
PHYSICAL REVIEW A AUGUST 1996VOLUME 54, NUMBER 2
Analyticity and unitarity as constraints to obtain scattering phase shifts
and an application to e-He scattering

H. Huber,* D. R. Lun, L. J. Allen, and K. Amos
School of Physics, University of Melbourne, Parkville 3052, Victoria, Australia

~Received 2 February 1996!

The requirements that the scattering functions for quantal scattering at energies below the first inelastic
threshold be unitary and analytic have been used to establish a process that gives the complex scattering
amplitudes from differential cross sections. From those amplitudes, scattering phase shifts have been deduced
by Legendre integration. The effects of the natural ambiguity of the phase of the scattering amplitude, under
conditions for which uniqueness and~numerical! stability of solutions are not assured, also have been studied
to show that the process we have developed to specify the scattering phase shifts can give stable nonspurious
results. The scattering of electrons from He atoms for incident energies ranging from 1.5 to 19 eV are
considered as an example of this procedure. Phase-shift analyses of those data have been made with a variety
of other techniques to allow a comparative study of our results and of sets with which are associated fits to
cross sections that are statistically significant.
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I. INTRODUCTION

Scattering phase shifts or, equivalently, the scatter
(S) functions are central in most analyses of elastic scat
ing data. They form a link between data, such as differen
cross sections, and the interaction potentials between the
scattering particles. That is so if the process of analysis
a direct one, as discussed recently in a review of microsco
model analyses of electron-atom scattering data@1# and of
proton scattering from nuclei@2#. It is also the case if one
adopts an inverse scattering theory approach, such as in
recent analyses of nuclear heavy-ion scattering, of elec
scattering from atoms and molecules and of atom–atom s
tering @3#. In direct analyses, the limitations of the man
body model theory used and the approximations neede
make evaluations feasible usually do not lead to quality
of data. With inversion methods, whether they be of sim
numerical type~phenomenological potential parameter fi
ting! or based upon a formal inverse scattering theory,
processes by which the phase shifts are obtained usually
ambiguous. In numerical inversion, there remain uncerta
ties such as different potentials giving different sets of ph
shifts but equivalent fits to the data, while when formal
verse scattering methods are used, the extraction of the p
shifts as well as their interpolation to all values of angu
momenta can be problematic. It is a hope that the conditi
of analyticity and unitarity of theS functions can be used t
place severe constraints upon such ambiguities, sufficien
ascertain a most physical if notthe physical set of phase
shifts of the scattering process.

Analyticity of the S functions transcribes to a minima
energy path condition for the phase shifts@4# while unitarity
leads to the generalized flux theorem@4,5#. Below the first
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nonelastic threshold and for the scattering of spinless p
ticles ~or if one simply ignores any spin-dependent attribu
in the scattering!, this theorem translates to an integral equ
tion to define the phase,w, of the scattering amplitude. A
solution to that integral equation not only exists, but al
under particular conditions@6#, it is unique. Furthermore
with one of those conditions~hereafter defined as the Marti
condition! being valid, an iterative method of Newton@5#
gives that solution. Of course there is a natural ambigu
due to the unitarity condition,f (u)52 f †(u), which gives a
second solution, a second branch, defined by the phase t
form, w(u)→p2w(u). The scattering phase shifts,d l , as-
sociated with this second solution are simply the negative
those obtained from use off (u). But as we shall show, prob
lems arise in methods of solution for the phase funct
within the region of intersection of both the actual and t
second branch solutions. Those problems can lead to sp
ous forms for the resultant~calculated! phase function and
therefore, to specification of unphysical phase-shift valu
With the Martin condition satisfied, however, no proble
exists, as this condition corresponds to scattering from a v
weak interaction and/or at very low energies and the ass
ated phase function does not cross the second branch
tion.

In cases studied recently@7#, the Martin condition was far
from being satisfied, and for them a standard fixed-po
method of solution@5# of the phase equation did not give
stable result. But another procedure was found with whic
stable solution of the phase equation could be obtain
Uniqueness is no longer guaranteed and the phase fun
can assume large values that may vary through more
one quadrant, so posing questions of~numerical! stability
alluded to above. A purpose of this study is to show th
analyticity and unitarity can define the~complex! scattering
amplitudes up to threshold at least and from which, by Le
endre integration, the scattering phase shifts and their va
tion ~with energy! can be specified with or withouta priori.
1363 © 1996 The American Physical Society
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information. By this means we seek to establish the pro
dures to generate stable, credible scattering amplitudes
low threshold, which are needed for us to pursue analyse
data at energies above threshold by solution of the coup
equations form of the generalized flux theorem@8#.

Phase-shift analyses of data are frequently the prelud
specification of an interaction potential between the collid
particles by either use of a specific form of inverse scatter
theory or by the more common approach of numerical inv
sion. With the latter, a form of the interaction is postulate
either purely phenomenologically or predicated upon so
underlying theory of the structure of the particles, and th
the values of the parameters characterizing the interac
adjusted until an optimal match is found to measured data
using the phase shifts generated to specify the cross sec
The typical measure of success is the value of thex2 per
degree of freedom,x2/F. Of the proper inverse scatterin
theories@4#, and of the fixed energy class, some practi
success has attended application of the ones in which a
tional function form of theS function is assumed@3#.

In the next section we briefly review the basic structure
the ~scattering amplitude! phase equation and its origin. Th
results of application toe-He scattering data ranging from
1.5 to 19 eV are then discussed. These data are of high q
ity and a reliable phase-shift analysis has been done pr
ously @9# with which we compare our results. Also there a
theoretical phase shifts calculated with variational meth
and with which we can make further comparisons@10#.

Our results have been obtained using the method of s
tion that previously@7# was found to give stable results. I
addition, analyticity has been invoked to set the initial pha
function guesses for each energy~above 1.5 eV! to be that
from the cross-section analysis at the energy immedia
below. The effects of the ‘‘natural’’ ambiguity, i.e.
w(u)→p2w(u), are then considered and we show how t
existence of two possible solutions can lead to stability pr
lems in seeking a solution, or worse, even spurious solut
of the scattering amplitude phase equation. We define a
cedure to prevent such from occurring in the cases stud
Thereafter we compare the phase shifts we have obta
with those from other analyses.

II. UNITARITY AND THE SCATTERING PHASE SHIFTS

As the spin-orbit interaction is weak for thee-He system,
we ignore any such effects due to the intrinsic spin of
electron and so express the differential cross section
terms of scalar scattering amplitudes,

f ~u!5
1

k
A~u!eiw~u!, ~1!

where usingx5cos(u),

ds

dV
5u f ~x!u25

1

k2 A2~x!. ~2!

The magnitude and phase of those scattering amplitudes
be extracted from the differential cross sections, under
constraint that the scattering function is unitary@5,11#, as the
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generalized unitarity theorem leads to an equation that sp
fies the phase in terms of the complete~0° to 180°) cross
section, viz.,

sinw~x!5E E A~y!A~z!cos@w~y!2w~z!#

2pA~x!~12x22y22z212xyz!1/2 dy dz,

5E E H~x,y,z!cos@w~y!2w~z!# dy dz. ~3!

Therein the region of integration is the interior of an ellips
From the partial-wave expansion of the scattering am

tude,

f ~u!5
1

k (
l 50

`

~2l 11!eid l sin~d l !Pl „cos~u!…, ~4!

the scattering function is obtained by Legendre integration
that scattering amplitude, viz.

Sl 215e2id l 215 ikE
0

p

f ~u!Pl „cos~u!…sin~u!du, ~5!

which in turn identifies the phase shifts,d l .
Solutions of Eq.~3!, or its equivalent, have been soug

with iteration schemes based on the contraction mapp
principle @5,6,11#. That approach also defines an existen
condition for a solution and for its global uniqueness as w
to be

M ~x!5E E H~x,y,z! dy dz<0.79. ~6!

In application though there are difficulties. Physical circu
stances rarely seem to meet the domain criterion and, w
out modification of the fixed-point iteration method, stab
solutions are not found@12#. Such modification can be made
however@7,12#, and stable plausible scattering functions d
fined. In brief, in that method one considers an operatoF
that acts upon functionsw(x) according to

F@w#5sin@w~x!#2E E H~x,y,z!cos@w~y!2w~z!# dy dz

~7!

and its Fre´chet derivative,F8, which is given by

Fw8 @h#5cos@w~x!#h~x!1E E H~x,y,z!sin@w~y!2w~z!#

3@h~y!2h~z!# dy dz

5cos@w~x!#h~x!

12E S E H~x,y,z!sin@w~y!2w~z!#dzDh~y! dy.

~8!

This is a bounded linear operator. Then, if one can solve
linear functional equation,

F@wn#1Fwn8 @wn112wn#50, ~9!
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54 1365ANALYTICITY AND UNITARITY AS CONSTRAINTS TO . . .
for w (n11), and if the sequencewn converges, its limit is a
solution of Eq.~3!. Further, if the integral in Eq.~8! is ap-
proximated by a quadrature formula, Eq.~9! reduces to that
of a linear system. However, the price of finding stable c
vergent solutions by this means is the loss of guarante
global uniqueness.

III. APPLICATION TO e-He SCATTERING DATA
BELOW THRESHOLD

An essential requirement in the use of the generalized
theorem is to have the differential cross section at all ph
cal scattering angles. With actual data sets this entails b
interpolation and extrapolation to specify the input to t
method of solution of the phase equation. That process m
be ambiguous due at least to the statistical errors alw
existent with empirical numbers. Additionally, systematic
rors can have a considerable impact on what one assess
be a ‘‘good’’ theoretical fit to the data. A recent study@13#
has shown that small uncertainties in the assumed scatte
angles of the measurements can alter thex2 per degree of
freedom (x2/F) of fits to data significantly~in one of the
cases studied@13# by as much as an order of magnitude!. We
do not consider such systematic errors herein. There rem
the systematic errors in magnitudes and these we do con
by using generalized cross validation~GCV! @14# to aid with
smoothing of data sets. Thus the interpolation of the curr
e-He data sets of interest has been made by subjecting
measured values to the GCV process to give a ‘‘smooth
data set and one that is extended to all physical scatte
angles. For the Andrick and Bitsch data@15#, that included
the extrapolation to 0° and to 180° by taking an additio
mesh point at 5° via linear extrapolation of the values
10° and 15°. The backward angles were set as those g
by the spline function resulting from the GCV process. W
the data from Brungeret al. @9#, additional values of the
cross sections at 0°, 5°, 140°, 160°, and 180° were ca
lated from the phase shifts found previously@9#. The GCV
methods from the IMSL library utilizedB splines and in the
extrapolation and interpolation of the data, a GCV proces
order 11 ensured that the input cross section at all scatte
angles was a good fit to the actual data. The GCV proc
has also been used to smooth variations between iteratio
solutions to the phase equations. For this only an orde
process was required to smooth sufficiently the variation
tweenwn11 and wn. Splines of lower order did not satisf
the~respective! variations well enough. However, despite t
resultant cross sections for the smoothing being excellen
to the measured data sets, in our study of the natural am
guity we chose to use an artificial cross section at 18
That ideal cross section was obtained by using the ratio
function form of theS function found previously@9# to fit the
actual 18-eV data. Therewith we have an ‘‘exact’’ pha
function to compare with the results of our studies.

Solutions of the nonlinear integral equation for the pha
function,w(u), were made using the linearizing method@12#
and with both a Gauss-Legendre quadrature and a trapez
discretization to effect the numerics. Both types of discre
zation lead to reasonable results in the analysis. But i
crucial to start the ensuing iterations with a reasonable gu
at the phase function variation, and to use a smoothing
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cess~GCV! on the phase function changes with each ite
tion. The need for such a procedure is detailed in the n
section with a specific set of results. In the case studied,
variation of the scattering function with energy~analyticity!
should not be severe since there are no such special
cesses~such as sharp resonances! present ine-He scattering
below threshold. Hence the starting phase function for a
calculation is that found from the analysis of the data at
nearest~lower! energy.

The 1.5-eV scattering data satisfy not only the conditi
@6# for a solution of the phase equation to exist and
unique, but also, as the integral, Eq.~6!, is less than 1/A2 for
all scattering angles, the Martin condition is satisfied so t
the fixed-point method of solution converges@4#. By this
means we have specified the phase function of the scatte
amplitude for 1.5-eV electrons off the He atom and then u
that as the initial guess to evaluate the 5.0-eV phase e
tion. As the 5.0-eV and higher-energy data do not satisfy
Martin condition, our method based upon the Fre´chet deriva-
tives has been used. The final solutions of the phase e
tions are plotted in Fig. 1 as functions of the scattering an
With the 18-eV result being slightly exceptional, there is
smooth trend to these results as energy increases. All of
results are relatively smooth, monotonic functions, whic
with the exception of the lowest-energy case, vary from l
than 1.5 to near 2.5 rad over the physical range of scatte
angles. Thus most of the results cross the natural~second
branch! solution ofp2w(u).

With the unitary~complex! scattering amplitudes,f (u),
thereby completely defined, we have obtained the~real! scat-

FIG. 1. The phase functions of the scattering amplitudes for
e-He scattering for energies as indicated. Each~other than the
1.5-eV result! was obtained by using as input to our method t
phase function of the next lowest energy and GCV smoothing
applied at each iterate in the process leading to the final~stable!
functions.
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1366 54H. HUBER, D. R. LUN, L. J. ALLEN, AND K. AMOS
tering phase shifts from solutions of Eq.~5!. Then by form-
ing the partial-wave summations of Eq.~4! to reform a scat-
tering amplitude and cross section, we obtained the res
shown by the solid curves in Figs. 2 and 3. In the first
these diagrams the results for the 1.5-, 5-, and 10-eV se
calculations are compared with the data and with the cr
sections found by an alternative search procedure~dashed
curves!, which are discussed later. Likewise the 12-, 18-, a
19-eV results are compared in Fig. 3 with the data and
results from an alternative search procedure. As they sh
be, the fits to the data are excellent.

IV. EFFECTS OF THE ‘‘NATURAL’’ AMBIGUITY

One goal of our investigations was to assess the influe
of the ‘‘natural’’ ambiguity, viz.w→p2w, upon numerical
solutions of the nonlinear phase equations for actual sca
ing cases. We have found that this can result in numer
instabilities within the crossing region of both solutions or
spurious solutions as an extreme form by using a small m
size discretization.

These studies also emphasize the value of using anal
ity in the analyses reported above. At the lowest energy c
sidered, the Martin condition was satisfied by the cross s
tion at all scattering angles, so the solution to the ph
equation was not only unique but could be found by us
the Newton fixed-point method. The Martin condition e
sures that this solution and the natural ambiguity~second
branch! solution do not intersect.

A. Numerical stability

A numerical problem can arise if values ofw lie near to
p/2 as then so also do values ofp2w. This is evident when
one considers the integral equation for the phase functio
the form

sin~w~x!!5E E H~x,y,z!cos@w~y!2w~z!# dy dz,

~10!

from which it can be seen that the overall transfo
w→p2w gives a second solution. But any combination
both ~i.e., a ‘‘branch flip’’ with some values ofw on the first
branch and others on the second! is not another solution to
the integral equation. However, within the intersection
gion, such branch flips may occur in a numerical solut
formed from the algebraic system@12# we use to evaluate th
integrals. That we can see by considering the cosine term
the integral, in the standard expansion,

cos@w~y!2w~z!#5cos@w~y!#cos@w~z!#

1sin@w~y!#sin@w~z!#. ~11!

When values ofw(z) or w(y) ~or both! are close top/2, the
first term on the right-hand side is negligible while the se
ond one is invariant under the transformw(y)5p2w(y)
and/orw(z)5p2w(z). As a consequence, in such a regio
the contributions to integrals from either branch solution
ing used in a numerical evaluation are nearly identical. Th
the~numerically specified! phase function is very sensitive t
the accuracy of evaluation of the integral, and branch fl
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may result due to a slight variation of the numerical val
from the exact result. Further, and as a consequence o
discretization of our method, the exact values of the ph
function may be determined only at the fixed values of
mesh points. Interpolation of those values must then be m
to find the ~more! complete phase function as needed
evaluate the integral in Eq.~10!. Initially, a cubic spine
method was chosen to effect this. Consequently, the e
value of the integral will never be known precisely. With th
left-hand side of Eq.~10! being invariant under the specifie
transform, such~small! systematic inaccuracy, coupled wit
the high sensitivity of the linearized equations for the in
gral in those regions, are the cause why solution of the

FIG. 2. The cross sections for 1.5-, 5-, and 10-eV electro
found using the phase shifts extracted by Legendre integratio
the scattering amplitudes defined by the phases given in Fig
compared with the data@9#. Those results are displayed by the so
lines, while those portrayed by the dashed curves are the resu
using the Search 2 set of phase shifts. The 5- and 10-eV results
been uniformly increased by 0.2 and 0.4 Å2/sr to facilitate viewing.

FIG. 3. The cross sections for 12-, 18-, and 19-eV electr
found using the phase shifts extracted by Legendre integratio
the scattering amplitudes defined by the phases given in Fig
compared with the data~18 eV from Ref.@9# and 12 and 19 eV
from Ref.@15#!. Those results are displayed by the solid lines, wh
those portrayed by the dashed curves are the result of using
Search 2 set of phase shifts. The 18- and 19-eV results have
uniformly increased by 0.2 and 0.4 Å2/sr to facilitate viewing.
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54 1367ANALYTICITY AND UNITARITY AS CONSTRAINTS TO . . .
cretized version of Eq.~8! may have branch flips in eac
iterate at certain mesh points. Interpolation of any such i
ate set of values forwn(x) then can lead to a strong oscilla
tory behavior of the continuouswn(x) and, thus, to a signifi-
cantly different value for the integral~from its true one! in
the next step of the iteration process.

To demonstrate this problem, and to indicate a proced
to avoid it, we have considered the cross section evalu
with the rationalS function fit to the 18-eVe-He scattering
data @9# as the ‘‘data’’ at all physical scattering angle
Thereby we have the exact phase function,w(u), of the scat-
tering amplitude with which to compare the results of calc
lations. Our initial guesses for the phase functions were

w~u!5f01
11cos~u!

2
~fm2f0!, ~12!

wheref0 and fm are adjustable. The results are shown
Fig. 4 for different initial conditions, with the solid curve
portraying the end result, the long dashed curves the in
phase functions, and the small dashed curves the ‘‘exa
values. The results given in the top section of this diagr
were obtained usingf0 (fm) values of 0.77~2.5! while
those shown in the bottom section were found when the p
cess started with the values 1.2~2.7!. In both results, branch
effects centered about the angular region wherew;p/2 are
evident, but both results tend to the ‘‘exact’’ ones. The
sults in the bottom section are in quite good agreement w
the ‘‘exact’’ phase function for most scattering angles w
but a slight variation occurring in the values foru'60°. As

FIG. 4. The phase functions of the 18-eV test calculation fou
without use of GCV on each iteration with the straight-line init
conditions as detailed in the text. The ‘‘exact’’ values are displa
by the small dashed curves, the initial phase functions,w (0)(u), by
the long dashed curves, and the solutions of the integral equatio
the solid curves.
r-

re
ed

-

al
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the initial conditions are chosen further removed from t
shape of the ‘‘exact’’ result, these variations become m
pronounced. We repeated these calculations adding a G
smoothing of the differences between the iterates at e
step, and in all cases the final solutions were then excel
reproductions of the ‘‘exact’’ phase function. GCV smoot
ing of the changes with iteration specifically changes
current iterate phase-shift function to be less radically var
from the preceding iterate while remaining as ‘‘faithful’’ a
possible to the actual calculated iterate function. Th
smoothing of the phase function between iterations, by us
generalized cross validation on the differences between
nth and (n11)th iterates, prevents branch flips, but o
must start the iterative procedure with a reasonable ch
for the phase function to ensure a stable result.

As a second study of the effects of the initial guess of
phase function, we chose the values given by using the ph
shifts of the variational model of Nesbet@10# and by the
analysis of Williams@16# for the 18-eV data. They are show
by the long and short dashed curves, respectively, in Fig
and therein they are compared with the ‘‘exact’’ res
sought~solid curve!. The cross sections associated with the
two model forms are given in Fig. 6, from which it is clea
that they are not in very good agreement with the 18-eV d
of Brungeret al. @9#. However, by using the ‘‘exact’’ cross
section in the unitarity equation, after but a few iterations
‘‘exact’’ phase variation results with either model startin
function. Consequently both the Nesbet and Williams ph
shifts are not ambiguous solutions to the generalized
equation, rather they are just less adequate representatio
this 18-eV data~than the rationalS function specification!.

B. Spurious solutions

If one starts with a phase function quite removed from
exact solution, depending upon the care taken with nume
~i.e., without smoothing and using low mesh sizes!, another
solution is feasible. At each angle the phase function
tempts to converge to the closest branch@w(u) or
p2w(u)# and the error caused by the solution in any reg
being on the second branch is compensated by oscillation

d

d

by

FIG. 5. The scattering amplitude phase functions associa
with the three model analyses of the 18-eVe-He differential cross
sections shown in Fig. 6
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1368 54H. HUBER, D. R. LUN, L. J. ALLEN, AND K. AMOS
the phase function elsewhere. This can be seen as an ex
form of the branch effects discussed in Sec. IV A. In th
case, the resulting phase function is nearly symmetric
cause the crossing point of the two branches is close
p/2.

Again, we consider the schematical 18-eVe-He scattering
with the phase shifts obtained from the rational fit to the d
using two starting phase functions. The first is the strai
line, w (0)(u)50.764, and the second, a shifted Lorentzia

w~0!~u!5
0.5

cos2~u!10.25
10.364. ~13!

Without smoothing between each iteration and using a
~18-! mesh-point quadrature for the constant~Lorentzian!
initial condition, solutions as shown in Fig. 7 were obtaine
Therein the dashed curve is the result found with
straight-line initial condition and the solid curve that fro
the Lorentzian one. Not only do these two results differ,
they are also very far removed from an exact solution. Th
functions lead to radically different phase shifts when Le

FIG. 6. Fits to the 18-eVe-He scattering data@9# obtained using
a ~two-pole pair! rational S function @9# ~solid curve!, using the
variational model@10# ~long dashed curve! and using the Williams
phase shifts@16# ~small dashed curve!.

FIG. 7. The phase functions of the scattering amplitude
18-eV e-He scattering found using the straight line and shift
Lorentzian initial guesses.
me

e-
to

a
t

-

.
e

t
e
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endre integrations of the complex scattering amplitudes
made. Moreover, since the resulting phase of the scatte
amplitude is nearly symmetric, the phase shifts correspo
ing to odd values of the angular momentuml are small and
the underlying quantum interaction would be parity depe
dent. But these solutions are spurious. When a larger m
was used, convergence was not achieved. The spurious
tion has led to local minima in the root-finding method th
stops the process from reaching the proper stable result

V. COMPARISON OF THE RESULTS
OF PHASE-SHIFT ANALYSES

The asymptotic~large radius! behavior of the interactions
promoting most quantum~elastic! scattering events is
known, and as a consequence, so then is the behavior o
scattering phase shifts for large partial waves. For inter
tions that behave asymptotically asr 2(n11), the phase shifts
must vary ~asymptotically! as l 2n @4#. Thus as the long-
range character of thee-He interaction varies asr 24, the
scattering phase shifts will vary asl 23. For low energies, in
addition, by using an effective range (r 0) approximation,
O’Malley et al. @17# have shown that, when the energies s
isfy k21,r 0 , the r 24 potential leads to a phase-shift vari
tion

d l 'tand l '
pk2a

~2l 13!~2l 11!~2l 21!
, l .0. ~14!

Thereina is the dipole polarization. Further, if this variatio
is valid for partial wavesl .N, by using Thompson’s for-
mula @18#, the scattering amplitude from Eq.~4! can be writ-
ten in closed form, viz.

f ~u!5
1

k (
l 50

N

~2l 11!eid l sin~d l !Pl „cos~u!…

1pakF1

3
2

1

2
sinS u

2D
2 (

l 51

N
1

~2l 13!~2l 21!
Pl „cos~u!…G . ~15!

For electron scattering from He atoms with energies up
threshold~19.2 eV!, N can be chosen as 1 or 2 in the abov
and so Eq.~15!, with the dipole polarization taken as 1.3
a.u., can be used withd0 ,d1 , and perhapsd2 as free param-
eters to be optimized by ax2 minimization fit to the avail-
able scattering data. Using the nonlinear fitting progra
E04FB4, contained in the NAGLIB library and based up
the Marquardt algorithm, the phase shifts so determin
against the data of Brungeret al. @9# and of Andrick and
Bitsch @15# are given in Tables I and II, wherein they a
compared with the assessments of others. Therein we dis
the first four phase shifts determined by the fit searches id
tified as ‘‘Search 1’’ whend0 andd1 were varied and with
the O’Malley phase shifts, Eq.~14!, for other partial waves
~values listed in the ‘‘expansion’’ column of the tables!, and
by ‘‘Search 2’’ whend2 is also a free parameter. The atte
dant x2/F values of the Search 1~Search 2! fits are
0.57~0.62!, 2.93~1.80!, 1.35~1.16!, 1.43~1.43!, 3.82~1.16!,

r
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TABLE I. Phase shifts from various analyses of thee-He cross sections from Ref.@9#.

l Search 1 Search 2 Rational fita Unitarity Expansion

E51.5 eV 0 2.6939 2.6939 2.691 2.6937
1 0.0393 0.0393 0.0391 0.0397
2 0.0046 0.0049 .0044 0.0046
3 0.0016 .0016 0.0015

E55 eV 0 2.3469 2.3463 2.346 2.3472
1 0.1239 0.1244 0.123 0.1234
2 0.0118 0.0123 0.0132 0.0152
3 0.0040 0.0060 0.0051

E510 eV 0 2.0885 2.0845 2.0840 2.0746
1 0.2380 0.2357 0.2330 0.2204
2 0.0286 0.0315 0.0336 0.0304
3 0.0104 0.0137 0.0102

E518 eV 0 1.9636 1.9488 1.946 1.9288
1 0.3684 0.3627 0.359 0.3536
2 0.0505 0.0529 0.0475 0.0548
3 0.0180 0.0225 0.0186

aReference@9#.
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and 2.27~1.91! for each energy in increasing order, respe
tively. The data at 1.5, 5, 10, and 18 eV were those
Brungeret al. @9# and had been analyzed assuming a ratio
function form for the scatteringS matrix; a form convenient
to effect~WKB! inversion and so define ane-He interaction
potential in coordinate space. At 12 and 19 eV, the data w
measured by Andrick and Bitsch@15# and the results of ou
searches are compared with those found from a fi
principles variational model calculation@10# as well as by a
phase-shift analysis by Williams@16# but of a different data
set, one should note. These search and model calcula
phase shifts are compared at all energies with the results
have found by using unitarity and analyticity to extract t
scattering amplitudes from the measured data and then
forming the appropriate Legendre integrations. Clearly
s-wave phase shifts match to within a percent. Thep-wave
phase shifts vary a little more, with agreement to within 5
in the case of 12 eV. Thed-wave values are quite small bu
even so all analyses concur to within 5% again.

However, disagreement between phase-shift sets in s
cases is reflective of the different data sets used in the an
ses. At 5.0 eV, the Brungeret al. @9# and Andrick and Bitsch
@15# data sets are slightly different, the former being a f
-
f
l

re

t-

ion
e

er-
ll

e
ly-

percent smaller overall than the latter. This is evident in F
8, wherein the two data sets are compared with the cr
sections found with our unitarity based set of phase sh
~solid curve! for the Brungeret al. data~dots! and the calcu-
lation of Williams ~dashed curve! with the data of Andrick
and Bitsch~open triangles!. Brungeret al. limit their total
error to the range 3.5–5 %, while Andrick and Bitsch ass
a systematic error of 3–4 % with a statistical error of 0.
1.5 %. Clearly the results of analyses of the two data s
cannot be in agreement to the extent one would like.

Finally the d- and f -wave phase shifts found from th
unitarity analyses are compared with the O’Malley appro
mation forms for thee-He dipole polarization interaction
The agreement between these small values is quite good
there is some variation between the formula values@from Eq.
~15!# and the unitarity based results with both energy a
increasing partial waves. That is evident from Figs. 2 an
in which the data are compared with recalculated cross
tions; i.e., with cross sections calculated using the tabula
phase shifts. Using the Search 2 phase shifts gave the re
portrayed by the dashed curves therein. Recall that the s
curves were obtained using the phases shifts found by u
unitarity and analyticity to specify the scattering amplitude
TABLE II. Phase shifts from various analyses ofe-He cross sections taken from Ref.@15#.

l Search 1 Search 2 Nesbeta Williams b Unitarity Expansion

E512 eV 0 1.9968 1.9919 1.9919 1.9891 1.9856
1 0.2577 0.2541 0.2433 0.242 0.2506
2 0.0362 0.0365 0.0372 0.0357 0.0365
3 0.0105 0.0122

E519 eV 0 1.8256 1.8219 1.8034 1.800 1.8227
1 0.3315 0.3251 0.3158 0.311 0.3233
2 0.0626 0.0578 0.058 0.0629 0.0578
3 0.0209 0.0193

aReference@10#.
bReference@16#.
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Clearly by taking the asymptotic potential and its hig
partial-wave phase shiftsa priori, the calculated cross sec
tions are smoother than the data, while the unitarity defi
set, being ‘‘controlled’’ by the actual measured data in t
first place, has tried to reproduce the shape minutiae of
variation in the observations. That is especially obvious w
the 5-eV results.

VI. CONCLUSIONS

The mathematical requirements that the elastic scatte
S function for scattering at energies below the first nonela
threshold be unitary and analytic, have been used to de
mine the~complex! scattering amplitudes from the cross se
tions. Application has been made to specify those scatte
amplitudes for electrons scattered from He atoms with en
gies between 1.5 and 19 eV. The unitarity requirement,
generalized flux theorem, transcribes to a nonlinear inte
equation for the phase function of the scattering amplitu
the solution of which entails knowledge of the cross secti
for all physical scattering angles. The lowest-energy d
considered, at 1.5 eV, satisfies a basic condition, the Ma
condition, at all scattering angles. Consequently, a solu
of the associated integral equation not only was known
exist but also that solution was defined to be unique
could be specified by a fixed-point method of solution. Su
was done and the result used as the initial trial solution in
attempt to obtain a solution for the scattering at the n

FIG. 8. Comparisons of the 5-eVe-He differential cross sec
tions measured by Andrick and Bitsch@15# ~open triangles! and of
Brungeret al. @9# ~dots! with the calculated results found by usin
Williams @16# phase shifts~dashed curve! and those from our uni-
tarity based study~solid curve!.
iar
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energy~5 eV! at which scattering data existed. At that an
higher energies, the data did not satisfy the Martin condit
at all scattering angles and the fixed-point method of solut
was no longer a stable one. However, another method
solution gave stable results and its use led to accurate ca
date phase functions from which, by Legendre integration
the associated scattering amplitudes, real scattering p
shifts were derived. Use of those phase shifts in the par
wave summations to respecify the cross sections confirm
that the sets gave statistically significant fits to the act
measured data. Of significance was the use of the analyt
of the scattering amplitudes. Thereby a solution at one
ergy provided the initial guess for our method to converge
a sensible result at the next~higher! energy.

We have studied the effects of the natural ambigu
namely that the function,p2w(u), is also a solution, upon
the numerical solution of the nonlinear integral equations
the cases considered, at all energies except the lowes
which data the Martin condition is satisfied, the seco
branch’s solution intersected with the ones sought. Num
cally then, at scattering angles around the crossing po
either solution may be the result, and that ambivalence le
calculated results containing oscillations when monoto
phase functions were the actual solutions. In the extre
case, a quite spurious solution function could be the res
But, by using a smoothing procedure upon the rate of cha
between iterations in the solution method, we were able
prevent branch flips. In the cases studied the general
cross validation smoothing process was used.

The sets of phase shifts we have obtained were comp
with those from other studies of these scattering data,
were found by various data fit procedures or from mo
potential scattering calculations. Differences have be
noted, but they seem to be more a reflection of the diff
ences between the actual data sets used in those studies
of inadequacies of one method of analysis compared to
other.
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