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Parabolic-hyperspherical approach to the fragmentation of three-particle Coulomb systems
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In this work the three-body Coulomb continuum problem is reformulated in a set of parabolic-hyperspherical
coordinates. It is shown how this procedure yields additional information on the angular and radial behavior of
correlated three-body Coulomb continuum wave functions. For two electrons receding from a nucleus it is
shown that three-body coupling is essential in describing the dependence of the fragmentation dynamics on the
ratio of the electronic distances from the nucleus whereas the angular distribution of these electrons is less
sensitive to this coupling. The spin asymmetry in the total cross section for electron-impact ionization of
atomic hydrogen is analyzed and found to be sensitive to the radial correlation of the outgoing electrons.
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PACS numbgs): 34.80.Dp, 34.10tX, 25.10:+s, 32.80.Fb

I. INTRODUCTION tor have been identified and successfully applied to physical
situations [6,7]. Since this approach and hyperspherical
The correlated motion of three particles interacting viamethods are quite similar in that dynamical and kinematical
Coulomb forces has been described within a variety of coorProperties are disentangled by introducing internal and exter-
dinate systems. A widely used approach considers the threal coordinates and a vast amount of information already
body Coulomb problem in hyperspherical coordinates inexis;s.on three—b_ody systems in hyperspherical coordinates
which the overall size of the system is characterized by on&?l: it is worthwhile to reveal the connection between these
coordinate, the hyper-radiys. The remaining five dimen- two approaches. In particular, it will be shown that further

sionless coordinates, collectively denoted(y parametrize insight into correlated three-body continuum wave function

the five-dimensional manifold defined by a constant hyper-Can be gained by unraveling the part of the hyperspherical

radius[1—4]. A major advantage of this concept is its flex- Hamiltonian diagonalized by these wave functions. To this

ibility to take into account vario hvsical aspects of three end a parabolic-hyperspherical frame of reference is intro-
Ibility : ccount various physical aspects r€€duced in Sec. I, in which the directions associated with the

body §ystems. For example, the fact _that the total C:Omom[ﬁ)arabolic coordinates play the role of Euler angles. The con-
potential depends only on the space-fixed triangle formed bYlection to the grand-angular momentum is revealed as well
the three particles and scales as the size of this triangle cag e part of the Hamiltonian diagonalized by the three-body
be accounted for by choosing two of the five dimensionlesgyaye function¥ psscand its subderivatives. In Sec. Il prop-
coordinates to parametrize the shape of this triangle while itgties of these wave functions are studies and compared with
size is characterized by. The remaining three coordinates experimental and theoretical finding on the dynamic of

describe then the orientation of this triangle in space an@ectron-impact ionization of atomic hydrogen. Atomic units
hence the rotational coupling between internal, body-fixedyre ysed throughout.

motion and external degrees of freedom. Often, Euler angles

are employed for these three coordinates. On the other hand, |I. PARABOLIC-HYPERSPHERICAL COORDINATES

it has been show(b] that the formulation of the three-body FOR COULOMB SYSTEMS IN THE CONTINUUM

Coulomb continuum problem in a new set of coordinates ) o . ]

leads to a useful insight into the mathematical and physical Ve consider the time-independent Safinger equation
properties of the correlated motion of Coulomb particles in°f three charged particles of masses and charge<Z;;i

the continuum. In the latter frame of reference the internal € 1,2,3 moving above the total dissociation threshold. In the
body-fixed motion is characterized by the three interparticle"@nter-of-mass system the internal motion is described by a
distances. The remaining three coordinates needed to déet of Jacobi coordinates ri(,Ry).i,j,ke{1,2,3; €
scribe the system are chosen as the parabolic coordinat@s0.j>i wherer;; is the relative coordinate between par-
associated with the three two-body Coulomb systems. It haiclesi andj andRy refers to particlek with respect to the
been pointed ouf5] that within this frame of reference the center of mass of the other two particlg§l. An advanta-
(nonrelativisti¢ time-independent Schdinger equation 9eous property of the Jacobi coordinates is that the kinetic
breaks down into two parametrically coupled differential op-€nergy operator is diagonal. Hence the time-independent
erators: a parabolic differential operator and an operator difSchralinger equation, at a given total energyof the sys-
ferential in internal coordinates only. In addition, a third op- tem, reads

erator results from the off-diagonal elements of the metric 3
: - : 1 1 Z;;
tensor and plays the role of a rotational coupling term in a — T A ——— A _|_2 U _E (ra R ¥)
. . . 2 B rij 2 Rk ~ . kl»Mm
hyperspherical treatment. Furthermore, exact eigenfunctions Mij My iy Tij
Wps3e Where DS3C means dynamically screened three- =
body Coulomb function, of the parabolic differential opera- =0 V(rjj,Ry. (1)
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Here we defined product charges a&;=2;Z;, |>i W(ry; R =explir-kij+iRe K)W(ri ,R). (5

e{1,2,3. The reduced masses occurring in EL.are given o

by wij=mim;/(mj+m;) and we=m(mj+m)/(m+m;  Thus the function¥(r;; ,R) is a measure for the amount of

+m;3) wherej>ie{1,2,3, j#k#i. The Coulomb poten- distortion of free scattering waves caused by the presence of

tials in Eq. (1) have to be expressed in terms of the appro+he total potentiak;-Z;; /r;; . Transforming(1) into the co-

priately chosen setr(;,Ry,). ordinates(4) and making the ansat®) we end up with the
The scattering statgV') has to satisfy the Sommerfeld- expression

Abstrahlung conditions which can be formulated as

lim Vrijlan(rij ,Rk): ilklj ,

1 1
AFij"‘Aﬁk"‘Zi(___kij -V;ij-l- _Kk'V§k

rij—® VM \/ﬁ

lim Vg InW(r;; ,R)=*iK,, 2 3 . _

Reo K N —2> dmn W(r;,R)=0, (6)
m,n rmn
n>m

where k;; and Ky are the momenta conjugate tg and
Ry, respectively, withE =K/ s+ K/ uij . Now in order to with = u?Z;; . Now we transform further to the coordi-
decouple dynamical from kinematical properties we makenates(3). The Jacobi determinant scales @sin’2¢/4 and
use of the fact that the total potential is invariant under overdoes not vanish except for cases where a pair of the three
all rotations and introduce in.ternal, pody-fixed hyperspheri_\,ectorskij or T;; and R are linearly dependent, as to be
cal coordinates. To emphasize the importance of parabollgxpected_ In the curvilinear coordinate®) the six-
direction we choose, in addition, three dimensionless coordigimensjonal Laplacian: =A- +Ag is the sum of a hyper-

. . . . . . i k
hates associated with parabolic directions: radial kinetic energy term and a centrifugal term:

+

= (st has 129 N
17, fsKaa Taa), A::p’Sapp%p—?. (7)

The differential operatorA? is a self-adjoint scalar ope-
rator defined in the Hilbert spacé,(w,dw), on the
domain »=[0,2]X[0,2]X[0,2]X[0,7/2] X[ —1,1] where
oLk w={£,,£,,€3,0,7}. Since this domain is compact the op-
&3 r 12(r12_ 12 112), eratorA? has a discrete spectrum and is associated with the
grand-angular momenturfiCasimir operator of theD(6)
- group] which is well known from the hyperspherical ap-

. R
& _r_la(rISile'rB)i

rA.
p=tan 1=L, proach. The differential operata? can be decomposed as
Ry
B A2= A2+ A%+ A2 €)
y=RiTjj,

The operatorAﬁ1 is being differential in internal angles
p=(RE+T2)12 (3) {e,7} only whereas\Z,, operates ofi&; ;i=1,2,3 only. The
operatorA2,. contains the mixed derivatives resulting from
In order to simplify the structure of the Sclidinger equa- off-diagonal elements of the metric tensor and couples inter-
tion, reformulated in the coordinates given (8), we intro- nal to external motion(rotational coupling The explicit
duced mass-dependent Jacobi coordinates as form of these operators is

—_ 2 5 _ 12 4
Fij= i T R mc R @ Aﬁ]:=——sin22¢[—2yay+(1—7)<9§
The = sign occurring in Egs(3) means to take the plus

(minus sign if outgoing(incoming boundary conditions are +5sin2¢ cos2pd,+ 3 sin22<p<9fo]
required. To simplify notation, hereafter we confine the treat-

ment to outgoing waves and exclude the singular directions

Fij -kij;= —1 which corresponds to incoming waves. The co-
ordinates¢; ,i €{1,2,3 play the role of Euler angles in a .
hyperspherical treatment. A relationship between EuleHereL? denotes the operator of the squared orbital angular
angles and the coordinates given by E8). can be derived momentum of particlé with respect to the center of mass of
using symbolic computational prograrf8]. The laboratory the pairij. This can be immediately deduced Whjt\rﬁ1 is
frame of reference is naturally given by two of the relative expressed in terms df: =arccog in which case it reads
momenta, say Ki,,k;3), usually measured in a scattering ~

process. Since we are dealing with continuum solution at L27=—sin‘10&05in0a0. (10
fixed total energyE under the constraint2), the following

ansatz for the solution dfL) is appropriate: The differential operatoA2,, has the form

4 )
=— M[&2¢3i¥2¢&2¢—Li]- (€)
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The coupling termA2.

elements of the metric,

is determined by the off-diagonal

2 ._
Amix- -

=" 2 (Ve W+ (Vi o)+ (VR (VR )} dud

u,ve{é1,&.63,0,7.p}. (12)

An essential feature of the operatd?,, (11) is that it de-
pendsparametrically on internal coordinates sincg; are
functions of (p,y,p) only,

riz=p sing,

2
sirfe+ vy sin2¢

1/2

l23=p

m;
cos’-go+(
m;+m;
2

sife— vy sin2¢

112
(13

l1=p

3
coSo+
¢ (m1+m3

In addition, Eq.(11) is exactly separable in the coordinates

{§;,i=1,2,3. This separability is directly reflected in the
Schralinger equatior(6) since gradient terms introduce no
additional coupling;

|1
2i _’_Iu” kij-VFij‘F—\/ﬁKk.Vﬁk =Dext+Din: (14)
where
kos Kis
D =2i 2&,— 2 d: + 28, — 2 J
ext (r23:“23( &1—&1) & r 13( &—§&3) &

K12
oM

J’_

(2é5— §§>a§3). (15
The differential operatob,, depends on internal coordinates
only:

Din:ZZi

ue{e,v,p}

Vi

Kk' Vﬁku (9“,

kij 'VF”U+

(16)

Now we are able to rewrite the Scldinger equatior(1) as
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The differential operatoH;, depends on body-fixed degrees
of freedom:

A2
Hin::pisapPS&p_p_g]JrDin! (18)

whereas the external differential operator takes on the form

A2 3
ext
Hew: = — 7+Dext_2 E

mn r
n>m MmN

Amn

(19

In Eq. (19) the total potential has been added to the external
part as we intend below to solve for the eigenfunction of
Hey- It is important to recognize that the eigenfunctions of
the operatoH,,;, and in fact of Eq(17), are invariant under
any transformation of the total potential, provided this trans-
formation depends on internal coordinates only and it does
not affect the sum occurring in E@19). This is due to the
fact that Eq.(19) contains the internal coordinates parametri-
cally. We make use of this additional freedom by using a
transformation similar to that given in R¢g]. We introduce
two-body-type potentials/;;=Z;; /r;; as the most general
linear superposition of all three physical two-body potentials
Vij=Z;; Irj; with coefficienta;; dependent on internal coor-
dinates only, i.e.,

Vi3 Va3
Viz | =A| Vs, (20
VlZ V12

where A(¢,y) is a 3X3 matrix_with elements
a;;=ajj(¢,7)- An equivalent relation foZ;;(¢,y) can im-
mediately be deduced fro20).

The invariance of the sum, i.e., the total potential, occur-
ring in Eq. (19 under the transformatio(20) requires

3
> a;=1, j=1,23. (21)
=1

It should be emphasized that within the conditi®1) the
treatment is still exact. In addition {@1), six further condi-
tions have to be imposed to uniquely define the transforma-
tion (20). These relations can be chosen according to practi-
cal considerations as well as to the specific type of three
particles under investigation, an example of this has been
given in Ref.[5]. The physical interpretation of the transfor-
mation (20) is quite obvious. According to Eq20) the
strength of interaction of two individual particlésandj is

no longer determined by their product charggg; as is the
case in two-body Rutherford scattering. The product charges

Z;; depend rather dynamically on the shape of triangle
formed by the three patrticles. This functional dependence is
given by the coefficients;; which indicate the amount of

distortion of a two-body subsystem due to the presence of a

the sum of internal and external differential operators with anpirg charged particle. Hence these coefficients can be iden-

additional mixing term:

\P(§11§21§31¢171p)=0' (17)

A2mix
H int H ext ?

tified as a direct measure for three-body interactions.

In atomic and molecular physics three-body continuum
systems arise as final states achieved in charged particle-
impact ionization and photo double ionization. Estimates of



54

PARABOLIC-HYPERSPHERICAL APPROACH TO THE ...

1483

cross sections for these processes require the knowledge @déscription of final states achieved by various scattering re-
the wave function(5). Using a multiple scattering model actions[10,12—14. An important feature of¥’ 5 is that it
Garibotti and Miraglia[9] have derived an approximate ex- employs the coupling matrid=1. Thus, according to the

pression for(5), hereafter¥;c, which has been employed

interpretations of4, by approximating the final-state wave

for the calculations of ionization cross sections for proton-function by W 5 the three-body system is considered as three
and antiproton-impact ionization of atomic hydrogen and henoninteracting two-body subsystems. Three-body coupling
lium. The wave function¥’ 5 treats all particles in the con- can be introduced by making use of Eg0). For two elec-

tinuum on equal footing and, as pointed out in Héi, sat-
isfies the Kato-cusp conditioi$1] when two particles come
close togethefin configuration spage Later it has been re-
alized[10] that this wave function satisfies the Sotlirmger

trons moving in the double continuum of a nucleus a scatter-

ing three-body wave function, hereaft€iyssc, has recently
been constructefb] which is similar toW ;¢ in philosophy,
in fact it encompasse¥ ;- as a special case4=1). The

equation(1) for large interparticle separations. The wave explicit form of ¥ ;¢ expressed in the coordinates of Eq.

function W5 has then been extensively employed for the

3 is

‘ITDssc(fl 162,63,0,7.p) =1F1( B2g( @, ¥), 1,—i[Kogl 2361 1)1F 131 B1a( ¢, ¥), L= i[Kygl 1362 D1 F 1 (i B1a @, ), L~ [k12|’12§3]()é2)

where the relative coordinates; are given by(13). Note,
that taking(13) into account the whole solutioW pg3c can

be written in terms of3) because the plane-wave argument
can be expressed as

3

2 mi+mj

Ki-ri+K. R,= !
" " k K j>i:1 m1+ m2+ m3

Kij - Tij
m,+ms

ZW(&—l)kzsrza

m;+m;s

m(fz—l)kmfls

MM 1)k 23
m(& K1l 12, (23)
The Sommerfeld parameters appearing in ) have the
form

Zij i

k” '

Bij(e,y):= (24)

whereZ_ij are determined from Ed20) using the matrix4
given in Refs[5,15]. The wave functior¥;c derives from
Eq. (22) in the special casg&;=ZZ;, i.e., for A=1. From

previous derivation it was, however, not clear which part of

the grand-angular momentum is diagonalized by the wav
functions W pg3c and W3¢. Upon inspection of Eq(19) the
partHpssc of which Wpgacis the regular exact eigenfunction
with zero eigenvalue is readily identified:

Hex=Hpsact Hrems (25

where

H = Jd d: +ikoor 0y — 7o
DS3C rg?ﬂzs[ glfl & 23 2361 & 2L ol 23]

+ ?[ﬁngzagﬁ‘ iK1 13620, — 132130 13]

M3

2 _

+ d d: +ik Jg.—
%[ £,830¢, T 1Kol 12830, — 12212 12
(26)

in which case
Hpsac¥psac=0.

I1l. REMARKS ON THE WAVE FUNCTIONS
W3 AND Wpgse

From Eq.(26) it is clear that only the total potential, part
of A2, and a part of the gradient terms are taken into ac-
count when employing the approximatidt= Hpg3c Where
H is the total Hamiltonian. The whole body-fixed kinetic
energy operator an#i,.,, are still to be considered. In the
case of A=1 (V=W these operators are simply ne-
glected. In contrast, the wave functitinpssc is determined
according to a coupling matrixd which minimizes the part
H—Hpgsc in some region of the Hilbert spadghe five-
dimensional manifold defined by large constantind the
Wannier configuration On the other hand, it has been
shown in Ref[5] that the wave functioW pg3c (W30) solves
the Schidinger equation in the whole asymptotic regidor

T"arge interparticle separationsThis has important implica-

tions. As the coordinate important for Coulomb scattering is
of the parabolic typek;; (ri; +k;; - Fij) the asymptotic region

is reached faster, i.e., at smallgrfor higher energies than is
the case for lower energies. Thus at threshold the validity of
the approximationV'~W,c is not clear. Indeed, at lower ex-
cess energies the radial part Wf: shows a behavior not
compatible with the total potentidb]. This fact also signi-
fies the importance of the part &f at lower energies which

is not diagonalized bysc. In the case of¥ pg3c this defi-
ciency is partly dealt with by choosing the transformation
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FIG. 1. The spin asymmetiffeqg. (27)] in the total cross section for the electron-impact ionization of atomic hydrogen. The curves show
the results of the hidden crossing thedt®] (long-dashed curyeand the CCC metho¢kolid curve. Representing the final state s
yields for the spin asymmetry the results shown by the dot-dashed curve. The results oPysip@nd assuming the total potential to be
conserved along the paths of free partidlesmpare Eq(21)] are represented by the short-dashed curve. The experimental data are taken
from Ref.[28] (full square$ and Ref.[27] (open circles

(20) in a way which accounts for the part not diagonalized byvided. A subsequent extension of the Wannier treatment to
W ac. For this reason the wave functiodg,gscandWsc are  arbitrary L, S, and = states(total angular momentum, total
expected to show a completely different radial behavior aspin, and parity[16] has revealed that all states have the
lower excess energies. In fact, the wave functibg. pos- same energy dependence at threshold and nearly all
sesses an asymptotically diverging radial behavior at thresh-Ssxr-states(in particular, singlet and triplet stadepossess
old [5] which results in its normalization being exponentially the same threshold law. The implication of these conclusions
decreasing with declining low excess energies. This is irfor the spin asymmetry is thak does not depend on the
stark contrast toW¥ ps3c, which remains asymptotically excess energy near threshold although an exact value of
bound at threshol{5,6]. cannot be given. Careful analysis of recent measurements of
A way of directly testing the radial parts oF;c and A at threshold reveals, however, a slightly positive slope of
Wpssc is offered by comparing with spin-asymmetry mea-the spin asymmetry with increasing excess enerfjied
surements in the total cross sections of electron-impact ionwhich indicates that-® and o' have slightly different ana-
ization of atomic hydrogen which is defined as Iytical dependence on the excess energy near to threshold.
The arguments of Ref16] can be reversed to conclude from
o —o 5 a constantA that at thresholar® and ¢t differ only by an
oS+ 30!’ (27) excess-energy-independent factor. The resultsAfowhen
representing the two-electron continuum final statedby:
where ¢° and ¢' are the total ionization cross sections for and¥ g3 are depicted in Fig. 1 along with the results of the
singlet and triplet scatterings, respectively. The spin asymeonvergent-close-coupling calculatiof6CC) [18] and the
metry A is a dynamical quantity. It does not depend on themethod using hidden-crossing thedtg]. Although the last
normalization of the wave functio® pg3c Since this wave three theories are in reasonable agreement with experimental
function contains the momenta of the outgoing electrons in dinding the positive slope oA at threshold is not reproduced.
symmetrical way and near to threshold the spatial part ofalculations using the CCC method could not be performed
¥ 5s3c becomes energy independéhi. ThusA tests for the  directly at threshold due to the increasing number of pseu-
radial parts of this wave function. The original version of thedostates needed to achieve convergence. From Fig. 1 it is
Wannier theory{23] has been formulated fotS® states of clear that describing the final state ¥, leads to a com-
the final-state electrons. Thus no estimate of the spin statgdetely wrong behavior of the spin asymmetry whereas this
occupied by the electrons in the final channel has been preshortcoming is corrected for by employingpssc. We can

t
A=
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now reverse the arguments and deduce that the spin asyr 1o’
metry A is highly sensitive to the part of the Hamiltonian
neglected by ;- and accounted for by usindfps3c. The
spin asymmetry calculated witdpgsc is not a constant 10° |
function of the excess energy at threshold, as seen in Fig. :
Thus describing the two final-state electrons Wyg;c re-
sults in an excess-energy dependence of singlet and tripl =z
states which is not compatible with the Wannier theory .;
analysis. ER|
Another important point to be emphasized is the follow-
ing. When employingW;c for the description of two-
electron final states following one-photon two-electron tran-  4¢°
sitions and electron-impact ionization, the angular
distributions for these electrons turn out to be well repro-
duced in many situations even at lower excess energie 00 o i v v o

[20,17. This behavior has been traced to the inclusion of the EJE

normalization factorl(\le_P) of th_e radial part of the_two-body FIG. 2. The single differential cross section for the electron-
Coulomb wave function which _represents thgsolated . impact ionization of atomic hydrogen as a function of the ratio
electron-electron subsystem and indeed only this normalizg= ;e \yhereg, is the energy of one of the final-state electrons and
tion factor(also called the Gamov factonas then been used g s the total excess energy which is choseiEas200 meV. Using
to simulate the measured angular distribution of ejected elegne . approximation yields the dotted curve whereas the solid
trons following electron-impact ionization of atomic hydro- cyrve represents the results when employing for the final state.

gen[21,22. It should be stressed, however, that this normal-The results ofl’ 5 have been multiplied by a factor of 0
ization factor originates from the radial part, which is the

cause for the wrong radial behavior exposed in Fig. 1 and
thus its normalization cannot be correct. This conclusion is
reinforced by the fact that inclusion 0N.¢ in theoretical
calculations results in a spurious behavior of the magnitud
of the cross sections.

A further point concerns the wave functidh,g;cand its
subderivatives at vanishing hyper-radius, i.e., the three-body
Rollision point. These functions do not take into account the

hyper-radial kinetic energy term which is known to dominate

The abov_e analysis offers a po_ssible way of explainingpe oo Hamiltonian for small hyper-radius. Thus it is con-
why the'sc is capable of reproducing the measured angulag.g;, e that wave functions of the fort®2) reveal a behav-

distributions. To this end we remark that the approximation, .- compatible with the Schdinger equation for small
H=Hpssc which results in the approximation®=¥pssc  hyper-radius. In fact, solutions of Eql) for p—0 are
means that the variation in internal coordinates is negligiblynown to have a Fock expansid@] in the hyper-radius
small compared with that of the external coordinaess,  \hich contains power and logarithmic terms gnwhereas
ie., t_he coorc_ilnate_p,<p,_andy are treated ad_labatlc_ally. The the wave function&? 5 and W pasc pOSSess a regular power-
validity of this adiabatic approach is readily derived from go iag expansion in small hyper-radius. For lapgthe po-
properties of thdtotal) potential surface. As_pomted out by tential term dominates ari s and ¥ 5 become adequate
many author$23,16, at lower excess energies the variation descriptions. Hence the wave functioffs,ssc and W s sat-

in y is much smaller than that ip. In fact, the Wannier gt the Kato-cusp conditions to be imposed when two par-
ionization mode{23,16), which dominates at threshold, oc- yicjes come close together since in this casis large even
curs at a stable equilibrium i and is unstable in the coor- though one interparticle distance is very small.

dinate . Hence, at lower excess energies, treatingdia- The last remark concerns the treatment of partial waves
batically is more reasonable than consideripgto vary by ¥ 4. Since the operatoA? given by Eq.(9), is not

SIOWIIV' 0(;.": fgactt to .be dfr(t)zen_ as dats)sutme((jj By Afs fthe treated byW 5. this wave function provides a better approxi-
angular distribution is determined by thedegree of free- mation to the exact solution whek?, is minimized. This is

dom it is expected tha¥ ;- would provide a better descrip- h f ishi | i be i
tion for the angular than for the radial correlations. The IatterI € case for vanishing anguiar momen @las can be im-
Snediately deduced from E¢9).

correlation controls the excess-energy sharing of the tw
electrons. In fact, using th® ;c final state at lower excess

energies resultgFig. 2) in an energy distribution sharply IV. CONCLUSIONS
peaked around equal-energy sharing which is at variance '
with experimental findind24,25 and the Wannier theory In this work the three-body Coulomb continuum problem

prediction which indicate basically a flat energy distributionhas been reformulated in a parabolic-hyperspherical coordi-
at threshold. The same behavior as shown in Fig. 2 has beerate system. It has been shown how additional information
observed for one-photon double ionizatip8]. Although  on three-body Coulomb wave functions can be gained
¥ psscindicates a flatter energy distribution which is slightly through this procedure. Various aspects of Coulomb wave
peaked around equal-energy sharing the variation in this difunctions have been critically analyzed in light of spin-

tribution is still much higher than that anticipated by the asymmetry measurements, angle, and energy distribution of
Wannier theory which indicates a shortcomingfsscin  two electrons moving in a nuclear field. It has been argued
fully accounting for the variation in the coordinage that at thresholdV ;¢ provides an adequate description for
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