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The Fermi contact term for the?5, 22P, and 3°S states of Li and the 2S state of Bé are calculated
using high-precision variational wave functions in Hylleraas coordinates. The nonrelativistic Fermi contact
terms obtained for these states are 2.905 922(5@).,214 783(50), 0.673 405(50), and 12.497 57(30) a.u.,
respectively. Estimates of corrections for finite nuclear size, relativistic effects, and QED effects are shown to
yield satisfactory agreement with experiment for th&SXtate of Li and Bé, but there remains a substantial
disagreement with experiment for thé3 state of Li.[S1050-294{06)04208-4

PACS numbgs): 31.15.Ar, 31.30.Gs, 31.15.Pf

I. INTRODUCTION ever, they are not required for the’R state at the present
experimental precision. Nevertheless, Lindgren’s calcula-
The Fermi contact term dominates the hyperfine structurégions for the 2S and 2?P contact terms disagree signifi-
of atomic S states. Although its calculation for lithium has cantly with the measurements. King and co-worKé&iG—12
received considerable attention, a high-precision theoreticalalculated the 2S contact term using Hylleraas-type wave
determination remains a difficult problem. Since the Fermifunctions with basis sets containing up to 602 terms. Their
contact term consists of matrix elementsaff;), the calcu- results, however, did not significantly improve upon Lars-
lated results depend critically on the quality of the waveson’s valug6]. Blundell et al. [13] studied the lithium atom
function near the nucleus. A comprehensive summary ofising the relativistic all-order MBPT method. Their contact
early work for the lithium 2S contact term can be found in term for the 2°S state is close to Lindgren’s valyé], and
Ref. [1], which contains approximately 50 calculations. thus is also in disagreement with experiment.ridasson-
High-precision measurements of hyperfine structure ar®endrill and Ynnermari14] used the coupled-cluster ap-
now available for several states. The atomic beam magnetigroach to evaluate lithium properties. Their contact term for
resonance measurement of Beckmanikl&o, and Elkg2]  the 22S state is also not accurate. Sundholm and OJ4&h
for the lithium 22S state yields a derived Fermi contact term Carlsson, Josson, and Fischéf6], and Tong, Josson, and
accurate to 1 part per §@ppm). Orth, Ackermann, and Ot- Fischer [17] performed large-scale multiconfiguration
ten [3] measured the lithium 2P hyperfine structure using Hartree-Fock calculations on the lithium atom. The contact
the optical double resonance technique with a somewhaerms obtained by these groups are in reasonable agreement
lower accuracy of 0.5%. Very recently, using Stark spectroswith one another and with the measurements. Based on
copy, Stevenset al. [4] measured the hyperfine structure configuration-interactiofiCl) calculations, Esquivel, Bunge,
constant for the lithium 3S state, with a precision of and Nifez[18] developed a method of successively optimiz-
0.2%. Using laser-fluorescence mass spectroscopy, Winég wave functions by expanding the significant electron-
land, Bollinger, and Itan$5] have achieved an accuracy of correlation regions. The uncertainty they claimed for the
2.6 ppm for the Bé 2 2S state. 22S contact term is as small as 27 ppm. However, the reli-
These measurements provide the motivation to improvebility of their calculation needs to be reexamined. Using
the atomic theory of hyperfine structure to a correspondingnultiple basis sets in Hylleraas coordinafé9|, McKenzie
level of accuracy. The first precise calculation of the Fermi20] obtained the most precise value for thé2contact
contact term was done by Larss@] using variational wave term.
functions in Hylleraas coordinates. The value obtained for Recently, significant theoretical progrd24,22 has been
the 22S state is 2.906 a.u. Using the same method, Ahleniusnade in variational calculations for the lithium atom, using
and Larssof7,8] calculated the 2P contact term. However, multiple basis sets in Hylleraas coordinates. The nonrelativ-
their value was accurate only to about 1%. Lindgféh istic eigenvalues obtained for thé?g, 22P, and 3°D states
applied many-body perturbation theoMBPT) in the are accurate to a few parts in’910'Y. We have also cal-
coupled-cluster formulation to lithium calculations. The rela-culated the lithium oscillator strengths to high precidi28].
tivistic and finite nuclear size effects to the Fermi contactlt is expected that the application of our wave functions to
terms were included for the 5 and 2?P states. These cor- the evaluation of the Fermi contact term will improve upon
rections, together with the finite nuclear mass and QEDprevious results.
terms, are essential in making any meaningful comparison The experimental Fermi contact terfp,,; for S states is
with high-precision measurements for thé®state. How- related to the hyperfine constahi, by
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TABLE I. Convergence of the nonrelativistic Fermi contact

mompin|Jer f e . e
1= or8 3N el ew (1)  term for the lithium 22S and 22P states, in atomic units.
2mhag 3l
. . No. of terms 2s No. of terms 2p
where uq is the vacuum permeabilitywg and uy are the
Bohr and nuclear magnetong, is the electronicg factor, 19 2.779 030 20 -0.211726
M, is the nuclear magnetic dipole moment, ahds the 50 2.972 074 55 —0.213 876
nuclear spin. Using the most recent adjustment of fundament20 2.931676 138 -0.213 227
tal constant$24], Eq. (1) becomes 256 2.910 944 306 -0.218712
¢ 502 2.906 045 622 —0.214 937
Qer _
Ay exph=95.410 677) -2 | expt 2 918 2.906 253 1174 0.214 947
3l 1589 2.905 981 1715 —0.214 860
% 2.905 92250) el —0.214 78350

in MHz, where the experimental valj&] of the hyperfine
constant for the Li 2ZS state is Aj(expt)
=401.752 043 3(5) MHz, ands,=3.256 426 8(17)[25].

For the case ofBe", the same argument applies except

However, there exist inconsistencies in the literature conthat the nuclear magnetic moment jig=—1.177 432(3)

cerning the choice 0§, [9,15,18. The Dirac valueg,=2

yields fe,,=2.909 393(3) a.u.; on the other hand, if the
anomalous magnetic moment correction is included, i.e.,

0e=2(1+a,) with
a,= al2m—0.328 478 966/ )°
+1.176 11l m)3+ - -, ©)

one obtains insteafl,,,=2.906 023(3) a.u. In fact, the mea-
sured hyperfine consta#t;,(expt) can be written symboli-
cally as

M
Ay €xph =2(1+a¢) CrelCrCrCoep 95410 617) 71 f,
4

[26].

II. VARIATIONAL CALCULATIONS

The variational wave functions used to calculdteare
constructed from multiple basis sets in Hylleraas coordi-
nates, as described in R¢R1]. The explicit form for the
wave functions is

q](rl!r2=r3):-’4§t: E al,,u,t(ﬁt,;;t(a’tugtv'yt)
Mt

X(angular functiopX (spin function, (7)
where

_ apdopisiio oz isia—agr{— Biro—nr
brul e, B, v) =TT T 5T 5T e e Pz ts,

where a, is the anomalous magnetic moment correction, (8)

C,el is the relativistic correction factoCy, and Cg are the
finite nuclear mass and size correction factors, @agp, is

where u; denotes a sextuple of integer powgks j», js.

the QED correction factor other than the anomalous magki2: j23. andjz;, indext labels different sets of nonlinear

netic moment correction. The remaining facfgris the un-
corrected Fermi contact term defined by

‘I’> , ©)

wheref o,/2 is the spin operator of electrdnin the z di-
rection, and¥ is the nonrelativistic wave function of
lithium. From Eqgs.(2) and (4) we then have

3
'Zl o(ri)oy;

fC=47T<‘I'

2(1+ay)
fexp= o CrelCMCRC gepfec- (6)
e

parametersy,, B;, andy;, and A is the three-particle anti-
symmetrizer. Except for various truncations, all terms are
included such that

Jitiotistietiatias, 9

and the convergence studied@ss progressively increased.
A complete optimization is then performed with respect to
all the nonlinear parameters. These techniques yield much
improved convergence relative to single basis set calcula-
tions.

Table | contains the convergence studies of Fermi contact
terms for both 2S and 22P states as the size of the basis set
progressively increases. Table Il presents a comparison of

It is obvious that if the experimental Fermi contact term isour nonrelativistic results with some selected previous calcu-

derived from Eq.(2) by use ofg,=2, thenf,, should be

compared withf . with the anomalous magnetic moment cor-

rection and the others included, whereagdf2(1+a,) is

lations. Table Il indicates that the present result for the
22S contact term agrees with and improves the best previous
value of McKenzie[20]. Furthermore, the Hylleraas-type

chosen, then the anomalous magnetic moment correctiovariational calculations of Larssdf], King and Shougp10],
should not be included. In a recent paper, Esquivel, Bungeand King [11], and the multiconfigurational Hartree-Fock

and Ninez [18] also discussed the choice gf, but evi-

calculations of Sundholm and Olsgtb], Carlsson, Jasson,

dently they came to the opposite conclusion, thereby omitand Fischef16], and Tong, Josson, and Fisch¢d7] agree

ting the a, correction in their comparison with experiment.

to about four figures with our result. However, Lindgren’s

In the present work, we choose the definition ofresult[9] of many-body perturbation theory and the Cl result

ge=2(1+a,) in Eq. (2).

of Esquivel, Bunge, and Niez [18] deviate significantly.
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TABLE Il. Comparison of the nonrelativistic Fermi contact term for the lithiufS2and 22P states, in

atomic units.

Author Method Ref. 2s 22p
Larsson(1968 100-term Hylleraas [6] 2.906

Ahleniuset al. (1973 78-term Hylleraas [7] —-0.216 2
Ahleniuset al. (1978 97-term Hylleraas [8] —0.208 6
Lindgren (1985 MBPT [9] 2.917 265) —0.22081)
King et al. (1986 352-term Hylleraas [10] 2.9042)

King (1989 602-term Hylleraas [11] 2.906 359

King et al. (1990 296-term Hylleraas [12] 2.907 051

Blundell et al. (1989 all-order MBPT® [13] 2.91194)

Sundholmet al. (1990 MCHF [15] 2.903 920) —0.215 §15)
Esquivelet al. (1991 Cl [18] 2.908 568)

McKenzie (1991) 1134-term Hylleraas [20] 2.906 (3)

Carlssonret al. (1992 MCHF [16] 2.904 7 —0.2155
Tonget al. (1993 MCHF [17] 2.9051 —0.217 05
This work 2.905 9250 —0.214 78850

4ncludes relativistic wave-function corrections, but not the Breit interaction.

Although Esquivel, Bunge, and ez claimed that their being neglected in most previous calculations. In fact, the
contact term converges to a definite value, the convergenamass polarization term often tends to cancel the mass scaling
may not be complete to the figures they quote. This can beorrection. The mass scaling correction ftri can be ob-
seen, for example, from their convergence study of the matained simply by multipling the calculated value by a factor
trix element of Eiilllri . The value they reported is
5.717 929 a.u., whereas the Hylleraas variational value is
5.718 110 883 61(13)21].

(1+me/M)~3=0.999 7654,

wherem, is the electron mass and is the nuclear mass.
The mass polarization correction can be taken into account
by including —(u/M)Z;-;V;-V; explicitly in the Hamil-
Htonian, wherew=m.M/(m.+ M) is the reduced mass. The
wave function thus obtained is used to calculate the contact
%erm once again, from which the mass polarization contribu-
ion can be extracted by subtraction. The results are listed in
Table Ill. Although the mass polarization correction turns
out to be small for?S states, it is the dominant source of
uncertainty in the variational results. For théR state, it is
The finite nuclear mass correction should include both the8 times larger in magnitude than the mass scaling term and
mass scaling and mass polarization contributions, the lattesf opposite sign. The effect is unusually large f&? states

Ill. SMALL CORRECTIONS

The calculated nonrelativistic value éf must be cor-
rected for various effects before it can be compared wit
experiment, especially for thdS states. These effects in-
clude the finite nuclear mass and size corrections, relativisti
corrections, and quantum electrodynaf@@ED) corrections.

A. Finite nuclear mass correction

TABLE lll. Comparison of theoretical and experimental Fermi contact terms for the’s| 22P, and
323 states and for the Be2 °S state, expressed in atomic units.

Contribution Li 22S Li 2 %P Li32%S Be' 225
Nonrelativistic 2.90592500  —0.214 78850) 0.673 40%50) 12.497 5730)
Mass scaling —0.000 682 0.000 050 —0.000 158 —0.002 28
Mass polarization 0.0000271)  —0.000 15971) 0.000 00771) 0.000 0742)
Relativistic 0.002 4@18) —0.000 105 0.000 57743 0.019 911)
Nuclear size —0.001 08294) —0.000 25120) —0.006 1819)
QED —0.000 91847 —0.000 21311) —0.005 2934)
Total 2.905 7522 —0.214 99771) 0.673 36836) 12.503 §12)
Experiment 2.906023)® -0.213510)°¢ 0.684 §16) 12.503 52833) ©
Difference —0.000 2722 —0.001 510) —0.011 416) 0.000 312

&Combined relativistic and nuclear size correction from Ref.
bReferencd2].
‘Referencd3].
dReferencd4].
®Referencd5].
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because the mass polarization correction to the wave funavith the range of values 775-1080 ppm obtained by

tion does not vanish in a Hartree-Fock approximation. Lindgren and Rose [31] from Hartree-Fock calculations,
depending on the model chosen. In the absence of better
B. Relativistic corrections calculations, we use the same valuesofo extrapolate to Li

(32S) and to Be'(22S). The results are listed in Table III.
The smaller correction of-560 ppm adopted by Lindgren
ég and by Matensson-Pendrill and Yennermdn4] in-

Accurate calculations of the correction fact®@g,, Cg,
andC ogp are not available. The aim of this and the follow-
ing subsections is to show that reasonable estimates of the
terms can account for the differences between theory an
experiment. In considering the various contributions, it is
important to remember that in a Hartree-Fock approxima-
tion, f, comes entirely from the outers electron since the C. Finite nuclear size corrections
contributions from the 42 1S core electrons cancel. In this . i . Lo
regard, the corrections are quite different from those for ex- For a one-electron ion, the finite nuclear size correction is
cited states of LT where the unpairedslelectron gives the simply the Zemach correctior82],
dominant contributio27]. Cr=1—-2Z(R.)/a (14)

As first discussed by Bre[i28], the one-electron relativ- R em <0
istic correction tof . comes from the replacement

des also the finite nuclear size correction discussed in the
ext section.

. 1 where(Rg,,) is an average electromagnetic charge radius for
J' One(1) = Fog(F)F2dr, (10) the nucleus _obtgilned by_f_oldmg together the electric charge

0 r and magnetization densities. The result depends somewhat
5 , . ) on the model chosen for the two distributions.Rf and
where ap=7“/mee” is the Bohr radius, andy,s(r) and R  denote the rms radii for the electric and magnetic distri-

fas(r) are the large and small radial components of the Diragutions, respectively, then for an exponengal'" distribu-
wave function for ams electron. Breit obtained results for tion with R,.=R,,,

n=1 and 2. We have extended his results to arbitrarty
obtain

1

aaoﬂ'

|p(0)[2—

Remy = 35R./(16y3). 15
ons 1112 11 (Rem) =35R/(1643) (15

6n?

)(aZ)2+O(a424)}

11 e multiplying factor o ex], substantially
11y Th Itiplying f f 35/(163)=1.263 sub iall
enhances the effect relative to the point magnetic dipole case
Forn=1 and 2, this reproduces the known Breit correctionfor which R,,=0 and (Rgmy =R.. For a Gaussian charge
coefficients 3/2 and 17/8, and for=3 the Cge]:flc'ent IS distribution, the multiplying factor would be 4B in place
115/54. The coefficient of the next term O(a"Z") works  of 35/(16,/3). This comparison illustrates the degree of sen-
out to be[29] sitivity on the assumed form of the nuclear charge distribu-
B 2 3 2 tion. Models that incorporate a more detailed account of
189-33n— 134 :—225n 20 (12  nuclear spin structure are discussed by Shabagy
72n There is considerable spread in the valuefRgfandR,

The values fom=1, 2, and 3 are 17/8, 449/128, and 2279/ 20uiated by de Jager, de Vries, and de V{@4], particu-

. . X larly for R,,. The average values amg,=2.40 fm and
648, respectively. Thes2- 1s difference of 177/128 is close Rn=2.80 fm for "Li, and R,=2.51 fm andR,=2.67 fm

to, but not quite the same as, the value 179/128 quoted b%r 9Be. We take the averages of these, = 2.60+ 0,20

Prior and Wand 30]. A
L for “Li and R=2.59+0.08 for °Be to calculatgRg,,) from
Knowledge of the general dependence contained in Eq. Eq. (15). The results are listed in Table Ill. The finite nuclear

11 help in i ifyi ival h
(11) may help in identifying an equivalent operator w Osesize calculation done by Lindgref®] corresponds to the

matrix elements with respect to nonrelativistic wave func- hoicelR.> = R. for th f oointlik |
tions would yield the same result. Such an operator could oice(Rem =R, for the case of pointlike nuclear moments.

. B 2 - 2 .
then be used to calculate the relativistic correction startin f dfjhed resurl]tmg Icqr f?‘%""“ of 2.72 p?m for L|(2fS) IS
from the nonrelativistic wave function for a many-electron ed to the relafivistic correction o 855 ppm from Sec.
atom. However, this is an interesting problem, which to our!!! B: the total of 583 ppm agrees with the total calculated by

knowledge has not been solved. In the absence of better ekindgren [9] (i.e., 0.0011 a.u. with his definition of).
timates, we take the relativistic correction factor to be However, his calculation does not include the magnetic mo-

ment distribution represented by the Zemach effect.

Z3
|4(0)|*— — 3[1"'

9n+11n%2-11
6n2

Cro=1+ )(a’Z*)Z, (13

D. Quantum electrodynamic corrections

whereZ* =Z— ¢ is an effective screened nuclear charge for The largest QED correction is the free-electron anoma-
a singlens electron. One would expect to be small be- lous magnetic moment factor (1a.) in Eq. (6). Beyond this
cause the effect comes primarily from the region near there the binding energy corrections containeCigep. In a
nucleus. The choicer=0.25+0.10 gives a relativistic cor- one-electron approximation, they are given for trestate
rection of 855-63 ppm for Li(22S), in reasonable accord by
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a(Za)? Orth, Ackermann, and Ottef8] for the Li(2°P) state, but
Coep=1+a(Za)(In2—3) - - [$In*(Za) here the corresponding corrections are much smaller, and the
experimental accuracy is not sufficient to be sensitive to
+1.1675IfZa) —9.83+0.29). (16) them. However, there is a large discrepancy of

—0.011416) between theory and experiment for the Li
The above is obtained by adding the shift [35] to the  32Sstate. This is clearly larger than what could be explained
2s— 1s difference quoted by Prior and Wap80]. The lead-  py any reasonable adjustment of the relativistic, nuclear size,
ing terms of ordera(Za) and a(Za)?In*(Za) are state and QED correction factors.
independent-correction factors multiplying the Fermi contact Further improvements are possible for the calculation of
term. They therefore apply to any state, and in particular tahe nonrelativisticf,. A global operator equivalent of
each term in the linear combination of hydrogenic Slaters(r.), which samples the wave function over all space,
determinants describing lithium. For this reason, it is approwould undoubtedly yield better convergence. The Hiller-
priate to takeZ to be the full nuclear charge, at least for thesesycher-Feinberg operatfd8], which has been used in he-
leading terms. The same reasoning leads to the stat§um calculationd39], could be extended to the lithium case.
independent part of the Lamb shift derived by Kabir andThis has not yet been done because the calculation of more
Salpeter36] for helium, and verified to high precisid87].  highly singular operators in Hylleraas coordinates is re-
The remaining terms are state dependent, but their contribyuired. There is a need for further developments in tech-
tion is small. Equatior(16) should therefore provide a rea- niques for evaluating these more highly singular integrals.
Sonably gOOd account of the QED correction, with the entire In summary, we have calculated the Fermi contact term
state-dependent part taken as the uncertainty. The results g the Li 22S, 22P, and 32S states and the Be2 2S state,
listed in Table III. using high-precision variational wave functions in Hylleraas
coordinates. We have shown that reasonable estimates of the
IV. DISCUSSION relativistic, finite nuclear size, and QED corrections give ac-
Despite the approximate nature of the correction factorg eptable agreement with experiment for théSstates of Li
) . . and Be", but there is a significant discrepancy for the Li
Crel, Cr, andCoep discussed in Sec. Il, the results in Table 55 (o0 The high precision that is now available for the
[l indicate that they all have about the same magnitude, ang . ' S . .
asic nonrelativistic part of, makes it worthwhile to con-

?lc:tgwg:tﬁe :Q;Itutdhidre:nisas?brzg irtlisa?nca\:\::tzr]ezlfe)t('[?oer:lrgrirgﬁ It t'rs]sider more sophisticated calculations of the various small
y 9 ]prrections. This would be straightforward for the finite

various corrections. The agreement with the measurement Oliclear size effect but advances in theory are required in
. . 2 . i)
Beckmann, Blen, and Elke[2] for Li(2 °S) is somewhat order to find appropriate operators for the relativistic and

outside the range of uncertainty when the various contrlbu?ED corrections. Once these problems are solved, the com-

tions are added in quadrature, but not when the uncertaintie arison with experiment could be interpreted as a probe of

are addgd_ I|_nearly. The greatest source of error comes fro uclear structure. This remains a challenge for the future.
the relativistic correction. The agreement with the measure-

ment of Wineland, Bollinger, and Itari&] for Be™(22S) is

as good as can be expected. Here, the one-electron approxi-
mations used for the small corrections should be more reli- Research support by the Natural Sciences and Engineer-
able. There is also good agreement with the measurement afg Research Council of Canada is gratefully acknowledged.
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