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Velocity-matching model for electron capture in keV atomic collisions
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We develop an approximate integral for the amplitudes of electron transfer in ion-atom collisions. The
resulting model pertains to collisions involving lawexcited states and relative ion-atom velocities near the
average speed of the target valence electron. Three points are essential to the detiyatienatomic states
are treated as a dielectric taking into account the long-range intera@jaihie process is viewed in momen-
tum spacequantifying the idea of velocity matchingnd (3) a semianalytic expression is derived using the
Born approximation. From the resulting integral propensity rules are derived telling which final states are
favored based on the initial target state and parameters of the colliSb850-29476)02008-3

PACS numbes): 34.70+e€, 34.10+x

[. INTRODUCTION the experiment$6]. Calculations based on a molecular or a
two-center atomic description agree well with the measured

A large part of atomic research focuses on determiningasymmetry parameters, but the explanations of the underly-
atomic structure and interactions with beam experimentsng physical mechanisms are for the most part restricted to
Atomic targets have been subjected to beams of electromagualitative arguments.
netic radiation, light particles such as electrons, and heavier To derive an expression for the amplitudes of charge
particles such as other atoms or ions. For electromagnetigansfer, we choose the two-center atomic basis approach,
beams, which are not too intense, induced atomic tranSiti0n§ecause the |0ng_range limits are well represented_ From the
are calculated assuming the dipole approximation for thenplecular point of view it is difficult to derive quantitative
electric vector of the radiation. The geometry of the Variouspropensity rules, since rotational coupling mixes the molecu-
components in the dipole matrix element leads to selectiof,; pasjs at long range. The atomic basis expansion has been
rules telling which final states are accessible. For electroncaq to find propensity rules for oriented targéts]. Con-
%epts that appear when discussing propensity rules for elec-

Chions to 4 a6t of possible finl States. A similar reatment fof'o" ansfer aral) energy defect between nital and final
; T POSSIDIE ) ' . atomic states(2) semiclassical impact parameter of the ion
keV atomic collisions is impractical, as the harmonics nec-

essary for accurate representation of the system number }ﬁajec_tory, (3) geometry of initial anq final state_s, ar(.d)
the thousandg1]. Atomic collision systems instead lend velocity-matching. The last concept is one that is unique to

themselves to a semiclassical approach which takes advaHle capturg process; the idea is that the’ capture probability
tage of the near classical behavior of the atomic cores anfficreases if the current flow of the target's valence electron
treats the active electron quantum mechanically. Symmetrg’_at‘?heS the speed of the passing ion. An attempt to quantify
considerations do not restrict the number of available finafhis idea was suggested in RE3], where it is stated that the
states Very muclﬁzzl, thus the Concept of a propensity ru|e total Capture probablllty should be proportional to an OVerIap
becomes useful to tell which of the many possible transition®f initial and final states in momentum space with the final
are the most likely onegs3,4]. state shifted by the projectile’s velocity. This simple model
The need for an approximate integral, which gives thedisplayed the same behavior as the experimentally measured
transition matrix for electron transfer in keV ion-atom colli- asymmetry parameter for capture from aligned atoms. The
sions, has grown. Recent generations of beam experimenshiortcomings of this model are that it is not derived but
prepare target atoms to well-defined excited states throughostulated, it does not include energy defect, and it is a zero
irradiation by coherent light of selected frequency and polarimpact parameter model.
ization[5]. In this article we concentrate on ion-atom colli-  Based on the empirical success of this model, we decided
sions where the target atom is prepared in a towxcited to derive a more comprehensive model from the semiclassi-
state. We focus on the range of projectile ion velocities neacal atomic basis approach by expressing the matrix elements
the average speed of the target atom’s valence electron, sinoé this theory in momentum space. In the literature this has
this is when the capture process is most significant. Experibeen a recurring theme in the attempt to understand electron
mentally, electron transfer in this type of system has beemransfer. The original formulation of the Born approximation
studied extensively5]. Experiments show asymmetries in for this process was expressed as an integral in momentum
the capture cross sections from excited atoficorbitals space[10]. Also some molecular approaches were formu-
aligned parallel and perpendicular to the path of the projectated in momentum spadé1,12. The remainder of the ar-
tile ions. In the case where differential cross section meaticle shows the derivation and predictions of a general pro-
surements are possible, capture asymmetry from states witkensity rule that includes the concepts of the preceding
opposite angular momentum orientation is measured. Thparagraph and encompasses alignment and orientation ef-
corresponding calculations have had good agreement witfects.
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the projectile atomic functions to have the correct momen-
tum and energy in the target frarfie]. The advantage of this
approach is that boundary conditions are simple to apply,
P since prepared target states and captured final states are
atomic in nature. The drawbacks are added complications
due to the ETF and nonorthogonality of the basis, when the
overlap of target and projectile states becomes significant.

PROJECTILE X
ION

A. Atomic functions in momentum space

A\

We write the transformation to momentum space, since
this will play a large role in clarifying many aspects of the

electron capture process,
EXCITED P P

TARGET 1 N
q)(P):vae_'p'r‘P(r)dh (2.5

FIG. 1. Schematic of the ion-atom interaction shown in the col- a2
. . . > .. _ a—i[R-p—(1/2v?t g
lision frame.R is the internuclear vectoh is the classical impact Pp =e [R-p=(1/2v"] p(p—v). (2.6

parameter, and is the projectile velocity. In momentum space the velocity of the projectile states is a

simple translation while the separation of the target and pro-
jectile is encoded in the new ETF shown in EB.6).

We now go into more detail about electron transfer in  Just from comparing the projectile basis functions in con-
atomic collisions represented by a two-center basis. The reldiguration space, Eq2.4), and momentum space, EQ.6),
tive motion between the heavy particles is viewed classione can see immediately that the momentum space picture
cally, and the outcome of a collision is obtained as a functiorcan prove fruitful. In configuration space the projectile func-
of initial position and velocity of the two atomic centers. The tions all have nontrivial time dependence, because they are
eikonal method 1] then gives the quantum mechanical dif- centered about the point indicated Ry In momentum space
ferential cross sections by combining the different paths othis time dependence is transferred to the ETF, where it is
the atoms, keeping track of the relative phases of the inmore accessible to analytic treatment, as will be shown in
volved electronic states along the various atomic trajectoriessec. 111 B. In configuration space the collision process occurs
The electronic motion is treated fully quantum mechanicallyin a volume of space which can be hundreds of atomic units
with a further simplification that the projectile ion moves on in extent because of the |ong_range forces involved. In mo-
a straight line past the target atom. This is quite a goodnentum space the extent of the interaction region is around 5
approximation for keV atomic collisions. The Schioger  a.u., since we are interested in relative velocities on the order
equation for an electron in the field of the target and projecof one or less a.u. The large distances are still, however,

Il. GENERAL THEORY

tile nuclei in the rest frame of the target(is a.u) reflected in the rapid oscillation of the ETF, but the effect of
these oscillations can be understood and dealt with in a
ii\p: 1o Z_j_ 9ZP+ v, 2.1) simple mannefsee Sec. |1 B.
20 i PR

B. Parabolic Coulomb functions

R(t)=b+ut. (2.2 When examining the charge transfer process in an atomic
. . : . .collision, there is not only the problem of understanding the
A schematic of this process with the pertinent parameters iganire process itself, but also disentangling it from excita-
given in Flg: 1. Throughout this article we use atomic UNitS.ion of the atomic state on one center by the charge of the
Note that this means that the momentum of the electron angyyer center. As an ion approaches a target atom the electric

thev\\//.er!ock:ty have the ng‘? dir:nension?, bepanfe lﬁ _field from the ion affects the target state long before the ion
ith the two-center basis the wave function for the activeg range to capture the electron, especially for the case of
electron is expanded in atomic orbitals about both nuclei:

hydrogenic atoms, where eashmanifold is degenerate. One
can, however, incorporate most of this long-range excitation
v=> am‘I’T,mJFE by Wp: n, (2.3  into the definition of the atomic basis on each center.
m n An example of an analytic treatment of the long-range
o forces in a charge transfer process is shown in work by
Vo, =elv =120y R). (2.4)  Lundsgaard and Nielsen for capture from ground state hy-
drogen by amx particle. They found that they could signifi-
V¥ and¥p are atomic orbitals centered on the target andcantly reduce the range of their calculation by using Stark
projectile nuclei, respectively, and the subsciptrefers to  states as a boundary conditipt3]. Here, we follow up on
the projectile atomic functions in the rest frame of the targetthis idea and include part of the linear term of the ionic
The coefficients,, andb,, give the amplitude of each of the Coulomb field in the atomic basis functions.
atomic functions. The exponential factor in EG-4) is the The Schrdinger equations which define the atomic basis
so-called electron translation fact@TF) that is needed for on the target and projectile are



54 VELOCITY-MATCHING MODEL FOR ELECTRON ... 1419
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The discussion proceeds only with E(.7), since both The initial point for the time integration OYS(T) is chosen to
equations are defined in a symmetric way. The two extrde zero for convenience. This choice does not affect the re-
terms, V) and EP, are onlytime dependent, representing a sults here, because this phase is common to all of the capture
shift in energy due to part of the Coulomb interaction with atomic states. However, the integrationE#(™ must begin

the projectile ion. Thelg term is a uniform shift in the target at 7= —, since it depends on the quantum numbers of the
atom’s energy while th&® term is a shift from the linear atomic state.

electric field in thez direction which depends on the shape of  Including the extra terms/5(™ andEP(M, in Egs.(2.7)

the target state. They are defined as follows: and(2.8) dramatically reduces the interaction region for ion-

7 atom collisions for two reasons. First, the long-range effect

=— %:Vg’(tHVf(t)zjuvf(t)x. . of an ion on an atom is the linear electric field along the
Ir—R(t)] collision axis. Second, the " breaks thd degeneracy of

(2.9 the usual spherical atomic states. Thedegeneracy is still
3 nT present, but the long-range linear electric field is acting along
EP(n",n],nj;t)= §V§(t)_(”1_”;)- (2.10  the trajectory of the projectile ion, thus it cannot cause an
Zr m transition. With the reduction of interaction range it be-
comes easier to make a sensible first order analysis of the

Vp has no linear term in thg direction, because the poten- .
electron capture process itself.

tial is symmetric about the collision plane. Spatially Egs.
(2.7) and(2.9) are still hydrogenic, but it is intended that the
spatial wave functions should be the parabolic Coulomb C. The coupled equations
functions, since they are eigenstates of the linear Stark effect.

The shape of the specific basis functions is determined b}h
the quantum numberns,n,,n,. n still is the principal quan-
tum number, butn; and n,, which count the number of
nodes in the¢ (é=r+2z) and  (np=r—2z) directions, re-

With the new basis defined the coupled equations govern-
g the evolution of atomic state amplitudes follow from
substitution of Eq.2.3) into Eq. (2.1). In matrix form the
coupled equations are

spectively, replace the usuahndm of spherical coordinates isi=Ma, (2.13
[14]. The general basis state is written
i (D where
V) =fnn, n, (7, P)e  TENT. (2.11
. [a
f is a parabolic Coulomb function which is a linear combi- a=s bm , (2.19
nation of the spherical Coulomb functions of the samand n
m, where|m|=n—n;—n,—1, given in Ref[14]. The time- 5 (V| Tpr 1)
dependent terms from Eq$2.7) and (2.8 enter into the SE( m.m T =R ) (2.15
phase of the basis functions analytically: (Ppr |V m) O’ n
|
. <\I’T,m'|VP_V5_ErTq|q’T,m> <\PT,m'|VT_V3_ E:1—|\PP’,n> ) (2.16
(Wpr Vo=V —Eg|¥rm) (Ppr o |Ve=Vi—Eq|¥pr o)/ '

(The subscriptsm and n indicate which elements are There are three principal matrix elements that comprise
summed in the matrix-vector multiplicatignThese coupled Eq. (2.13: the overlap of target and projectile wave func-
equations closely resemble those of R¢is7]. Taking into  tions, the excitation interaction, and the electron transfer in-
account part of the long-range interaction does not alter théeraction. The matri>XS in most multichannel treatments is
structure of the coupled equations, but these extra terms sutite unit matrix, because one usually chooses orthonormal
tracted from the interaction serve to increase the range afhannel wave functions. Here, howev&rhas the unit ma-
validity for a first order approximation. trix on the diagonal subblocks and the overlap of projectile
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and target wave functions on the off-diagonal subblocks<\pp,’n|vp_vg’_ErFr’]|qu,m>
This is the price for having atomic orbitals on two centers.
The interaction matriXM represents two processes: excita-
tion of the atomic orbital on one center by the potential of o 27 R B (1202]
the other center, and the actual electron transfer process. The ™ v Pp h(p—v,t)e
effect of the excitation interaction has a much reduced range, P
because much of the interaction is included in the basis func-
tions Egs.(2.7) and (2.8). The remainder can be evaluated X
efficiently by a multipole expansion of the projectile poten-
tial about the target atom, but this is left to a subsequent
article. Since we are interested in examining the electromvherew, is the energy eigenvalue of the projectile state
capture process, we go into further detail with the transfer The electron exchange integral written in the form of Eq.
matrix element. (2.19 starts to resemble the model in REJ] in that there is

The off-diagonal submatrices d¥l are responsible for an overlap of momentum space wave functions separated by

charge transfer. The lower left subblock dictates when the, The remainder of the integrand must be understood to
electron jumps from target to ion, and there is also the posyrjye at the new velocity matching. We will investigate the
sibility for transfer back to the target through the upper right,qe of the ETE. We will also account for time dependence

subblock. The return of the electron from the projectile is Nolgntering through the phase of the basis functions, the term
important for a first order theory, but it is definitely an im- V(F,’ and the internuclear separatidfh The result will be a

portant part of the full treatment. Writing out the generalmodel for electron transfer that shows how the various pa-

PT
:)eggirl]\g for electron capture from the target atom, ON€  ameters of this process affect the capture probability.

1 - - -> -
“’E_Elp_”z‘VE—Eﬁ &1 n(p,t)dp,  (2.19

<q’P/,n|VP_V5_ qu’T,m) Ill. DERIVATION OF VELOCITY-MATCHING MODEL

Section Il summarizes a complete semiclassical theory for
electron capture in an ion-atom collision for relative veloci-
ties on the order of a couple atomic units or less. The process
itself depends on many aspects such as impact parameter and
velocity, geometry of target and projectile wave function,

—ER(O]¥ n(r,t)dr. (2.17  and energy defect between initial and final state. This section
derives an approximate model for capture, where the impact
velocity is near the average speed of the target's valence

The integrand is the product of the target wave function, theelectron, which includes the effects of all these parameters in

projectile wave function shifted in position I8, the projec- ~an intuitive way and is easy to calculate.
tile’'s ETF, and the interaction due to the Coulomb field of

the ion. The capture matrix element is rather complex, but
upon transformation to momentum space it becomes possible
to understand how the various parameters of the collision The general ion-atom collision is a rather complicated

B fv‘l’ﬁ,nﬁ —Rpe =R (F ) — V(1)

A. First-order approximation

affect the capture probability. process. The electron can be exchanged and undergo excita-
To write the transfer integral in momentum space onetion on either center many times before reaching its final
inserts thes function in the form of state. However, it will be seen for the range of velocity and

impact parameter of interest here that it is a good approxi-
mation to consider only the direct transfer from the initial
-, 1 PP target state to a final capture state.
or=r)= va © e dp (2.18 The information about the capture probability is contained
P in the coefficientsb, in Eq. (2.3). These coefficients are
calculated by integratind,,, which must be extracted from
into the electron transfer integral. Placing it between the prothe coupled differential equatiori2.13. Multiplying on the
jectile potential and the target wave function performs thedeft by S~ ! untangles the,,’s from theb,’s. The inverse of
transformation to momentum space in the most efficient ways, to first order, is
One of the exponentials acts forward to Fourier transform the
target wave function, and the other works backward to trans- - Om'm —(Wr | Ve )
form the product of the projectile potential and the projectile S~ —(Vpr | V1 ) S 1
wave function. This is straightforward to evaluate, since the ' ' '
potential energy can be written, using E8.8), as the dif-
ference of the total energy and the kinetic energy—a merdhe validity of this approximation depends on two factors.
guadratic in momentum spacéNote that this avoids the The number of atomic states to which the collision interac-
usual problem with momentum space formulations which igion is confined determines the rank of the matrices in Eq.
that in general the Fourier transform of a product results in 42.13), and as the rank d& grows the worse the approxima-
convolution integra). Equation(2.17) is equivalent to tion in Eq.(3.1) becomes. The magnitude of the off-diagonal

(3.1
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matrix elements 0§, namely, the overlap between target and B. The window function

projectile states, is also relevant. The usual way to proceed from E@.4) is to evaluate the

Since the magnitude of the overlap matrix elements iS &natrix element on the right-hand side and then to integrate in
key factor for the approximations made in this section, it iSime \we will instead perform the time integration first. This

important to know their dependence upon the various cOlliygqyires that the time dependence be separated from the in-

sion parameters. Explicitly the integrals for the overlap beyegration variables of the matrix element. This will not work
tween target and projectile atomic states, expressed in cofiih the configuration space version Bf°T in Eq. (2.17)
figuration and momentum space, are since the projectile wave function and potential depend on

R which in turn depends on time. On the other hand, the
capture matrix element evaluated in momentum space, Eq.
(2.19, is much more suited to this type of analysis.
The momentum space transfer integral has only one factor
:f q);(ﬁ_J't)ei[lif)—(l/Z)vzt]q)T(ﬁ't)d5_ where the integratic?n coordiqq&.anq timet are tigq to-
4 gether: the ETF. This factoe'® P, indicates the position of
(3.2 the projectile, and we can write it as the prodel&Pxe'*'Pz in
the collision frame, see Fig. 1. The phase of the second ex-

_ ponential contains the product of time and the momentum
From Eq.(3.2) one can see that the magnitude of the overlapgordinatep,. Thus the integration of the matrix element
matrix elements decreases with either increasing impact pg 19 in time amounts to a Fourier transformation from time
rameter or velocity. The size of the overlap between a prog the frequency-vp, which is directly proportional to,
jectile and a target state also depends on the principal quagye to the assumption of constant velocity.

tum number of the particular atomic states considered; the The time dependence in E(.19 enters from three fac-
extent of an atomic orbital in configuration spacef$Z and tors: Vg and EP, the phase of the basis functions in Eq.

in momentum space it i€/n. These expressions provide a (2.12, and the ETF. Rewriting E43.4) with the momentum

criterion f_or the range of impact parameter and velocityspace transfer integral ER.19 and explicitly showing all
where a first order theory can be expected to work. time dependence, it becomes

We now employ the Born approximation by fixing the
coefficient of the initial target state to unity and the others to : . _ 2 .
zero in the state vector on the right side of E2.13. This by~ —'f Oprlpe™'[Ae(Wav ltgivtezgp, (3.5)
results in a first order expression for both the excitation and Ve
capture amplitudes. Focusing on the capture amplitudes, the .o .
time derivative of the expansion coefficients for the projec- Opr=P% ((p—v) Pr m (P)e°P, (3.6
tile along its trajectory is

<‘l’pr|‘I’T>=fV\If§(F— R,t)e o= (W2vhy (F t)dr

3 ZpvtnT(n]—nJ)

Zp
T b 2 DT (0D
37

_op L -
» . lp=wh-5l5 -0l
by~i 2, <‘I’P',n|‘l’T,m"><‘I’T,m"|VP_V0_Em0|‘I’T,mO>

mH

—i<\IfP,'n|Vp—Vg—Er';o|\Inymo>. (3.3 be(t)— do(t)

Aw= n

(3.9

The contribution to electron capture comes through two
terms, the second of which is the transfer integral discusse@ihe ETF is split up in order to partition the integrand in three
in Sec. IIC. basic factors. The first, E43.6), is an overlap of target and
The first term in Eq.(3.3) represents the leading order projectile momentum space wave functions including the
molecular effect as the projectile ion forms a temporary comtime-independent part of the ETF. The second term, Eqg.
plex with the target atom. We will, however, neglect this (3.7), is the interaction due to the projectile potential in
term, since the basis is chosen such that the excitation iwhich only the last two terms vary in time. The last term, Eq.
small and the overlap integral is already assumed smal(3.8), is the energy defect between projectile and target
Hence this term is considered as a second order effect. Tstates.
first order the time derivative of the capture coefficients is ~ Up until now the exact time dependence has been kept in
the formulation for completeness. However, we will now
eliminate terms involving the gradient of the projectile po-
tential in thez direction, ET®), since they are a factor of

|R| less important than the zeroth order terag”. Spe-
Equation (3.4) appears in Chapter 10 of R€fl], but the cifically, the last terms of Eq$2.12 and(3.7) are removed.
derivation, here, in terms of a truncated basis is necessary fdthis may seem as if we are defeating the purpose of going to
showing the range of validity of the velocity-matching parabolic Coulomb functions, but these basis functions are
model. The time integration of E@3.4) follows in the next still useful, because they are closer to the eigenstates of the
section, to obtain a formula for the capture amplitudes theminteraction causing excitation. The next section clarifies this
selves. point.

bn:_i<lPP’,n|VP_Vg_Er|?10|\PT,mO>+' . (34
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The dependence of the energy defect term is still compli- C. Propensity rules
qated by the Iogarith_mic .term.s in the phgse of the basjs func- The symmetries of Eq3.12 lead to general predictions
tions, Eq.(2.12). To simplify this expression we approximate t; the electron capture process. The velocity-matching
the phase by a line with a slope determined by evaluating thg, e preserves the reflection symmetry about the collision
logarithmic terms at a distanaefrom the target defined as plane, which stems from the original Hamiltonian E8.1)

an interaction range for captuf5]: [1,2]. Another symmetry emerges by having written Eq.

(3.12 in terms of parabolic Coulomb functions in momen-
b1y (O=~(0f P+ M, (3.9  tum space. It predicts that the final state of the captured

electron will have no dipole in the direction of the projectile

Zo a 2 velocity. The last general consequence of 12 occurs

wf”&ﬂm ——+\[1+| = } (3.10  at a particular relative velocity between the ion and atom,

a b b where the velocity-matching model shows extreme state se-
lectivity.

The interaction ranga replacesvt in Eq. (2.12. For the The velocity-matching model predicts that there should be

calculations presented in this article it is set to 25 a.u., buho netz dipole for the final state in electron capture from a
the slope in Eq(3.9) is not sensitive to this parametes;  spherical atomic state. However, this is a propensity rule,
represents the energy by which the target state is lowered dince it derives from Eq(3.12, which is an approximate
to the field of the projectile ion averaged over the interactiorresult. This follows from a property of the parabolic Cou-
region. Thus we approximate the energy defect by lomb functions in momentum space:

c-

Awin=wf, — of + of — o (3.1 Dy oy m(P)=(=D)MMION (). (313

Even though a parabolic state may have an asymmetric prob-
ability distribution in configuration space upon reflection in
Ehexy plane, it is completely symmetric in momentum space
tipon reflection in thep,p, plane[15]. From Eq.(3.13 the
integral in Eq.(3.12 gives amplitudes, equal in magnitude,
upon exchange af; andn, for either the target or projectile
state, provided that the other state is a spherical Coulomb
Since the first two terms df in Eq. (3.7) are independent of function. For the_example we choose in the results section,
; L . : ; . Sec. IV, we consider capture from atomic hydrogen prepared
time, their window is a Diracd function. In the third term . ; : X
. ) . . .in various P states, thus the final state can have a dipole
time appears in the square root. Fourier transforming this . N
expression gives a zeroth order modified Bessel function 0(1;nly in thex direction.

For the discussion of the next point we switch to the

the second kind with a width in momentum ob1/This type spherical Coulomb functions, because their angular depen-

of Bessel function is similar to a decaying exponential, since . L ) .
o : dence is identical in momentum and configuration space. The
it is the transform of the square root of a Lorentzian. We

. . : next interesting result of Eq3.12 occurs for a particular
wish to find a model for large impact parameter, so we takeprojectile velocity called the crossover velocity, which is de-
this latter window to be & function also. Thisé function '

receives the proper normalization through multiplication byﬁned
the area of the true window function. A
After time integration using the approximations men- 0e= 2| Awj|- (3.19

tioned above we reach the velocity-matching model for elec-,

. - - _As the ion velocity scans through., the window function
tron transfer. The expression for the capture coefficients is - .
crosses ovep,=0, the midplane of the target momentum

distribution (if Awy;, is negative, or p,=v, the midplane of

Note that the target and projectile charges have to be unequ
for the logarithmic terms to contribute to the energy defect.
With the approximations to the phase dependence of th
basis it is possible to integrate analytically both sides of Eq
(3.5 in time. Performing the time integration inside the mo-
mentum space integral will give a window function
which is centered around a momentum b, /v +v/2.

2w p 1o -, Zp the projectile momentum distributiofif A wj, is positive.
bp~—i—- VPOPT on~ 5 P—vl* - Since the window function is & function, the integral in Eq.
(3.12 is automatically zero unless the atomic state, over
Awj+ %UZ) . which the window is centered, has positive reflection sym-
X o\ p,— dp. (3.12 metry in thexy plane (the equivalency of momentum and

configuration space angular functions is used hefdis
] ) o ] o _ property, in combination with the reflection symmetry about
Numerical evaluation of this integral is not difficult, consid- {he collision plane, has a dramatic effect on the state selec-

ering that it is only a two-dimensional integral and that it is jyity of the velocity-matching model for projectile velocities
sufficient to take a range of a few atomic units in each d"nearvc as will be seen in Sec. IVB.

rection. The rapid oscillations alluded to in Sec. Il A disap-
peared with the time integration. The structure of the integral
in Eq. (3.12 leads to propensity rules for the electron trans-
fer amplitudes. Also, we present an alternative, related deri- In this section we present another expression for the cap-
vation which appeals more to the physical intuition of chargeture amplitudes which provides a clear physical insight into

transfer. the mechanism of charge transfer around the matching ve-

D. Interpretive model



54 VELOCITY-MATCHING MODEL FOR ELECTRON ... 1423

(A, + %vz)/v
——

FIG. 2. Schematic of the integral for the in-
terpretive velocity-matching model. The dis-
played plane is at a constant and arbitrary value
of x. Schematically the wave function cross sec-
tions are shown in configuration space on the
lower left corner of the plane and in momentum
space on the upper right corner. The window
function is also shown, and the area which is
completely black shows the contribution to the
capture integral.

T
‘\Yl'f;z?:?:?"f/IA

Q Y% %

locity. The starting point for the alternative derivation is Eq. at —Zpbx

(3.4 where the time derivative of the capture coefficients is lp'= [b2+ (01) 32" (3.19
given by the transfer integral in ER.17). Instead of com-

pletely switching this integration from one over configura- at this point once again the time integration is performed.
tion space variables to one over momentum space variables, \yjith the linear form of the energy defestwy, it is pos-

it will be expressed as a mixed integration, where two of thégipje {6 integrate Eq(3.17 analytically. The interactioha"
degre_es of freed(_)m are momen_ta and one is a posmon_. Tq?ansforms to a Bessel function once again, but to obtain a
resulting expression is not practical for calculation, but gives,,, o illuminating formula, we cancel the impact parameter

a clear picture of how the various parameters of the coIIisiorb in the numerator of Eq3.19 against one of the powers of
process affect the outcome. IR in the denominator: '

Rewriting Eq.(2.17), explicitly making use of the colli-
sion coordinate frame and the expansion of the projectile
potential in Eq.(2.9), it becomes jat_

(3.20

(Vpr nlVo—Vo—Efpl¥r.m) . o : .
This approximation gives an exponential for the window
function. The capture coefficients are thus given by

~ fVW;,n(X_ b,y,z—vt,t)e vz~ (120%]

b,~i ﬂt-)_ZP Xog'ire—blPz—[Awlin+(1/2)v2]/v\dX dpdp,.
> v Y,
XVEOX¥ 1 (x,y,z,)dr, (3.19 P (3.2
b —Zpb This form of the velocity-matching model is not well suited
Vi(t)= [b2+ (00272 (3.16  for calculation, since the wave functions in this mixed space

can only be found numerically. Also E@3.12 takes into

In this f th . lth il ol account the projectile potential to all orders while E2j21)
n this form of the capture integral the projectile potential ISis 5564 on a linear expansion of the potential. But it is a

expanded around the target position to first order. The zerot ood guide for the intuition to see the outcome of the elec-
order term cancels again\s'g as it was designed to do, and .o transfer process.
the linear term cancels agaimsf under the assumption that The velocity-matching model presented in E@.21)
this term does not mix the shells of the target atom. Re- gives a clear picture of how the state-to-state capture prob-
placing they andz integration variables by, andp,, an  abjlity depends on various parameters of the collision. Figure
altematlve expression for the time derivative of the capture shows schematically the different components that go into
amplitudes appears: the integral. The principal interaction driving the capture
process is the perpendicular electric field from the projectile
- alt | alt o= i[de+ (1202]t sivtp, ion, thus the ternZpx/b appears in the |nteg(al. The phase_
by~ —i JV _ dOPTI pe v 'el"Pdx dpdp;, factors due to the ETF have been converted into a separation
e 3.17 b inthex coordinate and in the p, momentum coordinate.
The exponential window only allows momenta which coun-
terbalance the excess momentuna,/v+v/2 gained by
alt _ —* _ N lin .
Opr=Ep n(X=b.Py,P;~0) E1m,(X,Py:P2), (318 ihe electron upon transfer to an atomic orbital about the pro-
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jectile nucleus. The width of the window in momentum,
1/b, reflects the fact that a wider range of energy defects can
be accommodated as the charge center of the projectile ion
passes closer to the target atom, since the ion's Coulomb EoS 8
potential energy at the target center sweeps through a P
broader range.

The concept of velocity-matching is well formulated
mathematically as an overlap in the mixed space of Eq.
(3.21). A velocity-matching model should not only account
for when the electron probability current matches on the tar- M
get and capture states, but should see where the currents Lo
match atcommon points in configuration spades shown in ol—"".
Fig. 2, the localization in configuration space comes with the 0 0.5 1
integration over thex coordinate, which is perpendicular to
the direction of the projectile motion. The probability cur-
rents of the target and projectile states in each plane of con- . ) o )
stantx are then compared by the integration in momentum FIG. 3. Position of the W'”dO_W function ip, as a function of
space. Since Eq3.21) is well suited for interpretation, we _- The S_Ol'd curve is for capture nto Hén:_l)’ the dashed curve
will use it in combination with the propensity rules of the is for n=2, and .the dotted curve is far=3. All curves were

; - - calculated for an impact parameterlof 15 a.u.
preceding section for understanding the results calculated by

Eq. (3.12.

p: (au.)
)

v (a.u.)

He"(n=3) as a function of projectile velocity, impact param-
eter, and initial H(2P) alignment and orientation. We do not,
IV. RESULTS however, compare at the level of cross sections, since this
requires integration over impact parameter and for low im-
act parameter the overlap between target and projectile

in an ion-atom collision, we choose a particular system ony 5.6 fynctions is not necessarily small, invalidating one of
which to test it. We wanted to examine a pure three bOdXhe assumptions in Sec. Il A

Cr:) ulombic systerln hivmgh.?tn. asymmetrél f'n tr:je nucIeEar The initial states considered here have positive reflection
charge, rt1o test aslo t ?j Shl in engrgy_ Ieect _due o qsymmetry with respect to the collision plane, meaning that
(3.10. Thus we selected the system:particle incident on - yne initial P state is aligned in the collision plane and has
an excited hydrogen atom. Other theoretical calculations foéverage angular momentum perpendicular to the collision

this Isystimh are (i:]ivgn in Rﬁfﬁle,lﬂd Iln this section ctjhe. plane. To describe the initial states, we label aligned states
results of the velocity-matching model are compared wit according to which axis in the collision franigee Fig. 1the
results obtained from the program used in Ré8], modi-

) . alignment is parallel. AP, state is aligned perpendicular to
fied to calculate capture from excited target atdigj. g P X 9 berp

W it ted in studvi ¢ for th he incoming ion beam, and R, state is aligned along the
Ve are Interested In studying capture 1or thé range o rojectile beam velocity. For oriented states we label accord-
projectile velocities near the average speed of the valen

; g to the angular momentum component in the direction
electron of the hydrogen target. Since we look at Captur?)erpendicular to the collision plang; _, andP, __, refer
Yy~ Yy

from hydrogen excited to the=2 shell, the “matching” . . . .

velocity is 0.5 a.u. . From either E¢8.12 or Eq.(3.21) one t_o orbitals rotating counterclockwlse a}nd clockwise, respec-
can find out immediately whiclm shells on thea particle tively, when seen from_the positiye axis.

will be significantly populated by the capture process. Figure O the purpose of discussion Fig. 4 displays contour plots
3 shows the location of the window function i as a func-

tion of projectile velocity for capture states in the first three B, P, B

n shells. The positions of projectile and target are indicated '
for reference. For the range of velocities we are interested in
clearly then=3 shell will dominate over the other two, be-
cause the corresponding window function moves into the
region between the projectile and target. Comparing the re-
sults of the velocity-matching model with the more complete -1
theoretical calculation for electron transfer fromr#2) to
He'(n=3) allows us to test the model for a system where the
capture process is the dominant one.

Having developed a first order theory for electron captur

P, (au.)
=
T

D( pX,O,pZ)

(x,0p)

x (a.u)

AN (\\\\—:—;ﬁ.‘
%\\%/ 1
0 | o
. . . - — 1 — L
A. Alignment and orientation 3 0 11 0 1-
Experiments measuring electron transfer in ion-atom col- ?, (@)

lisions with excited targets have been primarily concerned

with the dependence of the capture cross section on the ge- FIG. 4. Contour plots of thp,=0 cross section for some initial
ometry of the excited target state. Thus in this section wearget states. The top row shows the states in momentum space,
display the norm of the capture amplitudes into thewnhile the bottom row shows them in the mixed space.
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3) Capture Norm

He"(n=3) Capture Norm

He'(n

FIG. 5. Total capture into the Hén=3) from a P, initial state. FIG. 6 Total cgpture into the H¢n=3) from a Py initial state_.
The chain curve displavs the model resultsier 10 a.u. the solid The chain curve displays the model resultsiier 10 a.u., the solid
play PN curve is forb=15 a.u., and the dotted curve is floe=20 a.u. The

curve is forb=15 a.u., and the dotted curve is for=20 a.u. The . : :
- . - triangles show points of the close coupled calculation der10
triangles show points of the close coupled calculation fer10 - .
- : a.u., the crosses are fdr=15 a.u., and the plus signs are for
a.u., the crosses are fir=15 a.u., and the plus signs are for b=20 a.u

b=20 a.u.

2. Oriented target states
of these initial states in momentum space and the mixed Looking at the amplitude for electron transfer from the
space of Sec. llID. It must be borne in mind that the inter-P initial state to the H&(=3) in Fia. 7. th )
pretive model not only includes the overlap of projectile and’ 'y=1 i |a.s ate to the H&(n=3) in Fig. 7, there arg re
target wave functions in the mixed space, but also a windownharkable differences from the results of the preceding sec-
in p, with a width ~1/b and a center indicated in Fig. 3.  tion. First of all the amplitude for capture is much reduced

from the case of electron transfer from the aligiedrbitals.
1. Aligned target states Furthermore, the velocity-matching model predicts substan-
. . tially lower amplitudes than the close coupled calculation,
Elgure S ShOWS. t.h.e results for the.norm of capture Intoespecially around the matching velocity. The low capture
H? (n=3) frpm an initial H(ZP) state aligned along the col- norm predicted by the model is seen by examining the ori-
lision velocity. For Iqrge impact parametdr=20 a.u., thg ented state shown in Fig. 4.
model follpws the points from t.he close coupled calqulatlon, The state in the figure hdg= — 1, but the distribution for
but there is a gap in the magnitude of the two theories. Thi ,=1 is the same upon reflection about the:0 line. A

difference comes from having neglecteq mdewlar eff_ects Mollision of this target state with a projectile moving with
the expression from the capture amplitide., neglecting

the first term on the right-hand side of E@.3)]. For the

smaller impact parameters bf=10,15 a.u., where the cap- 1
ture norm is a significant fraction of unity, the velocity-
matching model achieves similar agreement. There is devia-
tion of the model away from the close coupled calculation
for b=10 a.u. andv<0.4 a.u., but this is to be expected
since the overlap between the target and projectile atomic
functions becomes too large.

Figure 6 displays the norm of capture into the
He" (n=3) from an initial H(2P) state aligned perpendicular
to the collision velocity. Again the agreement is good for
eitherb>10 a.u. orv>0.4 a.u., and when the overlap of
target and projectile wave functions becomes large, the N
velocity-matching model diverges away from the results of Q P Bt LS e e ‘
the more extensive calculation. In comparison with the cap- 0.2 0.6
ture amplitude from thé>, initial state capture from th@, v (a.)
falls off faster as a function of projectile velocity in both the
model and close coupled calculations. This general trend can FiG. 7. Total capture into the Hén=3) from a P, _, initial
be understood by looking at the initial states in the mixedstate. The chain curve displays the model resultdfer0 a.u., the
space, Fig. 4. Th®, state decays at a quicker rate than thesolid curve is forb=15 a.u., and the dotted curve is for=20 a.u.

P, state as thea component of the momentum increases. TheThe triangles show points of the close coupled calculation for
difference in electron transfer for oriented initial states isb=10 a.u., the crosses are fo= 15 a.u., and the plus signs are for
more dramatic. b=20 a.u.

05 |

He*(n=3) Capture Norm
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TABLE I. The magnitude of final-state amplitudes calculated by

1 the velocity-matching modgVMM ) and the close coupled calcu-
= lation (CCO) for b=15 a.u. andv=0.4 a.u. The amplitudes are
g coefficients of the parabolic atomic basis for He=3).

z
£ (m,n;,ny) b o, b o,
é% (—2,0,0) 0.1138 0.0926
@ (—=1,0,2) 0.1380 0.1442
I (-1,1,0) 0.1380 0.1210
o (0,0,2 0.0978 0.1337
= 0,1,9 0.1787 0.1699
0,2,0 0.0978 0.0939
(1,0, 0.1380 0.1442
(1,1,0 0.1380 0.1210
(2,0,0 0.1138 0.0926

FIG. 8. Total capture into the H¢n=3) from aP, -, initial

state. The chain curve displays the model result®fed 0 a.u., the H(2P) state, since the final states for capture from the

solid curve is forb=15 a.u., and the dotted curve is for=20 a.u. aligned orbitals are not much different from this case. The
The triangles show points of the close coupled calculation for 9 - '
b=10 a.u., the crosses are for= 15 a.u., and the plus signs are for final state for capture fronIP|y=l shows disagreement be-

b=20 a.u. tween the velocity-matching model and the close coupled
calculation near projectile velocities o=0.5 a.u., because
v=0.5 a.u. at an impact parameter 10 a.u. corresponds to the main cont_ribution to capture for Fhis_ case comes through
centering the projectile at the exact middle of the fourthtarget states induced as the projectile ion approaches.
quadrant p,>0 andx<0) of the oriented state in Fig. 4. To show a comparison at the level of the state-to-state
One can see, however, that this state has little probability formplitudes, we list the final state amplitudes from both the
entering the fourth quadrant, hence the low values in evaluvelocity-matching model and the extended calculation for
ating the electron transfer integral. The model thus quantifiesapture frOfTP|y:_1 at an impact parameter=15 a.u., and
the intuitive idea that the amplitude for Capture is low Whenve|ocity, v=0.4 a.u. Table | disp|ays the final state amp”_
the projectile ion hits on the side of the oriented state whergudes in terms of coefficients of the parabolic atomic basis.
the electron current flowagainstthe velocity of the projec-  There are symmetries that are apparent upon inspection of
tile. The fact that the velocity-matching model underesti-ihis taple. First, the magnitudes are the same rfornd
mates the capture amplitude around the matching velocity. , ¢or poth the model and the extended calculation. This
comes from neglecting excitation of the target state. If exCigmes from the reflection symmetry of the Hamiltonian and
tation were included, the target could evolve into a state withjiia| state in the collision piane. Second, the amplitudes for
a component more favorable to electron transfgr. This P'Othe model are the same upon interchangepandn,. As
cess is included in the close coupled calculation, and th'?iiscussed in Sec. Il C and reflected in the numbers of Table

results in the larger amplitudes aroune0.5 a.u. for cap- | his property is only approximate in the close coupled cal-
ture from theP|y:1 initial state. For the initial state oriented . |ation.
in the opposite sense the situation is quite different. To illustrate the dependence of the final state on projectile

Figure 8 shows the capture norm from tRg__,. The  velocity and impact parameter and to give a more clear pic-
capture amplitude is larger, and the agreement between thigre of the final state itself, we select a set of independent
close coupled calculation and the velocity-matching model igbservable$19]. We calculate the dipole moment, orienta-
better. Visualizing the velocity-matching integral with Fig. 4 tion, and alignment of the final state. Due to reflection sym-
amounts to centering the projectile in the first quadrantmetry through the collision plane the dipole moment in the
(p,>0 andx>0) in the mixed space plot of the oriented Yy direction is zero, and the angular momentum is directed
state. This orbital has a peak in the first quadrant, stating thaterpendicular to the collision plangD,)=0 and only
the electron current flows in the direction of the projectile(L,) can be nonzero. The symmetry under exchangaof
ion on the same side of the target that the projectile passemndn, for the velocity-matching model implies that there is
by. The direct capture is clearly favored for this initial state,no dipole component in the direction;(D,) = 0. Alignment
hence the good agreement of the velocity-matching modedf the final state is revealed by plottind2) and (L2).
with the extended calculation. Roughly speaking the “thickness” of the orbital as seen

from thex direction is proportional tgL2). Only results for
b=15,20 a.u. are shown. For lower impact parameters,
. b=10 a.u., the final state predicted by the model loses its
B. State-to-state amplitudes meaning due to modification from the field of the stripped

The velocity-matching model also gives the final state thatarget. All displayed observables are shown with the ordinate
the electron is captured into. We show only the final state oépanning the whole range of possible values for the
the He (n=3) after capture from theP; __, initial He"(n=3) shell.
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FIG. 9. (D) for He"(n=3). The solid curve shows the model ~ FIG. 10.(L,) for He"(n=3). The solid curve shows the model
results of D, for b=15 a.u. and the dotted curve is flo=20 a.u.  results forb=15 a.u. and the dotted curve is fbr=20 a.u. The
The crosses shoyD,) calculated from the amplitudes of the close crosses show(L,) calculated from the amplitudes of the close
coupled calculation forb=15 a.u. and the plus signs are for coupled calculation forb=15 a.u. and the plus signs are for
b=20 a.u. Also shown igD,) for the close coupled calculation b=20 a.u.

({D,) for the velocity matching is not displayed, since it is 2ero
The boxes represent points for= 15 a.u. and the diamonds are for
b=20 a.u. value of(L?) reflects the increase in magnitude(af,).
The observables plotted in Figs. 9—13 paint a clear picture
of the final state predicted by the velocity-matching model,

Figure 9 shows the dipole moment of the final state. Thé"’hiCh can be undgrstood by the propensity rules of S?C' e
and the interpretive model E(3.21). For capture into

predlctgd dI.DOIe in the Q|rept|on by the veIoc@y matchmg He"(n=3) the crossover velocity is 0.33 a.u. at an impact
model is quite large, achieving nearly the maximum possible B :

. ~ - parameter 0b=20 a.u., and shifts down to 0.30 a.u. for
value slightly abovey=0.3 a.u. The average electron posi-

tion (which is the negative of the dipdlgoints toward the l:_)=15 a.u. From Sec. I”.C. Itis knqwn that the p_rOJecuIe
. . final state must have positive reflection symmetry in xlye
target atom. Reaching the maximum value §@r,) means

that the final state is nearly a pure parabolic Coulomb funcgvlzcee filtr:)cctior[l)un?ug ;Tseo Cl‘?zlll\lielonogi?i?/renfgf)l/e::rt]iirrlgalrn?;[]aett?
tion with the quantization axis perpendicular to the projectile. P y y

velocity. As for the comparison with the close coupled cal-" thexz plane(the collision plang The only possible states

culation the large value and trend ¢,) are reproduced. obkeylng bﬁth symr_netrles hg\m—oh, Wheﬂ tlre;( axis 1S
The extended calculation shows only a small dipole inta en as the quantization axis. In the-3 shell three states
the z direction, which agrees with the propensity rule of havem=0, namely, theS, P, andD states. To apply the
Sec. IlIC. The total dipole of the final state is well described
by the velocity-matching model. 4
Looking at the angular momentum in Fig. 10, we see
quite a discrepancy between the prediction of the model and
the points of the extended calculation. The downward trend
in the angular momentum is reproduced in the model, but
there is a substantial offset. The model crosses zero angular
momentum precisely at the point where the maximum dipole
is predicted. Also at this velocityL?) is zero, see Fig. 11, s
indicating that the final state is completely aligned along the
X axis. For such a state if a small component aligned along
the z axis is added with the proper phase, the angular mo- <« x x .
mentum can deviate from zero quite strongly. As one can see
in Fig. 11 the close coupled calculation shows a small com- 0"
ponent aligned along the axis, but it is large enough to 0.2 0.6 1
cause the deviation in the angular momentum. The value of v (au.)
(L2) for the final state orbital seen in Fig. 12 shows a nearly
constant value of 1 a.u. for both the velocity-matching model  FiG. 11.(L?) for He"(n=3). The solid curve shows the model
and the close coupled calculation. The final plot in Fig. 13results forb=15 a.u. and the dotted curve is for=20 a.u. The
represents the square of the total angular momentum. Thgosses showL2) calculated from the amplitudes of the close
underestimation by the velocity-matching model is from thecoupled calculation forb=15 a.u. and the plus signs are for
discrepancy in(L,), and the trend toward the maximum b=20 a.u.

y (aa.)

2
X
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FIG. 12.(L2) for He"(n=3). The solid curve shows the model

FIG. 13.(L?) for He™(n=3). The soli h h |
results forb=15 a.u. and the dotted curve is for=20 a.u. The G. 13.(L°) for He™(n=3) e solid curve shows the mode

howL2 leulated f h itud ¢ the cl results forb=15 a.u. and the dotted curve is for=20 a.u. The
crosses showL;) calculated from the amplitudes of the close crosses showL?) calculated from the amplitudes of the close

coupled calculation forb=15 a.u. and the plus signs are for coupled calculation forb=15 a.u. and the plus signs are for

interpretive model, it is more convenient to combine these

three spherical wave functions into parabolic Coulombcrepancies between our model and the close coupled equa-
eigenstates. Since E(B.21) is an integral over the configu- tions are limited to few stateisee the fourth row of Table |
ration space coordinate, the parabolic state which points because of limitations on target excitation viewed in this
toward the target, in the direction, is heavily favored. This basis, and also the propensity rule of equal capture probabil-
explains the maximal dipole at the crossover velocity seen iffy into states with opposite-dipole moment is revealed.
Fig. 9. Moreover, ab the symmetry requirements prevent Eliminating the last term of Eq¢2.12 and(3.7) in Sec. IlIB
the final state from having a net angular momentum. As théemoves the need to use parabolic functions. One could in-
velocity increases, the final capture state widens and gairifead insert spherical wave functions generated from a model
angular momentum in the clockwise direction seen frompotential into Eq.(3.12. Thus the velocity-matching model
above the collision plane. This increase in the angular mois useful for making an exploratory calculation to reveal the
mentum of the final state is explained by velocity-matching:general behavior of a particular charge transfer system, and
as the projectile velocity increases, final states that have ® suggest which states are important for capture before
backward current on the side closest to the target are favorefinging the full machinery of the close coupled equations to

bear.
The velocity-matching model incorporates all the con-
V. CONCLUSION cepts known to be important to electron transfer and views

the process in its most natural frame. The energy defect be-

The velocity-matching model presented in E@12 and  tween initial and final states determines the position of the
(3.2)) gives capture amplitudes for electron transfer in ion-window in p,. The impact parameter enters into the expres-
atom collisions, where the relative velocity is on the order ofsion of the area of the window function, the strength of the
the average velocity of the active electron. The results obelectric field pulling the electron from the target, and of
tained by this model for intermediate impact parametersourse the separation of target and projectilecirThe ve-
compare well to the solutions of the full close coupled dif-locity affects the energy defect, and determines the separa-
ferential equation$2.13 at the level of state-to-state ampli- tion of target and projectile ip,. The geometry of initial
tudes despite the fact that the velocity-matching model isand final states is reflected in their respective wave functions.
much simpler. From the standpoint of calculation E2}12 Finally, the formulation as an integral ovey p,, andp,,
is only a two-dimensional integration of well-behaved func-Eq. (3.21), captures the essence of the concept of velocity
tions over a region on the order of XA0 a.u? in momen-  matching.
tum. On the other hand, to solve the close coupled equations
requires evaluation of the time-dependent three-dimensional
integrals of Eq(2.13, and then subsequently integrating the ACKNOWLEDGMENTS
coupled differential equation®.13 in time.
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