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Quantum networks for elementary arithmetic operations
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Quantum computers require qguantum arithmetic. We provide an explicit construction of quantum networks
effecting basic arithmetic operations: from addition to modular exponentiation. Quantum modular exponentia-
tion seems to be the most difficylime and space consumingart of Shor’s quantum factorizing algorithm.

We show that the auxiliary memory required to perform this operation in a reversible way grows linearly with
the size of the number to be factoriz¢81050-294®6)05707-1

PACS numbsgps): 03.65.Ca, 07.05.Bx, 89.86h

I. INTRODUCTION given operation in a reversible way. In many situations, it is
possible and even advisable to perform certain parts of a
A quantum computer is a physical machine that can acguantum computation in a classical way, using conventional
cept input states which represent a coherent superposition gfeversible computers. This is because classical storage and
many different possible inputs and subsequently evolve theriireversible manipulation of information is much easier than
into a corresponding superposition of outputs. Computationits quantum storage and reversible coherent computation. In
i.e., a sequence of unitary transformations, affects simultaparticular, this can be realized in computing constants and
neously each element of the superposition, generating a magarameters which do not require to be placed into a coherent
sive parallel data processing albeit within one piece of quansuperposition of different values. Hence there is usually a
tum hardware[1]. This way quantum computers can practical distinction between quantum variables and classical
efficiently solve some problems which are believed to beparameters which frequently undergo different treatments in
intractable on any classical computg?,3]. Apart from the same quantum computation. An example of this can be
changing the complexity classes, the quantum theory of conseen in the forthcoming section, and is extensively used
putation reveals the fundamental connections between thH&roughout this work.
laws of physics and the nature of computation and math- In this paper we provide an explicit construction of sev-
ematics[4]. eral elementary quantum networks. We focus on the space
For the purpose of this paper a quantum computer will becomplexity, i.e., on the optimal use of the auxiliary memory.
viewed as a quantum netwotkr a family of quantum net- In our constructions, we save memory by reversing some
works) composed of quantum logic gates, each gate performeomputations with different computatiorisather than with
ing an elementary unitary operation on one, two, or morghe same computation but run backwards, as it is the case in
two-state quantum systems callgabits[5]. Each qubit rep- the so-called “pebble game[7]). The networks are pre-
resents an elementary unit of information; it has a chosesented in the ascending order of complication. We start from
“computational” basis{|0),|1)} corresponding to the clas- a simple quantum addition, and end up with a modular ex-
sical bit values 0 and 1. Boolean operations which map seponentiation
guences of 0's and 1's into other sequences of O’'s and 1's are
defined with respect to this computational basis. Uqn|X)®]0)—|x)®|a*modN), (1)
Any unitary operation is reversible. That is why quantum
networks effecting elementary arithmetic operations such awherea and N are predetermined and known parameters.
addition, multiplication, and exponentiation cannot be di-This particular operation plays an important role in Shor’s
rectly deduced from their classical Boolean counterpartguantum factoring algorithnh3] and seems to be its most
[classical logic gates such asD or OR are clearly irrevers- demanding part.
ible: reading 1 at the output of ther gate does not provide The structure of the paper is as follows: in Sec. Il we
enough information to determine the input which could bedefine some basic terms and describe methods of reversing
either (0,1) or (1,0) or (1,1) Quantum arithmetic must be some types of computation, in Sec. Il we provide a detailed
built from reversible logical components. It has been showrdescription of the selected quantum networks, and in Sec. IV
that reversible network& prerequisite for quantum compu- we discuss their complexity.
tation) require some additional memory for storing interme-
diate resultd6,7]. Hence the art of building quantum net-
works is often reduced to minimizing this auxiliary memory
or to optimizing the tradeoff between the auxiliary memory  For completeness let us start with some basic definitions.
and a number of computational steps required to complete A quantum network is a quantum computing device consist-
ing of quantum logic gates whose computational steps are
synchronized in time. The outputs of some of the gates are
“Present address: Blackett Laboratory, Imperial College, Princeonnected by wires to the inputs of others. The size of the
Consort Road, London SW7 2BZ, United Kingdom. network is its number of gates. The size of the input of the

Il. BASIC CONCEPTS

1050-2947/96/54.)/147(7)/$10.00 54 147 © 1996 The American Physical Society



148 VLATKO VEDRAL, ADRIANO BARENCO, AND ARTUR EKERT 54

network is its number of input qubits, i.e., the qubits that are ,

prepared appropriately at the beginning of each computation ¢ ¢ o o ZZZ 65260
performed by the network. Inputs are encoded in binary form _ s, o> % b 0o0lloo1
in the computational basis of selected qubits often called a o lorololo
guantum registeror simply aregister. For instance, the bi- i 25 e b b ¥ lorrfor1
nary form of number 6 is 110 and loading a quantum register  |%{¢ 00foo 100100
with this value is done by preparing three qubits in state |9 |1 0101 c o [fol1)101
[1)®|1)®|0). In the following we use a more 1]0 10|11 © ;;? ;;;
compact notation: |a) stands for the direct product (@) 1110

lan)®|a,_1):--|ai)®|ag) which denotes a quantum register (b)

prepared with the valua=2%,+2%a,+ - - - +2"a,. Com-
putation is defined as a unitary evolution of the network
which takes its initial state “input” into some final state
“output.”

Both the input and the output can be encoded in severaj
registers. Even whefi is a one-to-one map between the in- sense that a target qubib) initially in the state 0 will be after the
qux and the O_UtPUf(X) and the operation can be formally ¢tion of the gate in the same state as the control g(@®iffoffoli
written as a unitary operatdJ, gate. This gate can also be seen as a control-contrulthe target

bit (¢) undergoes aloT operation only when the two controls (
Ut[x)—[f(x)), (20 andb) are in state 1.

FIG. 1. Truth tables and graphical representations of the el-
ementary quantum gates used for the construction of more compli-
cated quantum networks. The control qubits are graphically repre-
ented by a dot, the target qubits by a crgasNoT operation.(b)
ontrolNOT. This gate can be seen as a “copy operation” in the

we may still need an auxiliary register to store the interme- -1
diate data. Wherf is not a bijection we have to use an Uaimoay xS Ua,l,0) —axmodN,0) ©)
additional register in order to guarantee the unitarity of COM<ffectively performs

putation. In this case the computation must be viewed as a

unitary transformatioJ; of (at least two registers, [x)—|f(x)), @)

U] x,00—|x,f(X)), ®) where the second register is treated as an internal part of the
network (temporary register
where the second register is of appropriate size to accommo-
datef(x). IIl. NETWORK ARCHITECTURE

As an example, consider a functidg \ :x—axmodN. A L . .
quantum network that effects this computation takes the Quantum networks for basic arithmetic operations can be

value x from a register and multiplies it by a parameter constructed in a number of different ways. Although almost

modulo another parametét. If a and N are coprime, the any nontrivial quantum gate opera}tir?g on two or more qubits
function is bijective in the in.terva{lo 1 N—1}, and ,it s can be used as an elementary building block of the networks

possible to construct a network that writes the answer int 9] we have decided to use the three gates described in Fig.
) S . ; . , hereafter refered to asementary gatesNone of these
the same register which initially contained the inguias in

. . . . .. gates is universal for quantum computation; however, they
rEeC::uétZ;]r a-l;]rgspg?fgrgﬁ nZChIEVEd by introducing an auxiliary suffice to build any Boolean functions as the Toffoli gate

alone suffices to support argtassical reversible computa-
4) tion. TheNoOT and the controNOT gates are added for con-
venience (they can be easily obtained from the Toffoli

gates.

UanX,00—|x,axmodN).

Then we can precomputa 'modN, the inverse ofa

modulo N (this can be done classically in an efficient way

using Euclid’s algorithm8]), and, by exchanging the two

registers and applyingJ;,llmod\,’N to the resulting state, we The addition of two register) and|b) is probably the

obtain most basic operation, in the simplest form it can be written
as

A. Plain adder

U 2 imoan S aXMOdN) — U o Jaxmod,x) la,b,0)—

a,b,a+b). (8)

—|axmodN,0), © Here we will focus on a slightly more complicatéalit more

Olflsefu) operation that rewrites the result of the computation
into the one of the input registers, which is the usual way
additions are performed in conventional irreversible hard-
ware; i.e.,

where S is a unitary operation that exchanges the states
the two registers. Note thm;}lmom',\, is the unitary trans-
formation representing the inverse of modular multiplication
by the inverse of. In general, given a network of elemen-
tary gates implementing a unitary operatidnthe inverse of |a,b)—|a,a+b). 9)

U can be realized by a network of equal size consisting of

the inverses of these elementary gates taken in the reverées one can reconstruct the inpu&,p) out of the output
order. Thus, (a,a+Db), there is no loss of information, and the calculation
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FIG. 2. Plain adder network. In the first step, all the carries are calculated until the last carry gives the most significant digit of the result.
Then all these operations apart from the last one are undone in reverse order, and the sum of the digits is performed correspondingly. Note
the position of a thick black bar on the right- or left-hand side of basic carry and sum networks. A network with a bar on the left side
represents the reversed sequence of elementary gates embedded in the same network with the bar on the right side.

can be implemented reversibly. To prevent overflows, thenetwork that performs the summation of three qubits modulo
second registefinitially loaded in statdb)) should be suf- 2 is depicted in Fig. ®)].

ficiently large, i.e., if botha andb are encoded on qubits, If we reverse the action of the above netwdile., if we

the second register should be of sizé 1. In addition, the apply each gate of the network in the reversed greéth
network described here also requires a temporary register dfie input @,b), the output will produce §,a—b) when
sizen—1, initially in state|0), to which the carries of the a=b. Whena<b, the output is(a,2""*—(b—a)), where
addition are provisionally writteiithe last carry is the most n+1 is the size of the second register. In this case the most
significant bit of the result and is written in the last qubit of significant qubit of the second register will always contain

the second register 1. By checking this “overflow bit” it is therefore possible to
The operation of the full addition network is illustrated in compare the two numbeesandb; we will use this operation
Fig. 2 and can be understood as follows. in the network for modular addition.
We compute the most significant bit of the resaitb.
This step requires computing all the carrigsthrough the B. Adder modulo N

relationc;<—a; AND b; AND c;_4, wherea,, b;, andc; rep-
resent theth qubit of the first, second, and temporacarry)
register, respectively. Figurgd illustrates the subnetwor
that effects the carry calculation. la,b)—|a,a+bmod\), (10)
Subsequently we reverse all these operati@xsept for
the last one which computed the leading bit of the réslt \yhere 0<a,b<N. As in the case of the plain adder, there is
order to restore every qubit of the temporary register to it§,4 5 priori violation of unitarity since the inputa(b) can be
initial state|0). This enables us to reuse the same temporarygconstructed from the outputafa+bmodN), when
register, should the problem, for example, require repeatef<a h<N (as will always be the caseOur approach is
additions. During the resetting process the oteubits of  pased on taking the output of the plain adder network, and
the result are computed through the relatigr-a; XOR by sybtractingN, depending on whether the valae- b is big-

A slight complication occurs when one attempts to build a
K network that effects

—X
il
CARRY

E

XOR Ci_; and stored in the second register. This operationyer or smaller thamN. The method, however, must also ac-
effectively computes the first digits of the sunfthe basic  comodate a superposition of states for which some values
a-+b are bigger thalN and some smaller tha.
Figure 4 illustrates the various steps needed to implement
_I_ _ modular addition. The first adder performs a plain addition
] = 0 on the statéa,b) returning|a,a+ b); the first register is then
—— swapped with a temporary register formerly loaded with
—4 . .
() and a subtractofi.e., an adder whose network is run back-
wards is used to obtain the staf,a+b—N). At this stage
FIG. 3. Basic carry and sum operations for the plain additionthe most significant bit of the second register indicates
network. (a) the carry operatiotinote that the carry operation per- Whether or not an overflow occurred in the subtraction, i.e.,
turbs the state of the qubi). (b) the sum operation. whethera+b is smaller tharN or not. This information is
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FIG. 4. Adder moduldN. The first and the second network aaléndb together and then subtraldt The overflow is recorded into the
temporary qubift). The next network calculates ¢ b)modN. At this stage we have extra information about the value of the overflow
stored int). The last two blocks restot€) to |0). The arrow before the third plain adder means that the first register is [€8tifdhe value
of the temporary qubift) is 1 and is otherwise left unchangétiis can be easily done with contmbT gates, as we know that the first
register is in the statfN)). The arrow after the third plain adder resets the first register to its original adue|N)). The significance of
the thick black bars is explained in the caption of Fig. 2.

“copied” into a temporary qubit|t) (initially prepared in  flow in the subtraction, indicating whether or not the value
state|0)) through the controkoT gate. Conditionally on the N was subtracted after the third network. This bit is then
value of this last qubitt), N is added back to the second used to reset the temporary bip to |0) through a second
register, leaving it with the valua+bmodN. This is done controlNOT gate. Finally, the last subtraction is undone, re-
by either leaving the first register with the valNg(in case of  turning the two registers to the stdtga+bmod\).

overflow), or resetting it to O(if there is no overfloyw and
then using a plain adder. After this operation, the value of the
first register can be reset to its original value and the first and
the temporary register can be swapped back, leaving the first Function f, y(x) =axmod\ can be implemented by re-
two registers in statéa,a+bmodN) and the temporary one Peated conditional additiongmodulo N): ax=2%x,

in state|0). At this point the modular addition has been +2'ax;+---+2" *ax, ;. Starting from a register ini-
computed, but some information is left in the temporary qu-tially in the statg0), the network consists simply of stages
bit |t) that recorded the overflow of the subtraction. Thisin which the value 2a is added conditionally, depending on
temporary qubit cannot be reused in a subsequent moduléne state of the qubj;). Figure 5 shows the corresponding
addition, unless it is coherently reset to zero. The last twdetwork; it is slightly complicated by the fact that we want
blocks of the network take care of this resetting: first thethe multiplication to be effected conditionally upon the value
value in the first register=a) is subtracted from the value of some external qubic), namely, we want to implement

in the second f£a+bmod\) yielding a total state
|a,(a+bmod\)—a). As before, the most significant bit of
the second register contains the information about the over-

C. Controlled-multiplier modulo N

|c;x,axxmodN) if [c)=]|1)

|c;x,Xx) if [c)=]0). (D

|c;x,0>a[
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FIG. 5. Controlled multiplication modul® consists of consecutive modular additions &4 ®r O depending on the values ofand
x;. The operation before théth modular adder consists in storind 2a or 0 in the temporary register depending on whether
|c,xiy=|1,2) or not, respectively. Inmediately after the addition has taken place, this operation is undone. At the end, we copy the content
of the input register in the result register onlyjdf=|0), preparing to account for the fact that the final output state should;kex) and
not |c;x,0) whenc=0. The signification of the thick black bars is given in the caption of Fig. 2.
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To account for this fact at thigh modular addition stage the by running backwards a controlled multiplication network

first register is loaded with the valueaif |c,x;)=[1,1) and  with the valuea 2 modN. This quantity can be efficiently
with value O otherwise. This is done by applying the Toffoli precomputed in a classical wé§]. Figure 6 shows the net-
gate to the control qubitkc) and |x;) and the appropriate work for a complete modular exponentiation. It is made out
target qubit in the register; the gate is applied each timef m stages; each stage performs the following sequence of
value “1” appears in the binary form of the numbefa2 operations:

Resetting the register to its initial state is done by apply- Oy 4ol S
ing the same sequence of the Toffoli gates agdia order of [a* %1,0)— (multiplicatiory
the gates is irrelevant as they act on different target gubits

205+ +2 7 1x 20x g+ -+ - +21x; H

ac o i-1,a° %0 i swappin
If |c)=|0) only O values are added at each of thetages to | )= (swapping
the result register, giving state;x,0). Since we want t'he |a20X°+"'+2ixi,a20’(°+'"+2i_lxifl)—>(resetting
state to bgc;x,x) we copy the content of the input register
to the result register ifc)=|0). This last operation is per- |a20xo+»--+2ixi 0). (14)
formed by the rightmost elements of the network of Fig. 5. ’
;I;)rllieg(;c:ggltlonal copy is implemented using an array of Tof- IV. NETWORK COMPLEXITY

The size of the described networks depends on the size of
D. Exponentiation modulo N their inputn. The number of elementary gates in the plain
adder, the modular addition, and the controlled modular ad-
R : ; -~ dition network scales linearly with. The controlled modu-
favN(X)_a moaN can now be des)l(gned using th_e PTEVIOUS|ar multiplication containsn controlled modular additions,
COI’IS'[;laICtIOI’ZIIS. Notice grﬂs,tl thae™ can be written as and thus requires of the order of elementary operations.
a*=a”*-a”*. ... .a® *m-1, thus modular exponen- Similarly the network for exponentiation contains of the or-
tiation can be computed by setting initially the result registerger of n controlled modular multiplications and the total
to |1), and successively effecting multiplications bya? number of elementary operations is of the ordendf The
(modulo N) depending on the value of the qubit;); if multiplicative overhead factor in front depends very much on

A reversible network that computes the function

X;=1, we want the operation what is considered to be an elementary gate. For example, if
0 - we choose the controloT to be our basic unit then the Tof-
|a? ot +2 i1 o) foli gate can be simulated by 6 contmbT gates[10].

Let us have a closer look at the memory requirements for
the modular exponentiation; this can help to assess the diffi-
(12)  culty of quantum factorization. We setto be the number of
bits needed to encode the paramédeof Eq. (1). In Shor’s
to be performed, otherwise, wheg=0 we just require algorithm, x can be as big abl?, and therefore the register
needed to encode it requires up to gubits. Not counting
the two input registers and an additional bit to store the most
significant digit of the result, the plain adder network re-
quires an extran{— 1)-qubit temporary register for storing
(13)  temporary(carry) qubits. This register is reset to its initial
value,|0), after each operation of the network and can be
Note that in both cases the result can be written aseused later. The modular addition network, in addition to
|a2™ot #2711 g2%0* -+ +2%)  To avoid an accumula- the temporary qubit needed to store overflows in subtrac-
tion of intermediate data in the memory of the quantum com#ions, requires anothem-qubit temporary register; in total
puter, particular care should be taken to erase the partidhis makes twan-qubit temporary registers for modular ad-
information generated. This is done, as explained in Sec. lidition. Controlled modular multiplication is done by repeated

0 i-1 0 i-1 i
_)|a2x0+---+2 xi_l,a2x0+--~+2 Xi—l.a2>

|a2°x0+ B +2i’1xi_l,0>

0 i-1 0 i-1
_>|a2 X+ - +2' Xi-1 g2 Xgt+ - +2' Xi-1),
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modular additions, and requires three temporaubit reg-  of temporary qubits is needed. For instance, in the case of the
isters: one for its own operation and two for the modularsimple n bits adder one can save temporary qubit by first
addition (controlled modular multiplication also requires a effecting the addition on the low halves of the input/Z
temporary qubit used by the modular addition netwoR&-  least significant bits This requires approximately/2 tem-
nally, the network for exponentiation needs four temporaryporary qubits. These qubits, after being erased by the usual
n—qubit registers, one for its own operation and three for thaechnique of reversing the computation, could be used to add
controlled modular multiplicatior{plus an additional qubit the upper halves of the input and then to combine the two
used by the modular additipnAltogether the total number results. This method can be iterated and applied in turn on
of qubits required to perform the first part of the factorizationeach of the subadditions. Let us mention, however, that in
algorithm is h+1, where 2 qubits are used to stove n the networks presented in this paper, this technique can be
qubits store the resuit‘modN, and s+ 1 qubits are used as applied only to the simple adder. Also note that if we are
temporary qubits. willing to implementn-bit Toffoli gates in our network we
The networks presented in this paper are by no means thman avoid the problem of the temporary register altogether
only or the most optimal ones. The notion of optimal net-(see discussion aboyé1]).
work strongly depends on its experimental realization and of The multiplication algorithm presented in the paper is a
the type of algorithm it implements. If decoherence can besimple algorithm which is efficient for multiplying small
kept at low levels and if storing quantum information is easynumbers. For large numbers there exist more efficient clas-
within a given experimental framework, then one maysical algorithmge.g., Schohage-Strassdri3]). However, a
choose to use many temporary qubits and minimize the nunreversible implementation of them is far beyond the scope of
ber of gate operations. On the other hand, if space is athis work and is justified only for multiplying numbers of
expensive resource, then it is desirable to minimize the nunsize of the order of 500 bits or mofé2].
ber of temporary qubits at the expense of longer time of
computation. In this work we focused on minimizing the
number of required qubits showing that for the modular ex-
ponentiationa*modN there exist networks for which this In this paper we have explicitly constructed quantum net-
number grows linearly with the size ®f. There are many works performing elementary arithmetic operations includ-
ways to construct operation such @snod\, given param- ing the modular exponentiation which dominates the overall
etersa and N. Usually a dedicated network composed of time and memory complexity in Shor's quantum factoriza-
several subunits does not have to be a simple sum of théon algorithm. Our network for the modular exponentiation
subunits. In the modular exponentiation, for example, it isachieves only a linear growth of auxiliary memory by ex-
relatively easy to reduce the memory, i.e., the constant oveploiting the fact thaff , \(x) =axmod\N is a bijection(when
head factor (7 in our cagéy noting that the first register in a andN are coprimg and can be made reversible by simple
the plain adder network always stores specific classical valauxiliary computations. In more practical terms our results
ues: either 0 oN. The same holds for the temporary registerindicate that with the “trapped ions computef’14] about
in the adder moduldN which always stores either 0 or 20 ions sufficgat least in principlgto factorN=15. Need-
2'amodN. There is no need to use a full quantum register forless to say, the form of the actual network that will be used
this: a classical register plus a single quititat keeps track in the first guantum computer will greatly depend on the type
of the entanglemeptre sufficient. This reduces the number of technology employed; the notion of an optimal network is
of qubits to T+ 2. One further register can be removed by architecture dependent and any further optimization has to
using the addition network that does not require a temporargwait future experimental progress.
register[ 11]; the trick is to use the-bit Toffoli gates to add Note added in proofAfter submission of this paper, we
n-bit numbers. If the difficulty of the practical implementa- learned of similar work by D. Beckman, A. N. Chan, S.
tions of then-bit Toffoli gates is comparable to that of the Devabhaktoni, and J. Preskill.
regular Toffoli gate, then this can be a good way of saving

V. CONCLUSION

memory. All together the number of qubits can be reduced ACKNOWLEDGMENTS
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