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Theory of two-photon adiabatic passage: Absorption to and emission fromN states

Moshe Shapiro
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 20 June 1995!

An analytic theory of resonantly enhanced two-photon excitation ofN states with laser light of an arbitrary
field is developed. Closed-form expressions for the time evolution of the system are derived. The formulation
is used to explore adiabatic passage to a level embedded amongstN other levels. ‘‘Counterintuitive’’ pulse
sequence is shown to lead to complete population transfer under adiabatic conditions. The reverse case of
stimulated emission fromN initial states is also studied. Complete population transfer to the ground state from
an initial state satisfying the two-photon resonance condition is shown to be possible.
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I. INTRODUCTION

In recent years great progress has been made in our
derstanding of how to control dynamical processes with
herent light @1#. One obvious control target is that of th
population of~bound or continuum! quantum states. A very
attractive way of achieving such control is afforded by t
using of ‘‘adiabatic passage’’ techniques, in which, under
action of an external field, a molecule or an atom locks o
an eigenstate of the combined field-matter Hamiltonian.
forcing the system to follow such eigenstates, the fie
which is made to change slowly enough or is intense enou
guides the molecule from an initial state to the target sta

Adiabatic passage of three-level systems (L systems! was
first discussed theoretically in the optics literature by O
et al. @2#. The use of aL configuration for population trans
fer was demonstrated experimentally@3–8# and especially by
Bergmann and co-workers@3#, who showed that adiabati
passage enables, under certain conditions, thecomplete
transfer of population from one level to another. Contrary
‘‘ p-pulses,’’ which in principle achieve the same objectiv
the adiabatic passage effect is more ‘‘robust’’: it is much le
sensitive to the exact attributes of the pulse.

In the three-level adiabatic passage experiments, as p
ticed by Bergmannet al., one makes use of stimulated R
man scattering@hence the name STIRAP~stimulated Raman
adiabatic passage!# to transfer the population from level 1 t
level 3 via an intermediate level 2. The experiment is p
formed by first subjecting the molecule to laser frequency
near resonance withv2,3—the transition frequency betwee
level 3 and level 2—and then irradiating the system with
laser whose frequency is in near resonance withv2,1–the
transition frequency between level 1 and level 2. Bergma
and co-workers@3# showed that the above counterintuitiv
pulse sequence~‘‘begin with the Stokes laser and end wit
the pump laser’’! is necessary for the complete populati
transfer to take place. What are also required are str
enough lasers, such that the adiabatic conditions,VDt@1,
whereV is the Rabi frequency andDt is the duration, of
either pulse, apply.

Most molecular transitions, however, do not involve ju
three states. Usually the final level is embedded in a hos
neighboring levels, which are also affected by the la
541050-2947/96/54~2!/1504~6!/$10.00
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pulses. The hope is, however, that some of the salient
tures of the 211 case would carry over to the 21N case. In
particular, it would be interesting to see whether compl
population transfer with adiabatic passage techniques wo
survive the presence of neighboring states.

Various extensions of the three-level system were con
ered in the literature. In the context of two-photon absorpt
resonantly enhanced byN intermediate states, this was don
by treating the effect of the intermediate states using seco
order perturbation theory@9,10#. When the use of perturba
tion theory is justified~i.e., in the weak-field regime!, the
problem can be reduced to an effective two-level syst
thereby resurrecting the Feynman-Vernon-Hellwarth@11#
vector model. Although such a model can be solved to
orders in the field, the procedure is not expected to be e
for strong fields because of the use of second-order pe
bation theory in eliminating theN intermediate states.

Analytic solutions for a small number of intermedia
states, which do not use second-order perturbation the
and are hence applicable to strong fields, were also de
oped@4,5#. It was concluded that under certain~more restric-
tive conditions! complete, or nearly complete, populatio
transfer would still be possible. The case of a continuum
intermediate levels was also considered. Conflicting opini
exist as to whether complete population transfer is poss
in this case@12,13#. We are of the opinion that in this cas
the conditions for complete population transfer are too
strictive to be realized by a realistic molecular@14#, or even
atomic @13# continua. The case when the final manifold
made up of a ‘‘flat’’ continuum was also studied@15#. In this
case it was shown that under certain conditions comp
population transfer is possible. However, that case is m
simpler than the presentN-level case because the ‘‘flatness
of the continuum guarantees that the continuum acts a
ideal sink, hence pulses with large enough area will be a
to transfer all the initial population to that continuum.

In this paper we investigate the general case ofN discrete
final states and especially the effect ofN neighboring levels
on adiabatic passage to the level of interest. We procee
analogy to the three-level problem by first solving the re
nantly enhanced two-photon continuous wave~CW! excita-
tion to the N-level problem. The solution is based on a
essentially analytic expression for the eigenvalues and eig
vectors of the problem. In the second stage we replace
1504 © 1996 The American Physical Society
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54 1505THEORY OF TWO-PHOTON ADIABATIC PASSAGE: . . .
CW lasers with slowly varying~adiabatic! pulses. The CW
solutions now become the adiabatic solutions, which, tho
approximate, are quite accurate for large area pulses. Fin
we prove analytically that it is possible, under the adiaba
conditions, to witness complete population transfer to o
and only one, of theN final levels. Conversely, we show tha
if we start with a manifold composed ofN levels, we can
transfer population from one of the manifold levels to
single level with 100% efficiency.

II. CW THEORY

In this section we present the CW solution of the re
nantly enhanced two-photon excitation ofN final states. The
extension to the pulsed case is dealt with in the follow
sections.

Consider exciting a molecule in statec1 by two CW laser
fields of frequenciesv1 and v2 . We assume thatv1 is in
near resonance with the transition frequency of thec1 state
to an intermediate statec0 , and thatv2 is close to a set of
transition frequencies from the intermediate statec0 to a
manifold composed ofN statesck . The situation is depicted
in Fig. 1.

The Hamiltonian of the system is written as

H5HM2m0,1e1cos~v1t !2m2,0e2cos~v2t !, ~1!

whereHM is the radiation-free Hamiltonian,

m0,1[mW 0,1•eŴ1 ,m2,0[mW 2,0•eŴ2 , ~2!

FIG. 1. Illustration of the level scheme and laser pulses
two-photon absorption and two-photon emission.
A

h
ly,
c
,

-

ande1 ande2 are the amplitudes andeŴ1 andeŴ2 the polariza-
tion directions of the two fields.mW 0,1 and mW 2,0 are the
transition-dipole operators coupling state 1 to state 0,
state 0 to the manifold ofck states, respectively. Both th
field amplitudes and the transition dipoles are assumed
simplicity to be real.

Denoting the eigenvalues and eigenfunctions ofHM as
En andcn , respectively, withn serving as a combined inde
for the ground, intermediate, andN upper states, we can
expand the full time-dependent wave function as

C~ t !5c1c1exp~2 iE1t/\!1c0c0exp~2 iE0t/\!

1 (
k52

N

ckckexp~2 iEkt/\!. ~3!

In what follows, the index k always signifies the
k52, . . . ,N upper states ofHM .

Insertion of Eq.~3! into the time-dependent Schro¨dinger
equationi\]C/]t5HC(t), use of the orthogonality of the
cn eigenfunctions and the rotating-wave approximati
~RWA! ~which is perfectly justified because of the assum
near-resonance conditions!, results in a set of first-order dif
ferential equations for thecn coefficients of the form

i\
d

dt
c152m1e1c0exp~2D1t !,

i\
d

dt
c052m1e1c1exp~ iD1t !2e2(

k52

N

mkckexp~2 iDkt !,

i\
d

dt
ck52mke2c0exp~ iDkt !, k52, . . . ,N, ~4!

where

m1[^c1umW 0,1•eŴ1uc0&, mk[^ckumW 2,0•eŴ2uc0&,

D1[
E02E1

\
2v1 , Dk[

Ek2E0

\
2v2 . ~5!

Defining the c coefficient column vector as
c[(c0 ,c1 ,c2 , . . . ,ck , . . . ), we canwrite Eqs.~4! in matrix
notation as

d

dt
c5

i

\
F~ t !•c, ~6!

whereF is a matrix of the form,

r

F5S 0 m1e1exp~ iD1t ! . . . mke2exp~2 iDkt ! . . .

m1e1exp~2 iD1t ! 0 0

A

mke2exp~ iDkt ! 0 0 D . ~7!
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Defining the~diagonal! detuning matrix,

D̂0,050, D̂1,15D1 , D̂k,k52Dk , ~8!

we can write Eq.~6! as

d

dt
c5

i

\
exp~2 i D̂t !•f•exp~ i D̂t !•c, ~9!

where thef matrix is given as

f5S 0 m1e1 ••• mke2 •••

m1e1 0 0

A

mke2 0 0

A
D . ~10!

By multiplying Eq. ~9! from the left by exp(iD̂t), and defin-
ing a b coefficient vector as

b[exp~ i D̂t !•c, ~11!

we eliminate the time dependence from the right-hand s
~rhs! matrix to obtain

d

dt
b5

i

\
g•b, ~12!

where theg matrix is given as

g5S 0 m1e1 ••• mke2 •••

m1e1 \D1 ••• 0

A A

mke2 0 ••• 2\Dk •••

A
D . ~13!

The structure of the above matrix equation is similar, thou
not identical, to that encountered for spontaneous emis
@16#. The g matrix, which, contrary to theF matrix, is real,
can be diagonalized by an orthogonal matrixU,

U•g5l̂•U, ~14!

wherel̂ is the ~diagonal! eigenvalue matrix. Its eigenvalue
are the roots of the following equation:

ln5
m1

2e1
2

ln2\D1
1(

k

mk
2e2

2

ln1\Dk
. ~15!

Rewriting Eq.~15! as

~l0,12\D1!l0,15~m1e1!21~l0,12\D1!Z0,1 ~16!

and

~lk1\Dk!lk5~mke2!21~lk1\Dk!Zk , ~17!

where
e

h
on

Z0,1[(
k

~mke2!2

l0,11\Dk
~18!

and

Zk[ (
k85” k

~mk8e2!2

lk1\Dk8
1

~m1e1!2

lk2\D1
, ~19!

we can write a simple iterative scheme for solving forln ,

l0,15
1
2 $\D11Z0,17@~\D12Z0,1!

214~m1e1!2#1/2%
~20!

and

lk5 1
2 $2\Dk1Zk2s~k!@~\Dk1Zk!

214~mke2!2#1/2%,
~21!

wheres(k)5sgn(\Dk1Zk).
Once the eigenvalues are calculated, theU matrix is ob-

tained as

Un,05H 11S m1e1

ln2\D1
D 2

1(
k

S mke2

ln1\Dk
D 2J 21/2

,

Un,15Un,0

m1e1

ln2\D1
,

Un,k5Un,0

mke2

ln1\Dk
. ~22!

GivenU andl̂, we can solve Eq.~12! by multiplying it from
the left byUT, to obtain that

d

dt
a5

i

\
l̂•a, ~23!

where thea coefficient vector is defined as

a[UT
•b5UT

•exp~ i D̂t !•c. ~24!

Equations~23! are easily integrated to yield

a~ t !5expS i

\
l̂t D •a~0!. ~25!

Hence

c~ t !5exp~2 i D̂t !•U expS i

\
l̂t D •a~0!, ~26!

or

c~ t !5exp~ i 2D̂t !•U•expS i

\
l̂t D •UT

•c~0!. ~27!

Using the initial conditionC(0)5c1 , i.e., that

c~0!5~0,1, . . . ,0, . . .!, ~28!

we obtain that
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cn~ t !5exp~2 i D̂nt !H Un,0expS i

\
l0t DU1,0

1Un,1expS i

\
l1t DU1,11(

k
Un,kexpS i

\
lkt DU1,kJ .

~29!

III. ADIABATIC PASSAGE
IN TWO-PHOTON ABSORPTION

Equation~29! encapsulates the solution of the resonan
enhanced two-photon excitation problem ofN levels with
two arbitrarily strong CW fields. In order to investigate ad
batic passage, we lete1 ande2 vary ~slowly! with time. This
has the effect of introducing time dependence to thel̂ andU
matrices. The time-dependent analog of Eq.~27!, i.e., the
adiabatic approximation, has the form

c~ t !5exp~2 i D̂t !•U~ t !•expF i

\E0

t

dt8l̂~ t8!G•U~0!T
•c~0!.

~30!

As in the CW case, we assume that the initial conditions
given by Eq.~28!. Hence Eq.~30! for an individualcn coef-
ficient assumes the form

cn~ t !5H Un,0~ t !expF i

\E
t

l0~ t8!dt8GU1,0~0!

1Un,1~ t !expF i

\E
t

l1~ t8!dt8GU1,1~0!

1(
k

Un,k~ t !expF i

\E
t

lk~ t8!dt8GU1,k~0!J
3exp~2 i D̂nt !. ~31!

If we first switch on thee2 pulse andthen the e1 pulse, we
see immediately by Eq.~A2! that only the middle term in the
above equation remains,

cn~ t !5exp~2 i D̂nt !Un,1~ t !F i

\E
t

~ t8!dt8G . ~32!

The k states expansion coefficients, obtained by substitu
Eq. ~22! into Eq. ~32!, are,

ck~ t !5
m1e1

lk2\D1
H 11S m1e1

lk2\D1
D 2

1(
k8

S mk8e2

lk1\Dk8
D 2J 21/2

3expF iDkt1
i

\E
t

l1~ t8!dt8G . ~33!

As we switch off e2(t) we obtain, according to Eq.~A5!,
that,
y

-

re

g

lim
e2→0

ck~ t !52m1e1H ~\Dk1\D1!2F12S \Dk1Zk

mke2
D 2G

1~m1e1!2J 21/2

expF iDkt1
i

\E
2

l1~ t8!dt8G .
~34!

We see from Eq.~34! that if we keepe1 finite as we let
e2(t)→0 all theck(t) coefficients vanish except for the on
denoted asck1

, corresponding to a state satisfying the tw
photon resonance condition,

Ek1
2E1

\
2v12v25Dk1

1D150. ~35!

It follows from Eq.~34! that in thee2(t)→0 limit with finite
e1 , theck1

coefficient goes over to

lim
e2→0

ck1
~ t !52expF iDk1

t1
i

\E
t

l1~ t8!dt8G . ~36!

Hence, the probability of observing thek1 state is

lim
e2→0

uck1
~ t !u251, ~37!

i.e., full population transfer. If we reverse the order of t
pulses, we see from Eq.~33! that all theck coefficients van-
ish and the system returns adiabatically to the ground st

The above conclusions are subject to the goodness o
adiabatic approximation. As shown previously@15#, we can
go beyond the adiabatic approximation by explicitly cons
ering the time dependence of thedU(t)/dt matrix. The dif-
ference between the exact procedure and the adiabatic
proximation is that instead of Eq.~23! we now have to solve
the following equations:

d

dt
a5H i

\
l̂~ t !1A~ t !J •a, ~38!

where

A[
dU~ t !

dt
•UT, ~39!

is a nonadiabatic coupling matrix.
These equations cannot be integrated as easily as Eq.~23!

because theA matrix is not diagonal. However, they sugge
a simple iterative procedure in which one starts with t
adiabatic solutions, Eq.~25!, of thea(t) eigenvector,

a~0!~ t !5expF i

\E0

t

l̂~ t8!dt8G•a~0!~0!, ~40!

and improves each component of thea(t) vector as

d

dt
an

~1!5H i

\
ln~ t !1(

n8
An,n8an8

~0!/an
~0!J an

~1! . ~41!

The resulting solution is then reintroduced into Eq.~41!, re-
sulting in a general iterative step of the form
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photon resonance condition@Eq. ~35!# we obtain from Eq.
~22! that

U1,0→
m1e1

\D12Z1
→0, U1,1→U1,0

\D12Z1

m1e1
→1,

U1,k→0 kÞk1 . ~A2!

When one of thek states satisfies the two-phonon resonance
condition, the above formulas must be changed because the
mk1

e2 /(l11\Dk1
) term in Eq.~22! diverges as (1/m1e1)2.

In that case,

U1,0→
l11\Dk1

mk1
e2

→0,
e1→0

~A3!

and it follows from Eq.~22! that

U1,k1
5U1,0

mk1
e2

l11\Dk1

→1
e1→0

. ~A4!

2. e2˜0, at finite e1

In the e2→0 limit, Eq. ~2! can be solved directly for the
k eigenvalues. By expanding the square root in Eq.~21! we
obtain that

lk52\Dk2
~mke2!2

\Dk1Zk
. ~A5!

Using Eqs.~22! and ~A5! we obtain that

1508 54MOSHE SHAPIRO
an
~n11!~ t !5an

~0!~ t !expF E
0

t

dt8
1

an
~n!~ t8!

(
n8

Ann8~ t8!an8
~n!

~ t8!G .

~42!

The iteration is continued untiluan
(n11)(t)2an

(n)(t)u,e, at
which point it is easily verified that Eq.~38! is satisfied to an
accuracy determined by the value ofe chosen.

The advantage of this iterative procedure is that the s
tion of Eq. ~42! at each iteration scales asN2. If the proce-
dure converges within a few iterations~as it does for near
adiabatic situations where the off-diagonalA matrix ele-
ments are small@17#!, this method is much faster than th
usual procedures for solving the time-dependent Schro¨dinger
equation, which scale asN3.

IV. ADIABATIC PASSAGE IN TWO-PHOTON EMISSION

We now consider the reverse case in which a syst
initially in one of the excitedck states, is stimulated by two
pulses to emit to the endc0 and thec1 states. We wish to
examine under what conditions population transfer to
c1 state is complete. The situation is depicted in Fig. 1.

TheC(0)5ck initial condition is equivalent to imposing

cn5” k~0!50, ck~0!51 ~43!

in Eq. ~30!. We obtain that

cn~ t !5H Un,0~ t !expF i

\E
t

l0~ t8!dt8GUk,0~0!

1Un,1~ t !expF i

\E
t

l1~ t8!dt8GUk,1~0!

1(
k8

Um,k8~ t !expF i

\E
t

lk8~ t8!dt8GUk,k8~0!J
3exp~2 i D̂nt !. ~44!

If we switch one1 beforee2 it follows from Eq. ~A6! that

cn~ t !52Un,k~ t !expF i

\E
t

lk~ t8!dt8Gexp~2 i D̂nt !.

~45!

When the initialk state is not in two-photon resonance@Eq.
~35!# with the ground state, we see from Eq.~A2! that

c1~ t→`!50. ~46!

On the other hand, if the initialck state does satisfy th
two-photon resonance condition, it follows from Eq.~A4!
that

c1~ t→`!52expF i

\E
`

~lk1
~ t8!1\Dk1

!dt8G , ~47!

i.e., that

P11~ t→`!5uc1~ t→`!u251. ~48!
-

,

e

By switching one1 beforee2 we can affect complete popu
lation transfer from the initialk level to the ground state
providedthat we tune the carrier frequencies ofe2 ande1 to
be in two-photon resonance with the ground state and
adiabatic conditions are satisfied. This pulse seque
though the reverse of the one used to affect complete po
lation transfer in absorption, may still be classified as ‘‘cou
terintuitive’’ because we first switch on the pulse that a
between the unpopulated levels.
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APPENDIX A: THE LIMITING BEHAVIOR
OF THE U MATRIX

In this appendix we examine the limiting behavior of th
U eigenvector matrix when eithere1→0 for finite e2, or
e2→0 for finite e1 .

1. e1˜0, at finite e2

In this case we obtain from Eq.~20! that

l1→\D11
m1

2e1
2

\D12Z1
. ~A1!

When k5k1 , i.e., none of thek states satisfies the two
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Uk,0→
mke2

\Dk1Zk
→

e2→0
0, Uk,1 →

e2→0
0,

Uk5” k8 →
e2→0

0, Uk,k→2Uk,0

\Dk1Zk

mke2
→

e2→0
21. ~A6!

3. The 0 row

It is of interest to compute the limiting behavior of th
U0,n components in order to determine what factors aff
the population of the intermediate state. It follows from E
~20! that unless by some coincidence\D15Z0 , or there is
onek0 such that

\Dk0
52Z01

~m1e1!2

\D12Z0
, ~A7!

l0 goes over in thee1→0 limit to

l0 →
e1→0

Z02
~m1e1!2

\D12Z0
. ~A8!

We obtain from Eqs.~A8! and ~18! that
In
,

,
.

in

ys
t
.

Z0 →
e1→0

(
k

~mke2!2

Z01\Dk
. ~A9!

It follows from Eqs.~A8! and ~22! that

U0,0 →
e1→0H 12S m1e1~Z02\D1!

~Z02\D1!21~m1e1!2D 2

1(
k

S mkes~Z02\D1!

~Z02\D1!~Z01\Dk!1~m1e1!2D 2J 21/2

,

~A10!

and unless\D15Z0 we have that

U0,0 →
e1→0

H 11(
k

S mke2

Z01\Dk
D 2J 21/2

. ~A11!

It follows from Eqs.~A10! and ~22! that

U0,15U0,0

m1e1

l02\D1
→

e1→0
0. ~A12!
r-

.
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