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Analyticity and unitarity as constraints to obtain scattering phase shifts
and an application to e-He scattering
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The requirements that the scattering functions for quantal scattering at energies below the first inelastic
threshold be unitary and analytic have been used to establish a process that gives the complex scattering
amplitudes from differential cross sections. From those amplitudes, scattering phase shifts have been deduced
by Legendre integration. The effects of the natural ambiguity of the phase of the scattering amplitude, under
conditions for which uniqueness afiwumerical stability of solutions are not assured, also have been studied
to show that the process we have developed to specify the scattering phase shifts can give stable nonspurious
results. The scattering of electrons from He atoms for incident energies ranging from 1.5 to 19 eV are
considered as an example of this procedure. Phase-shift analyses of those data have been made with a variety
of other techniques to allow a comparative study of our results and of sets with which are associated fits to
cross sections that are statistically significant.
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I. INTRODUCTION nonelastic threshold and for the scattering of spinless par-
ticles (or if one simply ignores any spin-dependent attributes
Scattering phase shifts or, equivalently, the scatteringn the scattering this theorem translates to an integral equa-
(S) functions are central in most analyses of elastic scattertion to define the phasep, of the scattering amplitude. A
ing data. They form a link between data, such as differentiasolution to that integral equation not only exists, but also,
cross sections, and the interaction potentials between the twmnder particular condition§6], it is unique. Furthermore,
scattering particles. That is so if the process of analysis wawith one of those conditionéereafter defined as the Martin
a direct one, as discussed recently in a review of microscopicondition being valid, an iterative method of Newtdb]
model analyses of electron-atom scattering dafaand of  gives that solution. Of course there is a natural ambiguity
proton scattering from nucld2]. It is also the case if one due to the unitarity conditiorf,() = — fT(6), which gives a
adopts an inverse scattering theory approach, such as in tilsecond solution, a second branch, defined by the phase trans-
recent analyses of nuclear heavy-ion scattering, of electroform, ¢(6)— 7— ¢(6). The scattering phase shifi8,, as-
scattering from atoms and molecules and of atom—atom scasociated with this second solution are simply the negative of
tering [3]. In direct analyses, the limitations of the many- those obtained from use 6f#). But as we shall show, prob-
body model theory used and the approximations needed tems arise in methods of solution for the phase function
make evaluations feasible usually do not lead to quality fitswithin the region of intersection of both the actual and the
of data. With inversion methods, whether they be of simplesecond branch solutions. Those problems can lead to spuri-
numerical type(phenomenological potential parameter fit- ous forms for the resultaritalculated phase function and,
ting) or based upon a formal inverse scattering theory, theherefore, to specification of unphysical phase-shift values.
processes by which the phase shifts are obtained usually awith the Martin condition satisfied, however, no problem
ambiguous. In numerical inversion, there remain uncertainexists, as this condition corresponds to scattering from a very
ties such as different potentials giving different sets of phaseveak interaction and/or at very low energies and the associ-
shifts but equivalent fits to the data, while when formal in-ated phase function does not cross the second branch solu-
verse scattering methods are used, the extraction of the phasen.
shifts as well as their interpolation to all values of angular In cases studied recenfly], the Martin condition was far
momenta can be problematic. It is a hope that the conditionffom being satisfied, and for them a standard fixed-point
of analyticity and unitarity of thes functions can be used to method of solutiof5] of the phase equation did not give a
place severe constraints upon such ambiguities, sufficient tetable result. But another procedure was found with which a
ascertain a most physical if ndhe physical set of phase stable solution of the phase equation could be obtained.
shifts of the scattering process. Unigueness is no longer guaranteed and the phase function
Analyticity of the S functions transcribes to a minimal can assume large values that may vary through more than
energy path condition for the phase sh[#g while unitarity  one quadrant, so posing questions (nfimerica) stability
leads to the generalized flux theorgh5]. Below the first  alluded to above. A purpose of this study is to show that
analyticity and unitarity can define tHeomplex scattering
amplitudes up to threshold at least and from which, by Leg-
*Permanent address: Institutr fidernphysik, Technische Univer- endre integration, the scattering phase shifts and their varia-
sitd Wien, Wiedner Hauptstrasse 8-10/142, A-1040 Wien, Austriation (with energy can be specified with or withouwt priori
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information. By this means we seek to establish the procegeneralized unitarity theorem leads to an equation that speci-
dures to generate stable, credible scattering amplitudes bées the phase in terms of the complé@® to 180°) cross
low threshold, which are needed for us to pursue analyses &fection, viz.,

data at energies above threshold by solution of the coupled-

equations form of the generalized flux theorfsn . A(y)A(z)cod ¢(y) — ¢(2)]

Phase-shift analyses of data are frequently the prelude tdc"nqp(x)zj f 27A(X)(1—x?—y?— 72+ 2xy2)1?
specification of an interaction potential between the colliding
particles by either use of a specific form of inverse scattering _ _
theory or by the more common approach of numerical inver- _f f H(xy,z)cog ¢(y) —(2)] dy dz ©)
sion. With the latter, a form of the interaction is postulated, . . ) o o )
either purely phenomenologically or predicated upon somd herein the region of integration is the interior of an eIIlpse..
underlying theory of the structure of the particles, and then From the partial-wave expansion of the scattering ampli-
the values of the parameters characterizing the interactiotvde,
adjusted until an optimal match is found to measured data by
using the phase shifts generated to specify the cross section.
The typical measure of success is the value of yReper
degree of freedomy?/F. Of the proper inverse scattering
theories[4], and of the fixed energy class, some practicalthe scattering function is obtained by Legendre integration of
success has attended application of the ones in which a r#éhat scattering amplitude, viz.
tional function form of theS function is assumef].

In the next section we briefly review the basic structure of
the (scattering amplitudephase equation and its origin. The
results of application te@-He scattering data ranging from
1.5t0 19 eV are then discussed. These data are of high qualhich in turn identifies the phase shifts, .
ity and a reliable phase-shift analysis has been done previ- Solutions of Eq.(3), or its equivalent, have been sought
ously[9] with which we compare our results. Also there arewith iteration schemes based on the contraction mapping
theoretical phase shifts calculated with variational methodgrinciple [5,6,11. That approach also defines an existence
and with which we can make further comparis$ms]. condition for a solution and for its global uniqueness as well

Our results have been obtained using the method of solue be
tion that previously{ 7] was found to give stable results. In
addition, analyticity has been invoked to set the initial phase
function guesses for each ener@bove 1.5 eYto be that
from the cross-section analysis at the energy immediately
below. The effects of the “natural” ambiguity, i.e., In application though there are difficulties. Physical circum-
o(8)— 7— @(6), are then considered and we show how thestances rarely seem to meet the domain criterion and, with-
existence of two possible solutions can lead to stability probout modification of the fixed-point iteration method, stable
lems in seeking a solution, or worse, even spurious solutiongolutions are not founpl2]. Such modification can be made,
of the scattering amplitude phase equation. We define a prdowever[7,12], and stable plausible scattering functions de-
cedure to prevent such from occurring in the cases studiedined. In brief, in that method one considers an oper&tor
Thereafter we compare the phase shifts we have obtaindbat acts upon functiong(x) according to
with those from other analyses.

dy dz

1 o
f(0)=EZO (2/+1)€'sin(5,)P(cog 6)), (4

S/—1=e2i5/—1=ikfwf(G)P/(cos(e))sin(e)da, (5)
0

M(x)=f j H(x,y,z) dy dz=0.79. (6)

F[cp]=sir{¢<x>]—f f H(x,y,2)c0g ¢(y) — ¢(2)] dy dz
II. UNITARITY AND THE SCATTERING PHASE SHIFTS (7)

As the spin-orbit interaction is weak for tleeHe system,
we ignore any such effects due to the intrinsic spin of th
electron and so express the differential cross sections in

eand its Frehet derivativeF’, which is given by

terms of scalar scattering amplitudes, F;[h]=cos{go(x)]h(x)+f J H(x.y,2)sifo(y)— o(2)]
(6)= ZA(B)e, @ x[h(y)~h(2)] dy dz
=cog ¢(x)]h(x)
where usnoest =2 [ [ [ Hocy.2sit e - e21dz)ney) ay.
d 1
S0 =1 00P=2 A0, @ ®

This is a bounded linear operator. Then, if one can solve the

The magnitude and phase of those scattering amplitudes m&ear functional equation,
be extracted from the differential cross sections, under the N Vel on
constraint that the scattering function is unitfyl1], as the Fle"]+F le™ "~ ¢"]=0, ©)
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for ("1 and if the sequence" converges, its limit is a

solution of Eq.(3). Further, if the integral in Eq(8) is ap- i 1 5aV 189),,/4
proximated by a quadrature formula, E8) reduces to that , -
of a linear system. However, the price of finding stable con-
vergent solutions by this means is the loss of guarantee of
global unigueness.

Ill. APPLICATION TO e-He SCATTERING DATA
BELOW THRESHOLD

An essential requirement in the use of the generalized flux
theorem is to have the differential cross section at all physi-
cal scattering angles. With actual data sets this entails both
interpolation and extrapolation to specify the input to the
method of solution of the phase equation. That process must
be ambiguous due at least to the statistical errors always
existent with empirical numbers. Additionally, systematic er-
rors can have a considerable impact on what one assesses to
be a “good” theoretical fit to the data. A recent studh3]
has shown that small uncertainties in the assumed scattering
angles of the measurements can alter Reper degree of ‘ ‘ : :
freedom (?/F) of fits to data significantly(in one of the 0 60 120 180
cases studiefL3] by as much as an order of magnityd@/e 0., (deg)
do not consider such systematic errors herein. There remains
the systematic errors in magnitudes and these we do consider FIG. 1. The phase functions of the scattering amplitudes for the
by using generalized cross validati@®CV) [14] to aid with  e-He scattering for energies as indicated. Edother than the
smoothing of data sets. Thus the interpolation of the current.5-eV result was obtained by using as input to our method the
e-He data sets of interest has been made by subjecting thhase function of the next lowest energy and GCV smoothing was
measured values to the GCV process to give a “smoothed’applied at each iterate in the process leading to the fistable
data set and one that is extended to all physical scatteringnctions.
angles. For the Andrick and Bitsch ddtk5], that included
the extrapolation to 0° and to 180° by taking an additionalcess(GCV) on the phase function changes with each itera-
mesh point at 5° via linear extrapolation of the values attion. The need for such a procedure is detailed in the next
10° and 15°. The backward angles were set as those givesection with a specific set of results. In the case studied, the
by the spline function resulting from the GCV process. Withvariation of the scattering function with energgnalyticity)
the data from Brungeet al. [9], additional values of the should not be severe since there are no such special pro-
cross sections at 0°, 5°, 140°, 160°, and 180° were calcusessegsuch as sharp resonanggsesent ine-He scattering
lated from the phase shifts found previoug8]. The GCV  below threshold. Hence the starting phase function for any
methods from the IMSL library utilize® splines and in the calculation is that found from the analysis of the data at the
extrapolation and interpolation of the data, a GCV process ofearesilower) energy.
order 11 ensured that the input cross section at all scattering The 1.5-eV scattering data satisfy not only the condition
angles was a good fit to the actual data. The GCV proced$] for a solution of the phase equation to exist and be
has also been used to smooth variations between iterations vhique, but also, as the integral, E6), is less than /2 for
solutions to the phase equations. For this only an order 3ll scattering angles, the Martin condition is satisfied so that
process was required to smooth sufficiently the variation bethe fixed-point method of solution convergp$l. By this
tween " ! and ¢". Splines of lower order did not satisfy means we have specified the phase function of the scattering
the (respective variations well enough. However, despite the amplitude for 1.5-eV electrons off the He atom and then used
resultant cross sections for the smoothing being excellent fitthat as the initial guess to evaluate the 5.0-eV phase equa-
to the measured data sets, in our study of the natural ambiion. As the 5.0-eV and higher-energy data do not satisfy the
guity we chose to use an artificial cross section at 18 eVMartin condition, our method based upon thédfret deriva-
That ideal cross section was obtained by using the rationdlves has been used. The final solutions of the phase equa-
function form of theS function found previously9] to fitthe  tions are plotted in Fig. 1 as functions of the scattering angle.
actual 18-eV data. Therewith we have an “exact” phaseWith the 18-eV result being slightly exceptional, there is a
function to compare with the results of our studies. smooth trend to these results as energy increases. All of the

Solutions of the nonlinear integral equation for the phaseesults are relatively smooth, monotonic functions, which,
function, ¢(8), were made using the linearizing methd@®]  with the exception of the lowest-energy case, vary from less
and with both a Gauss-Legendre quadrature and a trapezoiddian 1.5 to near 2.5 rad over the physical range of scattering
discretization to effect the numerics. Both types of discreti-angles. Thus most of the results cross the nat(setond
zation lead to reasonable results in the analysis. But it idranch solution of 7— ¢(6).
crucial to start the ensuing iterations with a reasonable guess With the unitary(comple® scattering amplitudes,(6),
at the phase function variation, and to use a smoothing prahereby completely defined, we have obtained(tkeal) scat-

o(rad)

1.0
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tering phase shifts from solutions of E¢). Then by form-

ing the partial-wave summations of Ed) to reform a scat-
tering amplitude and cross section, we obtained the results
shown by the solid curves in Figs. 2 and 3. In the first of
these diagrams the results for the 1.5-, 5-, and 10-eV set of
calculations are compared with the data and with the cross
sections found by an alternative search proceddeshed
curves, which are discussed later. Likewise the 12-, 18-, and
19-eV results are compared in Fig. 3 with the data and the
results from an alternative search procedure. As they should

o
[

do/dQ (10" cm’/sr)
(=)
o

be, the fits to the data are excellent. 0.4
IV. EFFECTS OF THE “NATURAL"” AMBIGUITY 0.2 ‘
0 60 120 180
One goal of our investigations was to assess the influence 8, (deg)

of the “natural” ambiguity, viz.¢— 7— ¢, upon numerical
solutions of the nonlinear phase equations for actual scatter- FIG. 2. The cross sections for 1.5-, 5-, and 10-eV electrons
ing cases. We have found that this can result in numericabund using the phase shifts extracted by Legendre integration of
instabilities within the crossing region of both solutions or tothe scattering amplitudes defined by the phases given in Fig. 1
spurious solutions as an extreme form by using a small mestpmpared with the daf@]. Those results are displayed by the solid
size discretization. lines, while those portrayed by the dashed curves are the result of
These studies also emphasize the value of using analyti¢ising the Search 2 set of phase shifts. The 5- and 10-eV results have
ity in the analyses reported above. At the lowest energy conRkeen uniformly increased by 0.2 and 0.4/8r to facilitate viewing.
sidered, the Martin condition was satisfied by the cross sec-
tion at all scattering angles, so the solution to the phasénay result due to a slight variation of the numerical value
equation was not only unique but could be found by usingrom the exact result. Further, and as a consequence of the
the Newton fixed-point method. The Martin condition en- discretization of our method, the exact values of the phase
sures that this solution and the natural ambiguggcond function may be determined only at the fixed values of the

branch solution do not intersect. mesh points. Interpolation of those values must then be made
to find the (more complete phase function as needed to
A. Numerical stability evaluate the integral in Eq.10). Initially, a cubic spine

. L . method was chosen to effect this. Consequently, the exact
A numerical problem can arise if values eflie near to \5j,e of the integral will never be known precisely. With the
/2 as then so also do valuesaf-¢. This is evident when ot hand side of Eq(10) being invariant under the specified
one considers the integral equation for the phase function I ansform, suckismal) systematic inaccuracy, coupled with
the form the high sensitivity of the linearized equations for the inte-
gral in those regions, are the cause why solution of the dis-

sin¢(x)) = f f H(x,y,2)c08 ¢(y) — ¢(2)] dy dz
(10

from which it can be seen that the overall transform
¢— 7 — ¢ gives a second solution. But any combination of
both (i.e., a “branch flip” with some values of on the first
branch and others on the secpmsl not another solution to
the integral equation. However, within the intersection re-
gion, such branch flips may occur in a numerical solution
formed from the algebraic systeih2] we use to evaluate the
integrals. That we can see by considering the cosine term in
the integral, in the standard expansion,

do/dQ (10" °cm’/sr)

cog ¢(y)— ¢(2)]=cog ¢(y)]cog ¢(2)] , ‘ |
. . 0 60 120 180
+sie(y)Isife(2)]. (1D 0., (deg)

When values oto(g) or ¢(y) ((,)r bptr) are_ C,'Ose to:_7/2, the FIG. 3. The cross sections for 12-, 18-, and 19-eV electrons
first term on the right-hand side is negligible while the sec-,,ng ysing the phase shifts extracted by Legendre integration of
ond one is invariant under the transforMy)=vr—<p(y)_ the scattering amplitudes defined by the phases given in Fig. 1
and/ore(z) = 7—¢(z). As a consequence, in such a region, compared with the datél8 eV from Ref.[9] and 12 and 19 eV

the contributions to integrals from either branch solution befrom Ref.[15]). Those results are displayed by the solid lines, while
ing used in a numerical evaluation are nearly identical. Thefihose portrayed by the dashed curves are the result of using the
the (numerically specifiedphase function is very sensitive to Search 2 set of phase shifts. The 18- and 19-eV results have been
the accuracy of evaluation of the integral, and branch flipsuniformly increased by 0.2 and 0.4%fsr to facilitate viewing.
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FIG. 5. The scattering amplitude phase functions associated
with the three model analyses of the 18-e\He differential cross
sections shown in Fig. 6

0 . ‘ the initial conditions are chosen further removed from the
0 60 120 180 shape of the “exact” result, these variations become more
0, (deg) pronounced. We repeated these calculations adding a GCV

smoothing of the differences between the iterates at each
FIG. 4. The phase functions of the 18-eV test calculation foundstep, and in all cases the final solutions were then excellent
without use of GCV on each iteration with the straight-line initial reproductions of the “exact” phase function. GCV smooth-
conditions as detailed in the text. The “exact” values are displayedng of the changes with iteration specifically changes the
by the small dashed curves, the initial phase functief®(6), by  current iterate phase-shift function to be less radically varied
the Iong dashed curves, and the solutions of the integral equation Byom the preceding iterate while remaining as “faithful” as
the solid curves. possible to the actual calculated iterate function. Thus
) ) o smoothing of the phase function between iterations, by using
cretized version of Eq(8) may have branch flips in each generalized cross validation on the differences between the
iterate at certain mesh points. Interpolation of any such iterpth and (+1)th iterates, prevents branch flips, but one
ate set of values fop,(x) then can lead to a strong oscilla- myst start the iterative procedure with a reasonable choice
tory behavior of the continuous,(x) and, thus, to a signifi-  for the phase function to ensure a stable result.
cantly different value for the integrdfrom its true ongin As a second study of the effects of the initial guess of the
the next step of the iteration process. phase function, we chose the values given by using the phase
To demonstrate this problem, and to indicate a procedurghjfts of the variational model of Nesbgt0] and by the
to avoid it, we have considered the cross section evaluategjna|ysis of Williamg 16] for the 18-eV data. They are shown
with the rationalS function fit to the 18-eVe-He Scattering by the |0ng and short dashed curves, respective|y, in F|g 5
data [9] as the “"data” at all physical scattering angles. and therein they are compared with the “exact” result
Thereby we have the exact phase functip(¢), of the scat-  sought(solid curve. The cross sections associated with these
tering amplitude with which to compare the results of calcu-two model forms are given in Fig. 6, from which it is clear
lations. Our initial guesses for the phase functions were  that they are not in very good agreement with the 18-eV data
of Brungeret al. [9]. However, by using the “exact” cross
o(0)= o+ 1+cog0) (o= bo) (12 section in the unitarity equation, after but a few iterations the
0 2 m ok “exact” phase variation results with either model starting
function. Consequently both the Nesbet and Williams phase
where ¢, and ¢,, are adjustable. The results are shown inshifts are not ambiguous solutions to the generalized flux
Fig. 4 for different initial conditions, with the solid curves equation, rather they are just less adequate representations of
portraying the end result, the long dashed curves the initiathis 18-eV datathan the rationab function specification
phase functions, and the small dashed curves the “exact”
values. The results given in the top section of this diagram
were obtained usingpy (¢,,) values of 0.77(2.5 while
those shown in the bottom section were found when the pro- If one starts with a phase function quite removed from the
cess started with the values 127). In both results, branch exact solution, depending upon the care taken with numerics
effects centered about the angular region wheren/2 are  (i.e., without smoothing and using low mesh sjzesother
evident, but both results tend to the “exact” ones. The re-solution is feasible. At each angle the phase function at-
sults in the bottom section are in quite good agreement withempts to converge to the closest branf(6) or
the “exact” phase function for most scattering angles with 77— ¢(8)] and the error caused by the solution in any region
but a slight variation occurring in the values f8=60°. As  being on the second branch is compensated by oscillations in

B. Spurious solutions
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endre integrations of the complex scattering amplitudes are
made. Moreover, since the resulting phase of the scattering
amplitude is nearly symmetric, the phase shifts correspond-
ing to odd values of the angular momentufrare small and

the underlying quantum interaction would be parity depen-
dent. But these solutions are spurious. When a larger mesh
was used, convergence was not achieved. The spurious solu-
tion has led to local minima in the root-finding method that
stops the process from reaching the proper stable result.

o
3]

o
w

do/dQ (10" °cm’/sr)

V. COMPARISON OF THE RESULTS
OF PHASE-SHIFT ANALYSES

0.1 0 50 120 180 The asymptoticlarge radiug behavior of the interactions
8., (deg) promoting most quantum(elastio scattering events is
known, and as a consequence, so then is the behavior of the
FIG. 6. Fits to the 18-e\é-He scattering datf9] obtained using ~ scattering phase shifts for large partial waves. For interac-
a (two-pole paij rational S function [9] (solid curve, using the  tions that behave asymptotically Bs("*Y), the phase shifts
variational mode[10] (long dashed curyeand using the Williams must vary (asymptotically as /" [4]. Thus as the long-
phase shift§16] (small dashed curve range character of the-He interaction varies as™*, the
. . scattering phase shifts will vary a& . For low energies, in
the phase function elsewhere: This can_be seen as an extreR@jition, by using an effective rangeoj approximation,
form of the branch effects discussed in Sec. IV A. In th'SO’MaIIey et al.[17] have shown that, when the energies sat-

case, the resultir_1g pha_se function is nearly sym_metric bq—sfy k~1<r,, ther * potential leads to a phase-shift varia-
cause the crossing point of the two branches is close tqgp

/2.
Again, we consider the schematical 18-e\He scattering mka ,
with the phase shifts obtained from the rational fit to the data 9/~ ~ > —=rm3v>7—7;. />0 (14
using two starting phase functions. The first is the straight ‘ ’ ’
line, ¢(%)(#)=0.764, and the second, a shifted Lorentzian, Thereina is the dipole polarization. Further, if this variation
is valid for partial waves”>N, by using Thompson'’s for-

05 . . .
©)( g) = +0.364. 13 mula[18], the scattering amplitude from E@) can be writ-
¢ (0) cos(9)+0.25 (13 ten in closed form, viz.
Without smoothing between each iteration and using a 20- N .
(18-) mesh-point quadrature for the constdhbrentzian f(0)=EZO (27+1)€e'%sin(8,)P,(cog 0))

initial condition, solutions as shown in Fig. 7 were obtained.
Therein the dashed curve is the result found with the
straight-line initial condition and the solid curve that from + rak
the Lorentzian one. Not only do these two results differ, but

they are also very far removed from an exact solution. These N
functions lead to radically different phase shifts when Leg-

1 1 (6
37 2% 2

1
BN e7ETrray

P,(cog6))|. (15

25

For electron scattering from He atoms with energies up to
threshold(19.2 eV}, N can be chosen as 1 or 2 in the above,
and so Eq(15), with the dipole polarization taken as 1.38
a.u., can be used withy, 5;, and perhap$, as free param-
eters to be optimized by g2 minimization fit to the avail-
able scattering data. Using the nonlinear fitting program,
EO04FB4, contained in the NAGLIB library and based upon
the Marquardt algorithm, the phase shifts so determined
against the data of Brunget al. [9] and of Andrick and
Bitsch [15] are given in Tables | and I, wherein they are
compared with the assessments of others. Therein we display
the first four phase shifts determined by the fit searches iden-
05 P 120 180 tified as “Search 1” whens, and &, were varied and with
9., (deg) the O’Malley phase shifts, Eq14), for other partial waves
(values listed in the “expansion” column of the tableand
FIG. 7. The phase functions of the scattering amplitude forby “Search 2” whené; is also a free parameter. The atten-
18-eV e-He scattering found using the straight line and shifteddant x%/F values of the Search 1Search 2 fits are
Lorentzian initial guesses. 0.570.62, 2.931.80, 1.351.16, 1.431.43, 3.821.16),

¢ (rad)
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TABLE |. Phase shifts from various analyses of #aéle cross sections from Reg®].

/ Search 1 Search 2 Rational it Unitarity Expansion
E=15eV 0 2.6939 2.6939 2.691 2.6937

1 0.0393 0.0393 0.0391 0.0397

2 0.0046 0.0049 .0044 0.0046

3 0.0016 .0016 0.0015
E=5eV 0 2.3469 2.3463 2.346 2.3472

1 0.1239 0.1244 0.123 0.1234

2 0.0118 0.0123 0.0132 0.0152

3 0.0040 0.0060 0.0051
E=10 eV 0 2.0885 2.0845 2.0840 2.0746

1 0.2380 0.2357 0.2330 0.2204

2 0.0286 0.0315 0.0336 0.0304

3 0.0104 0.0137 0.0102
E=18 eV 0 1.9636 1.9488 1.946 1.9288

1 0.3684 0.3627 0.359 0.3536

2 0.0505 0.0529 0.0475 0.0548

3 0.0180 0.0225 0.0186
%Referencd9].

and 2.271.91) for each energy in increasing order, respec-percent smaller overall than the latter. This is evident in Fig.
tively. The data at 1.5, 5, 10, and 18 eV were those of8, wherein the two data sets are compared with the cross
Brungeret al.[9] and had been analyzed assuming a rationasections found with our unitarity based set of phase shifts
function form for the scatterin@ matrix; a form convenient (solid curve for the Brungeret al. data(dotg and the calcu-
to effect(WKB) inversion and so define aHe interaction lation of Williams (dashed curvewith the data of Andrick
potential in coordinate space. At 12 and 19 eV, the data werand Bitsch(open triangles Brungeret al. limit their total
measured by Andrick and Bitsdii5] and the results of our error to the range 3.5-5 %, while Andrick and Bitsch assign
searches are compared with those found from a firsta systematic error of 3—4 % with a statistical error of 0.5—
principles variational model calculatidiO] as well as by a 1.5 %. Clearly the results of analyses of the two data sets
phase-shift analysis by Williamd4 6] but of a different data cannot be in agreement to the extent one would like.
set, one should note. These search and model calculation Finally the d- and f-wave phase shifts found from the
phase shifts are compared at all energies with the results wenitarity analyses are compared with the O’Malley approxi-
have found by using unitarity and analyticity to extract themation forms for thee-He dipole polarization interaction.
scattering amplitudes from the measured data and then pethe agreement between these small values is quite good but
forming the appropriate Legendre integrations. Clearly allthere is some variation between the formula valtdiesn Eqg.
s-wave phase shifts match to within a percent. fhevave  (15)] and the unitarity based results with both energy and
phase shifts vary a little more, with agreement to within 5%increasing partial waves. That is evident from Figs. 2 and 3
in the case of 12 eV. Thd-wave values are quite small but in which the data are compared with recalculated cross sec-
even so all analyses concur to within 5% again. tions; i.e., with cross sections calculated using the tabulated
However, disagreement between phase-shift sets in sonpghase shifts. Using the Search 2 phase shifts gave the results
cases is reflective of the different data sets used in the analyportrayed by the dashed curves therein. Recall that the solid
ses. At 5.0 eV, the Brunget al.[9] and Andrick and Bitsch curves were obtained using the phases shifts found by using
[15] data sets are slightly different, the former being a fewunitarity and analyticity to specify the scattering amplitudes.

TABLE Il. Phase shifts from various analysesesfe cross sections taken from REgf5].

/7 Search 1 Search 2 NesBet  Williams® Unitarity Expansion
E=12 eV 0 1.9968 1.9919 1.9919 1.9891 1.9856

1 0.2577 0.2541 0.2433 0.242 0.2506

2 0.0362 0.0365 0.0372 0.0357 0.0365

3 0.0105 0.0122
E=19 eV 0 1.8256 1.8219 1.8034 1.800 1.8227

1 0.3315 0.3251 0.3158 0.311 0.3233

2 0.0626 0.0578 0.058 0.0629 0.0578

3 0.0209 0.0193
%Referencd10].

bReferencd16].
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energy(5 eV) at which scattering data existed. At that and

higher energies, the data did not satisfy the Martin condition
at all scattering angles and the fixed-point method of solution
was no longer a stable one. However, another method of
solution gave stable results and its use led to accurate candi-

date phase functions from which, by Legendre integration of
the associated scattering amplitudes, real scattering phase
shifts were derived. Use of those phase shifts in the partial-
wave summations to respecify the cross sections confirmed

that the sets gave statistically significant fits to the actual
measured data. Of significance was the use of the analyticity
of the scattering amplitudes. Thereby a solution at one en-

0.2 ‘ ‘ ergy provided the initial guess for our method to converge to

0 60 120 180 a sensible result at the nefttighe energy.
8. (deg) We have studied the effects of the natural ambiguity,
namely that the functiong— ¢(6), is also a solution, upon

FIG. 8. Comparisons of the 5-e¥-He differential cross sec- the numerical solution of the nonlinear integral equations. In
tions measured by Andrick and Bitsgh5] (open triangleand of  the cases considered, at all energies except the lowest for

Brungeret al.[9] (dotg with the calculated results found by using which data the Martin condition is satisfied, the second
Williams [16] phase shiftsdashed curveand those from our uni-  pyranch's solution intersected with the ones sought. Numeri-
tarity based studysolid curvg. cally then, at scattering angles around the crossing point,
either solution may be the result, and that ambivalence led to

calculated results containing oscillations when monotonic
hase functions were the actual solutions. In the extreme
ase, a quite spurious solution function could be the result.
But, by using a smoothing procedure upon the rate of change

Between iterations in the solution method, we were able to
hprevent branch flips. In the cases studied the generalized

cross validation smoothing process was used.

The sets of phase shifts we have obtained were compared

VI. CONCLUSIONS with those from other studies of these scattering data, and

The mathematical requirements that the elastic scatterinﬁetre thlImd b%; various Ida}at'flt proggf?ures or frhom mgdel
S function for scattering at energies below the first nonelasti otential  scattéring calcuiations.  DITerences have been

threshold be unitary and analytic, have been used to deteP—Oted’ but they seem to be more a reflection of the differ-

mine the(complex scattering amplitudes from the cross sec-ences between the actual data sets used in those studies than

tions. Application has been made to specify those scatterinrglc inadequacies of one method of analysis compared to an-

amplitudes for electrons scattered from He atoms with ene Dther.
gies between 1.5 and 19 eV. The unitarity requirement, the
generalized flux theorem, transcribes to a nonlinear integral
equation for the phase function of the scattering amplitude, This research was supported by grants from the Australian
the solution of which entails knowledge of the cross section®Research Committee and from the Austrian “Mobifsti-

for all physical scattering angles. The lowest-energy datgendium fur Doktoratsabsolventen der Akademisch-Sozialen
considered, at 1.5 eV, satisfies a basic condition, the Martiirbeitsgemeinschaft Qerreichs.” H.H. gratefully acknowl-
condition, at all scattering angles. Consequently, a solutioredges the support of the Akademisch-Sozialen Arbeitsge-
of the associated integral equation not only was known taneinschaft Gterreichs by which his research visit to Mel-
exist but also that solution was defined to be unique andbourne was made possible and the hospitality of the School
could be specified by a fixed-point method of solution. Suchof Physics during his time there. We thank Dr. H. Leeb for
was done and the result used as the initial trial solution in ouhis helpful critical review of our manuscript prior to its sub-
attempt to obtain a solution for the scattering at the nextnission for publication.

g
o

I
»

do/dQ2 (10 °em/sr)

Clearly by taking the asymptotic potential and its high-
partial-wave phase shifts priori, the calculated cross sec-

tions are smoother than the data, while the unitarity define
set, being “controlled” by the actual measured data in the

variation in the observations. That is especially obvious wit
the 5-eV results.

ACKNOWLEDGMENTS

[1] I. E. McCarthy, inConfronting the Infinite edited by A. L. ibid. 49, 2177(1994; D. R. Lun, X. J. Chen, L. J. Allen, and
Carey, W. J. Ellis, P. A. Pearce, and A. W. Thonts¢orld K. Amos, Phys. Rev. A9, 3788(1994; 50, 4025(1994.
Scientific, Singapore, 1995p. 42. [4] R. G. Newton,Scattering of Waves and ParticléSpringer,

[2] S. Karataglidis, P. J. Dortmans, K. Amos, and R. de Swiniar- Berlin, 1982; K. Chadan and P. C. Sabatiémyerse Problems
ski, Phys. Rev. (52, 861(1995; 53, 838(1996. in Quantum Scattering Thegry2nd ed. (Springer, Berlin,

[3] H. Leeb, C. Steward, L. J. Allen, and K. Amos, Phys. Rev. C 1989.
45, 2919(1992; L. J. Allen, K. Amos, and P. J. Dortmans, [5] R. G. Newton, J. Math. Phy$, 2050(1968.



54 ANALYTICITY AND UNITARITY AS CONSTRAINTS TO ... 1371

[6] A. Martin, Nuovo Cimento A59, 131(1969. [13] M. Bennett, C. E. Steward, K. Amos, and L. J. Allen, Phys.
[7] N. Alexander, K. Amos, B. Apagyi, and D. R. Lun, Phys. Rev. Rev. C(to be published

C 53, 88(1996. [14] P. Craven and G. Wahba, Numerische Mathematik 377
[8] R. F. Alvarez-Estrada, B. Carreras, and G. Mahaux, Nucl. (1979.

Phys.B88, 289(1975. [15] D. Andrick and A. Bitsch, J. Phys. B, 393(1975.
[9] M. J. Brunger, S. J. Buckman, L. J. Allen, I. E. McCarthy, and [16] J. F. Williams, J. Phys. B2, 265 (1979.

K. Ratnavelu, J. Phys. B5, 1823(1992. [17] T. F. O’'Malley, L. Spruch, and L. Rosenberg, J. Maths. Phys.
[10] R. K. Nesbet, Phys Rev. 20, 58 (1979 2 491 (196])
[11] R. B. Gerber and M. Karplus, Phys. Rev.1D998(1970. [18] D. G. Thompson, Proc. R. Soc. London Ser.284 160
[12] D. R. Lun, L. J. Allen, and K. Amos, Phys. Rev. 30, 4000 (1966

(1994



