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Parabolic-hyperspherical approach to the fragmentation of three-particle Coulomb systems
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In this work the three-body Coulomb continuum problem is reformulated in a set of parabolic-hyperspherical
coordinates. It is shown how this procedure yields additional information on the angular and radial behavior of
correlated three-body Coulomb continuum wave functions. For two electrons receding from a nucleus it is
shown that three-body coupling is essential in describing the dependence of the fragmentation dynamics on the
ratio of the electronic distances from the nucleus whereas the angular distribution of these electrons is less
sensitive to this coupling. The spin asymmetry in the total cross section for electron-impact ionization of
atomic hydrogen is analyzed and found to be sensitive to the radial correlation of the outgoing electrons.
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PACS number~s!: 34.80.Dp, 34.10.1x, 25.10.1s, 32.80.Fb
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I. INTRODUCTION

The correlated motion of three particles interacting
Coulomb forces has been described within a variety of co
dinate systems. A widely used approach considers the th
body Coulomb problem in hyperspherical coordinates
which the overall size of the system is characterized by
coordinate, the hyper-radiusr. The remaining five dimen-
sionless coordinates, collectively denoted byV, parametrize
the five-dimensional manifold defined by a constant hyp
radius@1–4#. A major advantage of this concept is its fle
ibility to take into account various physical aspects of thr
body systems. For example, the fact that the total Coulo
potential depends only on the space-fixed triangle formed
the three particles and scales as the size of this triangle
be accounted for by choosing two of the five dimensionl
coordinates to parametrize the shape of this triangle while
size is characterized byr. The remaining three coordinate
describe then the orientation of this triangle in space
hence the rotational coupling between internal, body-fix
motion and external degrees of freedom. Often, Euler an
are employed for these three coordinates. On the other h
it has been shown@5# that the formulation of the three-bod
Coulomb continuum problem in a new set of coordina
leads to a useful insight into the mathematical and phys
properties of the correlated motion of Coulomb particles
the continuum. In the latter frame of reference the intern
body-fixed motion is characterized by the three interpart
distances. The remaining three coordinates needed to
scribe the system are chosen as the parabolic coordin
associated with the three two-body Coulomb systems. It
been pointed out@5# that within this frame of reference th
~nonrelativistic! time-independent Schro¨dinger equation
breaks down into two parametrically coupled differential o
erators: a parabolic differential operator and an operator
ferential in internal coordinates only. In addition, a third o
erator results from the off-diagonal elements of the me
tensor and plays the role of a rotational coupling term in
hyperspherical treatment. Furthermore, exact eigenfunct
CDS3C, where DS3C means dynamically screened thr
body Coulomb function, of the parabolic differential oper
541050-2947/96/54~2!/1480~7!/$10.00
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tor have been identified and successfully applied to phys
situations @6,7#. Since this approach and hyperspheric
methods are quite similar in that dynamical and kinemati
properties are disentangled by introducing internal and ex
nal coordinates and a vast amount of information alrea
exists on three-body systems in hyperspherical coordin
@4#, it is worthwhile to reveal the connection between the
two approaches. In particular, it will be shown that furth
insight into correlated three-body continuum wave functi
can be gained by unraveling the part of the hyperspher
Hamiltonian diagonalized by these wave functions. To t
end a parabolic-hyperspherical frame of reference is in
duced in Sec. II, in which the directions associated with
parabolic coordinates play the role of Euler angles. The c
nection to the grand-angular momentum is revealed as
as the part of the Hamiltonian diagonalized by the three-b
wave functionCDS3Cand its subderivatives. In Sec. III prop
erties of these wave functions are studies and compared
experimental and theoretical finding on the dynamic
electron-impact ionization of atomic hydrogen. Atomic un
are used throughout.

II. PARABOLIC-HYPERSPHERICAL COORDINATES
FOR COULOMB SYSTEMS IN THE CONTINUUM

We consider the time-independent Schro¨dinger equation
of three charged particles of massesmi and chargesZi ; i
P1,2,3 moving above the total dissociation threshold. In
center-of-mass system the internal motion is described b
set of Jacobi coordinates (r i j ,Rk),i , j ,kP$1,2,3%;e i jk
Þ0,j . i where r i j is the relative coordinate between pa
ticles i and j andRk refers to particlek with respect to the
center of mass of the other two particles@4#. An advanta-
geous property of the Jacobi coordinates is that the kin
energy operator is diagonal. Hence the time-independ
Schrödinger equation, at a given total energyE of the sys-
tem, reads

F2
1

2m i j
D r i j

2
1

2mk
DRk

1(
i , j
j . i

3
Zi j

r i j
2EG ^r kl ,RmuC&

50 ;~r i j ,Rk!. ~1!
1480 © 1996 The American Physical Society
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Here we defined product charges asZi j 5ZiZj , j . i
P$1,2,3%. The reduced masses occurring in Eq.~1! are given
by m i j 5mimj /(mi1mj ) and mk5mk(mi1mj )/(m11m2
1m3) where j . i P$1,2,3%, j ÞkÞ i . The Coulomb poten-
tials in Eq. ~1! have to be expressed in terms of the app
priately chosen set (r kl ,Rm).

The scattering stateuC& has to satisfy the Sommerfeld
Abstrahlung conditions which can be formulated as

lim
r i j→`

¹r i j
lnC~r i j ,Rk!56 ik i j ,

lim
Rk→`

¹Rk
lnC~r i j ,Rk!56 iK k , ~2!

where k i j and K k are the momenta conjugate tor i j and
Rk , respectively, withE5Kk

2/mk1ki j
2 /m i j . Now in order to

decouple dynamical from kinematical properties we ma
use of the fact that the total potential is invariant under ov
all rotations and introduce internal, body-fixed hypersphe
cal coordinates. To emphasize the importance of parab
direction we choose, in addition, three dimensionless coo
nates associated with parabolic directions:

j1
65

1

r 23
~r 236 k̂23•r23!,

j2
65

1

r 13
~r 136 k̂13•r13!,

j3
65

1

r 12
~r 126 k̂12•r12!,

w5tan21
r̄ i j

R̄k

,

g5R̄k• r̄ i j ,

r5~R̄ k
21 r̄ i j

2 !1/2. ~3!

In order to simplify the structure of the Schro¨dinger equa-
tion, reformulated in the coordinates given by~3!, we intro-
duced mass-dependent Jacobi coordinates as

r̄ i j 5m i j
1/2r i j , R̄k5mk

1/2Rk . ~4!

The 6 sign occurring in Eqs.~3! means to take the plu
~minus! sign if outgoing~incoming! boundary conditions are
required. To simplify notation, hereafter we confine the tre
ment to outgoing waves and exclude the singular directi
r̂ i j • k̂ i j 521 which corresponds to incoming waves. The c
ordinatesj i ,i P$1,2,3% play the role of Euler angles in
hyperspherical treatment. A relationship between Eu
angles and the coordinates given by Eq.~3! can be derived
using symbolic computational programs@8#. The laboratory
frame of reference is naturally given by two of the relati
momenta, say (k12,k13), usually measured in a scatterin
process. Since we are dealing with continuum solution
fixed total energyE under the constraint~2!, the following
ansatz for the solution of~1! is appropriate:
-

e
r-
i-
lic
i-

t-
s

-

r

t

C~r i j ,Rk!5exp~ i r i j •k i j 1 iRk•K k!C̄~r i j ,Rk!. ~5!

Thus the functionC̄(r i j ,Rk) is a measure for the amount o
distortion of free scattering waves caused by the presenc
the total potential( j . iZi j /r i j . Transforming~1! into the co-
ordinates~4! and making the ansatz~5! we end up with the
expression

FD r i j
1DRk

12i S 1

Am i j

k i j •¹r i j
1

1

Amk

K k•“RkD
22 (

m,n
n.m

3
qmn

r̄ mn
G C̄~r i j ,Rk!50, ~6!

with qmn5m i j
1/2Zi j . Now we transform further to the coordi

nates~3!. The Jacobi determinant scales asr5sin22w/4 and
does not vanish except for cases where a pair of the th
vectorsk i j or r̄ i j and R̄k are linearly dependent, as to b
expected. In the curvilinear coordinates~3! the six-
dimensional LaplacianD:5D r i j

1DRk
is the sum of a hyper-

radial kinetic energy term and a centrifugal term:

D:5r25]rr5]r2
L2

r2 . ~7!

The differential operatorL2 is a self-adjoint scalar ope
rator defined in the Hilbert spaceL2(v,dv), on the
domain v5@0,2#3@0,2#3@0,2#3@0,p/2#3@21,1# where
v[$j1 ,j2 ,j3 ,w,g%. Since this domain is compact the op
eratorL2 has a discrete spectrum and is associated with
grand-angular momentum@Casimir operator of theO(6)
group# which is well known from the hyperspherical ap
proach. The differential operatorL2 can be decomposed as

L25Lin
2 1L ext

2 1Lmix
2 . ~8!

The operatorLin
2 is being differential in internal angle

$w,g% only whereasLext
2 operates on$j i ; i 51,2,3% only. The

operatorLmix
2 contains the mixed derivatives resulting fro

off-diagonal elements of the metric tensor and couples in
nal to external motion~rotational coupling!. The explicit
form of these operators is

Lin
2 :52

4

sin22w
@22g]g1~12g!]g

2

1sin2w cos2w]w1 1
4 sin22w]w

2 #

52
4

sin22w
@]2wsin22w]2w2L̂g

2#. ~9!

Here L̂g
2 denotes the operator of the squared orbital angu

momentum of particlek with respect to the center of mass
the pair i j . This can be immediately deduced whenLin

2 is
expressed in terms ofu:5arccosg in which case it reads

L̂g
252sin21u]usinu]u . ~10!

The differential operatorLext
2 has the form
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Lext
2 :52r2H 1

r 23
2 m23

@2]j1
j1]j1

2]j1
j1

2]j1
#

3
1

r 13
2 m13

@2]j2
j2]j2

2]j2
j2

2]j2
#

3
1

r 12
2 m12

@2]j3
j1]j3

2]j3
j3

2]j3
#J . ~11!

The coupling termLmix
2 is determined by the off-diagona

elements of the metric,

Lmix
2 :52r2(

uÞv
$~¹r i j

u!•~¹r i j
v !1~¹Rk

u!•~¹Rk
v !%]u]v ,

u,vP$j1 ,j2 ,j3 ,w,g,r%. ~12!

An essential feature of the operatorLext
2 ~11! is that it de-

pendsparametrically on internal coordinates sincer i j are
functions of (w,g,r) only,

r 135r sinw,

r 235rFcos2w1S m1

m11m3
D 2

sin2w1g sin2w G1/2

,

r 125rFcos2w1S m3

m11m3
D 2

sin2w2g sin2w G1/2

. ~13!

In addition, Eq.~11! is exactly separable in the coordinat
$j j , j 51,2,3%. This separability is directly reflected in th
Schrödinger equation~6! since gradient terms introduce n
additional coupling;

2i S 1

Am i j

k i j •¹r i j
1

1

Amk

K k•“RkD 5Dext1D in , ~14!

where

Dext:52i S k23

r 23m23
~2j12j1

2!]j1
1

k13

r 13m13
~2j22j2

2!]j2

1
k12

r 12m12
~2j32j3

2!]j3D . ~15!

The differential operatorD in depends on internal coordinate
only:

D in :52i F 1

Am i j

k i j •¹r i j
u1

1

Amk

K k•¹Rk
uG]u ,

uP$w,g,r%. ~16!

Now we are able to rewrite the Schro¨dinger equation~1! as
the sum of internal and external differential operators with
additional mixing term:

FH in1Hext2
L mix

2

r2 GC̄~j1 ,j2 ,j3 ,w,g,r!50. ~17!
n

The differential operatorH in depends on body-fixed degree
of freedom:

H in :5r25]rr5]r2
Lin

2

r2 1D in , ~18!

whereas the external differential operator takes on the fo

Hext:52
Lext

2

r2 1Dext22 (
m,n

n.m

3
qmn

r̄ mn

. ~19!

In Eq. ~19! the total potential has been added to the exter
part as we intend below to solve for the eigenfunction
Hext. It is important to recognize that the eigenfunctions
the operatorHext, and in fact of Eq.~17!, are invariant under
any transformation of the total potential, provided this tran
formation depends on internal coordinates only and it d
not affect the sum occurring in Eq.~19!. This is due to the
fact that Eq.~19! contains the internal coordinates parame
cally. We make use of this additional freedom by using
transformation similar to that given in Ref.@5#. We introduce
two-body-type potentialsV̄i j 5Z̄i j /r i j as the most genera
linear superposition of all three physical two-body potenti
Vi j 5Zi j /r i j with coefficientai j dependent on internal coor
dinates only, i.e.,

S V̄23

V̄13

V̄12

D 5AS V23

V13

V12

D , ~20!

where A(w,g) is a 333 matrix with elements
ai j 5ai j (w,g). An equivalent relation forZ̄i j (w,g) can im-
mediately be deduced from~20!.

The invariance of the sum, i.e., the total potential, occ
ring in Eq. ~19! under the transformation~20! requires

(
i 51

3

ai j 51, j 51,2,3. ~21!

It should be emphasized that within the condition~21! the
treatment is still exact. In addition to~21!, six further condi-
tions have to be imposed to uniquely define the transform
tion ~20!. These relations can be chosen according to pra
cal considerations as well as to the specific type of th
particles under investigation, an example of this has b
given in Ref.@5#. The physical interpretation of the transfo
mation ~20! is quite obvious. According to Eq.~20! the
strength of interaction of two individual particlesi and j is
no longer determined by their product chargesZiZj as is the
case in two-body Rutherford scattering. The product char
Z̄ i j depend rather dynamically on the shape of trian
formed by the three particles. This functional dependenc
given by the coefficientsai j which indicate the amount o
distortion of a two-body subsystem due to the presence
third charged particle. Hence these coefficients can be id
tified as a direct measure for three-body interactions.

In atomic and molecular physics three-body continuu
systems arise as final states achieved in charged part
impact ionization and photo double ionization. Estimates
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cross sections for these processes require the knowledg
the wave function~5!. Using a multiple scattering mode
Garibotti and Miraglia@9# have derived an approximate e
pression for~5!, hereafterC3C, which has been employe
for the calculations of ionization cross sections for proto
and antiproton-impact ionization of atomic hydrogen and
lium. The wave functionC3C treats all particles in the con
tinuum on equal footing and, as pointed out in Ref.@5#, sat-
isfies the Kato-cusp conditions@11# when two particles come
close together~in configuration space!. Later it has been re
alized @10# that this wave function satisfies the Schro¨dinger
equation ~1! for large interparticle separations. The wa
function C3C has then been extensively employed for t
n

o
av

n

of

-
-

description of final states achieved by various scattering
actions@10,12–14#. An important feature ofC3C is that it
employs the coupling matrixA51. Thus, according to the
interpretations ofA, by approximating the final-state wav
function byC3C the three-body system is considered as th
noninteracting two-body subsystems. Three-body coup
can be introduced by making use of Eq.~20!. For two elec-
trons moving in the double continuum of a nucleus a scat
ing three-body wave function, hereafterCDS3C, has recently
been constructed@5# which is similar toC3C in philosophy,
in fact it encompassesC3C as a special case (A51). The
explicit form of CDS3C expressed in the coordinates of E
~3! is
C̄DS3C~j1 ,j2 ,j3 ,w,g,r!51F1„ib23~w,g!,1,2 i @k23r 23j1#…1F1„ib13~w,g!,1,2 i @k13r 13j2#…1F1„ib12~w,g!,1,2 i @k12r 12j3#…,
~22!
rt
ac-

ic
e
-

n

is

of
-
t

on
where the relative coordinatesr i j are given by~13!. Note,
that taking~13! into account the whole solutionCDS3C can
be written in terms of~3! because the plane-wave argume
can be expressed as

k i j •r i j 1K k•Rk5 (
j . i 51

3
mi1mj

m11m21m3
k i j •r i j

5
m21m3

m11m21m3
~j121!k23r 23

1
m11m3

m11m21m3
~j221!k13r 13

1
m11m2

m11m21m3
~j321!k12r 12. ~23!

The Sommerfeld parameters appearing in Eq.~22! have the
form

b i j ~w,g!:5
Z̄i j m i j

ki j
, ~24!

whereZ̄i j are determined from Eq.~20! using the matrixA
given in Refs.@5,15#. The wave functionC3C derives from
Eq. ~22! in the special caseZ̄i j 5ZiZj , i.e., forA51. From
previous derivation it was, however, not clear which part
the grand-angular momentum is diagonalized by the w
functionsCDS3C andC3C. Upon inspection of Eq.~19! the
partHDS3Cof which CDS3Cis the regular exact eigenfunctio
with zero eigenvalue is readily identified:

Hext5HDS3C1H rem, ~25!

where

HDS3C:5
2

r 23
2 m23

@]j1
j1]j1

1 ik23r 23j1]j1
2m23Z̄23r 23#
t

f
e

1
2

r 13
2 m13

@]j2
j2]j2

1 ik13r 13j2]j2
2m13Z̄13r 13#

1
2

r 12
2 m12

@]j3
j3]j3

1 ik12r 12j3]j3
2m12Z̄12r 12#

~26!

in which case

HDS3CC̄DS3C50.

III. REMARKS ON THE WAVE FUNCTIONS
C3C AND CDS3C

From Eq.~26! it is clear that only the total potential, pa
of Lext

2 , and a part of the gradient terms are taken into
count when employing the approximationH5HDS3C where
H is the total Hamiltonian. The whole body-fixed kinet
energy operator andH rem are still to be considered. In th
case ofA51 (C'C3C) these operators are simply ne
glected. In contrast, the wave functionCDS3C is determined
according to a coupling matrixA which minimizes the part
H2HDS3C in some region of the Hilbert space~the five-
dimensional manifold defined by large constantr and the
Wannier configuration!. On the other hand, it has bee
shown in Ref.@5# that the wave functionC̄DS3C(C̄3C) solves
the Schro¨dinger equation in the whole asymptotic region~for
large interparticle separations!. This has important implica-
tions. As the coordinate important for Coulomb scattering
of the parabolic typeki j (r i j 1 k̂ i j • r̂ i j ) the asymptotic region
is reached faster, i.e., at smallerr, for higher energies than is
the case for lower energies. Thus at threshold the validity
the approximationC̄'C̄3C is not clear. Indeed, at lower ex
cess energies the radial part ofC̄3C shows a behavior no
compatible with the total potential@5#. This fact also signi-
fies the importance of the part ofH at lower energies which
is not diagonalized byC̄3C. In the case ofCDS3C this defi-
ciency is partly dealt with by choosing the transformati
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FIG. 1. The spin asymmetry@Eq. ~27!# in the total cross section for the electron-impact ionization of atomic hydrogen. The curves
the results of the hidden crossing theory@19# ~long-dashed curve! and the CCC method~solid curve!. Representing the final state byC3C

yields for the spin asymmetry the results shown by the dot-dashed curve. The results of usingCDS3C and assuming the total potential to b
conserved along the paths of free particles@compare Eq.~21!# are represented by the short-dashed curve. The experimental data are
from Ref. @28# ~full squares! and Ref.@27# ~open circles!.
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~20! in a way which accounts for the part not diagonalized
C3C. For this reason the wave functionsCDS3C andC3C are
expected to show a completely different radial behavior
lower excess energies. In fact, the wave functionC3C pos-
sesses an asymptotically diverging radial behavior at thre
old @5# which results in its normalization being exponentia
decreasing with declining low excess energies. This is
stark contrast toC DS3C, which remains asymptotically
bound at threshold@5,6#.

A way of directly testing the radial parts ofC3C and
CDS3C is offered by comparing with spin-asymmetry me
surements in the total cross sections of electron-impact
ization of atomic hydrogen which is defined as

A:5
ss2s t

ss13s t , ~27!

wheress and s t are the total ionization cross sections f
singlet and triplet scatterings, respectively. The spin as
metry A is a dynamical quantity. It does not depend on t
normalization of the wave functionCDS3C since this wave
function contains the momenta of the outgoing electrons
symmetrical way and near to threshold the spatial par
CDS3C becomes energy independent@5#. ThusA tests for the
radial parts of this wave function. The original version of t
Wannier theory@23# has been formulated for1Se states of
the final-state electrons. Thus no estimate of the spin st
occupied by the electrons in the final channel has been
y

t

h-

n

n-

-
e

a
f

es
o-

vided. A subsequent extension of the Wannier treatmen
arbitrary L,S, and p states~total angular momentum, tota
spin, and parity! @16# has revealed that allL states have the
same energy dependence at threshold and nearly
LSp-states~in particular, singlet and triplet states! possess
the same threshold law. The implication of these conclusi
for the spin asymmetry is thatA does not depend on th
excess energy near threshold although an exact valueA
cannot be given. Careful analysis of recent measuremen
A at threshold reveals, however, a slightly positive slope
the spin asymmetry with increasing excess energies@17#
which indicates thatss and s t have slightly different ana-
lytical dependence on the excess energy near to thresh
The arguments of Ref.@16# can be reversed to conclude fro
a constantA that at thresholdss and s t differ only by an
excess-energy-independent factor. The results forA when
representing the two-electron continuum final state byC3C
andCDS3Care depicted in Fig. 1 along with the results of th
convergent-close-coupling calculations~CCC! @18# and the
method using hidden-crossing theory@19#. Although the last
three theories are in reasonable agreement with experime
finding the positive slope ofA at threshold is not reproduced
Calculations using the CCC method could not be perform
directly at threshold due to the increasing number of ps
dostates needed to achieve convergence. From Fig. 1
clear that describing the final state byC3C leads to a com-
pletely wrong behavior of the spin asymmetry whereas t
shortcoming is corrected for by employingCDS3C. We can
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now reverse the arguments and deduce that the spin a
metry A is highly sensitive to the part of the Hamiltonia
neglected byC3C and accounted for by usingCDS3C. The
spin asymmetry calculated withCDS3C is not a constant
function of the excess energy at threshold, as seen in Fi
Thus describing the two final-state electrons byCDS3C re-
sults in an excess-energy dependence of singlet and tr
states which is not compatible with the Wannier theo
analysis.

Another important point to be emphasized is the follo
ing. When employingC3C for the description of two-
electron final states following one-photon two-electron tra
sitions and electron-impact ionization, the angu
distributions for these electrons turn out to be well rep
duced in many situations even at lower excess ener
@20,12#. This behavior has been traced to the inclusion of
normalization factor (Nee) of the radial part of the two-body
Coulomb wave function which represents the~isolated!
electron-electron subsystem and indeed only this norma
tion factor~also called the Gamov factor! has then been use
to simulate the measured angular distribution of ejected e
trons following electron-impact ionization of atomic hydr
gen@21,22#. It should be stressed, however, that this norm
ization factor originates from the radial part, which is t
cause for the wrong radial behavior exposed in Fig. 1 a
thus its normalization cannot be correct. This conclusion
reinforced by the fact that inclusion ofuNeeu in theoretical
calculations results in a spurious behavior of the magnit
of the cross sections.

The above analysis offers a possible way of explain
why theC3C is capable of reproducing the measured angu
distributions. To this end we remark that the approximat
H5HDS3C which results in the approximationsC̄5C̄DS3C
means that the variation in internal coordinates is negligi
small compared with that of the external coordinatesj1,2,3,
i.e., the coordinatesr,w, andg are treated adiabatically. Th
validity of this adiabatic approach is readily derived fro
properties of the~total! potential surface. As pointed out b
many authors@23,16#, at lower excess energies the variati
in g is much smaller than that inw. In fact, the Wannier
ionization mode@23,16#, which dominates at threshold, oc
curs at a stable equilibrium ing and is unstable in the coor
dinatew. Hence, at lower excess energies, treatingg adia-
batically is more reasonable than consideringw to vary
slowly, or in fact to be frozen as assumed byC3C. As the
angular distribution is determined by theg degree of free-
dom it is expected thatC3C would provide a better descrip
tion for the angular than for the radial correlations. The lat
correlation controls the excess-energy sharing of the
electrons. In fact, using theC3C final state at lower exces
energies results~Fig. 2! in an energy distribution sharpl
peaked around equal-energy sharing which is at varia
with experimental finding@24,25# and the Wannier theory
prediction which indicate basically a flat energy distributi
at threshold. The same behavior as shown in Fig. 2 has b
observed for one-photon double ionization@8#. Although
CDS3C indicates a flatter energy distribution which is slight
peaked around equal-energy sharing the variation in this
tribution is still much higher than that anticipated by t
Wannier theory which indicates a shortcoming ofCDS3C in
fully accounting for the variation in the coordinatew.
m-

1.

let

-

-
r
-
es
e

a-

c-

l-

d
is

e

g
r

n

y

r
o

ce

en

s-

A further point concerns the wave functionCDS3C and its
subderivatives at vanishing hyper-radius, i.e., the three-b
collision point. These functions do not take into account t
hyper-radial kinetic energy term which is known to domina
the total Hamiltonian for small hyper-radius. Thus it is co
ceivable that wave functions of the form~22! reveal a behav-
ior not compatible with the Schro¨dinger equation for small
hyper-radius. In fact, solutions of Eq.~1! for r→0 are
known to have a Fock expansion@26# in the hyper-radius
which contains power and logarithmic terms inr whereas
the wave functionsC3C andCDS3C possess a regular power
series expansion in small hyper-radius. For larger the po-
tential term dominates andCDS3C andC3C become adequate
descriptions. Hence the wave functionsCDS3C andC3C sat-
isfy the Kato-cusp conditions to be imposed when two p
ticles come close together since in this caser is large even
though one interparticle distance is very small.

The last remark concerns the treatment of partial wa
by C 3C. Since the operatorLin

2 given by Eq.~9!, is not
treated byC3C this wave function provides a better approx
mation to the exact solution whenLin

2 is minimized. This is
the case for vanishing angular momentumL̂g

2 as can be im-
mediately deduced from Eq.~9!.

IV. CONCLUSIONS

In this work the three-body Coulomb continuum proble
has been reformulated in a parabolic-hyperspherical coo
nate system. It has been shown how additional informat
on three-body Coulomb wave functions can be gain
through this procedure. Various aspects of Coulomb wa
functions have been critically analyzed in light of spin
asymmetry measurements, angle, and energy distributio
two electrons moving in a nuclear field. It has been argu
that at thresholdC3C provides an adequate description fo

FIG. 2. The single differential cross section for the electro
impact ionization of atomic hydrogen as a function of the ra
E1 /E whereE1 is the energy of one of the final-state electrons a
E is the total excess energy which is chosen asE5200 meV. Using
the CDS3C approximation yields the dotted curve whereas the so
curve represents the results when employingC3C for the final state.
The results ofC3C have been multiplied by a factor of 1013.
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the angular correlations since the variation in the correspo
ing degree of freedom is slow whereas it fails in simulati
the energy distribution due to the rapid variation in the ra
of the electronic distances from the nucleus. As this sh
coming is partly removed byCDS3Cwe deduce that this ratio
is very sensitive to three-body coupling. It has been s
gested that the correct description of the dynamic with va
ing w is sufficient to explain the behavior of the spin asy
metry shown in Fig. 1.
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