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Theory of two-photon adiabatic passage: Absorption to and emission fronN states

Moshe Shapiro
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

(Received 20 June 1995

An analytic theory of resonantly enhanced two-photon excitatioN efates with laser light of an arbitrary
field is developed. Closed-form expressions for the time evolution of the system are derived. The formulation
is used to explore adiabatic passage to a level embedded antdraiber levels. “Counterintuitive” pulse
sequence is shown to lead to complete population transfer under adiabatic conditions. The reverse case of
stimulated emission fror\l initial states is also studied. Complete population transfer to the ground state from
an initial state satisfying the two-photon resonance condition is shown to be possible.
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I. INTRODUCTION pulses. The hope is, however, that some of the salient fea-
tures of the 2-1 case would carry over to thet2N case. In
In recent years great progress has been made in our uparticular, it would be interesting to see whether complete
derstanding of how to control dynamical processes with coPopulation transfer with adiabatic passage techniques would
herent light[1]. One obvious control target is that of the Survive the presence of neighboring states. _
population of(bound or continuuinquantum states. A very Various extensions of the three-level system were consid-

attractive way of achieving such control is afforded by theered in the literature. In the context of two—photqn absorption
using of “adiabatic passage” techniques, in which, under thd©Sonantly enhanced By intermediate states, this was done
action of an external field, a molecule or an atom locks ont y treating the effect of the intermediate states using second-

an eigenstate of the combined field-matter Hamiltonian. B)p_rder pertur_ba'_uon_ t_heqr&Q,l_O]. When the_use of _perturba-
- . . Jtion theory is justified(i.e., in the weak-field regime the
forcing the system to follow such eigenstates, the field

S o roblem can be reduced to an effective two-level system
Wh'ICh is made to change slow'ly_gnough or is intense enoug hereby resurrecting the Feynman-Vernon-HellwafH]
guides the molecule from an initial state to the target state

; . 'vector model. Although such a model can be solved to all
Adiabatic passage of three-level systemssystemswas  oders in the field, the procedure is not expected to be exact

first discussed theoretically in the optics literature by Oregor strong fields because of the use of second-order pertur-
et al.[2]. The use of a\ configuration for population trans- pation theory in eliminating thél intermediate states.
fer was demonstrated experimentdB+-8] and especially by Analytic solutions for a small number of intermediate
Bergmann and co-workerf3], who showed that adiabatic states, which do not use second-order perturbation theory
passage enables, under certain conditions, ¢hmplete and are hence applicable to strong fields, were also devel-
transfer of population from one level to another. Contrary tooped[4,5]. It was concluded that under certdimore restric-
“ qr-pulses,” which in principle achieve the same objective,tive condition$ complete, or nearly complete, population
the adiabatic passage effect is more “robust”: it is much lesdransfer would still be possible. The case of a continuum of
sensitive to the exact attributes of the pulse. intermediate levels was also considered. Conflicting opinions
In the three-level adiabatic passage experiments, as praexist as to whether complete population transfer is possible
ticed by Bergmanret al., one makes use of stimulated Ra- in this casg12,13. We are of the opinion that in this case
man scatteringhence the name STIRARtimulated Raman the conditions for complete population transfer are too re-
adiabatic passagjgto transfer the population from level 1 to strictive to be realized by a realistic moleculd#], or even
level 3 via an intermediate level 2. The experiment is per-atomic[13] continua. The case when the final manifold is
formed by first subjecting the molecule to laser frequency irmade up of a “flat” continuum was also studigt]. In this
near resonance wit, s—the transition frequency between case it was shown that under certain conditions complete
level 3 and level 2—and then irradiating the system with apopulation transfer is possible. However, that case is much
laser whose frequency is in near resonance with—the  simpler than the preseft-level case because the “flatness”
transition frequency between level 1 and level 2. Bergmanmf the continuum guarantees that the continuum acts as an
and co-workerq3] showed that the above counterintuitive ideal sink, hence pulses with large enough area will be able
pulse sequencé'begin with the Stokes laser and end with to transfer all the initial population to that continuum.
the pump laser) is necessary for the complete population In this paper we investigate the general cashl afiscrete
transfer to take place. What are also required are stronfinal states and especially the effectdfneighboring levels
enough lasers, such that the adiabatic conditiéhd,7>1,  on adiabatic passage to the level of interest. We proceed in
where () is the Rabi frequency and 7 is the duration, of analogy to the three-level problem by first solving the reso-
either pulse, apply. nantly enhanced two-photon continuous w#@V) excita-
Most molecular transitions, however, do not involve justtion to the N-level problem. The solution is based on an
three states. Usually the final level is embedded in a host aéssentially analytic expression for the eigenvalues and eigen-
neighboring levels, which are also affected by the lasewectors of the problem. In the second stage we replace the
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ande; ande, are the amplitudes ara and:?z the polariza-

— Y tion directions of the two fields,&m and ,&2'0 are the
transition-dipole operators coupling state 1 to state 0, and
state 0 to the manifold off, states, respectively. Both the
ex(t) field amplitudes and the transition dipoles are assumed for
simplicity to be real.

Denoting the eigenvalues and eigenfunctionsHgf as
E, and, , respectively, withv serving as a combined index
for the ground, intermediate, ard upper states, we can
expand the full time-dependent wave function as

Y

absorption

emission

ei(t) W (1) = gy expl —iE yt/) + CotroeXp — i Et/h)
N
v, + kZZ CrexXp( —iEt/h). 3

FIG. 1. lllustration of the level scheme and laser pulses forin what follows, the index k always signifies the
two-photon absorption and two-photon emission. k=2, ... N upper states ofl, .
Insertion of Eq.(3) into the time-dependent Scluinger
CW lasers with slowly varyingadiabati¢ pulses. The CW  equationi%a¥/dt=HW(t), use of the orthogonality of the
solutions now become the adiabatic solutions, which, thoughy, ~ eigenfunctions and the rotating-wave approximation
approximate, are quite accurate for large area pulses. FinallyrwA) (which is perfectly justified because of the assumed
we prove analytically that it is possible, under the adiabatitear-resonance conditionsesults in a set of first-order dif-

conditions, to witness complete population transfer to oneferential equations for the, coefficients of the form
and only one, of th&\ final levels. Conversely, we show that

if we start with a manifold composed o levels, we can iﬁgc _ Coexpl — Ast)
transfer population from one of the manifold levels to a dt 1~ H1€1to A=A,
single level with 100% efficiency. N
. d : :

In this section we present the CW solution of the reso- d
nantly enhanced two-photon excitationidffinal states. The i —Cr = — me€sCoeXiA ), k=2,...N, (4
extension to the pulsed case is dealt with in the following dt
sections.

where

Consider exciting a molecule in state by two CW laser
fields of frequenciesv; and w,. We assume thab, is in

near resonance with the transition frequency of ghestate =l o €1ftbo),  m=(Yid mao €2lto),

to an intermediate statg,, and thatw, is close to a set of Eo—E; E—Eo
transition frequencies from the intermediate stgigto a AlzT—wl, A= Py (5)
manifold composed dN statesy, . The situation is depicted
inFig. 1. o Defining the c¢ coefficient column vector as,
The Hamiltonian of the system is written as ¢=(Co,C1,Cy, ... Ck, - - . ), We canwrite Egs.(4) in matrix
notation as
H=Hy — uo,1€61C04 w1t) — 13 0620 wst), )
d i
whereH), is the radiation-free Hamiltonian, ECZ %F(t)~c, (6)
Mo,lzﬁo,l' Aél,,uzyozﬁzyo- 22, (2)  whereF is a matrix of the form,
|
0 MlElquiAlt) PP ,U,kézexq _|Akt)
,uleleX[X—iAlt) 0 0
F= 5 : (7)

,LLkEzeXF(iAkt) 0 0
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Defining the(diagona) detuning matrix
Ag=0, A=Ay, Ag=—Ay, (8)

we can write Eq(6) as

d i R A
ac=%exp(—lAtyrexmAt)-c, 9

where thef matrix is given as

0 M1€1 MK€2
/.L1€1 0 O
f= ° . (10

By multiplying Eq. (9) from the left by expi(&t), and defin-
ing ab coefficient vector as

bEexrxi&t) -C, (11
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_ (Mkfz)2
2052 5 hay (18)
and
_ (,U«k'fz)z (lel)z
Zkzzkxﬁmk, Ae—hAA,’ (19

we can write a simple iterative scheme for solving Xqr,

Noa= 3 {Aid1+Zo 17 [(hA1—Zo)*+4(p1€1)%12 20

and

M= 3 {— A+ Z = S(K)[(AA+ Z)) 2+ 4(ue) 12,
(21)

wheres(k) =sgn: A +2Z,).
Once the eigenvalues are calculated, thenatrix is ob-

tained as
y [y K€D 2\ —1/2
v N, A '

)\V_ﬁAl k

2
M1€q ) +z

we eliminate the time dependence from the right-hand side

(rhs) matrix to obtain

d [
where theg matrix is given as
0 M1€1 Mk€2
M1€1 hAl e 0
g=| : . (19
—hAy

mke2 0

The structure of the above matrix equation is similar, though

M1€1
U 17 U V’O)\_—ﬁAl )
MK€2

O\ T RAL (22

U V,k: U

GivenU andA, we can solve Eq.12) by multiplying it from
the left by UT, to obtain that

not identical, to that encountered for spontaneous emission

[16]. The g matrix, which, contrary to th& matrix, is real,
can be diagonalized by an orthogonal matuix

U-g=x-U, (14)

whereX is the (diagona) eigenvalue matrix. Its eigenvalues Hence

are the roots of the following equation:

2.2 22

A”:A:L—l—filAf; x::k—;ik' (15)
Rewriting Eq.(15) as
(Noa— A No = (m1€1)?+ (No1— A1) Zo,  (16)
and
At AA DN = (pi€2) >+ (N H A Z, (17)

where

=15 23
a @3
where thea coefficient vector is defined as
a=UT-b=U".exp(iAt)-c. (24)
Equations(23) are easily integrated to yield
i~
a(t)=exp( %)\t -a(0). (25
“ i
c(t)=exq—iAt)-Uexy{%M -a(0), (26)
or
A [
c(t)=exp(i —At)~U-exp(g)\t) -UT-¢(0). (27
Using the initial conditior¥(0)= ¢, i.e., that
c(0)=(0,1,...,0, ..., (28)

we obtain that
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- i ) ) hA+Z,\?
c,(H)=exp —iA,t){ U, exp Aot |Uq1g lim c(t)= — pr€1) (AAFHRAD|1—| ———
’ fi ’ €,—0 MK€2
i i -1 i (2
+UV'leX g)\lt Ul,l‘{‘; U,,YkeX %)\kt Ul,k . +(,U,161)2} ex |Akt+ %J Xl(t,)dtl .

(29) (34)

We see from Eq(34) that if we keepe; finite as we let
IIl. ADIABATIC PASSAGE €,(1)—0 all thec,(t) coefficients vanish except for the one,
IN TWO-PHOTON ABSORPTION denoted agy corresponding to a state satisfying the two-

Equation(29) encapsulates the solution of the resonantlyphoton resonance condition,
enhanced two-photon excitation problem Nflevels with
two arbitrarily strong CW fields. In order to investigate adia- B, —E1
batic passage, we let ande, vary (slowly) with time. This h
has the effect of introducing time dependence toxtzdU
matrices. The time_dependent ana]og of m?), i_e_, the It follows from Eq(34) that in theez(t)—>0 limit with finite

_(x)l_(l)zzAkl“l‘Al:O. (35)

adiabatic approximation, has the form €1, thecy coefficient goes over to
~ I t o H H I t ! !
c(t)=exp —iAt)- U(t)-exr{gJ dt’)\(t’)} -U(0)T- ¢(0). |'m00k1(t)= —EXF{IAle gf A (tHdt' |, (36)
0 €x—
(30) - : :
Hence, the probability of observing tlkg state is
As in the CW case, we assume that the initial conditions are lim |Ck1(t)|2= 1, 37

given by Eq.(28). Hence Eq(30) for an individualc, coef- o0
ficient assumes the form 2
i.e., full population transfer. If we reverse the order of the
It N ter pulses, we see from EQ33) thatall the c, coefficients van-
Cv(t)%UV,O(t)eX’{%f Ao(t')dt }ULO(O) ish and the system returns adiabatically to the ground state.
The above conclusions are subject to the goodness of the
it . adiabatic approximation. As shown previoughb], we can
+U,,,1(t)ex;{%J Ay(t7)dt }Ulvl(o) go beyond the adiabatic approximation by explicitly consid-
ering the time dependence of td&J(t)/dt matrix. The dif-
it . ference between the exact procedure and the adiabatic ap-
+§k: vak(t)ex{ﬁf M(th)dt }Ulvk(o)] proximation is that instead of E23) we now have to solve
the following equations:

xexp(—iAt). (31) g ,
i~
—a=3 7NMt)+A(t);-a, 38
If we first switch on thee, pulse andhenthe €; pulse, we dt? [ h (t)+A( )] & (38)
see immediately by EqA2) that only the middle term in the
above equation remains, where
: du(t)

- it A=—— UT, 39
cv(t)zexp(—iAyt)Uv,l(t)[gf (t’)dt’}. (32 dt (39)

is a nonadiabatic coupling matrix.
Thek states expansion coefficients, obtained by substituting These equations cannot be integrated as easily a&B).

Eq. (22 into Eq.(32), are, because thé matrix is not diagonal. However, they suggest
a simple iterative procedure in which one starts with the
= ML1€q 1+ wi€g |2 adiabatic solutions, Eq25), of the a(t) eigenvector,
CV=3 "74, Ne—fid;

a(o)(t)zexr{;i—ft):(t’)dt' -a'9(0), (40)
0

+2

i €2 2) —1/2
=\ Nt Al

it -
Xex;{iAkH %f xl(t’)dt’} (33 %a(yl)=[flfl)\y(t)+2 A, 5,9)/a(VO)]a(Vl)- (41)

and improves each component of thg) vector as

As we switch off e,(t) we obtain, according to EqA5),  The resulting solution is then reintroduced into E4l), re-
that, sulting in a general iterative step of the form
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t 1
(n+1) — (0) ' A (t! (N) 4/
a" (1) =4 (t)exp[ fodt —agm(t'); s (tal () |.
(42

The iteration is continued untilal"*1)(t) —alV(t)|<e, at
which point it is easily verified that E¢38) is satisfied to an
accuracy determined by the value ©thosen.

The advantage of this iterative procedure is that the solu

tion of Eq. (42) at each iteration scales &F. If the proce-
dure converges within a few iteratiorias it does for near
adiabatic situations where the off-diagonal matrix ele-

ments are small17]), this method is much faster than the

usual procedures for solving the time-dependent Stihger
equation, which scale as®.

IV. ADIABATIC PASSAGE IN TWO-PHOTON EMISSION
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By switching one; beforee, we can affect complete popu-
lation transfer from the initiak level to the ground state,
providedthat we tune the carrier frequenciesegfande; to

be in two-photon resonance with the ground state and the
adiabatic conditions are satisfied. This pulse sequence,
though the reverse of the one used to affect complete popu-
lation transfer in absorption, may still be classified as “coun-
terintuitive” because we first switch on the pulse that acts
between the unpopulated levels.
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APPENDIX A: THE LIMITING BEHAVIOR
OF THE U MATRIX

We now consider the reverse case in which a system,

initially in one of the excited), states, is stimulated by two
pulses to emit to the end, and they; states. We wish to

In this appendix we examine the limiting behavior of the
U eigenvector matrix when eithes;—0 for finite €,, or

examine under what conditions population transfer to thes,— 0 for finite €; .

i, state is complete. The situation is depicted in Fig. 1.
The ¥ (0)= ¢, initial condition is equivalent to imposing

¢,+k(0)=0, cx(0)=1 (43
in Eq. (30). We obtain that
i [t
Cv(t)=|Uv,o(t)eXp[gf Ao(t")dt" | Uy o(0)
i [t
+UV,1(t)ex;{%f A (t)dt’ Uy (0)
it
+ U#,k'(t)exl{gj N (1)dt Uk,k’(o)]
k!
Xexp(—iA,t). (44

If we switch one; beforee, it follows from Eq. (A6) that

c,(tH)y=— U,,’k(t)ex;{%ft)\k(t’)dt' exp(—i A,,t).
(45)

When the initialk state is not in two-photon resonandeg.
(35)] with the ground state, we see from E&2) that

Cq(t—00)=0. (46)
On the other hand, if the initialy, state does satisfy the

two-photon resonance condition, it follows from Eg\4)
that

i 0
cl(tﬁw)z—exp{%f ()\kl(t’)+ﬁAk1)dt’, (47
i.e., that

Pi1(t—o)=|cy(t—o0)[?=1. (48)

1. e,—0, at finite e,

In this case we obtain from E@20) that

2 2
M1€1

)\l—>hA1+ m

(A1)
When k=k4, i.e., none of thek states satisfies the two-

photon resonance conditiditq. (35)] we obtain from Eq.
(22) that

M1€7

hAl_Zl
hA,—2Z,

M1€1

Uio— —0, U;1—Ugpg —1,

U 1,k—>0 k# kl . (A2)

When one of thék states satisfies the two-phonon resonance
condition, the above formulas must be changed because the
pi, €2/ (N +AA, ) term in Eq.(22) diverges as (1;e;)”.

In that case,

Uy N +hAA o a3
’ Mk €2 o0
and it follows from Eq.(22) that
Fa®2 1. (A4)

Vi =Yy a,

el—>0

2. €,—0, at finite €,

In the e,—0 limit, Eq. (2) can be solved directly for the
k eigenvalues. By expanding the square root in 4) we
obtain that

(Mkfz)z

)\k: _ﬁAk— m

(A5)

Using Eqgs.(22) and (A5) we obtain that
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Hic2 TG (k)
Uio— 37— — 0, Uy, — 0, Zy — —. A9
TTRAFZ o Lo 0 %:Zo+ﬁAk (A9)

AA+Zy It follows from Egs.(A8) and(22) that

Ukék’ — O, Uk,k_>_Uk,O— — —1 (AG)
€,—0 Mk€2  ¢y0 €,—0 2

Unr s 1_( m1€1(Zo—hAy) )

3. The 0 row ° (Zo=1A1)*+ (pr€n)”

It is of interest to compute the limiting behavior of the >y Hk€s(Zo— A1) 212
Uy, components in order to determine what factors affect Y \(Zo—hA)(Zo+hA )+ (11€1)? '
the population of the intermediate state. It follows from Eq.

(20) that unless by some coincidené& =2, or there is (A10)

k h that
onek, such tha and unlessiA;=2Z, we have that

(n1€)?
hl==20t 3x —7. (A7) U — {143 [ HKe2
00 | ZothA

2y —1/2
J . (A11)
e1—0
N\o goes over in the;—0 limit to !
(i€1)? It follows from Eqgs.(A10) and (22) that

)\O — ZO_ —ﬁAl—ZOI

Elﬂo

(A8)
M1€1

Ug1= Uo,o—)\o_ hAleleO. (A12)

We obtain from Eqs(A8) and (18) that
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