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We discuss the advantages of using the approximate quantum Fourier transform~AQFT! in algorithms
which involve periodicity estimations. We analyze quantum networks performing AQFT in the presence of
decoherence and show that extensive approximations can be made before the accuracy of AQFT~as compared
with regular quantum Fourier transform! is compromised. We show that for some computations an approxi-
mation may imply a better performance.@S1050-2947~96!05307-3#

PACS number~s!: 03.65.2w, 89.70.1c, 42.50.Lc

I. INTRODUCTION

In the course of history many ingenious mechanical,
acoustic, and optical devices have been invented for per-
forming Fourier transforms@1# ~including nature’s own such
as the human ear!. Most of them are now of merely historical
interest since the arrival of the computer-based algorithm
known as the fast Fourier transform~FFT! @2,3#, which effi-
ciently computes the discrete Fourier transform. The FFT
algorithm can also be phrased in terms of quantum dynam-
ics, i.e., in terms of unitary operations performed by a quan-
tum computer on quantum registers. Indeed, all known quan-
tum algorithms employ the quantum version of Fourier
transforms, either explicitly or indirectly. It is used for the
periodicity estimation in the Shor algorithm@4# and its ap-
proximate version~the Hadamard transform! is commonly
used to prepare quantum registers in coherent superpositions
of different values.

In this paper we analyze the performance of the quantum
Fourier transform~QFT! in the presence of decoherence. In
particular we show that as far as the periodicity estimation is
concerned the approximate quantum Fourier transform
~AQFT! can yield better results than the full Fourier trans-
form.

In the following we use some terms which were originally
adopted from the classical theory of information and com-
puter science and became standard in the lore of quantum
computation. More detailed descriptions can be found, e.g.,
in Refs.@5–7# and in some recent reviews@8#.

A quantum bit~qubit! is a two-state quantum system; it
has a chosen ‘‘computational basis’’$u0&,u1&% corresponding
to the classical bit values 0 and 1. Boolean operations which
map sequences of 0’s and 1’s into another sequences of 0’s
and 1’s are defined with respect to this computational basis.
A collection ofL qubits is called aregisterof sizeL.

Information is stored in the registers in binary form. For
example, number 6 is represented by a register in state
u1& ^ u1& ^ u0&. In more compact notation:ua& stands for the
direct productuaL21& ^ uaL22& ^ •••^ ua1& ^ ua0& which rep-

resents a quantum register prepared with the value
a520a0121a11•••12L21aL21 .

A quantum logic gateis an elementary quantum comput-
ing device which performs a fixed unitary operation on se-
lected qubits in a fixed period of time.

A quantum networkis a quantum computing device con-
sisting of quantum logic gates whose computational steps are
synchronised in time. The outputs of some of the gates are
connected by wires to the inputs of others. Thesizeof the
network is its number of gates.

A quantum computerwill be viewed here as a quantum
network ~or a family of quantum networks!. Quantum com-
putation is defined as a unitary evolution of the network
which takes its initial state ‘‘input’’ into some final state
‘‘output.’’

Our presentation starts with a brief mathematical intro-
duction to the approximate discrete Fourier transform which
is followed by the description of its quantum implementation
in terms of quantum networks. Then we analyze how the
performance of the QFT in the periodicity estimation is af-
fected by the approximations in the algorithms and by deco-
herence. We also comment on possible simplifications in
practical implementations of quantum networks effecting the
QFT and AQFT. The quantum algorithm for the fast Fourier
transform which we use in this paper was originally pro-
posed by Coppersmith and by Deutsch~independently! @9#.

II. DISCRETE FOURIER TRANSFORMS

The discrete Fourier transform is a unitary transformation
of an s-dimensional vector„f (0),f (1),f (2), . . . ,f (s21)…
defined by:

f̃ ~c!5
1

As(a50

s21

e2p iac/sf ~a!, ~1!

wheref (a) and f̃ (c) are in general complex numbers. It can
also be represented as a unitary matrix

PHYSICAL REVIEW A JULY 1996VOLUME 54, NUMBER 1

541050-2947/96/54~1!/139~8!/$10.00 139 © 1996 The American Physical Society



1

AsS 1 1 1 . . . 1

1 v v2 . . . v~s21!

1 v2 v4 . . . v2~s21!

1 v3 v6 . . . v3~s21!

A A A � A

1 v~s21! v2~s21! . . . v~s21!2

D , ~2!

wherev5exp(2pi/s) is thesth root of unity. In the follow-
ing we assume thats is a power of 2, i.e.,s52L for some
L; this is a natural choice when binary coding is used. The
approximate discrete Fourier transform can be conveniently
described when we write the productac in the exponent on
the r.h.s. of Eq.~1! in the binary notation. Writing

a5 (
i50

L21

ai2
i ; c5 (

i50

L21

ci2
i , ~3!

we obtain

ac5a0c01~a0c11a1c0!21~a0c21a1c11a2c0!2
21 . . .

1~a0cL211 . . .1aL21c0!2
L211O~2L!. ~4!

Becausevx51 for x>s, the termsO(2L) do not contribute
to the transform, and the term exp(2piac/2L) in Eq. ~1! can
be expressed as

exp~2p iac/2L!5exp@2p i ~a0c0!/2
L#

3exp@2p i ~a0c11a1c0!/2
L21# . . .

3exp@2p i ~a0cL211•••1aL21c0!/2#.

~5!

Beginning from the right of this expression, the arguments in
the exponentials become smaller and smaller. In the approxi-
mate Fourier transform parametrized by an integerm, the
L2m smallest terms are neglected. In all the remaining
terms the arguments are then multiples of 2p/2m. The 2mth
root of unity becomes the basic element of the approximate
Fourier transform as opposed to 2Lth root of unity which
used in the ordinary Fourier transform.~The ordinary Fourier
transform is obtained form5L; whenm51 we obtain the
Hadamard transform, for which all terms but the last one are
dropped.!

The quantum version of the discrete Fourier transform is a
unitary transformation which can be written in a chosen
computational basis$u0&,u1&, . . . ,us21&% as

~QFT!s :ua&°
1

As(c50

s21

exp~2p iac/s!uc&. ~6!

More generally,~QFT! s effects the discrete Fourier trans-
form of the input amplitudes. If

~QFT!s :(
a

f ~a!ua&°(
c

f̃ ~c!uc&, ~7!

then the coefficientsf̃ (c) are the discrete Fourier transforms
of f (a)’s. This definition can be trivially extended to cover
the approximate quantum Fourier transform~AQFT!. We
will analyze the approximations involved in the AQFT in
terms of computational networks.

III. QUANTUM NETWORKS FOR AQFT

Quantum networks for AQFT can be constructed follow-
ing the description of the fast Fourier transform algorithm~as
described by Knuth@10#!. This efficient classical algorithm
needs to be reexpressed in terms of unitary operations@9#.
The construction requires only two basic unitary operations.
The first operation is a one-bit transformationAi ~one-bit
gate! that acts on a qubitqi of the register and effects

,

~8!

The diagram on the right provides a schematic representation
of the gate acting on a qubitq. The second operation is a
two-bit gateBjk that effects

,

,

,

,
~9!

whereu jk depends on the qubitsj andk on which the gate
acts and equalsu jk5p/2k2 j . The transformationBjk is an
elementary two-qubit operation which affects only states
with a 1 in both positionj andk regardless the state of the
remaining qubits.

The QFT on a register of size 1 reduces to a single op-
eration A performed on a single qubit@cf. Eq. ~6! for
s52#. The extension of the QFT network to a register of any

FIG. 1. QFT network operating on a four-bit
register. The phasesu jk that appear in the opera-
tionsBjk are related to the ‘‘distance’’ of the qu-
bits (j2k) and are given byu jk5p/2j2k. The
network should be read form the left to the right:
first the gateA is effected on the qubita3 , then
B(f32) on a2 anda3 , and so on.
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sizeL follows a simple pattern of gatesA andB which can
be seen in Fig. 1. It shows the QFT network operating on
four qubits which can be written as the sequence of the fol-
lowing 10 elementary operations~read from left to right!

~A3!~B23A2!~B13B12A1!~B03B02B01A0!. ~10!

The bit values at the output should be read in the reversed
order ~see Fig. 1!.

The number of gates needed to complete the QFT grows
only as a quadratic function of the size of the register: for a
transformation on aL qubit register, we requireL operations
A andL(L21)/2 operationsB, in total L(L11)/2 elemen-
tary operations. Thus the quantum QFT can be performed
efficiently.

The AQFT of degreem is represented by a similar net-
work in which the two-bit gates that act on qubits which are
far apart~in the register! are neglected, i.e., those operations
Bjk for which the phase shiftu jk[p/2k2 j,p/2m for some
m such that 1<m<L are dropped@cf. Eq. ~5!#. In that case,
we needL operationsA, and (2L2m)(m21)/2 operations
B, which is an improvement on the QFT case sincem,L. In
Fig. 2 we show them52 AQFT network counterpart to the
QFT network shown in Fig. 1. The matrix elements of the
QFT and the AQFT differ by a multiplicative factors of the
form exp(ie) with ueu<2pL/2m. The execution time of the
AQFT grows as;Lm.

IV. ESTIMATING PERIODICITY

The quantum Fourier transform, like the ordinary Fourier
transform, is a powerful tool for uncovering periodicities.
Any periodicity in probability amplitudes describing a quan-
tum state of a register in a computational basis can be esti-
mated~with some probability of success! by performing the
QFT followed by a measurement of the register in the com-
putational basis. The result is obtained by reading the qubits
of the register in the reversed order.

For example, an interesting periodic state which plays an
important role in Shor’s quantum factoring algorithm can be
written as

uC&5
1

AN(
a50

2L21

f ~a!ua&, ~11!

whereN is an appropriate normalization factor and

f ~a!5d l ,a modr . ~12!

It is the state of a quantum register of sizeL in which the
probability amplitudesf (a) occur with periodicityr and off-

set l . If this offset is unknown, a measurement performed in
the computational basis cannot revealr or any of its integer
multiples directly. This is illustrated in Fig. 3~a!. However, if
we perform the QFT on the register first and subsequently
measure its state we obtain numberc̄ which, with probability
greater than 4/p2, is a multiple of 2L/r regardless the offset
l ~cf. Appendix!. The probability is not equal to unity, be-
cause the finite size of the register leads to a ‘‘broadening’’
of the Fourier-transformed data, as illustrated in Fig. 3~b!.
~This is because 2L/r is not necessarily an integer, and the
quantum register can have only integer values; this is dis-
cussed in detail in the Appendix.!

For the AQFT the corresponding probability, in the limit
of largeL, satisfies

ProbA>
8

p2sin
2S p

4

m

L D . ~13!

This result is derived in the Appendix. The effect of the
approximation is illustrated in Fig. 4 where we plot the
modulus of the amplitude of the transformed stateuC& ~with
l59 andr510) for the AQFT of different ordersm. Figure
5 shows how the phase of the transformed state becomes
corrupted whenm becomes smaller.

If the quantum Fourier transform forms a part of a ran-
domised algorithm then the computation can be repeated
several times in order to amplify the probability of the cor-
rect result. In such cases the performance of the AQFT is
only polynomially less efficient than that of the QFT. For
example, consider Shor’s quantum factoring algorithm and
substitute the AQFT for the QFT. In order to obtain a correct
factor with a prescribed probability of success, we have to
repeat the computation several times. Letk and k8 be the
number of runs, respectively, with the QFT and the AQFT so
that we obtain the same probability of getting at least one
correct result, i.e.,

FIG. 2. AQFT network operating on a four-bit
register whenm52.

FIG. 3. ~a! Function f (a) in Eq. ~12!. The parameters are
l58, r510 and the number of bits in the calculation isL59 so that
numbers up to 2L215511 can be encoded.~b! u f̃ (c)u, obtained
from f (a) by a QFT. The inset showsc̄35155 which is the closest
integer to 33512/105153.6. ~See the Appendix for more details.!
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12~12p!k512~12p8!k8. ~14!

Herep54/p2 andp85(8/p2)sin2@(4/p)(m/L)# are the cor-
responding probabilities of success in a single run. The ratio
k8/k scales as

k8

k
5

lnS 12
4

p2D
lnF12

8

p2sin
2S 4p m

L D G,CS LmD 3 ~15!

for someC ~the upper bound is found graphically!. This
shows that in the quantum factoring algorithm the AQFT is
not less efficient than the ordinary QFT, i.e., the ratiok8/k
scales only polynomially withL/m. Moreover, we will show
that in the presence of decoherence the AQFT can perform
better than the QFT even in a single computational run.

V. DECOHERENCE

Quantum computation requires a controlled, quantum-
mechanically coherent evolution at the level of individual
quantum systems such as atoms or photons. This imposes
severe requirements on quantum computer hardware. If we
are to harness the unique power of quantum computers, such
systems will have to be manufactured with unprecedented
tolerances and shielded from noise to an unprecedented de-
gree. Even a minute interaction with the environment will
lead to a nonunitary evolution of the computer and its state
will, in general, evolve into a mixed state described by a
reduced density operatorr, which is obtained from the den-
sity operatorr total of the total computer plus environment
system by taking a trace over all the quantum states of the
environment:

r5Trenvironment~r total!. ~16!

Consider, for example, a quantum register of sizeL which is
prepared initially in some pure state and then left on its own.
As time goes by, the qubits become entangled with the en-
vironment. Both the diagonal and the off-diagonal elements
of the density matrixr ~expressed in a computational basis!
are usually affected by this process~cf. @11,12#!. The rate of
change of the diagonal and the off-diagonal elements de-
pends on the type of coupling to the environment, however,
there are realistic cases where the dissapearance of the off-
diagonal elements, known as decoherence, takes place on
much faster time scale. In this case a simple mathematical
model of decoherence has been proposed@13#. It assumes
that the environment effectively acts as a measuring appara-
tus, i.e., a single qubit in statec0u0&1c1u1& evolves together
with the environment as

~c0u0&1c1u1&)ua&→c0u0&ua0&1c1u1&ua1&, ~17!

where statesua&,ua0&,ua1& are the states of the environment
and ua0&,ua1& are usually not orthogonal (^a0ua1&Þ0). The
elements of the density matrix evolve as

r i j ~0!5ci~0!cj* ~0!→r i j ~ t !5ci~ t !cj* ~ t !^ai~ t !uaj~ t !&,

i , j50,1. ~18!

Statesua0& and ua1& become more and more orthogonal to
each other while the coefficients$ci% remain unchanged.
Consequently the off-diagonal elements ofr disappear due
to the^a0(t)ua1(t)& factor and the diagonal elements are not
affected.

There is an alternative way of thinking about this process.
The environment is regarded as a bosonic heat bath, which
introduces phase fluctuations to the qubit states, i.e., it in-
duces random phase fluctuations in the coefficientsc0 and
c1 such that

c0u0&1c1u1&→c0e
2 ifu0&1c1e

ifu1&. ~19!

The direction and the magnitude of each phase fluctuation
f is chosen randomly following the Gaussian distribution

P~f!df5
1

A2pd
expF2

1

2 S f

d D 2Gdf, ~20!

FIG. 4. Different orders of approximation in the AQFT per-
formed on a stateuC& for which f (a)5d 9,amod 10.

FIG. 5. As Fig. 4, but showing the phase of the amplitudes, i.e.,
arg„ f̃ (c)….
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where the distribution widthd defines the strength of the
coupling to the quantum states of the environment. The ele-
ments of the density matrixr are then reconstructed as
r i j5^cicj* &, where the averagê & is taken over different
realizations of the phase fluctuations within a given period of
time ~cf @12#.!. The diagonal elements do not depend onf,
whereas the off-diagonal term̂c0c1e

i2f& averages to zero
for a sufficiently long period of time.

The latter approach to decoherence is very convenient for
numerical simulations and was chosen for the purpose of this
paper. It is similar to the Monte Carlo wave function method
used in quantum optics@14#.

VI. AQFT AND DECOHERENCE

We have analyzed decoherence in the AQFT networks
assuming that the environment introduces a random phase
fluctuation in a qubit probability amplitudes each time the
qubit is affected by gateB. In our model we have not at-
tached any decoherence effects to gateA. In most of the
suggested physical realizations the single qubit operations
are quite fast, whereas the conditional logic needed in two-
qubit operations is often much harder to produce, which
makes these operations slower than the single qubit ones,
and often much more susceptible to decoherence. For in-
stance, in the ion trap model proposed by Cirac and Zoller
@15# single qubit operations require only one laser pulse in-
teracting with one atom, whereas in a two–qubit operation
two subsequent laser pulses are needed, and the atoms in-
volved must form an entangled state with a trap phonon
mode between the pulses. It should also be noted that there
are as many one-qubit gates in the QFT network as there are

input qubits. This number of the one-qubit gates is un-
changed when the approximate QFT is performed and the
noise due to decoherence of the one-qubit gates is the same
regardless of the degree of the approximation. Our consider-
ations do not depend on the level of this constant noise, so
for the sake of convenience we can set it to zero.

We have quantified the performance of the AQFT by in-
troducing the quality factorQ. It is simply the probability of
obtaining an integer which is closest to any integer multiple
of 2L/r , when the state of the register is measured after the
transformation. In the decoherence-free environment ana-
lyzed in Sec. IV we obtainQ51 for integer values of 2L/r
and for a randomly selectedr the quality factorQ is of the
order 4/p2 for the QFT and of the order of
(8/p2)sin2@(4/p)(m/L)# for the AQFT of degreem.

In Fig. 6 we show how the quality factorQ behaves as a
function ofm andd ~which characterizes the strength of the
coupling to the environment!. For d.0 the maximum ofQ
is obtained form,L. Thus in the presence of decoherence
one should use the AQFT rather than the QFT.

This ‘‘less is more’’ result can be easily understood. The
AQFT means less gates in the network and because eachB
gate introduces phase fluctuations the approximate network
generates less decoherence as compared to the regular QFT
network. By decreasingm we effectively decrease the impact
of decoherence. On the other hand, decreasingm implies
approximations which reduces the quality factor. This
tradeoff between the two phenomena results in the maximum
valueQ for mP@1,L#.

It is worth pointing out that ford50 ~no decoherence!
Q remains almost constant for those values ofm that satisfy
the lower bound condition~derived in the Appendix!

m. log2L12, ~21!

and whend.0 the optimumm is found near this lower
bound. In Fig. 7 we also show howQ decreases rapidly with
L in the QFT network~although there is not enough data in
the figure to determine if it really decreases exponentially!.

Our simulations were performed for ensembles which
consisted typically of one to two thousand individual realiza-
tions.

FIG. 6. The quality factorQ as a function ofm for selected
values ofd. The register sizes are~a! L512 and~b! L516. Statis-
tical errors are too small to be represented on the graph.

FIG. 7. The quality factorQ as a function of the register size
L for QFT, with varying levels of decoherence, fromd50.1 ~top
line! to d50.5 ~bottom line!. Statistical errors are too small to be
represented on the graph.

FIG. 8. ~a! Argand diagram corresponding to the sum of the
phases that appear in the expression off ( c̄) for c̄ close to one of the
valuesn2L/r . Prob(c̄) is the norm of the vector resulting from the
sum of each vector in the diagram.~b! Prob(c̄) is bounded by the
worst-case situation in which we have takenumax instead ofu c̄ , in
this case the phases lie on an interval@0,p# on the Argand diagram
and a closed form expression can be found.
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VII. CONCLUSIONS AND COMMENTS

We have analyzed the approximate quantum Fourier
transform in the presence of decoherence and found that the
approximation does not imply a worse performance. On the
contrary, using the periodicity estimation as an example of a
computational task, we have shown that for some algorithms
the approximation may actually imply a better performance.

Needless to say, there is room for further simplifications
of the quantum Fourier transform which may lead to at least
partial suppressing of unwelcome effects of decoherence. For
example, if the QFT is followed by a bit by bit measurement
of the register then the conditional dynamics in the network
can be converted to a sequence of conditional bit by bit mea-
surements~cf. @16#!. However, one should note that this ap-
proach is limited because it cannot be used if the quantum
Fourier transform is only an intermediate step in some much
more complicated calculation.

In our discussion of decoherence in the QFT network we
have not analyzed the various quantum error correcting tech-
niques that have been proposed recently~see e.g.,@17–20#!.
This is simply because quantum encoding and decoding re-
quire additional networks which are assumed to be error free.
Clearly this is an unrealistic assumption in the context of
quantum computation~but a reasonable one in the context of
quantum communication over a noisy channel!. Any discus-
sion of the performance of the QFT network with error cor-
rection must also include the performance of these auxiliary
networks~after all encoding and decoding is a quantum com-
putation on its own!.

It has been pointed out that any experimental quantum
computation requires unpreceedingly high accuracy of con-
trol @21#. These requirements obviously limit the efficiency
of the quantum computation, but tend to be dependent on the
particular implementation of the computation~see e.g.,@22#!
and thus we have not considered them here.

In this article we have wanted to show that there are cases
where quantum networks that are composed of imprecise
components can guarantee a ‘‘pretty good performance.’’
This topic has also a more general context; it has been shown
that reliable classical networks can be assembled from unre-
liable components@23#. It is an open question whether a
similar result holds for quantum networks.
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APPENDIX

Consider the quantum state

uC&5
1

AN(
a50

2L21

f ~a!ua&, ~A1!

where

f ~a!5d l , amodr . ~A2!

Here f (a) is a periodic function with periodr!2L and offset
l , which is an arbitrary positive integer smaller thanr ; see
Fig. 3~a!. The normalization factor is equal to the number of
nonzero valuesf (a): N5@2L/r #. Becauser!2L we use
from now on@2L/r #.2L/r . The state~A1! plays an impor-
tant role in the Shor quantum factorization algorithm@the
algorithm enables us to factorize an integerN by finding r
such thatxr5(1modN) for somex coprime withN — r is
estimated from a quantum computation that generates a state
of the form ~A1!#.

Applying QFT to this state we obtain

uC̃&5( f̃ ~c!uc&, ~A3!

where

f̃ ~c!5
Ar
2L (

j50

2L/r21

exp@2p i ~ j r1 l !c/2L#. ~A4!

The probability of seeing an integerc is then

Prob~c!5u f̃ ~c!u25
r

22L
u (

j50

2L/r21

exp@2p i j ~rcmod2L!/2L#u2.

~A5!

FIG. 9. ~a! Argand diagram for the AQFT. Vectors are rotated
by an angleD( j r ,c). ~b! To obtain a closed form for a bound for
ProbA( c̄) we consider the worst case in which half of the phases
pick up a factorD max.

FIG. 10. In the case that the orderm of the AQFT is such that
Dmax.p/2, the individual phases can get scrambled in such a way
that there is no constructive interference effect. The probability
ProbA( c̄) can become vanishingly small and the AQFT of order
m is inefficient.
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As can be seen from Fig. 3~b! the peaks of the power spec-
trum of f (a) are centered at integersc, which are the closest
approximation to multiplies of 2L/r .

Let us now evaluate Prob(c̄) for c̄ being the closest inte-
ger tol2L/r , i.e., c̄5@l2L/r #. By definition c̄ must satisfy

2
1

2
, c̄2l

2L

r
,
1

2
. ~A6!

We define u c̄52p(rc̄ mod2L) so that Prob(c̄) now in-
volves a geometric series with ratio exp(iu c̄). By viewing
these terms as vectors on an Argand diagram it is clear that
the total distance from the origin decreases asu c̄ increases.
Hence Prob(c̄)>Prob(c̄ with largest allowedu c̄). Let us
denote by umax the largest allowedu c̄ . By Eq. ~A6!,
umax<pr /2L and summing the geometric series with
umax5pr /2L ~see Fig. 8! we obtain

Prob~ c̄!>
r

22L
1

sin2S p

2

r

2LD
.

4

p2

1

r
, ~A7!

where we have used the fact thatr /2L is small. Since there
are r such valuesc̄, the total probability of seeing one of
them is

Prob>4/p2. ~A8!

By performing this measurement several times on different
statesuC& ~each one with possibly differentl ), one gets with
high probability valuesc̄0 , c̄1 , . . . that are the closest inte-
gers ton02

L/r , n12
L/r , . . . and which allow us to calculate

r @cf. inset in Fig. 3~b!#.
We estimate now the probability of measuring one of the

desired valuesc̄ when the AQFT of orderm has been per-
formed instead of the QFT. The difference between the QFT
and the AQFT of orderm is in the arguments of the expo-
nentials in Eq.~A5!. The phase difference for each term in
the sum is

D~a,c!5
2p

2L S ac2 (
~ j ,k!PE

L21

ajck2
j1kD , ~A9!

where

E5$~ j ,k!u0< j ,k<L21,L2m< j1k<L21%. ~A10!

The probability to measureuc̄&, wherec̄ is the closest integer to one of ther valuesn2L/r , now becomes

ProbA~c!5
r

22L
u (

j50

2L/r21

exp@2p i j ~rcmod2L!/2L2 iD~ j r ,c!#u2. ~A11!

This is the same summation as is involved in the QFT, ex-
cept that in the case of the AQFT, each vector of the Argand
diagram of Fig. 8~a! may be rotated by an angleD( j r ,c), as
shown in Fig. 9. In the worst case, whena5c52L21, i.e.,
ai5ci51 ; i , D(a,c) is equal to

Dmax5
2p

2m
~L2m2112m2L!. ~A12!

However, for any other values of a and c,
0<D(a,c),Dmax.

We are interested in the lower bound for the probability
so we assume that the vectors in the Argand diagram fill one
half of the circle (umax5pr /2L) as illustrated in Fig. 8~b!.
The approximation allows to rotate each vector by the maxi-
mum angleDmax. The minimum of the probability is ob-
tained when half of the vectors are rotated byDmax; see Fig.
9~b!. In this case vectors in two areas of sizeDmax cancel
each other, and all we have to do is to calculate geometrical
sums of the vectors in the two areas of sizep/22Dmax. In an
area of that size there are (2L/r )@ 1

22(Dmax/p)] vectors,
since the total number of vectors is 2L/r . Note that because

2L@r , we can assume that@2L/r #61.2L/r . The square of
the geometric sum then becomes

U (
j50

2L/r ~1/22Dmax/p!21

expS i pr

2L
j DU25sin2F12 S p

2
2DmaxD G

sin2S p

2

r

2LD
.

~A13!

The two sum vectors in the two areas of sizep/22Dmax
are of equal length and orthogonal to each other, so the
square of their sum vector, contributing to the total probabil-
ity, is twice the value given by~A13!. Finally we obtain

ProbA>2
r 2

22L

sin2F12 S p

2
2DmaxD G

sin2S p

2

r

2LD
.

8

p2sin
2F12 S p

2
2DmaxD G .

~A14!

ForDmax50 this expression reduces to the result derived for
the QFT:
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ProbA>
8

p2sin
2S p

4 D5
4

p2 , ~A15!

and forDmax5p/2 we have ProbA>0. To avoid a zero prob-
ability, Dmax must always be bounded by

Dmax5
2p

2m
~L2m2112m2L!,

p

2
, ~A16!

which for largeL implies

m. log2L12. ~A17!

Equation~21! gives a lower bound to the order of the AQFT
performed on a register of lengthL, if one wants to have a
nonzero probability of success in measuring a valuec̄.
Simple geometric considerations also show thatDmax,p/2
is a limit for a non-negligible probability: forD max.p/2 the

vectors in the Argand diagram can be rotated so that there is
no longer any constructive interference; see Fig. 10.

For largeL we can write

Dmax.
2p

2m
~L2m!. ~A18!

If we use the lower bound form ~21!, we obtain

Dmax<
p

2 S 12
m

L D , ~A19!

which allows us to write the probability~A14! in a simple
form,

ProbA>
8

p2sin
2S p

4

m

L D . ~A20!
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