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Velocity-matching model for electron capture in keV atomic collisions

Emil Y. Sidky and Hans-Jo”rgen T. Simonsen
O” rsted Laboratory, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O” , Denmark

~Received 17 January 1996; revised manuscript received 16 April 1996!

We develop an approximate integral for the amplitudes of electron transfer in ion-atom collisions. The
resulting model pertains to collisions involving low-n excited states and relative ion-atom velocities near the
average speed of the target valence electron. Three points are essential to the derivation:~1! the atomic states
are treated as a dielectric taking into account the long-range interaction,~2! the process is viewed in momen-
tum spacequantifying the idea of velocity matching, and ~3! a semianalytic expression is derived using the
Born approximation. From the resulting integral propensity rules are derived telling which final states are
favored based on the initial target state and parameters of the collision.@S1050-2947~96!02008-2#

PACS number~s!: 34.70.1e, 34.10.1x
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I. INTRODUCTION

A large part of atomic research focuses on determin
atomic structure and interactions with beam experime
Atomic targets have been subjected to beams of electrom
netic radiation, light particles such as electrons, and hea
particles such as other atoms or ions. For electromagn
beams, which are not too intense, induced atomic transit
are calculated assuming the dipole approximation for
electric vector of the radiation. The geometry of the vario
components in the dipole matrix element leads to selec
rules telling which final states are accessible. For elect
impact the wave function representing the incoming partic
can be expanded in partial waves each of which allow tr
sitions to a set of possible final states. A similar treatment
keV atomic collisions is impractical, as the harmonics n
essary for accurate representation of the system numbe
the thousands@1#. Atomic collision systems instead len
themselves to a semiclassical approach which takes ad
tage of the near classical behavior of the atomic cores
treats the active electron quantum mechanically. Symm
considerations do not restrict the number of available fi
states very much@2#; thus the concept of a propensity ru
becomes useful to tell which of the many possible transiti
are the most likely ones@3,4#.

The need for an approximate integral, which gives
transition matrix for electron transfer in keV ion-atom col
sions, has grown. Recent generations of beam experim
prepare target atoms to well-defined excited states thro
irradiation by coherent light of selected frequency and po
ization @5#. In this article we concentrate on ion-atom col
sions where the target atom is prepared in a low-n excited
state. We focus on the range of projectile ion velocities n
the average speed of the target atom’s valence electron, s
this is when the capture process is most significant. Exp
mentally, electron transfer in this type of system has b
studied extensively@5#. Experiments show asymmetries
the capture cross sections from excited atomicP orbitals
aligned parallel and perpendicular to the path of the pro
tile ions. In the case where differential cross section m
surements are possible, capture asymmetry from states
opposite angular momentum orientation is measured.
corresponding calculations have had good agreement
541050-2947/96/54~2!/1417~13!/$10.00
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the experiments@6#. Calculations based on a molecular or
two-center atomic description agree well with the measu
asymmetry parameters, but the explanations of the unde
ing physical mechanisms are for the most part restricted
qualitative arguments.

To derive an expression for the amplitudes of cha
transfer, we choose the two-center atomic basis appro
because the long-range limits are well represented. From
molecular point of view it is difficult to derive quantitativ
propensity rules, since rotational coupling mixes the mole
lar basis at long range. The atomic basis expansion has
used to find propensity rules for oriented targets@7,8#. Con-
cepts that appear when discussing propensity rules for e
tron transfer are~1! energy defect between initial and fina
atomic states,~2! semiclassical impact parameter of the io
trajectory, ~3! geometry of initial and final states, and~4!
velocity-matching. The last concept is one that is unique
the capture process; the idea is that the capture probab
increases if the current flow of the target’s valence elect
matches the speed of the passing ion. An attempt to quan
this idea was suggested in Ref.@9#, where it is stated that the
total capture probability should be proportional to an over
of initial and final states in momentum space with the fin
state shifted by the projectile’s velocity. This simple mod
displayed the same behavior as the experimentally meas
asymmetry parameter for capture from aligned atoms. T
shortcomings of this model are that it is not derived b
postulated, it does not include energy defect, and it is a z
impact parameter model.

Based on the empirical success of this model, we deci
to derive a more comprehensive model from the semicla
cal atomic basis approach by expressing the matrix elem
of this theory in momentum space. In the literature this h
been a recurring theme in the attempt to understand elec
transfer. The original formulation of the Born approximatio
for this process was expressed as an integral in momen
space@10#. Also some molecular approaches were form
lated in momentum space@11,12#. The remainder of the ar
ticle shows the derivation and predictions of a general p
pensity rule that includes the concepts of the preced
paragraph and encompasses alignment and orientation
fects.
1417 © 1996 The American Physical Society
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II. GENERAL THEORY

We now go into more detail about electron transfer
atomic collisions represented by a two-center basis. The r
tive motion between the heavy particles is viewed clas
cally, and the outcome of a collision is obtained as a funct
of initial position and velocity of the two atomic centers. Th
eikonal method@1# then gives the quantum mechanical d
ferential cross sections by combining the different paths
the atoms, keeping track of the relative phases of the
volved electronic states along the various atomic trajector
The electronic motion is treated fully quantum mechanica
with a further simplification that the projectile ion moves o
a straight line past the target atom. This is quite a go
approximation for keV atomic collisions. The Schro¨dinger
equation for an electron in the field of the target and proj
tile nuclei in the rest frame of the target is~in a.u.!

i
]

]t
C5S 2

1

2
¹22

ZT

urWu
2

ZP

urW2RW u DC, ~2.1!

RW ~ t !5bW 1vW t. ~2.2!

A schematic of this process with the pertinent parameter
given in Fig. 1. Throughout this article we use atomic un
Note that this means that the momentum of the electron
the velocity have the same dimensions, becauseme51.

With the two-center basis the wave function for the act
electron is expanded in atomic orbitals about both nucle

C5(
m

amCT,m1(
n

bnCP8,n , ~2.3!

CP8[ei @vW •rW2~1/2!v2t#CP~rW2RW !. ~2.4!

CT and CP are atomic orbitals centered on the target a
projectile nuclei, respectively, and the subscriptP8 refers to
the projectile atomic functions in the rest frame of the targ
The coefficientsam andbn give the amplitude of each of th
atomic functions. The exponential factor in Eq.~2.4! is the
so-called electron translation factor~ETF! that is needed for

FIG. 1. Schematic of the ion-atom interaction shown in the c

lision frame.RW is the internuclear vector,bW is the classical impac

parameter, andvW is the projectile velocity.
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the projectile atomic functions to have the correct mom
tum and energy in the target frame@1#. The advantage of this
approach is that boundary conditions are simple to ap
since prepared target states and captured final states
atomic in nature. The drawbacks are added complicati
due to the ETF and nonorthogonality of the basis, when
overlap of target and projectile states becomes significan

A. Atomic functions in momentum space

We write the transformation to momentum space, sin
this will play a large role in clarifying many aspects of th
electron capture process,

F~pW !5
1

~2p!3/2E
V
e2 ipW •rWC~rW !drW, ~2.5!

FP85e2 i @RW •pW 2~1/2!v2t#FP~pW 2vW !. ~2.6!

In momentum space the velocity of the projectile states
simple translation while the separation of the target and p
jectile is encoded in the new ETF shown in Eq.~2.6!.

Just from comparing the projectile basis functions in co
figuration space, Eq.~2.4!, and momentum space, Eq.~2.6!,
one can see immediately that the momentum space pic
can prove fruitful. In configuration space the projectile fun
tions all have nontrivial time dependence, because they
centered about the point indicated byRW . In momentum space
this time dependence is transferred to the ETF, where
more accessible to analytic treatment, as will be shown
Sec. III B. In configuration space the collision process occ
in a volume of space which can be hundreds of atomic u
in extent because of the long-range forces involved. In m
mentum space the extent of the interaction region is aroun
a.u., since we are interested in relative velocities on the o
of one or less a.u. The large distances are still, howe
reflected in the rapid oscillation of the ETF, but the effect
these oscillations can be understood and dealt with i
simple manner~see Sec. III B!.

B. Parabolic Coulomb functions

When examining the charge transfer process in an ato
collision, there is not only the problem of understanding t
capture process itself, but also disentangling it from exc
tion of the atomic state on one center by the charge of
other center. As an ion approaches a target atom the ele
field from the ion affects the target state long before the
is in range to capture the electron, especially for the cas
hydrogenic atoms, where eachn manifold is degenerate. On
can, however, incorporate most of this long-range excitat
into the definition of the atomic basis on each center.

An example of an analytic treatment of the long-ran
forces in a charge transfer process is shown in work
Lundsgaard and Nielsen for capture from ground state
drogen by ana particle. They found that they could signifi
cantly reduce the range of their calculation by using St
states as a boundary condition@13#. Here, we follow up on
this idea and include part of the linear term of the ion
Coulomb field in the atomic basis functions.

The Schro¨dinger equations which define the atomic ba
on the target and projectile are

-
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i
]

]t
CT5S 2

1

2
¹22

ZT

urWu
1V0

P~ t !1EP~nT,n1
T ,n2

T ;t ! DCT ,

~2.7!

i
]

]t
CP85S 2

1

2
¹22

ZP

urW2RW u
1V0

T~ t !

1ET~nP,n1
P ,n2

P ;t ! DCP8. ~2.8!

The discussion proceeds only with Eq.~2.7!, since both
equations are defined in a symmetric way. The two ex
terms,V0

P and EP, are onlytime dependent, representing
shift in energy due to part of the Coulomb interaction w
the projectile ion. TheV0

P term is a uniform shift in the targe
atom’s energy while theEP term is a shift from the linear
electric field in thez direction which depends on the shape
the target state. They are defined as follows:

VP[2
ZP

urW2RW ~ t !u
5V0

P~ t !1Vz
P~ t !z1Vx

P~ t !x•••,

~2.9!

EP~nT,n1
T ,n2

T ;t !5
3

2
Vz

P~ t !
nT

ZT
~n1

T2n2
T!. ~2.10!

VP has no linear term in they direction, because the poten
tial is symmetric about the collision plane. Spatially Eq
~2.7! and~2.8! are still hydrogenic, but it is intended that th
spatial wave functions should be the parabolic Coulo
functions, since they are eigenstates of the linear Stark ef

The shape of the specific basis functions is determined
the quantum numbersn,n1 ,n2 . n still is the principal quan-
tum number, butn1 and n2 , which count the number o
nodes in thej (j5r 1z) and h (h5r 2z) directions, re-
spectively, replace the usuall andm of spherical coordinates
@14#. The general basis state is written

CT~P!5 f n,n1 ,n2
~j,h,f!e2 ifT~P!~ t !. ~2.11!

f is a parabolic Coulomb function which is a linear comb
nation of the spherical Coulomb functions of the samen and
m, whereumu5n2n12n221, given in Ref.@14#. The time-
dependent terms from Eqs.~2.7! and ~2.8! enter into the
phase of the basis functions analytically:
e

th
su
a

f

.

b
ct.
y

fT~P!~ t !52
1

2

ZT~P!
2

~nT~P!!2 t1E
0

t

V0
P~T!~t !dt1E

2`

t

EP~T!~t !dt

52
1

2

ZT~P!
2

~nT~P!!2 t2
ZP~T!

v S lnFvt

b
1A11S vt

b D 2G
7

3

2

nT~P!~n1
T~P!2n2

T~P!!

ZT~P!Ab21~vt !2 D . ~2.12!

The initial point for the time integration ofV0
P(T) is chosen to

be zero for convenience. This choice does not affect the
sults here, because this phase is common to all of the cap
atomic states. However, the integration ofEP(T) must begin
at t52`, since it depends on the quantum numbers of
atomic state.

Including the extra terms,V0
P(T) andEP(T), in Eqs.~2.7!

and~2.8! dramatically reduces the interaction region for io
atom collisions for two reasons. First, the long-range eff
of an ion on an atom is the linear electric field along t
collision axis. Second, the EP(T) breaks thel degeneracy of
the usual spherical atomic states. Them degeneracy is still
present, but the long-range linear electric field is acting alo
the trajectory of the projectile ion, thus it cannot cause
m transition. With the reduction of interaction range it b
comes easier to make a sensible first order analysis of
electron capture process itself.

C. The coupled equations

With the new basis defined the coupled equations gove
ing the evolution of atomic state amplitudes follow fro
substitution of Eq.~2.3! into Eq. ~2.1!. In matrix form the
coupled equations are

iSaẆ 5MaW , ~2.13!

where

aW [S am

bn
D , ~2.14!

S[S dm8,m ^CT,m8uCP8,n&

^CP8,n8uCT,m& dn8,n
D , ~2.15!
M[S ^CT,m8uVP2V0
P2Em

PuCT,m& ^CT,m8uVT2V0
T2En

TuCP8,n&

^CP8,n8uVP2V0
P2Em

PuCT,m& ^CP8,n8uVT2V0
T2En

TuCP8,n&
D . ~2.16!
ise
c-
in-
s
mal

tile
~The subscriptsm and n indicate which elements ar
summed in the matrix-vector multiplication.! These coupled
equations closely resemble those of Refs.@1,7#. Taking into
account part of the long-range interaction does not alter
structure of the coupled equations, but these extra terms
tracted from the interaction serve to increase the range
validity for a first order approximation.
e
b-

of

There are three principal matrix elements that compr
Eq. ~2.13!: the overlap of target and projectile wave fun
tions, the excitation interaction, and the electron transfer
teraction. The matrixS in most multichannel treatments i
the unit matrix, because one usually chooses orthonor
channel wave functions. Here, however,S has the unit ma-
trix on the diagonal subblocks and the overlap of projec
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and target wave functions on the off-diagonal subbloc
This is the price for having atomic orbitals on two cente
The interaction matrixM represents two processes: exci
tion of the atomic orbital on one center by the potential
the other center, and the actual electron transfer process
effect of the excitation interaction has a much reduced ran
because much of the interaction is included in the basis fu
tions Eqs.~2.7! and ~2.8!. The remainder can be evaluate
efficiently by a multipole expansion of the projectile pote
tial about the target atom, but this is left to a subsequ
article. Since we are interested in examining the elect
capture process, we go into further detail with the trans
matrix element.

The off-diagonal submatrices ofM are responsible for
charge transfer. The lower left subblock dictates when
electron jumps from target to ion, and there is also the p
sibility for transfer back to the target through the upper rig
subblock. The return of the electron from the projectile is n
important for a first order theory, but it is definitely an im
portant part of the full treatment. Writing out the gene
term M PT for electron capture from the target atom, o
obtains

^CP8,nuVP2V0
P2Em

PuCT,m&

5E
V
CP,n* ~rW2RW ,t !e2 i @vW •rW2~1/2!v2t#@VP~rW,t !2V0

P~ t !

2Em
P~ t !#CT,m~rW,t !drW. ~2.17!

The integrand is the product of the target wave function,
projectile wave function shifted in position byRW , the projec-
tile’s ETF, and the interaction due to the Coulomb field
the ion. The capture matrix element is rather complex,
upon transformation to momentum space it becomes pos
to understand how the various parameters of the collis
affect the capture probability.

To write the transfer integral in momentum space o
inserts thed function in the form of

d~rW2rW8!5
1

~2p!3E
VP

e2 ipW •rWeipW •rW8dpW ~2.18!

into the electron transfer integral. Placing it between the p
jectile potential and the target wave function performs
transformation to momentum space in the most efficient w
One of the exponentials acts forward to Fourier transform
target wave function, and the other works backward to tra
form the product of the projectile potential and the projec
wave function. This is straightforward to evaluate, since
potential energy can be written, using Eq.~2.8!, as the dif-
ference of the total energy and the kinetic energy—a m
quadratic in momentum space.~Note that this avoids the
usual problem with momentum space formulations which
that in general the Fourier transform of a product results
convolution integral.! Equation~2.17! is equivalent to
.
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^CP8,nuVP2V0
P2Em

PuCT,m&

5E
VP

FP,n* ~pW 2vW ,t !ei @RW •pW 2~1/2!v2t#

3S vn
P2

1

2
upW 2vW u22V0

P2Em
P DFT,m~pW ,t !dpW , ~2.19!

wherevn
P is the energy eigenvalue of the projectile staten.

The electron exchange integral written in the form of E
~2.19! starts to resemble the model in Ref.@9# in that there is
an overlap of momentum space wave functions separate

vW . The remainder of the integrand must be understood
arrive at the new velocity matching. We will investigate th
role of the ETF. We will also account for time dependen
entering through the phase of the basis functions, the t
V0

P and the internuclear separationRW . The result will be a
model for electron transfer that shows how the various
rameters of this process affect the capture probability.

III. DERIVATION OF VELOCITY-MATCHING MODEL

Section II summarizes a complete semiclassical theory
electron capture in an ion-atom collision for relative velo
ties on the order of a couple atomic units or less. The proc
itself depends on many aspects such as impact paramete
velocity, geometry of target and projectile wave functio
and energy defect between initial and final state. This sec
derives an approximate model for capture, where the imp
velocity is near the average speed of the target’s vale
electron, which includes the effects of all these parameter
an intuitive way and is easy to calculate.

A. First-order approximation

The general ion-atom collision is a rather complicat
process. The electron can be exchanged and undergo ex
tion on either center many times before reaching its fi
state. However, it will be seen for the range of velocity a
impact parameter of interest here that it is a good appro
mation to consider only the direct transfer from the init
target state to a final capture state.

The information about the capture probability is contain
in the coefficientsbn in Eq. ~2.3!. These coefficients are
calculated by integratingḃn , which must be extracted from
the coupled differential equations~2.13!. Multiplying on the
left by S21 untangles theȧm’s from theḃn’s. The inverse of
S, to first order, is

S21'S dm8,m 2^CT,m8uCP8,n&

2^CP8,n8uCT,m& dn8,n
D . ~3.1!

The validity of this approximation depends on two facto
The number of atomic states to which the collision intera
tion is confined determines the rank of the matrices in E
~2.13!, and as the rank ofS grows the worse the approxima
tion in Eq.~3.1! becomes. The magnitude of the off-diagon
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54 1421VELOCITY-MATCHING MODEL FOR ELECTRON . . .
matrix elements ofS, namely, the overlap between target a
projectile states, is also relevant.

Since the magnitude of the overlap matrix elements i
key factor for the approximations made in this section, it
important to know their dependence upon the various co
sion parameters. Explicitly the integrals for the overlap b
tween target and projectile atomic states, expressed in
figuration and momentum space, are

^CP8uCT&5E
V
CP* ~rW2RW ,t !e2 i @vW •rW2~1/2!v2t#CT~rW,t !drW

5E
Vp

FP* ~pW 2vW ,t !ei @RW •pW 2~1/2!v2t#FT~pW ,t !dpW .

~3.2!

From Eq.~3.2! one can see that the magnitude of the over
matrix elements decreases with either increasing impact
rameter or velocity. The size of the overlap between a p
jectile and a target state also depends on the principal q
tum number of the particular atomic states considered;
extent of an atomic orbital in configuration space isn2/Z and
in momentum space it isZ/n. These expressions provide
criterion for the range of impact parameter and veloc
where a first order theory can be expected to work.

We now employ the Born approximation by fixing th
coefficient of the initial target state to unity and the others
zero in the state vector on the right side of Eq.~2.13!. This
results in a first order expression for both the excitation a
capture amplitudes. Focusing on the capture amplitudes
time derivative of the expansion coefficients for the proje
tile along its trajectory is

ḃn' i(
m9

^CP8,nuCT,m9&^CT,m9uVP2V0
P2Em0

P uCT,m0
&

2 i ^CP8,nuVP2V0
P2Em0

P uCT,m0
&. ~3.3!

The contribution to electron capture comes through t
terms, the second of which is the transfer integral discus
in Sec. II C.

The first term in Eq.~3.3! represents the leading orde
molecular effect as the projectile ion forms a temporary co
plex with the target atom. We will, however, neglect th
term, since the basis is chosen such that the excitatio
small and the overlap integral is already assumed sm
Hence this term is considered as a second order effect
first order the time derivative of the capture coefficients i

ḃn52 i ^CP8,nuVP2V0
P2Em0

P uCT,m0
&1•••. ~3.4!

Equation ~3.4! appears in Chapter 10 of Ref.@1#, but the
derivation, here, in terms of a truncated basis is necessar
showing the range of validity of the velocity-matchin
model. The time integration of Eq.~3.4! follows in the next
section, to obtain a formula for the capture amplitudes the
selves.
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B. The window function

The usual way to proceed from Eq.~3.4! is to evaluate the
matrix element on the right-hand side and then to integrat
time. We will instead perform the time integration first. Th
requires that the time dependence be separated from th
tegration variables of the matrix element. This will not wo
with the configuration space version ofM PT in Eq. ~2.17!,
since the projectile wave function and potential depend
RW which in turn depends on time. On the other hand,
capture matrix element evaluated in momentum space,
~2.19!, is much more suited to this type of analysis.

The momentum space transfer integral has only one fa
where the integration coordinatepW and time t are tied to-
gether: the ETF. This factor,eiRW •pW , indicates the position of
the projectile, and we can write it as the producteibpxeivtpz in
the collision frame, see Fig. 1. The phase of the second
ponential contains the product of time and the moment
coordinatepz . Thus the integration of the matrix eleme
~2.19! in time amounts to a Fourier transformation from tim
to the frequency2vpz which is directly proportional topz
due to the assumption of constant velocity.

The time dependence in Eq.~2.19! enters from three fac-
tors: V0

P and EP, the phase of the basis functions in E
~2.12!, and the ETF. Rewriting Eq.~3.4! with the momentum
space transfer integral Eq.~2.19! and explicitly showing all
time dependence, it becomes

ḃn'2 i E
VP

OPTI Pe2 i @Dv1~1/2!v2#teivtpzdpW , ~3.5!

OPT[FP,n* ~pW 2vW !FT,m0
~pW !eibpx, ~3.6!

I P[vn
P2

1

2
upW 2vW u21

ZP

Ab21~vt !2
1

3

2

ZPvtnT~n1
T2n2

T!

ZT@b21~vt !2#3/2,

~3.7!

Dv[
fT~ t !2fP~ t !

t
. ~3.8!

The ETF is split up in order to partition the integrand in thr
basic factors. The first, Eq.~3.6!, is an overlap of target and
projectile momentum space wave functions including
time-independent part of the ETF. The second term,
~3.7!, is the interaction due to the projectile potential
which only the last two terms vary in time. The last term, E
~3.8!, is the energy defect between projectile and tar
states.

Up until now the exact time dependence has been kep
the formulation for completeness. However, we will no
eliminate terms involving the gradient of the projectile p
tential in thez direction, ET(P), since they are a factor o
uRW u less important than the zeroth order terms,V0

T(P). Spe-
cifically, the last terms of Eqs.~2.12! and~3.7! are removed.
This may seem as if we are defeating the purpose of goin
parabolic Coulomb functions, but these basis functions
still useful, because they are closer to the eigenstates o
interaction causing excitation. The next section clarifies t
point.
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The dependence of the energy defect term is still com
cated by the logarithmic terms in the phase of the basis fu
tions, Eq.~2.12!. To simplify this expression we approxima
the phase by a line with a slope determined by evaluating
logarithmic terms at a distancea from the target defined a
an interaction range for capture@15#:

fT~P!~ t !'~vn
T~P!1vc

P~T!!t, ~3.9!

vc
P~T![

ZP~T!

a
lnF2

a

b
1A11S a

bD 2G . ~3.10!

The interaction rangea replacesvt in Eq. ~2.12!. For the
calculations presented in this article it is set to 25 a.u.,
the slope in Eq.~3.9! is not sensitive to this parameter.vc

P

represents the energy by which the target state is lowered
to the field of the projectile ion averaged over the interact
region. Thus we approximate the energy defect by

Dv lin5vm0

T 2vn
P1vc

P2vc
T . ~3.11!

Note that the target and projectile charges have to be une
for the logarithmic terms to contribute to the energy defe

With the approximations to the phase dependence of
basis it is possible to integrate analytically both sides of
~3.5! in time. Performing the time integration inside the m
mentum space integral will give a window function inpz
which is centered around a momentum ofDv lin /v1v/2.
Since the first two terms ofI P in Eq. ~3.7! are independent o
time, their window is a Diracd function. In the third term
time appears in the square root. Fourier transforming
expression gives a zeroth order modified Bessel function
the second kind with a width in momentum of 1/b. This type
of Bessel function is similar to a decaying exponential, sin
it is the transform of the square root of a Lorentzian. W
wish to find a model for large impact parameter, so we ta
this latter window to be ad function also. Thisd function
receives the proper normalization through multiplication
the area of the true window function.

After time integration using the approximations me
tioned above we reach the velocity-matching model for el
tron transfer. The expression for the capture coefficients

bn'2 i
2p

v E
VP

OPTS vn
P2

1

2
upW 2vW u21

ZP

b
D

3dS pz2
Dv lin1 1

2 v2

v
D dpW . ~3.12!

Numerical evaluation of this integral is not difficult, consi
ering that it is only a two-dimensional integral and that it
sufficient to take a range of a few atomic units in each
rection. The rapid oscillations alluded to in Sec. II A disa
peared with the time integration. The structure of the integ
in Eq. ~3.12! leads to propensity rules for the electron tran
fer amplitudes. Also, we present an alternative, related d
vation which appeals more to the physical intuition of cha
transfer.
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C. Propensity rules

The symmetries of Eq.~3.12! lead to general prediction
for the electron capture process. The velocity-match
model preserves the reflection symmetry about the collis
plane, which stems from the original Hamiltonian Eq.~2.1!
@1,2#. Another symmetry emerges by having written E
~3.12! in terms of parabolic Coulomb functions in mome
tum space. It predicts that the final state of the captu
electron will have no dipole in the direction of the projecti
velocity. The last general consequence of Eq.~3.12! occurs
at a particular relative velocity between the ion and ato
where the velocity-matching model shows extreme state
lectivity.

The velocity-matching model predicts that there should
no netz dipole for the final state in electron capture from
spherical atomic state. However, this is a propensity ru
since it derives from Eq.~3.12!, which is an approximate
result. This follows from a property of the parabolic Co
lomb functions in momentum space:

Fn1 ,n2 ,m~pW !5~21!n1m21Fn2 ,n1 ,2m* ~pW !. ~3.13!

Even though a parabolic state may have an asymmetric p
ability distribution in configuration space upon reflection
thexy plane, it is completely symmetric in momentum spa
upon reflection in thepxpy plane@15#. From Eq.~3.13! the
integral in Eq.~3.12! gives amplitudes, equal in magnitud
upon exchange ofn1 andn2 for either the target or projectile
state, provided that the other state is a spherical Coulo
function. For the example we choose in the results sect
Sec. IV, we consider capture from atomic hydrogen prepa
in various 2P states, thus the final state can have a dip
only in thex direction.

For the discussion of the next point we switch to t
spherical Coulomb functions, because their angular dep
dence is identical in momentum and configuration space.
next interesting result of Eq.~3.12! occurs for a particular
projectile velocity called the crossover velocity, which is d
fined

vc[A2uDv linu. ~3.14!

As the ion velocity scans throughvc , the window function
crosses overpz50, the midplane of the target momentu
distribution~if Dv lin is negative!, or pz5v, the midplane of
the projectile momentum distribution~if Dv lin is positive!.
Since the window function is ad function, the integral in Eq.
~3.12! is automatically zero unless the atomic state, o
which the window is centered, has positive reflection sy
metry in thexy plane ~the equivalency of momentum an
configuration space angular functions is used here!. This
property, in combination with the reflection symmetry abo
the collision plane, has a dramatic effect on the state se
tivity of the velocity-matching model for projectile velocitie
nearvc as will be seen in Sec. IV B.

D. Interpretive model

In this section we present another expression for the c
ture amplitudes which provides a clear physical insight in
the mechanism of charge transfer around the matching
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FIG. 2. Schematic of the integral for the in
terpretive velocity-matching model. The dis
played plane is at a constant and arbitrary va
of x. Schematically the wave function cross se
tions are shown in configuration space on t
lower left corner of the plane and in momentu
space on the upper right corner. The windo
function is also shown, and the area which
completely black shows the contribution to th
capture integral.
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locity. The starting point for the alternative derivation is E
~3.4! where the time derivative of the capture coefficients
given by the transfer integral in Eq.~2.17!. Instead of com-
pletely switching this integration from one over configur
tion space variables to one over momentum space varia
it will be expressed as a mixed integration, where two of
degrees of freedom are momenta and one is a position.
resulting expression is not practical for calculation, but giv
a clear picture of how the various parameters of the collis
process affect the outcome.

Rewriting Eq.~2.17!, explicitly making use of the colli-
sion coordinate frame and the expansion of the projec
potential in Eq.~2.9!, it becomes

^CP8,nuVP2V0
P2Em

PuCT,m&

'E
V
CP,n* ~x2b,y,z2vt,t !e2 i @vz2~1/2!v2t#

3Vx
P~ t !xCT,m~x,y,z,t !drW, ~3.15!

Vx
P~ t !5

2ZPb

@b21~vt !2#3/2. ~3.16!

In this form of the capture integral the projectile potential
expanded around the target position to first order. The ze
order term cancels againstV0

P as it was designed to do, an
the linear term cancels againstVz

P under the assumption tha
this term does not mix then shells of the target atom. Re
placing they and z integration variables bypy and pz , an
alternative expression for the time derivative of the capt
amplitudes appears:

ḃn'2 i E
Vmixed

OPT
alt I P

alte2 i @Dv1~1/2!v2#teivtpzdx dpydpz ,

~3.17!

OPT
alt [JP,n* ~x2b,py ,pz2v !JT,m0

~x,py ,pz!, ~3.18!
.
s

es,
e
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I P
alt[

2ZPbx

@b21~vt !2#3/2. ~3.19!

At this point once again the time integration is performed
With the linear form of the energy defectDv lin it is pos-

sible to integrate Eq.~3.17! analytically. The interactionI P
alt

transforms to a Bessel function once again, but to obtai
more illuminating formula, we cancel the impact parame
b in the numerator of Eq.~3.19! against one of the powers o
uRW u in the denominator:

I P
alt;

2ZPx

b21~vt !2 . ~3.20!

This approximation gives an exponential for the windo
function. The capture coefficients are thus given by

bn' i
pZP

bv E
VP

xOPT
alt e2bupz2@Dv lin1~1/2!v2#/vudx dpydpz .

~3.21!

This form of the velocity-matching model is not well suite
for calculation, since the wave functions in this mixed spa
can only be found numerically. Also Eq.~3.12! takes into
account the projectile potential to all orders while Eq.~3.21!
is based on a linear expansion of the potential. But it i
good guide for the intuition to see the outcome of the el
tron transfer process.

The velocity-matching model presented in Eq.~3.21!
gives a clear picture of how the state-to-state capture p
ability depends on various parameters of the collision. Fig
2 shows schematically the different components that go
the integral. The principal interaction driving the captu
process is the perpendicular electric field from the projec
ion, thus the termZPx/b appears in the integral. The phas
factors due to the ETF have been converted into a separa
b in thex coordinate andv in the pz momentum coordinate
The exponential window only allows momenta which cou
terbalance the excess momentumDv lin /v1v/2 gained by
the electron upon transfer to an atomic orbital about the p
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1424 54EMIL Y. SIDKY AND HANS-JO” RGEN T. SIMONSEN
jectile nucleus. The width of the window in momentum
1/b, reflects the fact that a wider range of energy defects
be accommodated as the charge center of the projectile
passes closer to the target atom, since the ion’s Coulo
potential energy at the target center sweeps throug
broader range.

The concept of velocity-matching is well formulate
mathematically as an overlap in the mixed space of
~3.21!. A velocity-matching model should not only accou
for when the electron probability current matches on the
get and capture states, but should see where the cur
match atcommon points in configuration space. As shown in
Fig. 2, the localization in configuration space comes with
integration over thex coordinate, which is perpendicular t
the direction of the projectile motion. The probability cu
rents of the target and projectile states in each plane of c
stantx are then compared by the integration in moment
space. Since Eq.~3.21! is well suited for interpretation, we
will use it in combination with the propensity rules of th
preceding section for understanding the results calculate
Eq. ~3.12!.

IV. RESULTS

Having developed a first order theory for electron capt
in an ion-atom collision, we choose a particular system
which to test it. We wanted to examine a pure three bo
Coulombic system having an asymmetry in the nucl
charge, to test also the shift in energy defect due to
~3.10!. Thus we selected the system:a particle incident on
an excited hydrogen atom. Other theoretical calculations
this system are given in Refs.@16,17#. In this section the
results of the velocity-matching model are compared w
results obtained from the program used in Ref.@13#, modi-
fied to calculate capture from excited target atoms@18#.

We are interested in studying capture for the range
projectile velocities near the average speed of the vale
electron of the hydrogen target. Since we look at capt
from hydrogen excited to then52 shell, the ‘‘matching’’
velocity is 0.5 a.u. . From either Eq.~3.12! or Eq.~3.21! one
can find out immediately whichn shells on thea particle
will be significantly populated by the capture process. Fig
3 shows the location of the window function inpz as a func-
tion of projectile velocity for capture states in the first thr
n shells. The positions of projectile and target are indica
for reference. For the range of velocities we are intereste
clearly then53 shell will dominate over the other two, be
cause the corresponding window function moves into
region between the projectile and target. Comparing the
sults of the velocity-matching model with the more comple
theoretical calculation for electron transfer from H(n52) to
He1~n53! allows us to test the model for a system where
capture process is the dominant one.

A. Alignment and orientation

Experiments measuring electron transfer in ion-atom c
lisions with excited targets have been primarily concern
with the dependence of the capture cross section on the
ometry of the excited target state. Thus in this section
display the norm of the capture amplitudes into t
n
on
b
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He1~n53! as a function of projectile velocity, impact param
eter, and initial H(2P) alignment and orientation. We do no
however, compare at the level of cross sections, since
requires integration over impact parameter and for low i
pact parameter the overlap between target and proje
wave functions is not necessarily small, invalidating one
the assumptions in Sec. III A.

The initial states considered here have positive reflec
symmetry with respect to the collision plane, meaning t
the initial P state is aligned in the collision plane and h
average angular momentum perpendicular to the collis
plane. To describe the initial states, we label aligned sta
according to which axis in the collision frame~see Fig. 1! the
alignment is parallel. APx state is aligned perpendicular t
the incoming ion beam, and aPz state is aligned along the
projectile beam velocity. For oriented states we label acco
ing to the angular momentum component in the direct
perpendicular to the collision plane:Pl y51 andPl y521 refer
to orbitals rotating counterclockwise and clockwise, resp
tively, when seen from the positivey axis.

For the purpose of discussion Fig. 4 displays contour p

FIG. 3. Position of the window function inpz as a function of
v. The solid curve is for capture into He1(n51), the dashed curve
is for n52, and the dotted curve is forn53. All curves were
calculated for an impact parameter ofb515 a.u.

FIG. 4. Contour plots of thepy50 cross section for some initia
target states. The top row shows the states in momentum sp
while the bottom row shows them in the mixed space.
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54 1425VELOCITY-MATCHING MODEL FOR ELECTRON . . .
of these initial states in momentum space and the mi
space of Sec. III D. It must be borne in mind that the int
pretive model not only includes the overlap of projectile a
target wave functions in the mixed space, but also a wind
in pz with a width '1/b and a center indicated in Fig. 3.

1. Aligned target states

Figure 5 shows the results for the norm of capture i
He1~n53! from an initial H(2P) state aligned along the co
lision velocity. For large impact parameter,b520 a.u., the
model follows the points from the close coupled calculatio
but there is a gap in the magnitude of the two theories. T
difference comes from having neglected molecular effect
the expression from the capture amplitude@i.e., neglecting
the first term on the right-hand side of Eq.~3.3!#. For the
smaller impact parameters ofb510,15 a.u., where the cap
ture norm is a significant fraction of unity, the velocity
matching model achieves similar agreement. There is de
tion of the model away from the close coupled calculat
for b510 a.u. andv,0.4 a.u., but this is to be expecte
since the overlap between the target and projectile ato
functions becomes too large.

Figure 6 displays the norm of capture into th
He1~n53! from an initial H(2P) state aligned perpendicula
to the collision velocity. Again the agreement is good f
either b.10 a.u. orv.0.4 a.u., and when the overlap o
target and projectile wave functions becomes large,
velocity-matching model diverges away from the results
the more extensive calculation. In comparison with the c
ture amplitude from thePz initial state capture from thePx
falls off faster as a function of projectile velocity in both th
model and close coupled calculations. This general trend
be understood by looking at the initial states in the mix
space, Fig. 4. ThePx state decays at a quicker rate than t
Pz state as thez component of the momentum increases. T
difference in electron transfer for oriented initial states
more dramatic.

FIG. 5. Total capture into the He1~n53! from a Pz initial state.
The chain curve displays the model results forb510 a.u., the solid
curve is forb515 a.u., and the dotted curve is forb520 a.u. The
triangles show points of the close coupled calculation forb510
a.u., the crosses are forb515 a.u., and the plus signs are fo
b520 a.u.
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2. Oriented target states

Looking at the amplitude for electron transfer from th
Pl y51 initial state to the He1~n53! in Fig. 7, there are re-
markable differences from the results of the preceding s
tion. First of all the amplitude for capture is much reduc
from the case of electron transfer from the alignedP orbitals.
Furthermore, the velocity-matching model predicts subst
tially lower amplitudes than the close coupled calculatio
especially around the matching velocity. The low captu
norm predicted by the model is seen by examining the
ented state shown in Fig. 4.

The state in the figure hasl y521, but the distribution for
l y51 is the same upon reflection about thex50 line. A
collision of this target state with a projectile moving wit

FIG. 6. Total capture into the He1~n53! from a Px initial state.
The chain curve displays the model results forb510 a.u., the solid
curve is forb515 a.u., and the dotted curve is forb520 a.u. The
triangles show points of the close coupled calculation forb510
a.u., the crosses are forb515 a.u., and the plus signs are fo
b520 a.u.

FIG. 7. Total capture into the He1~n53! from a Pl y51 initial
state. The chain curve displays the model results forb510 a.u., the
solid curve is forb515 a.u., and the dotted curve is forb520 a.u.
The triangles show points of the close coupled calculation
b510 a.u., the crosses are forb515 a.u., and the plus signs are fo
b520 a.u.
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1426 54EMIL Y. SIDKY AND HANS-JO” RGEN T. SIMONSEN
v50.5 a.u. at an impact parameterb510 a.u. corresponds t
centering the projectile at the exact middle of the fou
quadrant (pz.0 andx,0) of the oriented state in Fig. 4
One can see, however, that this state has little probability
entering the fourth quadrant, hence the low values in ev
ating the electron transfer integral. The model thus quanti
the intuitive idea that the amplitude for capture is low wh
the projectile ion hits on the side of the oriented state wh
the electron current flowsagainstthe velocity of the projec-
tile. The fact that the velocity-matching model underes
mates the capture amplitude around the matching velo
comes from neglecting excitation of the target state. If ex
tation were included, the target could evolve into a state w
a component more favorable to electron transfer. This p
cess is included in the close coupled calculation, and
results in the larger amplitudes aroundv50.5 a.u. for cap-
ture from thePl y51 initial state. For the initial state oriente
in the opposite sense the situation is quite different.

Figure 8 shows the capture norm from thePl y521 . The
capture amplitude is larger, and the agreement between
close coupled calculation and the velocity-matching mode
better. Visualizing the velocity-matching integral with Fig.
amounts to centering the projectile in the first quadr
(pz.0 and x.0) in the mixed space plot of the oriente
state. This orbital has a peak in the first quadrant, stating
the electron current flows in the direction of the project
ion on the same side of the target that the projectile pa
by. The direct capture is clearly favored for this initial sta
hence the good agreement of the velocity-matching mo
with the extended calculation.

B. State-to-state amplitudes

The velocity-matching model also gives the final state t
the electron is captured into. We show only the final state
the He1~n53! after capture from thePl y521 initial

FIG. 8. Total capture into the He1~n53! from a Pl y521 initial
state. The chain curve displays the model results forb510 a.u., the
solid curve is forb515 a.u., and the dotted curve is forb520 a.u.
The triangles show points of the close coupled calculation
b510 a.u., the crosses are forb515 a.u., and the plus signs are fo
b520 a.u.
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H(2P) state, since the final states for capture from t
aligned orbitals are not much different from this case. T
final state for capture fromPl y51 shows disagreement be

tween the velocity-matching model and the close coup
calculation near projectile velocities ofv50.5 a.u., because
the main contribution to capture for this case comes thro
target states induced as the projectile ion approaches.

To show a comparison at the level of the state-to-st
amplitudes, we list the final state amplitudes from both
velocity-matching model and the extended calculation
capture fromPl y521 at an impact parameter,b515 a.u., and

velocity, v50.4 a.u. Table I displays the final state amp
tudes in terms of coefficients of the parabolic atomic ba
There are symmetries that are apparent upon inspectio
this table. First, the magnitudes are the same form and
2m for both the model and the extended calculation. T
comes from the reflection symmetry of the Hamiltonian a
initial state in the collision plane. Second, the amplitudes
the model are the same upon interchange ofn1 andn2 . As
discussed in Sec. III C and reflected in the numbers of Ta
I, this property is only approximate in the close coupled c
culation.

To illustrate the dependence of the final state on projec
velocity and impact parameter and to give a more clear p
ture of the final state itself, we select a set of independ
observables@19#. We calculate the dipole moment, orient
tion, and alignment of the final state. Due to reflection sy
metry through the collision plane the dipole moment in t
y direction is zero, and the angular momentum is direc
perpendicular to the collision plane;̂Dy&50 and only
^Ly& can be nonzero. The symmetry under exchange ofn1
andn2 for the velocity-matching model implies that there
no dipole component in thez direction;^Dz&50. Alignment
of the final state is revealed by plottinĝLx

2& and ^Lz
2&.

Roughly speaking the ‘‘thickness’’ of the orbital as se
from thex direction is proportional tôLx

2&. Only results for
b515,20 a.u. are shown. For lower impact paramete
b510 a.u., the final state predicted by the model loses
meaning due to modification from the field of the stripp
target. All displayed observables are shown with the ordin
spanning the whole range of possible values for
He1~n53! shell.

r

TABLE I. The magnitude of final-state amplitudes calculated
the velocity-matching model~VMM ! and the close coupled calcu
lation ~CCC! for b515 a.u. andv50.4 a.u. The amplitudes ar
coefficients of the parabolic atomic basis for He1~n53!.

(m,n1 ,n2) ubm,n1 ,n2

VMM u ubm,n1 ,n2

CCC u

(22,0,0) 0.1138 0.0926
(21,0,1) 0.1380 0.1442
(21,1,0) 0.1380 0.1210
~0,0,2! 0.0978 0.1337
~0,1,1! 0.1787 0.1699
~0,2,0! 0.0978 0.0939
~1,0,1! 0.1380 0.1442
~1,1,0! 0.1380 0.1210
~2,0,0! 0.1138 0.0926
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Figure 9 shows the dipole moment of the final state. T
predicted dipole in thex direction by the velocity-matching
model is quite large, achieving nearly the maximum poss
value slightly abovev50.3 a.u. The average electron pos
tion ~which is the negative of the dipole! points toward the
target atom. Reaching the maximum value for^Dx& means
that the final state is nearly a pure parabolic Coulomb fu
tion with the quantization axis perpendicular to the projec
velocity. As for the comparison with the close coupled c
culation the large value and trend of^Dx& are reproduced
The extended calculation shows only a small dipole
the z direction, which agrees with the propensity rule
Sec. III C. The total dipole of the final state is well describ
by the velocity-matching model.

Looking at the angular momentum in Fig. 10, we s
quite a discrepancy between the prediction of the model
the points of the extended calculation. The downward tre
in the angular momentum is reproduced in the model,
there is a substantial offset. The model crosses zero ang
momentum precisely at the point where the maximum dip
is predicted. Also at this velocitŷLx

2& is zero, see Fig. 11
indicating that the final state is completely aligned along
x axis. For such a state if a small component aligned al
the z axis is added with the proper phase, the angular m
mentum can deviate from zero quite strongly. As one can
in Fig. 11 the close coupled calculation shows a small co
ponent aligned along thez axis, but it is large enough to
cause the deviation in the angular momentum. The valu
^Lz

2& for the final state orbital seen in Fig. 12 shows a nea
constant value of 1 a.u. for both the velocity-matching mo
and the close coupled calculation. The final plot in Fig.
represents the square of the total angular momentum.
underestimation by the velocity-matching model is from t
discrepancy in^Ly&, and the trend toward the maximum

FIG. 9. ^DW & for He1~n53!. The solid curve shows the mode
results of̂ Dx& for b515 a.u. and the dotted curve is forb520 a.u.
The crosses shoŵDx& calculated from the amplitudes of the clos
coupled calculation forb515 a.u. and the plus signs are fo
b520 a.u. Also shown iŝDz& for the close coupled calculatio
(^Dz& for the velocity matching is not displayed, since it is zer!.
The boxes represent points forb515 a.u. and the diamonds are fo
b520 a.u.
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value of ^L2& reflects the increase in magnitude of^Ly&.
The observables plotted in Figs. 9–13 paint a clear pict

of the final state predicted by the velocity-matching mod
which can be understood by the propensity rules of Sec. I
and the interpretive model Eq.~3.21!. For capture into
He1~n53! the crossover velocity is 0.33 a.u. at an impa
parameter ofb520 a.u., andvc shifts down to 0.30 a.u. for
b515 a.u. From Sec. III C it is known that the projecti
final state must have positive reflection symmetry in thexy
plane atvc . Due to the collision geometry the final sta
wave function must also have positive reflection symme
in thexz plane~the collision plane!. The only possible state
obeying both symmetries havem50, when thex axis is
taken as the quantization axis. In then53 shell three states
havem50, namely, theS, P, and D states. To apply the

FIG. 10. ^Ly& for He1(n53). The solid curve shows the mode
results forb515 a.u. and the dotted curve is forb520 a.u. The
crosses shoŵ Ly& calculated from the amplitudes of the clos
coupled calculation forb515 a.u. and the plus signs are fo
b520 a.u.

FIG. 11. ^Lx
2& for He1~n53!. The solid curve shows the mode

results forb515 a.u. and the dotted curve is forb520 a.u. The
crosses shoŵ Lx

2& calculated from the amplitudes of the clos
coupled calculation forb515 a.u. and the plus signs are fo
b520 a.u.
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interpretive model, it is more convenient to combine the
three spherical wave functions into parabolic Coulom
eigenstates. Since Eq.~3.21! is an integral over the configu
ration space coordinatex, the parabolic state which point
toward the target, in thex direction, is heavily favored. This
explains the maximal dipole at the crossover velocity see
Fig. 9. Moreover, atvc the symmetry requirements preve
the final state from having a net angular momentum. As
velocity increases, the final capture state widens and g
angular momentum in the clockwise direction seen fr
above the collision plane. This increase in the angular m
mentum of the final state is explained by velocity-matchin
as the projectile velocity increases, final states that hav
backward current on the side closest to the target are favo

V. CONCLUSION

The velocity-matching model presented in Eqs.~3.12! and
~3.21! gives capture amplitudes for electron transfer in io
atom collisions, where the relative velocity is on the order
the average velocity of the active electron. The results
tained by this model for intermediate impact paramet
compare well to the solutions of the full close coupled d
ferential equations~2.13! at the level of state-to-state ampl
tudes despite the fact that the velocity-matching mode
much simpler. From the standpoint of calculation Eq.~3.12!
is only a two-dimensional integration of well-behaved fun
tions over a region on the order of 10310 a.u.2 in momen-
tum. On the other hand, to solve the close coupled equat
requires evaluation of the time-dependent three-dimensi
integrals of Eq.~2.13!, and then subsequently integrating t
coupled differential equations~2.13! in time.

Even though we have chosen to develop our formulat
in terms of hydrogenic parabolic atomic functions, th
model can still be applied to non-Coulombic atoms. W
work with parabolic functions here for two reasons: the d

FIG. 12. ^Lz
2& for He1~n53!. The solid curve shows the mode

results forb515 a.u. and the dotted curve is forb520 a.u. The
crosses shoŵ Lz

2& calculated from the amplitudes of the clos
coupled calculation forb515 a.u. and the plus signs are fo
b520 a.u.
e

in

e
ns

-
:
a
d.

-
f
-
s

is

-

ns
al

n

-

crepancies between our model and the close coupled e
tions are limited to few states~see the fourth row of Table I!
because of limitations on target excitation viewed in th
basis, and also the propensity rule of equal capture proba
ity into states with oppositez-dipole moment is revealed
Eliminating the last term of Eqs.~2.12! and~3.7! in Sec. III B
removes the need to use parabolic functions. One could
stead insert spherical wave functions generated from a m
potential into Eq.~3.12!. Thus the velocity-matching mode
is useful for making an exploratory calculation to reveal t
general behavior of a particular charge transfer system,
to suggest which states are important for capture be
bringing the full machinery of the close coupled equations
bear.

The velocity-matching model incorporates all the co
cepts known to be important to electron transfer and vie
the process in its most natural frame. The energy defect
tween initial and final states determines the position of
window in pz . The impact parameter enters into the expr
sion of the area of the window function, the strength of t
electric field pulling the electron from the target, and
course the separation of target and projectile inx. The ve-
locity affects the energy defect, and determines the sep
tion of target and projectile inpz . The geometry of initial
and final states is reflected in their respective wave functio
Finally, the formulation as an integral overx, py , and pz ,
Eq. ~3.21!, captures the essence of the concept of veloc
matching.
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FIG. 13. ^L2& for He1(n53). The solid curve shows the mode
results forb515 a.u. and the dotted curve is forb520 a.u. The
crosses shoŵ L2& calculated from the amplitudes of the clos
coupled calculation forb515 a.u. and the plus signs are fo
b520 a.u.
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