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Basic matrix elements for level shifts and widths of hydrogenic levels in ion-surface interactions
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We present extensive studies of basic one-electron matrix elements involved in ion-metal surface scattering
theory. Our method allows for the convenient generation of matrix elements for high principal quantum
numbers of hydrogenic projectile states and thus provides basic building blocks &y thitio description of
the interaction of highly charged ions with surfaces. The matrix elements related to the energy shifts can be
evaluated for an arbitrary one-dimensional potential therefore allowing for flexibility in the choice of model-
perturbation potentials. The transfer matrix elements between hydrogenic levels and conduction-band states
have been formerly evaluated for the special case of eigenfunctions to the step-function potential. We extend
these calculations to wave functions generated from an arbitrary one-dimensional surface potential and show
applications to various surface potentials and hydrogenic leM@1950-294{06)02408-(

PACS numbg(s): 34.50.Dy, 31.15-p, 34.70+e, 61.80.Jh

[. INTRODUCTION dorfer et al.[16] have used the classical overbarrier model to
investigate both Auger yields and the formation of transient
Over the last few decades considerable interest both thedwollow atoms due to resonant charge transfer into Rydberg
retically and experimentally has been brought to the study oétates.
ion-surface scattering processé®r reviews see[1-3)). On a quantum mechanical level no large scatbeinitio
Early investigations of direct resonance capture at large ionealculation of the full many-electron problem has been per-
surface distances and Auger transitions near the surface dormed up to now. An important step toward such a quantum
back to Hagstrum and Beck@#]. Recent developments of mechanical picture was made by Will&@7—-22, who per-
ultrahigh vacuum facilities and the possibility to manufactureformed a systematic evaluation of one-electron matrix ele-
extremely flat surfaces allows experimental investigation ofments between hydrogenic wave functions and eigenfunc-
the interaction of the ion with the surface in a more con-tions of the step-function potential. He derived exact closed-
trolled mannef5]. form expressions for both the overlap and Coulomb matrix
From a theoretical point of view several quite different element and studied their scaling behavior for large quantum
approaches have been undertaken. Level shifts and themumberdq21].
broadening of ionic levels induced by the ion-surface inter- This work focuses on the analytical and numerical calcu-
action have been estimated in first-order approximation byation of two types of matrix elements. These basic matrix
several group$6—10]. elements provide the elementary building blocks of a non-
Nonperturbative calculations have been carried out byperturbative, close-coupling approach to ion-surface interac-
Burgdafer and co-worker$2,11,17, Nordlander and Tully tions. At the same time, they allow perturbative approxima-
[13], Brako and Newng$1], and Teillet-Billy and Gauyacq tions to energy shifts and decay rates of resonance states in
[14]. Burgdafer and co-workers used a multichannel theoryfront of a metal surface. The first class of matrix elements
to investigate the resonant charge transfer. Level shifts angives the first-order energy shift of hydrogenic levels due to
lifetime broadenings were calculated by diagonalizing a selfthe interaction with a surface. Even though our approach is
energy matrix within then=2 manifold. Nordlander and restricted to hydrogenic levels, we are able to represent the
Tully used the complex-rotation technique and large basison-surface interaction by any model-perturbation potential
sets of generalized Laguerre polynomials umte40 to di- that is translationally invariant in the surface plane. The sec-
agonalize the time-independent Sdfirmer equation. A ond class of matrix elements includes both the overlap and
similar technique has been recently used by Deutsehal.  (the possibly modified Coulomb interaction integrals be-
[12,15 to study atomic resonances near an Al surface. Brakéween hydrogenic projectile states and surface states. These
and Newns investigated resonant tunneling of electrons bematrix elements have been carefully analyzed by Willé—
tween bound ionic or atomic states and the conduction ban@2]. We have generalized the derivation[it77] by allowing
by means of a model Hamiltonian using the crude assumgfor more flexibility in the analytical form of both metal-
tion that the energy dependence and time dependence semdectron wave function and interaction potential. As special
rate in the transition matrix elements. Teillet-Billy and Gauy- cases, we are able to exactly reproduce the results of Ref.
acq developed the coupled-angular-mode method anfdl7]. The analytic evaluation of the matrix elements is done
applied it to evaluate the position and width of the states of &y means ofMATHEMATICA [23].
negative ion interacting with a metal surface. Our paper is structured as follows. In Sec. Il, we present a
More recently and driven by the experimental investiga-general formalism using channel Hamiltonians which allow
tion of highly charged ions impinging on surfaces, the theo-us to define the one-electron matrix elements studied later. In
retical description of resonant electron capture into highlySec. Il we give a derivation of one-electron matrix elements
excited Rydberg states has become a challenging task. Burgvolving hydrogenic orbitals and the full metal potential as
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they are used in first-order energy shift calculations and
evaluations of the self-energy matrix, which includes non-
perturbative level shifts and widthg5]. In Secs. IV we de-

rive expressions for the evaluation of one-electron matrix
elements involving a hydrogenic wave function and a
conduction-band metal state. In Sec. Ill and IV we show
numerical applications for various surface potentials. For the R e mnmm e -p €
sake of clearness, we have shifted the details involved in the NI
analytical evaluation of the matrix elements to two appen- De |-~ =
dixes. Section V contains our conclusions and an outlook to m R

applications of these matrix elements in large scale time- ~ 2
dependent close-coupling calculations. Atomic ur{ésu) ZN D
are used throughout this paper.

METAL VACUUM

Il. CLOSE-COUPLING FORMALISM
FOR ION-SURFACE SCATTERING

Within the independent-particle model the time-
dependent single-particle Sckinger equation for the ion-
surface system can be written as

FIG. 1. lon-metal surface system and coordinates used.

- R d .
H(r,t)X(r,t)=i&X(r,t), (2.1 with

where the Hamiltoniaﬂ-((F,t) is given by - 1 P
Pi(r)= \/—veXFl(lkH'fu)g(Z)-

- 1 - - -
H(r,t)=—§v2+vc(r,t)+vsurf<r)+vit'nage(r,t). _ _ o
59 We restrict ourselves to translationally invariant surfaces
(2.2 for which the conduction-band states are plane waves in both

V. denotes either the bare Coulomb potential of the nucleue X andy direction. Throughout the paper the normaliza-
for the case of a proton or a state-dependent effective potefion is chosen so that {¥/=1.

tial for the case of a many-electron ion. In the absence of the In order to display how and where one-electron matrix
projectile, the unperturbed substrate is represented by an eglements are relevant for theb initio treatment of ion-
fective potentialVg,s which includes the electronic self- surface interactions at small perpendicular velocities, we
image potentialV{ge- VN __is the image charge potential NOW rewrite our initial Hamiltonian(2.2) in terms of en-

induced by the projectilém;gljcleus. trance and exit channel Hamiltoniafikl,24], H; andH;, as

To solve the time-dependent equati¢hl), we expand
the time-dependent single-particle wave function into two
sets of wave functions,

H:Hi+vi:Hf+Vf,

with
X(rn=2 a-(t)w~<ﬁ,t>+f p(K)bi(t) (1) dk, 1
R Hi=— §V2+Vsurfr Vi=Ve+ Viage
rr=r—R. (2.3 and
Unless otherwise stated, primed coordinates refer to the ion- 1
centered coordinate system and unprimed coordinates refer Hi=—=V2+Ve, V=Vt VN
R K . . 2 ’ surf image
to the surface-centered coordinate system depicted in Fig. 1.

This basis set is built up by hydrogenic wave functions
; which are eigenfunctions of the stationary Salinger
equation

Inserting (2.3) into the time-dependent single-particle
Schralinger equation(2.1) and neglecting intraband cou-
pling leads to the close-coupling equatidid]

1 . . .
—SV2+V (r'))w ()= enimWnim(T).- o
( 2 c i imynim HAA(L) = f dkp(K)M(K)bg(t),  A(t)={a;(1)}
For translationally invariant surfaces the conduction-band 2.4
wave functions are approximated as eigenfunctions of the

stationary Schrdinger equation d -
Y gered (ua—sk)bg<t>=MT(k>A<t>, 2.5

Bi(r) = pi(r),

1
(——V2+vsur,(z)

2 with
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0.1 M o 1 (ZnsD) = (i T IV [y e (1))
0.0 ,/ ”:__,_.————'-—_——:‘:"‘:‘_—“_—
-0.1 ;";"//,/ can be carried out by means of Fourier transformations and
~ i /,/ use of the residue theorefeee Appendix A Z is the ef-
s 0.2 i j fective nuclear charge of the projectil. is the ion-surface
K ' i distance and equal to the component ofR. As we have
o= 703 i restricted ourselves to final channel distortion potenfials
i which depend only on the coordinate perpendicular to the
04 i T Steper. surface and hydrogenic states, the FCD matrix elements obey
I the selection rule for the magnetic quantum numbers
0.5 ) T ;zg:;gj:?mw{"”wm{ e m—m’ =0. Furthermore, the FCD matrix elements are real.
S ] e Step-pot. +V gV maper D=20 We will now discuss the FCD matrix elements for various
05 10 O o 20 20 model potentials collectively plotted in Fig. 2. Details of
z (a.u.

these potentials are discussed in the subsequent sections.

FIG. 2. Potentials used for the FCD matrix elements and ICT

matrix elements. A. Step potential

d We first study level shifts given by the diagonal elements
Hﬁ":(ia_‘?j) 8 —{W| Vil w1 of the FCD matrix(3.1), in the step potential
z<0

z=0

—Vo,

and
Vf: 0’

(3.2

+ (4| Vil 62,

. d
Mj(k):<l/’j|¢ﬁ>(8§_|m
neglecting long-range image potential effects. As an ex-
ample, we took the case of hydrogen impinging on an Al
surface therefore choosing the depth of the poteiiphs
0.58 a.u. This system will be our test system throughout the
Depending on the choice of the surface potential the correrest of the paper. Figurega and 3b) show the correspond-

sponding density of stategk) has to be used. For the spe- iNd first-order shiftsAe = (4iim| V| nim) for the n=4 and
cial case of a bare step potential and including a factor 2 foP =5 manifolds. The shifts have been plotted versus the ion-

. > surface distance divided by the classical orbital radius
the spin degeneracy,p(k) has the constant value

_ 3 _ 3 - (rny=n?/Zy. As there is no repulsive part in the potential,
gon\éij(;ign?l;a?wrdpstalt/e(gw ) for our normalization of the "o ais are lowered in energy. For each manifold the ab-

As we will neglect intraband couplings due to the term solute value of the averaged energy shift increases most rap-

; . . idly at aboutD/(r,}=1.5,...,2.This clearly implies a scal-
< Vil o), we are left with two types of basic matrix ele- . : n : . .
%ﬁ(rLtSJr?;nZely the final channel glliztortid-FCD) matrix el- "9 with the mean radiugry). In previous studieg21] level
' . : shifts have been scaled in a similar way with the classical
ements{ ;| V¢ i), coupling hydrogenic states through the

potential V¢, and the initial channel transféfCT) matrix threshold_ dls_tanﬁe <2”>. instead dqf<r|”>' Ashour an|s th
elements (y;V,|¢7) coupling hydrogenic states to quantization is thez axis perpendicular to the surface, the

conduction-band states by means of the initial channel disl-oW m-quantum number statgs, do, fo, etc. have a high

tortion potentialV; . In this paper, no attempt will be made to probability density towards the surface and are therefore
i ’

solve the coupled equatiori®.4) and (2.5. We will restrict m?sljaﬁjg r:rsjfrlssgrcgtdatby thde S;Jrface. ;?chrn;r;ssemisglgh
ourselves to the discussion of the properties of the basic mar o ¥, G2, T3, Ga, €IC.

. X . erturbed due to smaller overlap resulting in comparatively
trix elements needed in such a calculation. We plan to us : .
: ; : Small shifts. The offset between these two extreme cases is
matrix elements in a future woiR5] toward the solution of

(2.4 and (2.5 about 1 in units oD/(r,) and therefore also correlates with

' e the mean radius as depicted in the inset in Figh).3For
highern (not shown these scaling properties are more pro-
nounced due to the increasingly classical behavior of hydro-

The diagonal matrix elements of the FCD matrix are the9€nIC states.
first-order perturbative corrections to the level shifts and
have been calculated by several authors for theadd %
states [6,7,9,24. No systematic analysis, especially for
higher qguantum numbers and various surface potentials, has In a second step, we combine the electron image potential
been performed up to now. and the step potential to the steady total final channel poten-

The evaluation of the FCD matrix element tial

R d
M (K)=( ¢k l//j>(812_ia) +( il Vil ).

Ill. FINAL CHANNEL DISTORTION MATRIX ELEMENT

B. Step potential and electron image potential
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Energy shift (a.u.)
Energy shift (a.u.)

107! 2 5 10° 2 5 1077 2 5 10° 2 5
D/<r,> (a.u.)

FIG. 4. Same as Fig.(B) for the step potential plus electron
self-image potential.

The main difference to the bare step potential applies to the
1s state(not shown which is now more drastically disturbed
than all other manifolds.

C. Ab initio density-functional potential

Energy shift (a.u.)

The former case of the step potential plus the electronic
self-image potential should be a crude approximation to any
ab initio surface potential derived from a more sophisticated
density functional approach. To study these differences, we

<> used the potential derived by Jennings, Jones, and Weinert
0.3 T 5 [26]. Jennings, Jones, and Weinert used a full-potential lin-
2 5 10 2 5 "
D/<r,> (au.) earized augmented-plane-wayeLAPW) method to com-

pute effective electronic surface potentials for various metals

FIG. 3. FCD matrix element for the-Al (V,=0.58 a.u) system S!JCh a_s Al Ni, C_Zu, and Ag. To actu_al_ly get a _one-
for then=4 and 5 manifoldsV; is given by the bare step potential. dimensional potential they ayeraged th_b initio _poter_mal
The inset in(b) gives a schematic view of the ion-surface systemOVer the surface plane and fitted analytic functions in order

and the corresponding low and higitquantum number states. to obtain the closed-form expression
—Vo z<z
—V,, z<i Aexd B(z—zp)]+1" 0
4VO Vf: 1
Vi={ 1 1 33 ~ T ollied Nz, 2%
S 4(z—zy)
4z’ 4V,
(3.9
. ] . ) . with
which gives the classical electron self-image potential at
large distances from the surface and matches the conduction- 4V, 2V,
band potential at the image plane &t 1/4V,, therefore A=-1+ N 827
avoiding the unphysical singularity of the classical self-
image potential az=0 (cf. Fig. 2. for the surface potentidR7].
Figure 4 shows the resulting energy shifts for tire 5 The Jennings potential3.4) smoothly interpolates be-

manifold. As the final channel potenti®k now includes the tween the conduction-band potenti4} inside the bulk and
long-range attractive electron image potential, energy shiftshe electron self-image potential far outside the surf@te
become more substantial at larger ion-surface distances thdig. 2). The smearing out is governed by the paramater

for the step potential. Besides this difference, the approxiAdditionally, the Jennings potential includes the parameter
mate (r,)-scaling property with respect to the ion-surfacez, which defines the image reference plane. In accordance
distance found for the step potential is still valid. Further-with Ref.[26] we used\=1.0 a.u. andzy=2.65 a.u.

more, the ordering of level shifts with respect to the Figure 5 shows the resulting energy shifts for the Jennings
m-quantum number is the samgy, dg, fo, andgg states potential. Comparing Figs. 4 and 5 one realizes that the
being perturbed first when the ion approaches the surfacehanges between the crude potential built up by the step
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FIG. 5. Same as Fig.(B) for the Jennings potential. The Jen-

) FIG. 6. Same as Fig.(B) for the step potential plus both elec-
nings parameters are=1.00 a.u.z;=2.65 a.u.

tron self-image potential and nuclear image potential.

potential and the electron self-image and the more sophisti- . . . .
cated Jennings potential are small. As expected, this stat&Orrelation potential. These calculations lead to a nuclear im-

ment holds especially at large ion-surface distances, wherdd€ potential which is constant around the pairi0. .A
the two potentials become identical. similar approach was recently used by Deutscéieal. in

studies on the adiabatic evolution of the hydrogerscsfiate
near an aluminum surfadé5].
Figure 6 shows the energy shifts using the poteri8d).
Finally, we consider the case where the repulsive nucleafor states with a lonm-quantum number the energy shift
image potential is taken into account in the final channekeveals a positive maximum at about 2.0 in unit<Ddfr,)
potentialV; . The total potentiaV; now depends on the ion- whereas for highm-quantum numbers this saddle point is at
surface distanc® (cf. Fig. 2 and is given a$9,24] about 1.0. Below these limits all energy shifts drop down to
negative values, except for thes level shift.
To give a better impression of the scaling behavior, Fig. 7
z=+R, (395 shows the energy shifts for ali=1-5 manifolds on a dec-
adic scale. As for the other three final channel perturbation
potentials discussed previously, the dtate does not follow

D. Step potential, electron, and nuclear image potential

_VO y z<+ RO
V= Vimage™ Vinaget Vin

image' Vimage

with the scaling property of the higher states and is positive for all
1 7 1 displayed values of the ion-surface distamzeFor all other
Ro=—=|D N = manifolds one clearly sees the approximatg)-scaling be-
2 Vo 4V
+ \/ (D Zn )2 'p .
2 Vo 4V Vo
and
1 Zy Zy
Vimage™ = 73 Va“r'nang—gW 513" (3.6

ergy shift (a.u.)

The classical electron self-image potential unphysically di-
verges at the surface. We therefore chose the potential to t§
-V, for z values belowR, where the sum of both image
potentials matches the bulk valueV,. In addition, we ap-
proximated the nuclear image potential by its value on the
surface normal through the projectile nucl¢of Fig. 1 and

Eq. (3.6)]. It should be noted that up to now there has beer 0.5 L0 entsPawy 2 2.5 3.0

no easy-to-use potential derived fragh initio calculations

available for this case of a positive ion in front of a metal  F|G. 7. FCD matrix elements up to=5 shown on a decadic
surface. Nordlander and Tulli3] derived a nuclear image scale for the case of the step potential plus both electron self-image
potential based on the assumption that an ion in front of gotential and nuclear image potential. Within eacmanifold we

metal surface induces a surface charge which changes boshly show the most easily disturbgg state and the least disturbed
the electrostatic field outside the surface and the exchangém=I1=n-1) state.
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0.035 ~100
[ ] Low m saddle point S — 3d,
& High m saddle point s 90 = | .
0.03 NA Vy=0.58 a.u. 440
~ - 5d,
8 13
& 0-025 ~
N
~ v
N
L o0.02 5 s
N ;o 13
- 5 g
< 0.015 I >
g / 3
> 1/ &
& s ‘e
g o.01 I i &
9§ I -
o &
0.005 1
I:f &
I:,’ Lnd
0.0 L 5
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 >
D/<ry> (a.u.) S

. 1.5 .
D/<r,> (a.u.)

FIG. 8. Energy shifts of low and higim-quantum number states
and their corresponding saddle points. FIG. 10. Same as Fig. 9 for thedg to 9d, states.

) ) ) ) m-quantum number states its position scales wth),
havior W|th respect t® and the shift by(r,) in the onset for \\hereas for highm-quantum number states it exhibits a
low and highm-quantum number states. slight shift toward small values dd/(r ).

IV. INITIAL CHANNEL TRANSFER MATRIX ELEMENT
E. Large ion-surface distance
high n-quantum number behavior
ICT matrix elements having the general form

For the case discussed in Sec. Ill D above, we have also
investigated the behavior of hydrogenic states with high ST
n-quantum numbers at large ion-surface distances. In Fig. 8 M (K Zy, D)= (b |Vil i m(T))  (4D)
we show, focusing on the large ion-surface distance behav-
ior, the energy shifts of the=3, ... ,5 manifolds for the
sets of the mostdy, fp, gg) and the leastd,, f3, g4)

disturbed states within each manifold. For ion-surface dis-:
tances larger than about &), energy shift reveals a Iytic closed-form expressions for the special case of the over-
n

1/(n—2) scaling. We have also marked the saddle pOIntSIap matrix elementV;=1) and the Coulomb matrix element
i.e., the positive maximum of the energy shifts. For the low(Vi=—Zy/|r"|, the conduction-band states being approxi-

have recently been studied quite extensivilly—22. Pio-
neer work was performed by WIlIEL7], who derived ana-

40

120

35

[y
b3
S

30

8

25

20

=2
p=1

15

L
=Y

n
S

|Coulomb matriz element |° n (a.u.)

|Overiap matriz element ?/a° (a.u)

PR - 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0 . 1.0 1.5 2.0 2.5 3.0
p/<r,> (a.u.) D/<r,> (a.u.)

FIG. 9. Square moduli of the overlap matrix elements for the FIG. 11. Square moduli of the Coulomb matrix elements for the
p-Al system for the D, to 9p, states. The ion-surface distance was p-Al system for the P, to 9p, states. As in Fig. 9 the ion-surface
divided by the radial expectation val{e,). The square modulus of distance was divided b{r ,), whereas the square modulus of each
each curve was divided hy?, n being the main quantum number. curve was multiplied byn.
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3
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”

~ — 3d, 2.0 - Step-pot.
A 4dg N AN ——- Step-pot.+V image
N z=1 | 5d, g 1.5 ‘%\\\ i \'\\\ — - Jennings
. i) oy
« Vo=0.58 a. . | - 6d S \\\\ :”II/ t
& -€,=0 ? Q it [Vt
L €57€= —— 74, 8 1.0ry iW
+ e i oo
g 40 o 0.5 \\\\ ;,: :‘
3 S ,,l 0
T 30 = 0.0 \:\ !'i;l it e
\ i 1 /e
8 3 1 i \‘.\\ 174
‘e o-0.51 i W
£ 20 B (AT L
s > W W
g 8-1.0 AT Wy
& g Wi Wi
o 10F: S-r.s} Wi Wy
s BN IR Y IR Y/
30 20 W e
(&)
T -10 -2.5 . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 -20 -10 0 10 20 30
D/<r,> (a.u.) z (a.u.)
. FIG. 13. Conduction-band wave functions for the case of
FIG. 12. Same as Fig. 11 for thalgto 9d, states.

k=0 andk,=0.50 for three of the potentials shown in Fig. 2.

mated as eigenfunctions of the step-function potential. Thes@lassical behavior of higm-quantum number states. The

analytic expressions, although extremely cumbersome, aIIO\{‘\{mction values of the square moduli of the matrix elements

us to calculate the overlap and Coulomb matrix elements fo

. : Lcale very differently. The square modulus of the overlap
highly excited Rydberg states. These hollow atom states ar atrix element reveals an® scaling whereas the Coulomb

the primarily populated states of a highly charged ion thamatrix element scales withri/ The implied 1n? scaling of
approaches a metal surface.

Besides being the basic building blocks fab iniio ¢ '3
close-coupling calculations, the ICT matrix elements are di-

s S\ 72
rectly related to the perturbative width - <¢k(r)LVC|w“*'*m_()r 0 _ i“
<¢I2(r)|¢n,l,m(r’)> n
’ 7. - Vz .
otnZ00)=27 [ M (24,0 <¢g(r) v ¢n,l,m(rr>>
X5(8n|m_8k/)p(k—7). <¢E(F)|‘zbn,l,m(r_7)>

Based on the momentum eigenfunctions as originally de®n be_ easily und_erstood as the last term on the right side
rived by Podolsky and Paulin@8] and guided by the work approximately vanishes for highrquantum numbers.
of Thumm[24] and Wille [17], we derived expressions for . _ .
the more general case of an arbitrary potertiglz) and an Comparison of various surface potentials

arbitrary wave function componei(z) along the surface We now investigate the sensitivity of the ICT matrix ele-
normal. By using Fourier transformations and contour inte-ment and overlap integrals ov(z) and the wave function
gration, the three-dimensional integral overan be reduced component perpendicular to the surfagéz). We consis-
to a one-dimensional integral along the surface normal. Fotently use wave functiong(z) that are eigenfunctions to
the sake of clearness, we shifted the details of the evaluatiowi;(z). Except for the step potential, we numerically gener-
of the ICT matrix elements to Appendix B. Furthermore, weatedg(z).
will not attempt an extensive discussion of scaling properties Figure 13 presents the eigenstates for the case D
as done by Wille[21] for the special case of the step- andk,=0.50 for the three surface potentials studiefl Fig.
potential eigenstates anti0) states on the projectile, but 2). Besides the bare step potential, we studied the step po-
restrict ourselves to obvious scaling properties occurring fotential plus the electron self-image potential and the Jennings
[-quantum numbers up tc=2. potential as defined in Eq3.4). At large ion-surface dis-
Our numerical results agree to the tenth digit with those otances the Jennings potential matches the classical electron
Wille [29]. As an example, Figs. 9—12 show the squareself-image potential, whereas below 10 a.u. it shows signifi-
moduli of the overlap and Coulomb matrix element for thecant deviations from the former. The Jennings potential
p andd states up tm=9 and an aluminum surface. In all reaches its bulk value o¥;=0.58 only as deep as 5 a.u.
cases we se=0 and chosg, so as to have the energeti- inside the surface. This clearly influences the corresponding
cally resonant case which implies that only tme=£0) ma- wave function. Jennings states with energies below
trix elements are nonzero. Both types of matrix elements-Vy/{Aexd B(zy)]+1} are less emanating from the sur-
exhibit for all I-quantum numbers afr,)-scaling behavior face, whereas those having higher energies reach far more
with respect to the ion-surface distance which reflects th@utside the surface than step-potential eigenstates. A close
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4000
""" Step-pot. e Step-pot.
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[ " N ~
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look at the wave functions presented in Fig. 13 reveals thafr,). This scaling property holds especially well for high
although all three wave functions reach the same wavelength-quantum number states. For the magnitude of the FCD
inside the bulk, the Jennings wave function has a slightlymatrix elements and the case of the full metal potential in-
bigger wavelength and a larger maximum amplitude at thesluding the electronic and nuclear image potential, we de-
surface. The Jennings wave function was normalized so as tived additional scaling properties at large ion-surface dis-
asymptotically ¢— —) match the step-potential wave tances.
function in amplitude. For the ICT matrix elements the former results of Wille
The influence of the different potentials upon the overlap17] have been confirmed. In addition, these matrix elements
and Coulomb matrix element can be seen in Fig. 14. As ahave been compared for three types of model surface poten-
example, we have calculated the overlap and Coulomb mdials. Although the Jennings potential showed small devia-
trix element for the 4 state and selected the conduction-tions from the bare step potential plus the electron self-image
band wave function for the non-resonant case 0.50 and potential for the FCD matrix elements, its deviations are
kj=0. The two types of matrix elements behave very simi-rather large for the ICT matrix elements. Further investiga-
larly for the case of the bare step potential and the step pdions are needed to study the influence of these dramatic
tential plus the electronic self-image potential. In contrast tachanges upon the lifetime broadening and energy shifts.
these two former potentials, the Jennings potential gives malonperturbative calculations of the self-energy based upon
trix elements which are remarkably different. We note thatthese matrix elements are in progré2s|.
the strongly enhanced outermost maximum of both matrix
elements and overlaps for the Jennings potential needs to be
correlated with the normalization of the metal wave func- ACKNOWLEDGMENTS
tions. In all measurable quantities, this enhancement may get
modified as matrix elements and overlaps are weighted witréC
appropriate density-of-states functions.
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V. CONCLUSION

We have presented an extensive study of basic matrix
elements for ion-surface interactions. Our method allows for APPENDIX A: EVALUATION
the convenient generation of matrix elements for high prin- OF FCD MATRIX ELEMENTS

ciple quantum numbers of the projectile states and thus pro- \ye derive a one-dimensional integral for the hydrogenic

vides basic building blocks for thab initio description of e electron matrix elements involving a potential depend-

highly charged ion-surface interactions. , _ ing on the electronic coordinate along the axis of quantiza-
The final channel distortion matrix element involving hy- .. . > ..

drogenic states of the ion and the initial channel transfe}Ion (for the sake of clarity we useinstead ofr”):

matrix element involving a conduction-band state and a hy- . .

drogenic state have been studied for various interaction po- Mrff,?n’n,',,'m,(ZN D)=t 1.m(DIV(Z) | s 7 (1))

tentials. Both types of matrix elements scale with respect to

the ion-surface distancB divided by the classical radius The general matrix elemefi80]
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MED, (2 D)= [ G RA() V0.6V (1) Vi (0,6

A2 (2Zy I ¥ (Zy )3T ) (= 1= T+n) (7 +n ) (=117 +n")!

(1+211(1+21")!
- 2rZy 2rZy
xfdrr e F'v(z2),F, 1+I—n,2+2I,T Fil1+1"=n"2+21", e
XVn(0,0) Vi (6, ),
with
VA Z
F=—"4+ 20
n n
is nonzeroonly if m=m’, by eliminating the¢p dependence. It satisfiemsf%’n,’,,’m,(ZN ,D)=Mifzm’n,’,,’_m,(ZN ,D).

The matrix element iseal and can be calculated in a straightforward way by meansiaafHEMATICA [23]. The actual
integration is now done in Cartesian coordinates using the fact thav)ceg(r. This allows the product of spherical

harmonics)}, (6, d) W m/ (6, ¢) to be written in terms of a polynomial in'r. The matrix element can therefore be rewritten
as

Miﬁﬁn,n’,l’,m’(ZN 9D)='/V’(n’n,al9l,SZN)f dXdy dZV(Z)

X(Ag+Ar'+Ar 4+ + ALY

A F (=242 021 Zy in) F (L4 =07 242 0,2 rZy 10"

XB+BZI+BZ2+ +Bz"”'
0 1 r 2 r ul |
VE(0.8)Vyrp(6,6)
Xe—Fr’

with

42" (Zy )32 (Zy In )+ n(—1=1+n) (I +n")/n (= 1=1"+n")!
(1+20)1(1+21")!

Mn,n’,l,l’,ZN):
Expanding the polynomials one gets

FCD ’ ' - —ut+l —Fr

M (ZnsD)=Mn,n' 11 ,ZN)fdx dy dz\(z)(C_,r #+C_ qr #"*+---+Cr7e ™,

where the coefficient€ _,,C_, .4, ...,C, depend ore.
We now use the Fourier transformation

1 [(F+ik)"* 2= (F—ik)"+? e
— exp(ik-r)dk

1
n,—Fr_ 1
re f4772(n+1)'ik (FZ+R2)y 2

Flk,n)
and obtain

M (2 ,D)=N(n,n',|,|',zN)f dxdy dz \(z)(C_MJ F(k,— w)expik-1)dk

+c,#+1f f(E,—M+1)exp(i|Z.F)d|2+---+c,,f F(k, p)exp(ik-r)dk]|.
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Interchanging the integration overandk we get

Ml;,cﬁnyn,,,,,m,(ZN ,D)=./\f(n,n’,l,l’,ZN)J- dzV(z) C-uf dlzf a’xf dy exp(ikxx)exp(ikyy)]-'(lz,—-,u,)exp(ikzz)

+C_#+1jdlzj dxfdy exp(ik,x)exp(ik,y) F(k,— p+1)exp(ikz)+ - - -

@m)?8k,) 8(ky)

+C,,f dlzf de dy exp(ikxx)exp(ikyy)f(lg, n)exp(ik,z)

This reduces the matrix element to

M w(Zn,D)=(2m)2N(n,n’ | ,l',zN>f sz<z>(c_,J dk,F(k, , — w)expik,2)

+C,#+1j dkz]-"(kz,—u+1)exmkzz)+~-o+C,,j dk,F(k,,n)exp(ik,z) |.

Now, each of the termgd kz]-‘(l?z, n)exp@k?f) can be evaluated by means of the residue theorem. Depending on the sign of
z we get
27 ReqF(k,,n)expik,z);k,=iF), z=0

f dkzﬂkz”’)exmkzz):{ — 21 RedF(k,, 7)exp(ik,2):k,= —iF), z<O.

APPENDIX B: EVALUATION 2. Definition of hydrogenic wave functions
OF ICT MATRIX ELEMENTS in momentum space

We derive a one-dimensional integral for the transfer ma- We use the Fourier transform
trix element involving an arbitrary hydrogenic wave function ~ . o~ - = o
and a conduction-band staté(z) is any potential that de- f(A) = nm(@) = (=) Ra(@) V(04,0 (B
pends only on the coordinate perpendicular to the surface.

We follow the notation of Wille{17] of the hydrogenic wave function, including a translational

factor to guarantee Galilei invariancef. [31]),
Mt w(KiZn D) = (SN V(D) Yrim(17)),

with f(r,):l/fnlm(r,)y

—

!

) R S
r'=r—R. f(r):Wﬁwdqexq'(q“w)'r_'qu]f(Q)

>

1. Definition of the conduction-band wave function

Restricting ourselves to the case of plane-wave states iaS originally derived by Podolsky and PaulifZ] (see also
both thex andy direction, conduction-band wave functions [32,17]). Note that we allow for # 0, whereas in all numeri-

have the general forrfusing 1AV=1) cal examples we considered the static limit0).

bi(1) = explik,X) exp(ik,y) gy (2).
3. Reduction of the three-dimensional integral
A density of states that is consistent with the choice of

. . We reduce the general three-dimensional integral over
gkz(z) needs to be taken into account when matrix elementﬁy

R exploiting the plane-wave behavior of the conduction-
are integrated ovek. band states with respect to tkeandy directions,
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R 1 =) =) 0 - - - - —~
My m(k:Zy D)= Wf_deJ’_deJ_wdy eXP(—ikxx)eXp(—ikyy)J dq expli(q+v)-r—iDq.]f(¢)gf (2)V(z)

=J2_7Tf dzexp(ivzz)gZ‘z(Z)V(Z)J’w dq, flg,:k}.k))expliq (z—D)],
—co -0

F(q,)
|
where _ qa,
Oim:=Nim(g2+k{?)"2PM ———— | exp(imd,),
k),(:kx_vx’ k)I/:ky—Uy. Im |m(qz I ) | q§+k|iz F( d)k )
4. Evaluation of one-dimensional momentum integration _ e na-m)
We introduce the following abbreviatiof$7]: Nim:=(=1) T Aa(rml
F(q,): = F(a) F1(9)
2 (I (- 1K) g~ (—IKD)TTT and
}—l(qz)::(_i)lpnl(qz)glm(qz)1 K’
2 12 tan é )=,
P q;+k” k
Pai(0z): =Nu(@2+ k)" 10| o, "
gz + Ky

2n(n—1-1)! k’+:=~/kﬁ2+xﬁ, k',2:=kH'2—Kﬁ_
Noi=\/—— 7 2201+ 1)) I +52
nl - m(n+1)! 'Kp ,

Cit1_, are Gegenbauer polynomials aR{' are associ-
EE = 2e, ated Legendre polynomials. The transfer matrix element can
n n now be rewritten as

Kn=

[

azexpliv.2)gt (V) [ daad+kd)

MET(KZy,D)=(—i)\27 exp(im¢kr>anN'.mf

2 12 .
q;+k=- a, expliq,z’)
X 2+k!2 |/2c|t17 - Pm — — ,
(o] gz | P Tz Tk o (kT
with
z'=z—-D.

The actual calculation of the compley, integral is done analytically by using theaTHEMATICA package[23]. We
therefore rewrite the transfer matrix element in a more compact form which enablesAnptEMATICA to handle as few
terms as possible and gives easy control of the results. We define

A(nL,m, o) = (=)' V27 exp(im e )Ny Nim,

Zn| )= (q2+K'2)"1L(q2 4 k[ 2) 2+ oz +k? pm a;
n,l,m,q,,z’)=(q5+k\>H""'~ +ki T ;
q; d; + d; I n—-1—-1 q§+k+2 I q§+kH,2

« exp(iq,z")
(q— k)" g~ (—iki)]" Y

The transfer matrix element can now be written as

(B3)
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g’k‘z(z)(—2wi)Res(I(n,l,m,qz,z’);qz=+ik’+), z/<-D
Mﬁm(IZ;ZN,D)=A(n,|,m,¢k,)fw d7 expliv,2)V(z)] I(D(~27IReLIn,,m,q;,2');q;= ~ik3), —D=2z'<0
- gk (2)(+2mi)RedZ(n,I,m,q,,2');q,= +ik}), 2'=0

(B4)

wherez' =z—D. _ Z ~ 1 o
f(r’)=—r—,d/n|m(r’).f(r)=mf_mdq

5. Calculation of transfer matrix elements TN T T
. ) . xXexdi(g+v)-r'—iDqg,]f(q).
involving the product of the Coulomb potential Hi(a+o) a.1f(a)

and an arbitrary screening function The derivation is unchanged down to E§2). Now we

For the special case of the transfer matrix element involvyse the abbreviatiord.7]
ing an arbitrary hydrogenic wave function, a conduction-
band state, the radial Coulomb potential, and an anisotropic Fo(q,) Fo(qy)

screening functiom(z), F(g,):= (K -2 (G k)T (— k)T
Ml o(KiZy D) = (i N Ve(r (@) | im(T)),

1
e SN
with F2(02):= = 5 (= 1) Pni(0dz) Qim(02)-

As a resultZ(n,I,m,q,,z") is changed tdcf. (B3)]

—

rr=r—-R

. ’ 1 2 r2xn—I1—-1,~2 12\1/1201+1
can be calculated by using the same procedure. I(n,lm,g,,2") == 5(qz T k) (az+ k)" Chliog
Instead of using the Fourier transform of the bare hydro-

Iggenic_: wave f;mction as defined in E@®1), we now use the q§+ k'2 om a,
ourier transform -
R R
exp(iq,z")

~ o~ N 1 ~
f(q):‘ﬂnlm(Q):_ E(q2+Kﬁ)(_l)anl(q))}lm(aq1¢q) X(q _Ik/ )n[q _(_Ikl )]n
z + z +

of andV(z) becomed(z) in Eq. (B4).
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