
Quantum networks for elementary arithmetic operations

Vlatko Vedral,* Adriano Barenco, and Artur Ekert
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

~Received 3 November 1995!

Quantum computers require quantum arithmetic. We provide an explicit construction of quantum networks
effecting basic arithmetic operations: from addition to modular exponentiation. Quantum modular exponentia-
tion seems to be the most difficult~time and space consuming! part of Shor’s quantum factorizing algorithm.
We show that the auxiliary memory required to perform this operation in a reversible way grows linearly with
the size of the number to be factorized.@S1050-2947~96!05707-1#

PACS number~s!: 03.65.Ca, 07.05.Bx, 89.80.1h

I. INTRODUCTION

A quantum computer is a physical machine that can ac-
cept input states which represent a coherent superposition of
many different possible inputs and subsequently evolve them
into a corresponding superposition of outputs. Computation,
i.e., a sequence of unitary transformations, affects simulta-
neously each element of the superposition, generating a mas-
sive parallel data processing albeit within one piece of quan-
tum hardware @1#. This way quantum computers can
efficiently solve some problems which are believed to be
intractable on any classical computer@2,3#. Apart from
changing the complexity classes, the quantum theory of com-
putation reveals the fundamental connections between the
laws of physics and the nature of computation and math-
ematics@4#.

For the purpose of this paper a quantum computer will be
viewed as a quantum network~or a family of quantum net-
works! composed of quantum logic gates, each gate perform-
ing an elementary unitary operation on one, two, or more
two-state quantum systems calledqubits@5#. Each qubit rep-
resents an elementary unit of information; it has a chosen
‘‘computational’’ basis$u0&,u1&% corresponding to the clas-
sical bit values 0 and 1. Boolean operations which map se-
quences of 0’s and 1’s into other sequences of 0’s and 1’s are
defined with respect to this computational basis.

Any unitary operation is reversible. That is why quantum
networks effecting elementary arithmetic operations such as
addition, multiplication, and exponentiation cannot be di-
rectly deduced from their classical Boolean counterparts
@classical logic gates such asAND or OR are clearly irrevers-
ible: reading 1 at the output of theOR gate does not provide
enough information to determine the input which could be
either (0,1) or (1,0) or (1,1)#. Quantum arithmetic must be
built from reversible logical components. It has been shown
that reversible networks~a prerequisite for quantum compu-
tation! require some additional memory for storing interme-
diate results@6,7#. Hence the art of building quantum net-
works is often reduced to minimizing this auxiliary memory
or to optimizing the tradeoff between the auxiliary memory
and a number of computational steps required to complete a

given operation in a reversible way. In many situations, it is
possible and even advisable to perform certain parts of a
quantum computation in a classical way, using conventional
irreversible computers. This is because classical storage and
irreversible manipulation of information is much easier than
its quantum storage and reversible coherent computation. In
particular, this can be realized in computing constants and
parameters which do not require to be placed into a coherent
superposition of different values. Hence there is usually a
practical distinction between quantum variables and classical
parameters which frequently undergo different treatments in
the same quantum computation. An example of this can be
seen in the forthcoming section, and is extensively used
throughout this work.

In this paper we provide an explicit construction of sev-
eral elementary quantum networks. We focus on the space
complexity, i.e., on the optimal use of the auxiliary memory.
In our constructions, we save memory by reversing some
computations with different computations~rather than with
the same computation but run backwards, as it is the case in
the so-called ‘‘pebble game’’@7#!. The networks are pre-
sented in the ascending order of complication. We start from
a simple quantum addition, and end up with a modular ex-
ponentiation

Ua,Nux& ^ u0&→ux& ^ uaxmodN&, ~1!

where a and N are predetermined and known parameters.
This particular operation plays an important role in Shor’s
quantum factoring algorithm@3# and seems to be its most
demanding part.

The structure of the paper is as follows: in Sec. II we
define some basic terms and describe methods of reversing
some types of computation, in Sec. III we provide a detailed
description of the selected quantum networks, and in Sec. IV
we discuss their complexity.

II. BASIC CONCEPTS

For completeness let us start with some basic definitions.
A quantum network is a quantum computing device consist-
ing of quantum logic gates whose computational steps are
synchronized in time. The outputs of some of the gates are
connected by wires to the inputs of others. The size of the
network is its number of gates. The size of the input of the

*Present address: Blackett Laboratory, Imperial College, Prince
Consort Road, London SW7 2BZ, United Kingdom.

PHYSICAL REVIEW A JULY 1996VOLUME 54, NUMBER 1

541050-2947/96/54~1!/147~7!/$10.00 147 © 1996 The American Physical Society

network is its number of input qubits, i.e., the qubits that are
prepared appropriately at the beginning of each computation
performed by the network. Inputs are encoded in binary form
in the computational basis of selected qubits often called a
quantum register, or simply aregister. For instance, the bi-
nary form of number 6 is 110 and loading a quantum register
with this value is done by preparing three qubits in state
u1& ^ u1& ^ u0&. In the following we use a more
compact notation: ua& stands for the direct product
uan& ^ uan21&•••ua1& ^ ua0& which denotes a quantum register
prepared with the valuea520a0121a11•••12nan . Com-
putation is defined as a unitary evolution of the network
which takes its initial state ‘‘input’’ into some final state
‘‘output.’’

Both the input and the output can be encoded in several
registers. Even whenf is a one-to-one map between the in-
put x and the outputf (x) and the operation can be formally
written as a unitary operatorUf ,

Uf ux&→u f ~x!&, ~2!

we may still need an auxiliary register to store the interme-
diate data. Whenf is not a bijection we have to use an
additional register in order to guarantee the unitarity of com-
putation. In this case the computation must be viewed as a
unitary transformationUf of ~at least! two registers,

Uf ux,0&→ux, f ~x!&, ~3!

where the second register is of appropriate size to accommo-
date f (x).

As an example, consider a functionf a,N :x→axmodN. A
quantum network that effects this computation takes the
value x from a register and multiplies it by a parametera
modulo another parameterN. If a andN are coprime, the
function is bijective in the interval$0,1, . . . ,N21%, and it is
possible to construct a network that writes the answer into
the same register which initially contained the inputx @as in
Eq. ~2!#. This can be achieved by introducing an auxiliary
register and performing

Ua,Nux,0&→ux,axmodN&. ~4!

Then we can precomputea21modN, the inverse ofa
moduloN ~this can be done classically in an efficient way
using Euclid’s algorithm@8#!, and, by exchanging the two
registers and applyingUa21modN,N

21 to the resulting state, we
obtain

Ua21modN,N
21 Sux,axmodN&→Ua21modN,N

21 uaxmodN,x&

→uaxmodN,0&, ~5!

whereS is a unitary operation that exchanges the states of
the two registers. Note thatUa21modN,N

21 is the unitary trans-
formation representing the inverse of modular multiplication
by the inverse ofa. In general, given a network of elemen-
tary gates implementing a unitary operationU, the inverse of
U can be realized by a network of equal size consisting of
the inverses of these elementary gates taken in the reverse
order. Thus,

Ua21modN,N
21 SUa,Nux,0&→uaxmodN,0& ~6!

effectively performs

ux&→u f ~x!&, ~7!

where the second register is treated as an internal part of the
network ~temporary register!.

III. NETWORK ARCHITECTURE

Quantum networks for basic arithmetic operations can be
constructed in a number of different ways. Although almost
any nontrivial quantum gate operating on two or more qubits
can be used as an elementary building block of the networks
@9# we have decided to use the three gates described in Fig.
1, hereafter refered to aselementary gates. None of these
gates is universal for quantum computation; however, they
suffice to build any Boolean functions as the Toffoli gate
alone suffices to support anyclassical reversible computa-
tion. TheNOT and the control-NOT gates are added for con-
venience ~they can be easily obtained from the Toffoli
gates!.

A. Plain adder

The addition of two registersua& and ub& is probably the
most basic operation, in the simplest form it can be written
as

ua,b,0&→ua,b,a1b&. ~8!

Here we will focus on a slightly more complicated~but more
useful! operation that rewrites the result of the computation
into the one of the input registers, which is the usual way
additions are performed in conventional irreversible hard-
ware; i.e.,

ua,b&→ua,a1b&. ~9!

As one can reconstruct the input (a,b) out of the output
(a,a1b), there is no loss of information, and the calculation

FIG. 1. Truth tables and graphical representations of the el-
ementary quantum gates used for the construction of more compli-
cated quantum networks. The control qubits are graphically repre-
sented by a dot, the target qubits by a cross.~a! NOT operation.~b!
control-NOT. This gate can be seen as a ‘‘copy operation’’ in the
sense that a target qubit (b) initially in the state 0 will be after the
action of the gate in the same state as the control qubit.~c! Toffoli
gate. This gate can also be seen as a control-control-NOT: the target
bit (c) undergoes aNOT operation only when the two controls (a
andb) are in state 1.

148 54VLATKO VEDRAL, ADRIANO BARENCO, AND ARTUR EKERT

can be implemented reversibly. To prevent overflows, the
second register~initially loaded in stateub&) should be suf-
ficiently large, i.e., if botha andb are encoded onn qubits,
the second register should be of sizen11. In addition, the
network described here also requires a temporary register of
sizen21, initially in state u0&, to which the carries of the
addition are provisionally written~the last carry is the most
significant bit of the result and is written in the last qubit of
the second register!.

The operation of the full addition network is illustrated in
Fig. 2 and can be understood as follows.

We compute the most significant bit of the resulta1b.
This step requires computing all the carriesci through the
relationci←ai AND bi AND ci21 , whereai , bi , andci rep-
resent thei th qubit of the first, second, and temporary~carry!
register, respectively. Figure 3~a! illustrates the subnetwork
that effects the carry calculation.

Subsequently we reverse all these operations~except for
the last one which computed the leading bit of the result! in
order to restore every qubit of the temporary register to its
initial stateu0&. This enables us to reuse the same temporary
register, should the problem, for example, require repeated
additions. During the resetting process the othern qubits of
the result are computed through the relationbi←ai XOR bi
XOR ci21 and stored in the second register. This operation
effectively computes then first digits of the sum@the basic

network that performs the summation of three qubits modulo
2 is depicted in Fig. 3~b!#.

If we reverse the action of the above network~i.e., if we
apply each gate of the network in the reversed order! with
the input (a,b), the output will produce (a,a2b) when
a>b. Whena,b, the output is„a,2n112(b2a)…, where
n11 is the size of the second register. In this case the most
significant qubit of the second register will always contain
1. By checking this ‘‘overflow bit’’ it is therefore possible to
compare the two numbersa andb; we will use this operation
in the network for modular addition.

B. Adder modulo N

A slight complication occurs when one attempts to build a
network that effects

ua,b&→ua,a1bmodN&, ~10!

where 0<a,b,N. As in the case of the plain adder, there is
noa priori violation of unitarity since the input (a,b) can be
reconstructed from the output (a,a1bmodN), when
0<a,b,N ~as will always be the case!. Our approach is
based on taking the output of the plain adder network, and
subtractingN, depending on whether the valuea1b is big-
ger or smaller thanN. The method, however, must also ac-
comodate a superposition of states for which some values
a1b are bigger thanN and some smaller thanN.

Figure 4 illustrates the various steps needed to implement
modular addition. The first adder performs a plain addition
on the stateua,b& returningua,a1b&; the first register is then
swapped with a temporary register formerly loaded withN,
and a subtractor~i.e., an adder whose network is run back-
wards! is used to obtain the stateuN,a1b2N&. At this stage
the most significant bit of the second register indicates
whether or not an overflow occurred in the subtraction, i.e.,
whethera1b is smaller thanN or not. This information is

FIG. 2. Plain adder network. In the first step, all the carries are calculated until the last carry gives the most significant digit of the result.
Then all these operations apart from the last one are undone in reverse order, and the sum of the digits is performed correspondingly. Note
the position of a thick black bar on the right- or left-hand side of basic carry and sum networks. A network with a bar on the left side
represents the reversed sequence of elementary gates embedded in the same network with the bar on the right side.

FIG. 3. Basic carry and sum operations for the plain addition
network.~a! the carry operation~note that the carry operation per-
turbs the state of the qubitb). ~b! the sum operation.

54 149QUANTUM NETWORKS FOR ELEMENTARY ARITHMETIC . . .

‘‘copied’’ into a temporary qubitut& ~initially prepared in
stateu0&) through the control-NOT gate. Conditionally on the
value of this last qubitut&, N is added back to the second
register, leaving it with the valuea1bmodN. This is done
by either leaving the first register with the valueN ~in case of
overflow!, or resetting it to 0~if there is no overflow! and
then using a plain adder. After this operation, the value of the
first register can be reset to its original value and the first and
the temporary register can be swapped back, leaving the first
two registers in stateua,a1bmodN& and the temporary one
in state u0&. At this point the modular addition has been
computed, but some information is left in the temporary qu-
bit ut& that recorded the overflow of the subtraction. This
temporary qubit cannot be reused in a subsequent modular
addition, unless it is coherently reset to zero. The last two
blocks of the network take care of this resetting: first the
value in the first register (5a) is subtracted from the value
in the second (5a1bmodN) yielding a total state
ua,(a1bmodN)2a&. As before, the most significant bit of
the second register contains the information about the over-

flow in the subtraction, indicating whether or not the value
N was subtracted after the third network. This bit is then
used to reset the temporary bitut& to u0& through a second
control-NOT gate. Finally, the last subtraction is undone, re-
turning the two registers to the stateua,a1bmodN&.

C. Controlled-multiplier modulo N

Function f a,N(x)5axmodN can be implemented by re-
peated conditional additions~modulo N): ax520ax0
121ax11•••12n21axn21 . Starting from a register ini-
tially in the stateu0&, the network consists simply ofn stages
in which the value 2ia is added conditionally, depending on
the state of the qubituxi&. Figure 5 shows the corresponding
network; it is slightly complicated by the fact that we want
the multiplication to be effected conditionally upon the value
of some external qubituc&, namely, we want to implement

uc;x,0&→H uc;x,a3xmodN& if uc&5u1&

uc;x,x& if uc&5u0&.
~11!

FIG. 4. Adder moduloN. The first and the second network adda andb together and then subtractN. The overflow is recorded into the
temporary qubitut&. The next network calculates (a1b)modN. At this stage we have extra information about the value of the overflow
stored inut&. The last two blocks restoreut& to u0&. The arrow before the third plain adder means that the first register is set tou0& if the value
of the temporary qubitut& is 1 and is otherwise left unchanged~this can be easily done with control-NOT gates, as we know that the first
register is in the stateuN&). The arrow after the third plain adder resets the first register to its original value~hereuN&). The significance of
the thick black bars is explained in the caption of Fig. 2.

FIG. 5. Controlled multiplication moduloN consists of consecutive modular additions of 2ia or 0 depending on the values ofc and
xi . The operation before thei th modular adder consists in storing 2i21a or 0 in the temporary register depending on whether
uc,xi&5u1,1& or not, respectively. Immediately after the addition has taken place, this operation is undone. At the end, we copy the content
of the input register in the result register only ifuc&5u0&, preparing to account for the fact that the final output state should beuc;x,x& and
not uc;x,0& whenc50. The signification of the thick black bars is given in the caption of Fig. 2.

150 54VLATKO VEDRAL, ADRIANO BARENCO, AND ARTUR EKERT

To account for this fact at thei th modular addition stage the
first register is loaded with the value 2ia if uc,xi&5u1,1& and
with value 0 otherwise. This is done by applying the Toffoli
gate to the control qubitsuc& and uxi& and the appropriate
target qubit in the register; the gate is applied each time
value ‘‘1’’ appears in the binary form of the number 2ia.

Resetting the register to its initial state is done by apply-
ing the same sequence of the Toffoli gates again~the order of
the gates is irrelevant as they act on different target qubits!.
If uc&5u0& only 0 values are added at each of then stages to
the result register, giving stateuc;x,0&. Since we want the
state to beuc;x,x& we copy the content of the input register
to the result register ifuc&5u0&. This last operation is per-
formed by the rightmost elements of the network of Fig. 5.
The conditional copy is implemented using an array of Tof-
foli gates.

D. Exponentiation moduloN

A reversible network that computes the function
f a,N(x)5axmodN can now be designed using the previous
constructions. Notice first thatax can be written as
ax5a2

0x0
•a2

1x1
• ••• •a2

m21xm21, thus modular exponen-
tiation can be computed by setting initially the result register
to u1&, and successively effectingn multiplications bya2

i

~modulo N) depending on the value of the qubituxi&; if
xi51, we want the operation

ua2
0x01•••12i21xi21,0&

→ua2
0x01•••12i21xi21,a2

0x01•••12i21xi21
•a2

i
&

~12!

to be performed, otherwise, whenxi50 we just require

ua2
0x01•••12i21xi21,0&

→ua2
0x01•••12i21xi21,a2

0x01•••12i21xi21&.

~13!

Note that in both cases the result can be written as
ua2

0x01•••12i21xi21,a2
0x01•••12i xi&. To avoid an accumula-

tion of intermediate data in the memory of the quantum com-
puter, particular care should be taken to erase the partial
information generated. This is done, as explained in Sec. II,

by running backwards a controlled multiplication network
with the valuea22imodN. This quantity can be efficiently
precomputed in a classical way@8#. Figure 6 shows the net-
work for a complete modular exponentiation. It is made out
of m stages; each stage performs the following sequence of
operations:

ua2
0x01•••12i21xi21,0&→~multiplication!

ua2
0x01•••12i21xi21,a2

0x01•••12i xi&→~swapping!

ua2
0x01•••12i xi,a2

0x01•••12i21xi21&→~resetting!

ua2
0x01•••12i xi,0&. ~14!

IV. NETWORK COMPLEXITY

The size of the described networks depends on the size of
their inputn. The number of elementary gates in the plain
adder, the modular addition, and the controlled modular ad-
dition network scales linearly withn. The controlled modu-
lar multiplication containsn controlled modular additions,
and thus requires of the order ofn2 elementary operations.
Similarly the network for exponentiation contains of the or-
der of n controlled modular multiplications and the total
number of elementary operations is of the order ofn3. The
multiplicative overhead factor in front depends very much on
what is considered to be an elementary gate. For example, if
we choose the control-NOT to be our basic unit then the Tof-
foli gate can be simulated by 6 control-NOT gates@10#.

Let us have a closer look at the memory requirements for
the modular exponentiation; this can help to assess the diffi-
culty of quantum factorization. We setn to be the number of
bits needed to encode the parameterN of Eq. ~1!. In Shor’s
algorithm,x can be as big asN2, and therefore the register
needed to encode it requires up to 2n qubits. Not counting
the two input registers and an additional bit to store the most
significant digit of the result, the plain adder network re-
quires an extra (n21)-qubit temporary register for storing
temporary~carry! qubits. This register is reset to its initial
value, u0&, after each operation of the network and can be
reused later. The modular addition network, in addition to
the temporary qubit needed to store overflows in subtrac-
tions, requires anothern-qubit temporary register; in total
this makes twon-qubit temporary registers for modular ad-
dition. Controlled modular multiplication is done by repeated

FIG. 6. Modular exponentiation consists of

successive modular multiplications bya2
i
. The

even networks perform the reverse control modu-

lar multiplication by inverse ofa2
i
modN thus re-

setting one of the registers to zero and freeing it
for the next control modular multiplication. The
signification of the thick black bars is given in the
caption of Fig. 2.

54 151QUANTUM NETWORKS FOR ELEMENTARY ARITHMETIC . . .

modular additions, and requires three temporaryn-qubit reg-
isters: one for its own operation and two for the modular
addition ~controlled modular multiplication also requires a
temporary qubit used by the modular addition network!. Fi-
nally, the network for exponentiation needs four temporary
n–qubit registers, one for its own operation and three for the
controlled modular multiplication~plus an additional qubit
used by the modular addition!. Altogether the total number
of qubits required to perform the first part of the factorization
algorithm is 7n11, where 2n qubits are used to storex, n
qubits store the resultaxmodN, and 4n11 qubits are used as
temporary qubits.

The networks presented in this paper are by no means the
only or the most optimal ones. The notion of optimal net-
work strongly depends on its experimental realization and of
the type of algorithm it implements. If decoherence can be
kept at low levels and if storing quantum information is easy
within a given experimental framework, then one may
choose to use many temporary qubits and minimize the num-
ber of gate operations. On the other hand, if space is an
expensive resource, then it is desirable to minimize the num-
ber of temporary qubits at the expense of longer time of
computation. In this work we focused on minimizing the
number of required qubits showing that for the modular ex-
ponentiationaxmodN there exist networks for which this
number grows linearly with the size ofN. There are many
ways to construct operation such asaxmodN, given param-
etersa and N. Usually a dedicated network composed of
several subunits does not have to be a simple sum of the
subunits. In the modular exponentiation, for example, it is
relatively easy to reduce the memory, i.e., the constant over-
head factor (7 in our case! by noting that the first register in
the plain adder network always stores specific classical val-
ues: either 0 orN. The same holds for the temporary register
in the adder moduloN which always stores either 0 or
2iamodN. There is no need to use a full quantum register for
this: a classical register plus a single qubit~that keeps track
of the entanglement! are sufficient. This reduces the number
of qubits to 5n12. One further register can be removed by
using the addition network that does not require a temporary
register@11#; the trick is to use then-bit Toffoli gates to add
n-bit numbers. If the difficulty of the practical implementa-
tions of then-bit Toffoli gates is comparable to that of the
regular Toffoli gate, then this can be a good way of saving
memory. All together the number of qubits can be reduced
from 7n11 to 4n13. This means that apart from the regis-
ter storingx and another one storingaxmodN we need addi-
tional n13 temporary qubits to perform quantum modular
exponentiation in Shor’s algorithm. The required memory
grows only as a linear function of the size ofN.

In some cases, gain in space can be obtained by making
use of so-called divide-and-conquer techniques@12# in which
simple tasks are split in subtasks for which a smaller number

of temporary qubits is needed. For instance, in the case of the
simple n bits adder one can save temporary qubit by first
effecting the addition on the low halves of the input (n/2
least significant bits!. This requires approximatelyn/2 tem-
porary qubits. These qubits, after being erased by the usual
technique of reversing the computation, could be used to add
the upper halves of the input and then to combine the two
results. This method can be iterated and applied in turn on
each of the subadditions. Let us mention, however, that in
the networks presented in this paper, this technique can be
applied only to the simple adder. Also note that if we are
willing to implementn-bit Toffoli gates in our network we
can avoid the problem of the temporary register altogether
~see discussion above@11#!.

The multiplication algorithm presented in the paper is a
simple algorithm which is efficient for multiplying small
numbers. For large numbers there exist more efficient clas-
sical algorithms~e.g., Scho¨nhage-Strassen@13#!. However, a
reversible implementation of them is far beyond the scope of
this work and is justified only for multiplying numbers of
size of the order of 500 bits or more@12#.

V. CONCLUSION

In this paper we have explicitly constructed quantum net-
works performing elementary arithmetic operations includ-
ing the modular exponentiation which dominates the overall
time and memory complexity in Shor’s quantum factoriza-
tion algorithm. Our network for the modular exponentiation
achieves only a linear growth of auxiliary memory by ex-
ploiting the fact thatf a,N(x)5axmodN is a bijection~when
a andN are coprime! and can be made reversible by simple
auxiliary computations. In more practical terms our results
indicate that with the ‘‘trapped ions computer’’@14# about
20 ions suffice~at least in principle! to factorN515. Need-
less to say, the form of the actual network that will be used
in the first quantum computer will greatly depend on the type
of technology employed; the notion of an optimal network is
architecture dependent and any further optimization has to
await future experimental progress.

Note added in proof. After submission of this paper, we
learned of similar work by D. Beckman, A. N. Chan, S.
Devabhaktoni, and J. Preskill.

ACKNOWLEDGMENTS

V.V. thanks the Royal Society for financial support which
enabled him to undertake the research project on the subject
of the paper. A.B. acknowledges the financial support of the
Berrow Fund at Lincoln College, Oxford. The authors would
like to thank D. Deutsch, D. DiVincenzo, S. Gardiner, H.J.
Kimble, P.L. Knight, E. Knill, T. Pelizzari, and P. Zoller for
useful discussions.

@1# D. Deutsch, Proc. R. Soc. London A400, 97 ~1985!.
@2# D. Deutsch and R. Jozsa, Proc. R. Soc. London A439, 553

~1992!; E. Bernstein and U. Vazirani~unpublished!; D. S. Si-
mon, in Proceedings of the 35th Annual Symposium on the
Foundations of Computer Science, edited by S. Goldwasser
~IEEE Computer Society Press, Los Alamitos, CA, 1994!,

p. 16.
@3# P. W. Shor, inProceedings of the 35th Annual Symposium on

the Theory of Computer Science~Ref. @2#!, p. 124.
@4# D. Deutsch,The Fabric of Reality~Viking-Penguin Publishers,

London, in press!.
@5# D. Deutsch, Proc. R. Soc. London A425, 73 ~1989!.

152 54VLATKO VEDRAL, ADRIANO BARENCO, AND ARTUR EKERT

@6# R. Landauer, IBM J. Res. Dev.5, 183 ~1961!; C. H Bennett,
ibid. 32, 16 ~1988!; T. Toffoli, Math. Syst. Theory14, 13
~1981!.

@7# C. H. Bennett, SIAM J. Comput.18 ~4!, 766 ~1989!; R. Y.
Levine and A. T. Sherman,ibid. 19 ~4!, 673 ~1990!.

@8# D. E. Knuth,The Art of Computer Programming, Volume 2:
Seminumerical Algorithms~Addison-Wesley, New York,
1981!.

@9# A. Barenco, Proc. R. Soc. London A449, 679~1995!; T. Slea-
tor and H. Weinfurter, Phys. Rev. Lett.74, 4087 ~1995!; D.
Deutsch, A. Barenco, and A. Ekert, Proc. R. Soc. London A

449, 669 ~1995!; S. Lloyd, Phys. Rev. Lett.75, 346 ~1995!.
@10# A. Barenco, C.H. Bennett, R. Cleve, D. P. DiVicenzo, N. Mar-

golus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys.
Rev. A 52, 3457~1995!.

@11# S. A. Gardiner, T. Pelizzari, and P. Zoller~private communi-
cation!.

@12# A. V. Aho, J. E. Hopcroft, and J. D. Ullman,Data Structures
and Algorithms~Addison-Wesley, New York, 1983!.

@13# A. Schoenhage and V. Strassen, Computing7, 281 ~1971!.
@14# J. I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091~1995!.

54 153QUANTUM NETWORKS FOR ELEMENTARY ARITHMETIC . . .

