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We discuss the advantages of using the approximate quantum Fourier traf8fQfT) in algorithms
which involve periodicity estimations. We analyze quantum networks performing AQFT in the presence of
decoherence and show that extensive approximations can be made before the accuracy GsA¢@RTpared
with regular quantum Fourier transfoyris compromised. We show that for some computations an approxi-
mation may imply a better performand&1050-294{@6)05307-3

PACS numbegs): 03.65—w, 89.704c, 42.50.Lc

I. INTRODUCTION resents a quantum register prepared with the value
a=2%,+2%,+---+2-ta ;.

In the course of history many ingenious mechanical, A quantum logic gatés an elementary quantum comput-
acoustic, and optical devices have been invented for peing device which performs a fixed unitary operation on se-
forming Fourier transformpl] (including nature’s own such lected qubits in a fixed period of time.
as the human eprMost of them are now of merely historical A quantum networks a quantum computing device con-
interest since the arrival of the computer-based algorithn$isting of quantum logic gates whose computational steps are
known as the fast Fourier transfortBFT) [2,3], which effi-  synchronised in time. The outputs of some of the gates are
ciently computes the discrete Fourier transform. The FFTconnected by wires to the inputs of others. Wieeof the
algorithm can also be phrased in terms of quantum dynampetwork is its number of gates.
ics, i.e., in terms of unitary operations performed by a quan- A quantum computewill be viewed here as a quantum
tum computer on quantum registers. Indeed, all known quan?€twork (or a family of quantum networfsQuantum com-
tum algorithms employ the quantum version of Fourierputation is defined as a unitary evolution of the network
transforms, either explicitly or indirectly. It is used for the Which takes its initial state “input” into some final state
periodicity estimation in the Shor algorithfd] and its ap- “output.”

proximate versiontthe Hadamard transforis commonly Our presentation starts with a brief mathematical intro-
used to prepare quantum registers in coherent superpositiod§iction to the approximate discrete Fourier transform which
of different values. is followed by the description of its quantum implementation

In this paper we analyze the performance of the quanturil terms of quantum networks. Then we analyze how the
Fourier transformQFT) in the presence of decoherence. In Performance of the QFT in the periodicity estimation is af-
particular we show that as far as the periodicity estimation iected by the approximations in the algorithms and by deco-
concerned the approximate quantum Fourier transfornfierence. We also comment on possible simplifications in
(AQFT) can vyield better results than the full Fourier trans-Practical implementations of quantum networks effecting the
form. QFT and AQFT. The quantum algorithm for the fast Fourier

In the following we use some terms which were originally transform which we use in this paper was originally pro-
adopted from the classical theory of information and com-Posed by Coppersmith and by Deutdatdependently[9].
puter science and became standard in the lore of quantum
computation. More detailed descriptions can be found, e.g., Il. DISCRETE FOURIER TRANSEORMS
in Refs.[5-7] and in some recent reviev8].

A quantum bit(qubit) is a two-state quantum system; it ~ The discrete Fourier transform is a unitary transformation
has a chosen “computational basi§0),|1)} corresponding of an s-dimensional vector(f(0),f(1),f(2),...,f(s—1))
to the classical bit values 0 and 1. Boolean operations whicHefined by:
map sequences of 0’s and 1's into another sequences of 0’'s

and 1's are defined with respect to this computational basis. _ 158 _
A collection of L qubits is called aegisterof sizelL. f(c)= —E e?maclsf(g), (N
Information is stored in the registers in binary form. For Vsa=o

example, number 6 is represented by a register in state _
|1)®|1)®]|0). In more compact notationa) stands for the wheref(a) andf(c) are in general complex numbers. It can
direct producfa, _;)®|a, _,)®---®|a;)®|ay) which rep-  also be represented as a unitary matrix
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1w W2 e (QFT)¢:|a)y— ﬁ;o exp(2miac/s)|c). (6)
111 ? w* o 2T
il 3 5 ssn | @ More generally,(QFT) effects the discrete Fourier trans-
Js| 1 o ® ® form of the input amplitudes. If

1 oD Q25D e (QFTs: 2 f(@lay—2 F(o)le), (7)

where w=exp(2mi/s) is thesth root of qnity._lnl_the follow- then the coefficient§(c) are the discrete Fourier transforms
ing we assume tha is a power of 2, i.e.5=2" for Some ¢ t(a)'s This definition can be trivially extended to cover

L; this is a natural choice when binary coding is used. Theq approximate quantum Fourier transfof&QFT). We
approximate discrete Fourier transform can be conveniently . analyze the approximations involved in the AQFT in
described when we write the produt in the exponent on  iorms of computational networks.

the r.h.s. of Eq(1) in the binary notation. Writing
L1 L1 IIl. QUANTUM NETWORKS FOR AQFT

a= iZO a;2'; c= iZO ci2', () Quantum networks for AQFT can be constructed follow-
ing the description of the fast Fourier transform algoritfa®m
described by Knuthi10]). This efficient classical algorithm
needs to be reexpressed in terms of unitary operafi®hs
The construction requires only two basic unitary operations.
The first operation is a one-bit transformatidn (one-bit

we obtain

ac=ayCo+ (ayC;+a,Co) 2+ (agCp+ascy+ayCo) 2%+ . . .

+(agCL_1+ ... +a _1C0)2 1+ 0(2%). (4 gate that acts on a qubif; of the register and effects
Becausaw*=1 for x=s, the termsO(2") do not contribute 0 1 (10
' =+ |1})
to the transform, and the term expfiac/2") in Eq. (1) can 0) — 75(' )+11) G — A; —
be expressed as 1) — %(m) —|1)).
(8)

exp(2miac/2h)=exd 2mi(agCo)/2" ]
The diagram on the right provides a schematic representation

H L—-1
X exXp 2mi (3Cy +a1Co)/2" 1. of the gate acting on a qubif. The second operation is a

X exf[2mi(agC, 1+ - - - +a._1Co)/2]. two-bit gateBj, that effects
5
© [00) — |00) ,
Beginning from the right of this expression, the arguments in o1y —; |o1) , K4 %
the exponentials become smaller and smaller. In the approxi- =
mate Fourier transform parametrized by an integerthe [10) — [10) » U — O U
L—m smallest terms are neglected. In all the remaining |11y —, exp(if;;)[11) -

terms the arguments are then multiples af/2™. The Z"th 9
root of unity becomes the basic element of the approximate
Fourier transform as opposed tdt8 root of unity which  where 0;x depends on the qubifsandk on which the gate
used in the ordinary Fourier transforfiThe ordinary Fourier —acts and equalg,= w271, The transformatiorB;, is an
transform is obtained fom=L; whenm=1 we obtain the elementary two-qubit operation which affects only states
Hadamard transform, for which all terms but the last one arevith a 1 in both positioni andk regardless the state of the
dropped) remaining qubits.

The quantum version of the discrete Fourier transformisa The QFT on a register of size 1 reduces to a single op-
unitary transformation which can be written in a choseneration A performed on a single qubitcf. Eq. (6) for

computational basi§|0),[1), ... ,|s—1)} as s=2]. The extension of the QFT network to a register of any
a L C
° ¢ * 4 ’ FIG. 1. QFT network operating on a four-bit

register. The phase, that appear in the opera-

“ *® A b10 €2 tions By, are related to the “distance” of the qu-
bits (j—k) and are given byy; = m/2 "% The

az A 91 020 C1 network should be read form the left to the right:
first the gateA is effected on the qubig, then

B(¢#3,) ona, andas, and so on.

a3 A Hbs B34 B30 o
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o A —¢3
ay A o Ca
FIG. 2. AQFT network operating on a four-bit
register wherm=2.
az —T—J A ;1 a
a3 — A H 932 Co

sizeL follows a simple pattern of gates andB which can  setl. If this offset is unknown, a measurement performed in
be seen in Fig. 1. It shows the QFT network operating orthe computational basis cannot reveadr any of its integer
four qubits which can be written as the sequence of the folmultiples directly. This is illustrated in Fig.(8. However, if

lowing 10 elementary operatiorigead from left to right we perform the QFT on the register first and subsequently
measure its state we obtain numbewrhich, with probability
(A3)(B23A2) (B13B12A1) (BoaBo2BoiAo) - (100 greater than 4#2, is a multiple of 2/r regardless the offset

) _ | (cf. Appendix. The probability is not equal to unity, be-
The bit values at the output should be read in the reversegyyse the finite size of the register leads to a “broadening”
order(see Fig. 1 of the Fourier-transformed data, as illustrated in Fitp)3
The number of gates needed to complete the QFT growgrns is because '2r is not necessarily an integer, and the

only as a quadratic function of the size of the register: for ayyantum register can have only integer values; this is dis-
transformation on & qubit register, we require operations  yssed in detail in the Appendjx.

A andL(L—1)/2 operations3, in total L(L +1)/2 elemen- For the AQFT the corresponding probability, in the limit
tary operations. Thus the quantum QFT can be performegs |grge L, satisfies
efficiently.
The AQFT of degream is represented by a similar net- 8 _[mm
work in which the two-bit gates that act on qubits which are Prob,=> ?SIHZ(Z f)- (13

far apart(in the register are neglected, i.e., those operations

Bji for which the phase shift; = /2“"1<m/2" for some  This result is derived in the Appendix. The effect of the
m such that =m=L are droppedcf. Eq.(5)]. In that case, approximation is illustrated in Fig. 4 where we plot the
we needL operationsA, and (4 —m)(m—1)/2 operations modulus of the amplitude of the transformed staltd (with

B, which is an improvement on the QFT case sinee€L. In | =9 andr = 10) for the AQFT of different orders. Figure

Fig. 2 we show then=2 AQFT network counterpart to the 5 shows how the phase of the transformed state becomes
QFT network shown in Fig. 1. The matrix elements of thecorrupted wherm becomes smaller.

QFT and the AQFT differ by a multiplicative factors of the | the quantum Fourier transform forms a part of a ran-
form expfe) with |e|<27L/2"™. The execution time of the domised algorithm then the computation can be repeated

AQFT grows as~Lm. several times in order to amplify the probability of the cor-
rect result. In such cases the performance of the AQFT is
IV. ESTIMATING PERIODICITY only polynomially less efficient than that of the QFT. For

) ) . . example, consider Shor’'s quantum factoring algorithm and
The quantum Fourier transform, like the ordinary Fouriergpgtityte the AQFT for the QFT. In order to obtain a correct

transform, is a powerful tool for uncovering periodicities. ¢5ctor with a prescribed probability of success, we have to
Any periodicity in probability amplitudes describing a quan- repeat the computation several times. keandk’ be the

tum state of a register in a computational basis can be esti;,\per of runs, respectively, with the QFT and the AQFT so
mated(with some probability of succepby performing the  yhat e obtain the same probability of getting at least one

QFT followed by a measurement of the register in the comqract result, i.e.,

putational basis. The result is obtained by reading the qubits
of the register in the reversed order.

2 &
For example, an interesting periodic state which plays an @ ®) 04 '“r\I Pai
important role in Shor’s quantum factoring algorithm can be i oo o)l o v
written as e L |’
""" 2% 0 15(')II 15’5"'
2Ll—1 0l r 0.2
1
|\P>:\/—K/a§—:0 f(a)la), a ] i lLH i
O §720 40780 500 o 9 200, 400

where is an appropriate normalization factor and
FIG. 3. (8 Function f(a) in Eg. (12). The parameters are
f(a2)= 6} a moa - (120 1=8,r=104and the number of bits in the calculatiorLis-9 so that
numbers up to 2—1=511 can be encodedb) |f(c)|, obtained
It is the state of a quantum register of sizein which the  from f(a) by a QFT. The inset shows=155 which is the closest
probability amplitudes (a) occur with periodicityr and off-  integer to 3<512/10=153.6. (See the Appendix for more detajls.
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V. DECOHERENCE

m=9 (QFT) m=5
sl ] o3 | ] Quantum computation requires a controlled, quantum-
L | L ] mechanically coherent evolution at the level of individual
02 | 1 024 1 quantum systems such as atoms or photons. This imposes
o1 | ] o1 | ] severe requirements on quantum computer hardware. If we
L | I ] are to harness the unique power of quantum computers, such
0 A A Al Ad Mo A R T T T systems will have to be manufactured with unprecedented
e e tolerances and shielded from noise to an unprecedented de-
m=3 m=1 (Hadamard) gree. Even a minute interaction with the environment will
—— — lead to a nonunitary evolution of the computer and its state
will, in general, evolve into a mixed state described by a
reduced density operatpr, which is obtained from the den-
sity operatorp,.y Of the total computer plus environment
system by taking a trace over all the quantum states of the
environment:

el
If(c)

o)l
el

0 0
0 100 200 300 400 500 0 100 200 300 400 500
c c

P = Trenvironmerk Protal) - (16)
FIG. 4. Different orders of approximation in the AQFT per- . . . L
formed on a statéW¥) for which f(a) =69 amed 10- Consider, for example, a quantum register of dizghich is

prepared initially in some pure state and then left on its own.

As time goes by, the qubits become entangled with the en-
1—(1—p)k:1—(1—p’)k'. (14 vironment. Both the diagonal and the off-diagonal elements
of the density matrixp (expressed in a computational basis
o L . are usually affected by this proce&s. [11,172)). The rate of
Herep=4/x* andp’ = (8/m®)sirf((4/m)(m/L)] are the cor- change of the diagonal and the off-diagonal elements de-

responding probabilities of success in a single run. The rati‘bends on the type of coupling to the environment, however,

! . . .
k'/k scales as there are realistic cases where the dissapearance of the off-
diagonal elements, known as decoherence, takes place on

4 much faster time scale. In this case a simple mathematical
K’ In(l——2> RE model of decoherence has been propogkg]. It assumes
= T C(—) (15) that the environment effectively acts as a measuring appara-
k nl 1— 8 ir? 4m tus, i.e., a single qubit in staty|0)+c,|1) evolves together
n 2SI T with the environment as

(Col0) +ca[1))[a)—colO)|ag) +¢a|L)|ar),  (17)
for someC (the upper bound is found graphicallyThis i
shows that in the quantum factoring algorithm the AQFT isWhere state$a),[ao),|as) are the states of the environment
not less efficient than the ordinary QFT, i.e., the ratiek ~ and|ao),|as) are usually not orthogonatgo|ay) #0). The
scales only polynomially with./m. Moreover, we will show ~€lements of the density matrix evolve as
that in the presence of decoherence the AQFT can perform _ _
better than the QFT even in a single computational run. pij(0)=ci(0)¢f (0)—pij(H) =ci(t)ef (Hai(t)]a;(1),

i,j=0,1. (18

d] m=5

Lo~ vwrg

States|ay) and|a;) become more and more orthogonal to
each other while the coefficients;} remain unchanged.
Consequently the off-diagonal elementsgoflisappear due
to the(ay(t)|a,(t)) factor and the diagonal elements are not
affected.

There is an alternative way of thinking about this process.
The environment is regarded as a bosonic heat bath, which
-, m=3 g me] (Hadamard) introduces phase fluctuations.to the qubit staFe_s, i.e., it in-

. 4 i duces random phase fluctuations in the coefficiegteind

arg(f(c))

- L ' L . . r ' L L 1
0 100 200 300 400 500 0 100 200 300 400 500
[ [

: _ ; ¢, such that
=1 Sl i i
= 5o Co|0)+Cq|1)—coe "¢0) +cie'?|1). (19
& 5 © :2
3 3 The direction and the magnitude of each phase fluctuation
T e 30 @6 500 010 200 30 400 500 ¢ is chosen randomly following the Gaussian distribution
FIG. 5. As Fig. 4, but showing the phase of the amplitudes, i.e., P(¢)ddp= ! ex;{ - E(f ’ deo, (20)
arg(f(c)). NeE) 2\ 6
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FIG. 6. The quality factolQ as a function ofm for selected
values ofé$. The register sizes af@) L=12 and(b) L=16. Statis-
tical errors are too small to be represented on the graph.

FIG. 8. (3) Argand diagram corresponding to the sum of the
phases that appear in the expressiof(o) for c close to one of the
valuesn2‘/r. Prob() is the norm of the vector resulting from the

S . . sum of each vector in the diagraiti) Prob(c) is bounded by the
where the distribution widths defines the strength of the | o .« - <o situation in which we have takép,, instead off< in

coupling to the quantum stqtes of the environment. The eIethis case the phases lie on an intefM@kr] on the Argand diagram
ments of the density matriy are then reconstructed as 4nq 4 closed form expression can be found.

pij=(cic]'), where the averag¢) is taken over different
realizations of the phase fluctuations within a given period of

. ) input qubits. This number of the one-qubit gates is un-
time (cf [12].). The diagonal elements do not dependdan , :
whereas the off-diagonal terr{rcocle'2¢) averages to zero changed when the approximate QFT is performed and the

- . . noise due to decoherence of the one-qubit gates is the same
for a sufficiently long period of time.

. . regardless of the degree of the approximation. Our consider-
The latter approach to decoherence is very convenient f(.)étions do not depend on the level of this constant noise, so

numerical simulations and was chosen for the purpose of thi f the sake of convenience we can set it to zero.

paper. It is similar to _the Monte Carlo wave function method We have quantified the performance of the AQFT by in-
used in quantum opticsi4]. troducing the quality facto®. It is simply the probability of
obtaining an integer which is closest to any integer multiple
VI. AQFT AND DECOHERENCE of 24/r, when the state of the register is measured after the

We have analyzed decoherence in the AQFT netWorkjransformauon. In the decoherence-free environment ana-

. . _ . L
assuming that the environment introduces a random pha %ZSC: n Sec.dlv V\lle Oblta'{gd_thl for n:_ttegfer :/alue_s O]: ?hr
fluctuation in a qubit probability amplitudes each time the@nd for a rancomly Selec e quality factorQ is of the

o der 4/ for the QFT and of the order of
qubit is affected by gat®. In our model we have not at- or o\
tached any decoherence effects to gateln most of the (8/m*)sirf{(4/m) (/L)] for the AQFT of degreen.

suggested physical realizations the single qubit operation In.F|g. 6 we show h(.)W the quallt)_/ fact@ behaves as a
are quite fast, whereas the conditional logic needed in tworunetion ofm and & .(Wh'Ch characterizes the st.rength of the
qubit operations is often much harder to produce, whichCOl"p“n.g to the enwronmeh.tFor 6>0 the maximum ofQ
makes these operations slower than the single qubit one$ obtained fom<L. Thus in the presence of decoherence
and often much more susceptible to decoherence. For ine shoyld use the A,,QFT rather than th_e QFT.

stance, in the ion trap model proposed by Cirac and Zoller This “less is more” result can be easily understood. The

[15] single qubit operations require only one laser pulse in"QFT means less gates in the network and because Bach

teracting with one atom, whereas in a two—qubit operatiorgate introduces phase fluctuations the approximate network

two subsequent laser pulses are needed, and the atoms fgenerates less decoherence as compared to the regular QFT

volved must form an entangled state with a trap phonor{'etwork' By decreasing we effectively decreasg the impaCt
mode between the pulses. It should also be noted that theRf decoherence. On the other hand, decreasmgnplies

are as many one-qubit gates in the QFT network as there afPProximations which reduces the quality factor. This
tradeoff between the two phenomena results in the maximum

valueQ for me[1,L].

It is worth pointing out that for6=0 (no decoherenge
Q remains almost constant for those valuesrothat satisfy
the lower bound conditiofderived in the Appendix

Q 05}
m>log,L + 2, (21
06 3 0 12 14 16 18 20 and whené6>0 the optimumm is found near this lower
L bound. In Fig. 7 we also show ho@ decreases rapidly with

L in the QFT network(although there is not enough data in
FIG. 7. The quality factoQ as a function of the register size the figure to determine if it really decreases exponentially
L for QFT, with varying levels of decoherence, frofs=0.1 (top Our simulations were performed for ensembles which
line) to 6=0.5 (bottom lin®. Statistical errors are too small to be consisted typically of one to two thousand individual realiza-
represented on the graph. tions.
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(a) (b)

Amax

FIG. 9. (a) Argand diagram for the AQFT. Vectors are rotated
by an angleA(jr,c). (b) To obtain a closed form for a bound for )
Proby(c) we consider the worst case in which half of the phases FIG. 10. In the case that the order of the AQFT is such that

pick up a factorA . Anac> /2, the individual phases can get scrambled in such a way
that there is no constructive interference effect. The probability
VIl. CONCLUSIONS AND COMMENTS Prolp(c) can become vanishingly small and the AQFT of order

We have analyzed the approximate quantum Fouriel" '° inefficient.

transform in the presence of decoherence and found that tt}
approximation does not imply a worse performance. On th
contrary, using the periodicity estimation as an example of a
computational task, we have shown that for some algorithmg
the approximation may actually imply a better performance.
Needless to say, there is room for further simplifications
of the quantum Fourier transform which may lead to at least APPENDIX
partial suppressing of unwelcome effects of decoherence. For
example, if the QFT is followed by a bit by bit measurement
of the register then the conditional dynamics in the network

tind at Lincoln ColleggOxford), and K.-A.S. and P.T. ac-
nowledge the Academy of Finland for financial support,
nd thank A.E. and the rest of the group for kind hospitality
uring visits to Oxford.

Consider the quantum state

L
can be converted to a sequence of conditional bit by bit mea- 1 221
surementgcf. [16]). However, one should note that this ap- W)= \/_K[a=o f(a)la), (A1)
proach is limited because it cannot be used if the quantum
Fourier transform is only an intermediate step in some mucly ;..o
more complicated calculation.
In our discussion of decoherence in the QFT network we F(Q)= 81 amoq - (A2)

have not analyzed the various quantum error correcting tech-
nigues that have been proposed recefgbe e.g.[17-20).
This is simply because quantum encoding and decoding r
quire additional networks which are assumed to be error free.. L0 :
Clearly this is an unrealistic assumption in the context of lg. 3@). The normgllzatlon Eactor is equal to thLe number of
quantum computatiofbut a reasonable one in the context of nonzero valuesif(a). A{:[z Ir]. Becauser<2 we use
guantum communication over a noisy channéhy discus- from now_on[z fr]=2"/r. The state(Al) plays an impor-
sion of the performance of the QFT network with error cor-tant role in the Shor quantum factorization algoritfithe

rection must also include the performance of these auxiliar)?lgor'thm enables us 1o factorize an integemy finding r

en ! : .
networks(after all encoding and decoding is a quantum com-SUch that’ =(1mod) for somex coprime withN —r is

putation on its owh estimated from a quantum computation that generates a state
It has been pointed out that any experimental quanturﬁ’f the fo_rm (AD)]. . .

computation requires unpreceedingly high accuracy of con- Applying QFT to this state we obtain

trol [21]. These requirements obviously limit the efficiency

of the quantum computation, but tend to be dependent on the |q,>= 2 7(c)|c), (A3)

particular implementation of the computatisee e.g.[22])

and thus we have not considered them here.
In this article we have wanted to show that there are caseghere

where quantum networks that are composed of imprecise

components can guarantee a “pretty good performance.” _ rZL”*1

This topic has also a more general context; it has been shown f(c)= oC Z exd 2mi(jr+1)c/24]. (A4)

that reliable classical networks can be assembled from unre- 1=0

liable componentg23]. It is an open question whether a - _ ) _

similar result holds for quantum networks. The probability of seeing an integeris then

{eref(a) is a periodic function with period< 2' and offset
, Which is an arbitrary positive integer smaller thansee

ACKNOWLEDGMENTS 2br-1
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Prok(c)=|f(c)|?==r exd 2ij (rc mod2)/2-]|2.
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As can be seen from Fig(19 the peaks of the power spec- where we have used the fact tha2" is small. Since there
trum of f(a) are centered at integecs which are the closest arer such values, the total probability of seeing one of

approximation to multiplies of 9r. them is
Let us now evaluate Prob) for ¢ being the closest inte-
ger ton2'/r, i.e.,c=[\2"/r]. By definitionc must satisfy Prob=4/m?. (A8)
1 2L 1 By performing this measurement several times on different
—=<C—\ —<— (A6)  stategdW¥) (each one with possibly differeh}, one gets with
2 2 high probability values,, c,, ... that are the closest inte-
o o gers tong2/r, ny24r, ... and which allow us to calculate
We define 6;=2m(rc mod2) so that Probf) now in- r [cf. inset in Fig. 3b)].
volves a geometric series with ratio eif). By viewing We estimate now the probability of measuring one of the

these terms as vectors on an Argand diagram it is clear thafesired values when the AQFT of ordem has been per-
the total distance from the origin decreasegfasncreases. formed instead of the QFT. The difference between the QFT
Hence Probg)=Prob(c with largest allowedés). Let us  and the AQFT of ordem is in the arguments of the expo-

denote by 6. the largest allowedé;. By Eq. (A6), nentials in Eq.(A5). The phase difference for each term in
Oma=7r/2- and summing the geometric series with the sum is

Omas= 112" (see Fig. 8 we obtain
L-1
2
41 A(a,c)=—r|ac— X a2k, (A9)
___ = (A?) 2 (] k)e&

r alr’
T

r

Prol(c)= s

N

where

o]

E={(j,k)|0=sj,ksL—-1L—msj+ksL—-1}. (A10)
The probability to measurfe), wherec is the closest integer to one of thevaluesn2'/r, now becomes

2bir—1

Proby(c)= %| j§=:0 exd 27ij(rcmod2)/2-—iA(jr,c)]|>. (A11)

This is the same summation as is involved in the QFT, ex2'>r, we can assume thg2"/r]+1=2/r. The square of

cept that in the case of the AQFT, each vector of the Argandhe geometric sum then becomes

diagram of Fig. 8) may be rotated by an angle(jr,c), as

shown in Fig. 9. In the worst case, whar-c=2"—1, i.e., 1
z( o |

r

o

aj=c;=1 Vi, A(a,c) is equal to Sir?

2471 (1/2= Al ™) — 1 Tr 2
> ex =
j=o

wm

27 meL

The two sum vectors in the two areas of sz — A .«
However, for any other values ofa and c, are of equal length and orthogonal to each other, so the
0=<A(a,c) <Amax- square of their sum vector, contributing to the total probabil-
We are interested in the lower bound for the probabilityity, is twice the value given byA13). Finally we obtain
so we assume that the vectors in the Argand diagram fill one
half of the circle @ma=mr/2") as illustrated in Fig. &).

The approximation allows to rotate each vector by the maxi- , Sir? 1(3 —A )

ini ility i r 212 max i,
mum angleA .. The minimum of the probability is ob- Proty= 2 ~ i s T A
tained when half of the vectors are rotatedAyy,,; see Fig. 22t T 2 212 maxj |-
9(b). In this case vectors in two areas of si&g,,, cancel sin? 95 oC
each other, and all we have to do is to calculate geometrical (A14)

sums of the vectors in the two areas of sizl@— A .. In an
area of that size there are Y2)[3— (Ama/7)] Vectors, ForA,,=0 this expression reduces to the result derived for
since the total number of vectors i$/2. Note that because the QFT:
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8 _[m 4 vectors in the Argand diagram can be rotated so that there is
Prob= ?SIHZ -2 (A15)  no longer any constructive interference; see Fig. 10.
For largeL we can write

and forA .= /2 we have Prop=0. To avoid a zero prob-

ability, A, must always be bounded by A F(L_m)' (A18)
A _277 oLy T
ma= m (L=m=1+275) <7, (A18) |t we use the lower bound fam (21), we obtain
which for largeL implies T m
Amax$5 1- r ) (A19)

m>log,L + 2. (A17)

Equation(21) gives a lower bound to the order of the AQFT Which allows us to write the probabilityA14) in a simple
performed on a register of length if one wants to have a form,

nonzero probability of success in measuring a vatue 8

Simple geometric considerations also show thak,,< /2 o[ ™M

is a limit for a non-negligible probability: foA ,,,> 7/2 the Pro,= ?sz 4 L)’ (A20)
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