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High-order harmonic generation in a bichromatic elliptically polarized laser field
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The quantum theory of high-order harmonic generation by a low-frequency laser field is generalized to the
case of a bichromatic elliptically polarized laser field. The quasiclassical cutoff law is analyzed. Numerical
results for a linearly polarized bichromatic laser field are presented and analyzed for different laser field
frequencies, intensities, and relative phases. Harmonic intensity is many orders of magnitude higher in the
bichromatic case than in the monochromatic one, but the cutoff is shifted toward the lower harmonics. The
plateau height can be controlled by changing the relative phase of the fields. A qualitative agreement with the
recent experiments is showfi81050-294{6)09207-4

PACS numbegp): 42.50.Hz, 42.65.Ky

I. INTRODUCTION . ~

E(t) = 2 on[éxC()fjcoqut‘f' QDJ)
High-order harmonic generatiofHOHG) is one of the =12
major topics of multiphoton physidd,2]. During the inter-
action with a short-pulse intense laser atoms emit coherent
radiation at frequencies that are multiples of the laser frewherew;, Eo;, and¢j, j=1,2, are the laser field compo-

quency w. The emitted harmonics are characterized by ayents’ frequency, amplitude, and phase, respectiviglyand
rapid drop at low orders, followed by a broad plateau where: are the unit polarization vectors and tj#h component

all the harmonics have the same strength and a sharp cutory ¢ e Ul . B
at frequencykw~1,+3U,, wherel, is the atomic ioniza- polarization is characterized by the angie(for £=0 po-

. . PYAN . larization is linear, while fog; = /4 it is circular; ellipticit
t|on'potent|a| an_dJ F’:AFM (qu.IL:j) |s.t2e ﬁlectron ponderot Ican be defined as the ratio 51‘ the electric-field strer?gth )c/)f the
Amplitudeg. 1n the last fow years the possibily of control TINCT [0 he major axis of the elipseR ~E,/E,
of HOHG using elliptically polarized laser field or using two =tangj). The vector potential of the laser field is
independent laser fields has attract special attefier1]]. - t.
Recently, Lewensteiret al. [12] proposed a fully quantum A(t):_ft E(t)dt’
theory of HOHG by a low-frequency laser field. Their results 0
confirmed the two-step semiclassical picture of HOHG, - .
pp. 95-110 and13]) and are valid in the tunneling regime = _AO.:ZlZai[excofis'n(wiH‘PJ)
(Keldysh parametey= (1 ,/2U,)*><1 [14]). The HOHG in =
the multiphoton regime>1) was considered by other au-
thors(see, for exampld,15] and references thergirLewen-
stein et al. [12] presented results for a monochromatic lin- where we extract the vector potential amplitublg and in-
early polarized laser field. These results can be generalized tecoduce relative  amplitudesa; (Agj=Eg;/wj=Asgq;,
the case of a bichromatic elliptically polarized laser field.j=1,2).t, is the initial time for whichA,= 0. Generalization
This is the first aim of our paper. In Sec. Il we present gen-of the results by Lewensteist al. [12] to the laser field
eral theory. The generalized cutoff law and its classical limitdefined by Eqs(1) and(2) is straightforward and we will not
are presented in Sec. Ill. Numerical results and comparisorepeat details of derivation. It should be mentioned that their
with experiments for a bichromatic linearly polarized lasertheory (and therefore our generalization of this theocan
field are given in Sec. IV and finally Sec. V contains thebe applied when there are no intermediate resonances and in
conclusions. the tunneling regimeéKeldysh parametety<<1). They ne-
glected the contribution to the evolution of the system of all
II. THEORY bound states except the ground state. The generali_zation_to
the presence of other bound states and to the laser field with
A bichromatic elliptically polarized laser field is de- the time-dependent pulse envelope can also be done and we
scribed by the electric field vector plan to consider these problems in the near future. We sup-

+6,sing;sin(w;t+ @)1, (1)

—éysingjcos(ij @], (2
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54 HIGH-ORDER HARMONIC GENERATION IN A ... 1523
pose that frequencie®,; and w, are commensurate, i.e., . t ..
w1=Pw, w,=qw With p,q integers. The harmonic strength S(t,7;p)= th dt'{3[p—A(t")]*+1p}. (6)
D, is defined as the Fourier component of the time- 7
dependent dipole moment
~ Tdt ' IP ﬁEq. 542 the integration is over the return time.
Dk(ﬁ)zf ?Dir(t)e'k‘”t, T=27lw. (3)  d(p)=(p|x|0) denotes the atomic dipole matrix element for
0 the bound-free transition. The explicit form dfp) for the
We use the index instead of X+1 (see[12]) because in Gaussian model and for hydrogenlike atoms is givefiE].
the presence of a bichromatic laser field generation of bottn the general case the integral oyercan be solved using
even and odd harmonic is possiblB:(t) is the time- the saddle-point method. If the exponent of the subintegral
dependent dipole moment along an arbitrary direcfiofin ~ function (in our case it is the actios) is proportional to a
a.u.; c.c. denotes a complex conjugate )part large parametex, then we search for a stationary point of
S and obtain a power series inxl/In [12] it was supposed
[t=to - s gy that the ponderomotive potenti&l,, ionization potential
Da(t) =i J; de d*pFi(t,m;p)e S P rce., (4) lp, and v%locities are Iarge. In that paper therepwas no ex-
plicit expansion parameter and no correction to the zeroth-
where F(t,7;p) denotes the product of dipole matrix ele- Order term is obtained. We will present this here. If one does

ments not introduce the atomic system of units, then, instead of
S, one obtainsS/h, where?: is the Planck constant devided
Fit,mp)=A-d* (F—A)E(t—7)-d(@E—A(t—1)), by 27. If we suppose that is small (this is a variant of

(5) the WBK methogl and use ¥ as a large parameter,
then the solution for the triple integral fd3p
andS(t, 7;p) is the quasiclassical action =[Z.dpJZ..dpySZ..dp, takes the form,

—i(ny+ny+n,)m/2
e iS(t, P/ e xT Ty £ (22120

nx,nyynz=0(ZT/ﬁ)nXJrnYman! ny!n,! n (t,7:P)p=p,, ™
where index (2,,2n,,2n,) denotes partial derivatives ovex, p,, andp,, respectively. The zeroth-order term and the
first-order corrections are

(92

o h .
—istt,mp)h| 1 i _ __|E. hY - -
oISt (1 |27&52)Fn(t,r,p)p_ps. ®

The ps is the solution of the equatioRi;S(t,7;p) =0, which is

- 1t o
pa(t,m)= | dUA(t"). ©)
In this case the stationary action(is a.u)
- - 1t .
SS(IIT)ES(tiT;pS):IpT_ %pg(tlT)—’_EJ dt’Az(t,)a (10)
t—7
andDf(t) is given by €—0", to— —x)
w 32 sitn P g2
R —i —iSg(t, T _ A cmN . -
Di(t) Ifo dr i © (1 - aﬁz)F,,(t,7-,p)p=ps+c.c. (11

Let us introduce the following notation:
§.=6%8, wiTor1tw;, @LT 1% @,

T

l//nzwn<t_ E

+o,, n=12:*. (12)

After some elementary calculations we obtain the following expression for the quasiclassical action:
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S(LD=S(n)+ 2 S()cosy(tr)+ 2, S(r)coshi(t. ), (13
where
a’ 2(1—cosw;7)
so(r)zlpﬁuu,,j:lz—j T |

a?[Z(l—co&)jr)

Sj(r)zupcoszj—J —sinw;7|, j=1,2,
wj ij
1  own7 1 Wnr T
S\(7)=—4nU,a,8,c0%, N—— + > n'cos—|, n==. (14)

—si
o, 2 WiWLT 2

n'==+

In the case of a linearly polarized monochromatic laser field the interference S&rmisappear and the result of papée]
can be easily reproduced. In the general case the final result for the harmonic strength is

Dy() = (A)+ 1% (), (15)
where

T
e+iTl2

|k(ﬁ):if:dr

xexp[i

According to Eq.(5) termsps—A(t) and ps— A(t— 7) appear inF;(t,7;ps). They can be written as

3 —iSg(7) Tdt i SN
e O? 1—5&—62 Fﬁ(t!T'p)p=pS

kot— 2 Sj(r)cos2p;(t,7)— >, Sy(7)cosgfy(t,7)

j=12

] . (16)

%(t’)zﬁs(t,r)—ﬁ(t')=A0; a,{8.costj[sin(w;t’ + ¢;) — bj(7)sing;(t,7) ]+ &,siné [ — cog wjt’ + ¢;) +bj(7)cosy;(t, 7)1},
17

with b; () = (2/w;7)sin(w;72). The explicit form ofF ;(t,7;p) can be obtained using the expressiondgp) from [12], but
we will not present it here. The conclusion is that the corrections to the resuli,{ot) depend on the chosen model. We

computed numericall(7) for the Gaussian model and for the hydrogenlike atoms. In the Gaussian case the corrections to
the zeroth-order term are really small. Furthermore, for the Gaussian model we computed the integramalgtically and
the comparison of these results with the saddle-point method results also shows a very good agreement. In the case of
hydrogenlike atoms our results show that the corrections cannot be nedlinetatifference is about 30pNevertheless, the
gualitative behavior of the harmonic strength as a function of the harmonic order is completely determined by the quasiclas-
sical actionS;, which does not depend on the chosen model.

Each of the terms witl§;, S,, S;, andS_ in Eq. (16) can be expanded in a series of the Bessel functions and, after
introducing the Fourier components of the product of dipole moments,

i\ L
= 1_2_76_52 Fa(t,7p)p=p, (18

the integral ovet can be computed analytically. The final expression is cumbersome. It contains a fourfold sum with a product
of the four Bessel functionor a similar approach sdé 1], where a zero-range potential model was considetes simpler

to compute the double integral in Ed.6) numerically. In the special case of a monochromatic elliptically polarized laser field,
similarly as in[12], one obtains

o . 3/2
(M) wy-1=1 2 Odr( ) el Sol71i"J (U ;c0826C(7))By—2n(7), (19)

n=-—w

e+iT/2
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where now

DKNJdTJ dtexp{i[ kwt—S(t,7)]}

So(m)=(Ip+Up)7—2U,(1—cosr)/,
XFi(t,7)(e+ir/2)~%2 (21)

C(7)=sint—2(1—cosr)/t. (20 )

One obtains dS4(t,7)/d7=0 and dS(t,7)/dt—kw=0,
It is important that the argument of the Bessel functign ~ Which, according to Eq€10) and(17), gives
depends on the polarization through a simple factor £o0s2 - - -5
For the linear polarization it is cog21 and the only differ- m()==2l,, 7()—7(t—7)=2ko. (22
ence between the zeroth-order term of our re€l with )
(18—(20) and the result18) from [12] is that we have the An expanded form of22) is
term!*, [which originates from the c.c. part in E4.1)] and
that the sum oven goes from— to +<, while the result [ > a,Cost;(¢;siny; — sjcosy;)
of Ref. [12] contains only the non-negative. For Uy>1 j=12
andn<0 the factor exfilnT—Sy(7)]} introduces a fast oscil-
lation in the integral over and the contribution to the result +
(19) from the terms with<0 is small. Fom=0 andk<0
the Fourier componentBy_,,(7) =B _|_2n(7) are small
and therefore the contributidn  to the final result is small. =—1,/(2Up), (23
The conclusion is that for a high-intensity laser field
(U,>1) and for high-order harmonick$ 1) the result of kw _
Lewensteinet al. (Eq. (20) in [12]) is recovered. Our exact W:i;m aicosgisicosﬂij;”ajcosgjcjsmzpj
numerical computationgising the double integral, Eq&l5) P ’ '
and (16)] confirm this conclusion. We compute the integral ) ) )
over r from zero to infinity as a Padgeries of integrals from - i:21,2 aismgisismwij;m a;singjc;cosy;, (24)
27m to 2r(m+1), m=0,1,2,.... Theseries shows fast
convergence and the main contribution to the integral comeghere
from the first return of the ionized electron to the nucleus
(m=0). For an elliptically polarized laser field with a high ;T T
ellipticity (close to circular one has cos2=0, J,(0)= 6,0, ¢j(1)=cos—o——bj(7), sj(7)=sin——. (25)
and the sum oven in Eq. (19) is canceled. The Fourier

components'By_are small for high-order harmonics and g, ations(23) and (24) depend ort through the functions
function exp—iSy(7)] has fast oscillations. Therefore, for siny;(t,7) and cogj(t,7) [see Eq.(12)], which also should

such an elliptically polarized laser field the HOHG is sup-gasisty the condition sfy;+cogy;=1. The right-hand side
pressed, which is in agreement with the experimg®i@]. In ¢ Eq. (23) is negative, so that the solutions foand 7 are

the circular polarization case it can be expll.cnly shown thatcomplex. In the general case the cutoff law can be obtained
B (7)=0, k# =1, and therefore no harmonics are emitted,

hich is | i h th | by finding the maximum of the function Re®/8U ) under
yatli(c:)n is in accordance with the angular momentum consery . -onstraint ImKw/8U,)=0 (see[12] for a monochro-

The case of an elliptically polarized laser field was con matic linearly polarized laser fieldThis is not an easy task.
. L ; “For our purpose we consider only a special case of a linearl
sidered recently16]. The result similar tq19) was obtained burp yasp y

in the case of hydrogenlike atoms and transition fromghe pic\)llzgzed bichromatic laser field. In the li§—0, Eq.(23)

state. The argument of the Bessel function contains the san‘(lge

factor Upcos&f:Up(l—sz)/(lJrsz) (parameters =tané de-

fines polanzatlon in Ref_[16]). In_ Append|x A of [16] an Z aj(c;sing; —s;cosy;) =0, (26)

analytic form of the Fourier coefficients for the hydrogenlike =12

atoms is presented. In the circular polarization case these

coefficients are equal to zero and no harmonic is emitted>° that

Numerical results presented [ii6] confirm the conclusions 2

of our analysis:(i) a strong suppression of the harmonic kw=8U ( > aAS.cosﬁ.) ) (27)

strength with the increase of the ellipticity ard) an in- Plise .

crease of this suppression with the increase of the harmonic

order. In[16] the propagation effects are also taken into ac-In this case one should find the readnd = for which ke is

count. This is not considered in our paper, but we expect thahaximal. We suppose that at some tinte=t; (i.e.,

the main influence of the propagation will be in the smooth-7=t—t;=0) the electron tunnels into the continuum and

ing of the quantum interference. moves in the presence of the laser field only. The electron is

most likely to emit the harmonic photon when it is back at

the atomic binding potential origin. This happens at some

time t=t,, i.e., after the return time,. The electron can
The cutoff law can be obtained by applying the saddletunnel at different instant$,=t— 7. In order to find for

point method for computing the remaining integralg 1%), which t; ko has maximum, we start from the condition

2

2

j:zlz ajS|n§j(CjC03ﬂj+Sj‘S|nlﬂj)

Ill. CUTOFF LAW
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dkw(te,ty)/dt;=0. In order to apply this condition one has to tion equivalent tq26). The harmonic photon enerdyo cor-

expresskw, Eq. (27), through the variabld,=t— 7. The responds to the kinetic ener@y, and the conditiof30) can

result is be obtained from the conditiofE, /Jt;=0. As a conclusion
we can say that the result for the cutoff law obtained using

: : the classical model is equivalent to the semiclassical result in
ko(te,t)=2U, sz aj[sinwjte+ ¢j) — sin(w;t+ ¢))] q

=, ' the limit when the atomic ionization potential tends to zero.
(28)
Similarly, the condition(26) can be expressed as IV. NUMERICAL RESULTS
Harmonic strength depends on many parameters: frequen-
1:21,2 aj[cog wjtet @) — cog wjti+ ¢)) ciesw, andw,, vector potential amplitudé, (i.e., the pon-

deromotive potentiaUp=A§/4), relative amplitudes; and
a,, phasesp; and ¢, (usually it is enough to analyze the
dependence oa, /a, and relative phase = ¢, — ¢,), polar-

Differentiating this equation with respect tp, we find the ization parameters; and &,, direction i on which one

condition for dt./at,, which_ we_wiII use to compute projects dipole moment (parameters nxz”éx,ﬁ and
d(kw)/at,=0. The last equation gives the following condi- 3

tion (written again through our variables and 7):

+wj(te—tt)sin(wjtt+(pj)]/w]-=O. (29)

nyzéyoﬁ) and ionization potential , (or other parameters
that characterize the model chosen to describe the )atom
Experimentg 3,8] and theory(see factor cosin Eq. (19)

> ao;(sjsing;—c;cosp;) =0. (300 and[16]) showed that the harmonic strength is the highest
=12 for a linearly polarized laser field. Taking this into account

Equations(26) and (30) represent a system of two equations and in ordgr to decrease the numb_er of param(_eters we ana-
for two real variableg and 7, which can be easily solved. lyze numerically only the case oan linearly polarized bichro-
Introducing these solutions into E@27) one obtains the matic laser field. We compute(&,) by applying formulas
looked-for Kw)max. We will use this method in the next (15—(17), which are now simplified §=0). We first ana-
section in order to predict the cutoff position. From E@8) lyze the results presented in Fig. 1. The harmonic intensity as
and (30) it follows that the cutoff position depends on the a function of the harmonic order is shown for three cases:
laser field components’ intensitiesa;(,a,), frequencies w;=w,=w (short-dashed line: curve 11 w;=w,
(wq,w5), and phasesd; ,¢,). w,=2w (solid line: curve 1-2 andw,= 0, w,=3w (long-

It should be mentioned that Eq&26)—(30) can be ob- dashed line: curve 133In all three cases the phases are zero
tained using the classical model developed by Kulander anfip,=¢,=0), relative amplitudes area;=a,=0.5,
co-workerd 18] (see als¢19)). In this case we start from the U,=20w, | ,=13.6w, and a Gaussian modgl?2] is chosen.
classical equation of motiomx(t)=eE(t) and the model The result forw;=w, is in an agreement with the previous
assumption that at=t; the electron is set free in the con- result[12], except for the low-order harmoni¢see com-
tinuum with the velocity zerx(t,) =0]. We obtain an equa- ments below Eq(20)]. For w,=2w; we observe even and
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odd harmonics as one can expect from the symmetry break- As the next result we chose to present the dependence of
ing [2,5]. The intensities of the even harmoni¢Blled  the harmonic intensity and phager a fixed harmonigon
circles are of the same magnitude as the intensity of the odghe ponderomotive potentiél,. These results are presented
harmonics(open trianglesand they follow the same curve. iy Fig. 2 and correspond to hydrogenlike atoms with
The harmonic intensity in the plateau region is about tW0|p=13.6w, w,=3w;, ¢1=¢,=0, a,=a,=0.5, and

orders of magnitude greater in the,=2w, than in the L s . . )
w1=w, case. The cutoff is shifted towards the lower har—k_35' The upper harmonic mtens_lty curve at Figa)acor
responds to thew,=3w; case, while the lower one corre-

monics. This is expected because, as the solution of (E5. . .
and (30, we obtained ma(),=3.11U,+|,=77w and sponds_to. thewllzwg case. WI'[.h the increase dﬂp the
Maxke),2,=2.520 ,+ 1 ,=64w. In the w,=30, case the harrnomc mtgnsny first rapujly increases. After thIS' qutoff
symmetry is conserved and we have only odd harmonicd€9i0n there is a plgteau region in which the harmpmc inten-
The harmonic intensity is four orders of magnitude greateSity Saturates and is dominated by the quantum interference
than in thew;=w, case and the position of the cutoff is €ffect. The interference oscillations are more rapid in the
shifted toward the lower harmonics|maxke),_s, @1~ @2 case. Figure @) shows the dependence of the 35th
=2.240,+1,=58.40—k="57]. We compared the exact re- harmonic phase o), for the w,=3w; case. In the cutoff
sult (integration overr from zero to infinity is done using the region the phase decreases linearly with the increase of
Pademethod, long-dashed lineand the result obtained by U,. The slope of the curve is much smaller than in the
integrating over the first returnre [0,277], dot-dashed line  monochromatic case where it i§—3.2[17]. The explana-
The difference between these two results is small, whichion of this slope in the monochromatic case is connected
shows that the effect of the electron rescatterisge Ref. with the approximate value of the action acquired along
[12]) is small in this case. the most relevant saddle-point trajectory, that s,
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Se~U,7s+ -+, so that the harmonic phase=-S; according to Eqs(13) and(14), it is
~—4.088J,/w (see [17] and our Eg. (200 with
wTs=4.089. An even better estimation of the harmonic Ss(ts:Ts)*So(Ts)lezSj(Ts)COSZde(ts,Ts)
i=1

phase can be obtained if one takes into account the complete
monochromatic stationary action

+ 2 S(70)c08hi(ts, 7o)
2U, 1—cosw s -

Ss=Ups ) WTg ~1.228J,/ o,
where we usedw7,=3.540 andw(2t;— 7¢) = 3.8466 (ob-
Up[2(1-coswry) tained by solving the cutoff law equationsThe line
+ [P T — — Sinw 75 |COS (2t — 7¢) ¢=—1.228J,/w is in poorer agreement with our numerical
s results @nym~—0.84J,/w) than it was in the monochro-
matic case. This indicates that the method of the harmonic
phase estimation frofl 7] is less accurate in the bichromatic
~3.3W,/w, w,=3w, case. In the plateau region, at each interference

oscillation of the harmonic intensity, the phase also has os-

) ) cillation. Moreover, the phase changes more rapidly and it is
where cos(2t;—79)=0. In the bichromaticw,=3w; case, difficult to determine the slope.
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The next example that we present concerns the depemrsed a Ti:sapphire lasex €745 nm,w=1.664 eV) and its
dence of the harmonic intensity on the relative phasehird harmonics. The laser field intensity was
@= @1~ ¢, for the w,=3w; case. For a fixed harmonic or- |,=5x10" W/cn? (so thatU,=15.5%), the ratio of the
der the harmonic intensity changes rapidly with the changelectric-field strengths Wang/E =0.3 (and therefore our
of the relative phase over the interva] 0,27r]. We will not parameters a;,=0.1a,), and Ne atoms were used
present these results, but it should be mentioned that th@ =21.6 e\V=12.98, so that the Keldysh parameter
general conclusion of our analysis is that the behavior of the/ 0.645<1). The cutoff law for the laser field with only
harmonic intensity with the change of the relative phase doegne frequency o and a;=a,=0.5 is
not depend on the chosen atomic modeydrogenlike or maxkw),,=1,+3.17U,,=62.40, while the bichromatic cut-
Gaussian This behavior is completely determined by the off law for the mentioned experimental parameters is
quasiclassical actio8;. In Fig. 3 we present the dependence maxkw),,_3,=! p+3.102),=61.34. The harmonic spec-
of the harmonic intensity on the harmonic order for the fixedirym (harmonlc intensity as a function of the harmonic oyder
relative phases: ¢={0,37/2,7/2} [Fig. 3@] and for these two cases is shown in Fig. 4. One can observe that
e={m,m/3,2m/3} [Fig. 3b)]. From these figures one can (i) the cutoff for both spectra is approximately at the same
see that both the height of the plateau and the position of thgosition ~63w» and (i) the height of the plateau in the
cutoff change with the change of. The cutoff position is  ,—3w case is one order of magnitude higher. Such an en-
slightly shifted toward the higher harmonics fer=3m/2  hancement of the intensity is really observed in the experi-
and = in comparison with thep=0 case, while for ment. Besides, the position of the cutoff in the experiment is
e=ml3, w2, and 27/3 the shift is toward the lower har- the same fow andw— 3w cases, but the cutoff is relatively
monics. This is in agreement with the solution of E(®6)  |ow (=l,+1.8U,; as explained 5], this is probably due
and(30), which gives the following factors in the cutoff law to the tight focusiny
equation: In the experiment by Eichmanet al. [7], a high-power

Ti:sapphire lasefw=1.6 eV,l ,=1.33x 10 W/cn?) and its
(K@) max=CUp+ 1, second harmonic 14,=0.58< 10" Wi/cn?, a,=0.33,)
were used. The ionization potential of Ar s
,=15.76 e\=9.85» (Upw=4.664w, v~1). For the cutoff

laws we obtained mak@)w=|p+3.17upm:24.63u,

for ¢={0,3m/2,7/2,7,w/3,27/3}. From Fig. 3 it follows Maxkw), 2,=I,+4.508J, =30.88. Numerical results
that by changing the relative phase it is possible to contropresented in Fig. 5 are in agreement with these positions.
the height of the plateau. For example, the intensity of theThe plateau height for the — 2w case is almost two orders
harmonics of order 21-39 is the highest fpr=37/2 and  of magnitude higher and the intensities of the even and the
¢= 1, while fork=~41-51 it is the highest fop=7/2 and  odd harmonics are of the same order[Tihthe experimental
o=21/3. results were compared with the numerical calculations using
In order to check the validity of our theory we compute a zero-range potential mod@ee alsd11]), but without tak-
the harmonic spectrum for recent experiments with theng into account the propagation of the harmonics through
bichromatic laser field5,7]. The comparison can be only the medium. We presented our results only as an illustration,
gualitative because we are not able to include the propagavith no intention for quantitative comparison with this
tion effects[16,17]. In the first experiment Kondet al.[5]  theory and experiment.

c={2.24,2.716,2.07,2.55,1.86,2)23
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V. CONCLUSIONS ing: (i) the harmonic intensity is much greater in the bichro-

matic case(for w,=2w; it is greater by about two orders
and forw,= 3w, by four orders of magnitude(ii) the cutoff
position is shifted toward the lower harmonid§j) in the

We generalized the quantum theory of HOHG of Lewen-
steinet al.[12] by a low-frequency laser field to the case of

a bichromatic elliptically polarized laser field. By applying w,=2w, case there are both even and odd harmonics and

the saddle-point method f_or integration over the.imprse they are of the same intensitgiy) the harmonic plateau in
we expressed the harmonic strength as a double integral Ovg{e pichromatic case is not constant as in the monochromatic
the _return timer and the timet [Eqs.(1_5)—(17)]. Our nu- _case, but has its own structufeee Fig. 1 In the w,=2w,;
merical results show that the behavior of the harmoniG:ase it looks like a double plateau, the first part of which is
strength depends mainly on the quagclassmal aCt'o'ﬂigher(for low harmonic$. For thew,= 3w, case the con-
Si(t,7), Egs.(13) and(14). In the bichromatic casg; con-  ygrsjon efficiency is much higher for low-energy harmonics
tains interference terms that depend on the frequency sufiy, the first third of the plateay(v) the effect of the electron
w1+ w, and the frequency differenae, — w,. The polariza- rescattering is small in the bichromatic ca$ei) the har-
tion parameters come into the action only through the factorgopic intensity as the function of the ponderomotive poten-
cosZj, cos€;t£,), and cos§,—&). This is important be-  jg| has similar behavior to the monochromatic case, but with
cause, in the special case of a laser field with the timeyeaker interference oscillationgyii) the phase of the in-
dependent ellipticity6], which is constructed using two lin- qyced atomic dipole moment exhibits a quasilinear depen-
early polarized perpendicular fields, one hés=0 and  dence on the ponderomotive potential, similar to the mono-
§;=m/2. This givesS.=0 and the interference part of the chromatic case, but with a lower sloggiii ) the behavior of
action disappears, which simplifies the problem. The lasefhe harmonic intensity with the change of the relative phase
field with the time-dependent ellipticity is important for ob- gges not depend on the chosen atomic mogbe);the posi-
taining subfemtosecond laser puldéd. We will consider tion of the cutoff is slightly shifted in the case when the
this problem elsewhere. For a monochromatic laser field facre|ative phase is different from zefm comparison with the

tor cos%_ is in the argume_nt of the Bessel functlon_ln_ I_Eq. position for =0); (x) by changing the relative phase it is
(19), which implies that with the increase of the ellipticity possible to control the height of the harmonic intensity pla-
the harmonic strength decreases. This is in agreement wifaay. Finally, the qualitative predictions of our theory are in
experimentg3,8] and theory[16]. agreement with recent experiments. For a quantitative analy-

By further applying the saddle-point method to the re-gjs one should take into account phase matching and propa-
maining integrals over andt we obtained the cutoff law, gation effects.

Egs.(23) and(24). In the special case of a bichromatic lin-

early polarized laser field and in the limit of the vanishing

ionization potential the cutoff law can be obtained as the

solution of Egs.(26) and (30) with (27). This solution can D.M. thanks the Laboratoire de Physique Atomique et

also be obtained using the classical mode,19. Moléculaire, UniversiteCatholique de Louvain for hospital-
The conclusions of our numerical analysis are the follow-ity and financial support.
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