms were use
(I p521.6 eV512.98v, so that the Keldysh paramete
g50.645,1). The cutoff law for the laser field with only
one frequency v and a15a250.5 is
max(kv)v5Ip13.17Up562.4v, while the bichromatic cut-
off law for the mentioned experimental parameters
max(kv)v23v5Ip13.102Up561.34v. The harmonic spec-
trum ~harmonic intensity as a function of the harmonic ord!
for these two cases is shown in Fig. 4. One can observe
~i! the cutoff for both spectra is approximately at the sa
position '63v and ~ii ! the height of the plateau in th
v23v case is one order of magnitude higher. Such an
hancement of the intensity is really observed in the exp
ment. Besides, the position of the cutoff in the experimen
the same forv andv23v cases, but the cutoff is relativel
low ('I p11.8Up ; as explained in@5#, this is probably due
to the tight focusing!.

In the experiment by Eichmannet al. @7#, a high-power
Ti:sapphire laser~v51.6 eV,I v51.3331014 W/cm2) and its
second harmonic (I 2v50.5831014 W/cm2, a250.33a1)
were used. The ionization potential of Ar i
I p515.76 eV59.85v (Upv

54.664v, g'1). For the cutoff

laws we obtained max(kv)v5Ip13.17Upv
524.63v,

max(kv)v22v5Ip14.508Upv
530.88v. Numerical results

presented in Fig. 5 are in agreement with these positio
The plateau height for thev22v case is almost two order
of magnitude higher and the intensities of the even and
odd harmonics are of the same order. In@7# the experimental
results were compared with the numerical calculations us
a zero-range potential model~see also@11#!, but without tak-
ing into account the propagation of the harmonics throu
the medium. We presented our results only as an illustrat
with no intention for quantitative comparison with th
theory and experiment.
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FIG. 5. Harmonic intensity as
a function of the harmonic orde
for monochromatic~v51.6 eV,
dashed line, open circles! and
bichromatic v22v ~full line,
filled triangles! laser fields. Other
parameters correspond to the e
periment of Eichmannet al. ~see
text!.
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V. CONCLUSIONS

We generalized the quantum theory of HOHG of Lewe
steinet al. @12# by a low-frequency laser field to the case
a bichromatic elliptically polarized laser field. By applyin
the saddle-point method for integration over the impulsepW
we expressed the harmonic strength as a double integral
the return timet and the timet @Eqs. ~15!–~17!#. Our nu-
merical results show that the behavior of the harmo
strength depends mainly on the quasiclassical ac
Ss(t,t), Eqs.~13! and ~14!. In the bichromatic caseSs con-
tains interference terms that depend on the frequency
v11v2 and the frequency differencev12v2 . The polariza-
tion parameters come into the action only through the fac
cos2jj , cos(j11j2), and cos(j12j2). This is important be-
cause, in the special case of a laser field with the tim
dependent ellipticity@6#, which is constructed using two lin
early polarized perpendicular fields, one hasj150 and
j25p/2. This givesS650 and the interference part of th
action disappears, which simplifies the problem. The la
field with the time-dependent ellipticity is important for ob
taining subfemtosecond laser pulses@6#. We will consider
this problem elsewhere. For a monochromatic laser field
tor cos2j is in the argument of the Bessel function in E
~19!, which implies that with the increase of the ellipticit
the harmonic strength decreases. This is in agreement
experiments@3,8# and theory@16#.

By further applying the saddle-point method to the
maining integrals overt and t we obtained the cutoff law
Eqs.~23! and ~24!. In the special case of a bichromatic lin
early polarized laser field and in the limit of the vanishi
ionization potential the cutoff law can be obtained as
solution of Eqs.~26! and ~30! with ~27!. This solution can
also be obtained using the classical model@18,19#.

The conclusions of our numerical analysis are the follo
-

er

c
n

m

rs

-

r

c-

ith

-

e

-

ing: ~i! the harmonic intensity is much greater in the bichr
matic case~for v252v1 it is greater by about two order
and forv253v1 by four orders of magnitude!; ~ii ! the cutoff
position is shifted toward the lower harmonics;~iii ! in the
v252v1 case there are both even and odd harmonics
they are of the same intensity;~iv! the harmonic plateau in
the bichromatic case is not constant as in the monochrom
case, but has its own structure~see Fig. 1!. In the v252v1
case it looks like a double plateau, the first part of which
higher ~for low harmonics!. For thev253v1 case the con-
version efficiency is much higher for low-energy harmon
~in the first third of the plateau!; ~v! the effect of the electron
rescattering is small in the bichromatic case;~vi! the har-
monic intensity as the function of the ponderomotive pote
tial has similar behavior to the monochromatic case, but w
weaker interference oscillations;~vii ! the phase of the in-
duced atomic dipole moment exhibits a quasilinear dep
dence on the ponderomotive potential, similar to the mo
chromatic case, but with a lower slope;~viii ! the behavior of
the harmonic intensity with the change of the relative ph
does not depend on the chosen atomic model;~ix! the posi-
tion of the cutoff is slightly shifted in the case when th
relative phase is different from zero~in comparison with the
position for w50); ~x! by changing the relative phase it
possible to control the height of the harmonic intensity p
teau. Finally, the qualitative predictions of our theory are
agreement with recent experiments. For a quantitative an
sis one should take into account phase matching and pr
gation effects.
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A. L’Huillier, and K. Rza̧żewski ~Plenum, New York, 1993!.

@3# K. S. Budil, P. Salie`res, A. L’Huillier, T. Ditmire, and M. D.
Perry, Phys. Rev. A48, R3437~1993!.

@4# M. D. Perry and J. K. Crane, Phys. Rev. A48, R4051~1993!.
@5# K. Kondo, Y. Nabekawa, and S. Watanabe, inHigh Field In-

teractions and Short Wavelength Generation, OSA Technical
Digest Series Vol. 16~Optical Society of America, Washing
ton, DC, 1994!, pp. 236–8; S. Watanabe, K. Kondo, Y. Na
bekawa, A. Sagisaka, and Y. Kobayashi, Phys. Rev. Lett.73,
2692 ~1994!.

@6# P. B. Corcum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett.19,
1870 ~1994!; M. Ivanov, P. B. Corcum, T. Zuo, and A. Ban
drauk, Phys. Rev. Lett.74, 2993~1995!.

@7# H. Eichmann, A. Egbert, S. Nolte, C. Momma, B. Welleg
hausen, W. Becker, S. Long, and J. K. McIver, Phys. Rev
51, R3414~1995!.

@8# N. H. Burnett, C. Kan, and P. B. Corcum, Phys. Rev. A51,
R3418~1995!.

@9# F. A. Weihe, S. K. Dutta, G. Korn, D. Du, P. H. Bucksbaum
and P. L. Shkolnikov, Phys. Rev. A51, R3433~1995!.
@10# T. Zuo, A. D. Bandrauk, M. Ivanov, and P. B. Corcum, Phy

Rev. A 51, 3991~1995!.
@11# S. Long, W. Becker, and J. K. McIver, Phys. Rev. A52, 2262

~1995!.
@12# M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and

P. B. Corcum, Phys. Rev. A49, 2117~1994!; A. L’Huillier, M.
Lewenstein, P. Salie`res, Ph. Balcou, M. Yu. Ivanov, J. Lars
son, and C. G. Wahlstrom,ibid. 48, R3433~1993!.

@13# P. B. Corkum, Phys. Rev. Lett.71, 1994~1993!.
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