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Extension of the applicability of the closed-shell coupled-clugft) theory with doubly(CCD) or singly
and doubly(CCSD) excited clusters to quasidegenerate situations requires the inclusion of the connected triply
and quadruply excited cluster componefitsand T,. Since an explicit consideration of these clusters for
larger systems is computationally very demanding, we explore the possibility of estimatifg ¢batribution
using the projected unrestricted Hartree-FgBWJHP wave function. The resulting CCOCQand CCSDQ
approaches are shown to correctly approximate the effect of the quad@lyekcitedT, clusters, even when
the PUHF wave function itself cannot serve as a good source of the lower-order pair-cluster components. It is
important that the results of the cluster analysis of the PUHF solution are used directly and no further
approximations are made. Only when both pair-clusternduster components are reasonably well approxi-
mated by the PUHF wave function, tAg cluster contributions cancel out certain CCSD diagrams, and good
CC results can be obtained with the approximate coupled-pair approaches. It is also demonstrated that it may
be more difficult to balanceT; and T, clusters relying on simple perturbative approaches, such as
CCSDQ+T(CCSDQ). The results of formal considerations, including a thorough investigation of the cluster
structure of the PUHF wave function, are illustrated on several examples. These include a few model systems
composed of four and eight hydrogen atoms in various geometrical arrangements, as described using minimum
and double zeta plus polarization basis sets, for which the exact full configuration interaction data are available.
The orthogonally spin-adapted formulation of CC theory is used througf®1®50-29476)07407-0

PACS numbss): 31.10+2z, 31.15.Dv, 31.15.Ar, 31.25v

I. INTRODUCTION [32] or convergence problen{83,34. On the other hand,
the inclusion of higher than pair clusters in the standard
The single-referencéSR) coupled-cluste(CC) theory[1] SRCC formalism can often successfully describe the compli-
is currently widely exploited for a@b initio description of cated cluster structure of quasidegenerate wave functions
the electronic structure of atomic and molecular systemscf., e.g., the so-called SSCC approddH], including se-
[3-9]. Its success in describing nondegenerate ground statéscted types of triexcited and tetraexcited clusters
has stimulated considerable activity aiming to extend its apf31,35—37). Thus, in spite of all the recent progress in the
plicability to quasidegenerate and excited electronic statesrea of MRCC theory, it is still worthwhile to seek efficient
Particularly significant are several formulations and imple-SRCC approaches that are capable of accounting for con-
mentations of multireferencéMR) CC formalisms of both nected triexcited and tetraexcited clusters. Likewise, many
genuine (Fock or Hilbert spaceand state-selectivéSS excited and ionized states of both closed- and open-shell sys-
types(cf., e.g., Refs[7-14], and references therginThese tems can be successfully described using a single, yet effec-
advances have been paralleled by the development arttvely multiconfigurational, spin-free reference of the unitary
coding of various SRCC methods that account for con-group approaciUGA) in the so-called UGA coupled cluster
nected triexcited and tetraexcited cluster componentsingles and double€CCSD method[38,39.
[15-25,27-31 A full, explicit account of higher than pair clusters in the
Although the genuine MRCC theories may represent arBRCC theory leads to methods that are computationally very
expedient solution in general open-shell situations, their apdemanding[e.g., for the CCSDT[20,21] and CCSDTQ
plication to real systems is far from being routine and re{27-29 methods, considering tripl€3) and quadruplefQ)
mains rather limited. Proper choice of the reference spacen addition to singlesS) and doublesD), the number of
which depends on the fragmentation pathway consideredloating point operations scale a8 and n'®, respectively,
and of truncation schemes required for realistic calculationswheren is the dimension of the one-electron space involved;
is rather delicate, so that one often experiences intruder statf., e.g., Refs[27,28, and[40]]. In addition, special provi-
sions must be made to avoid convergence problems when
solving the resulting nonlinear CC equatids., e.g., Refs.
" Present address: Department of Chemistry, University of Tor{28] and[30]). While the performance of CCSDT and CCS-
onto, Toronto, Ontario, Canada M5S 3H6. DTQ codes can be substantially improved by using recur-
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sively generated intermediates, leading to a fully vectoriz-doubles method corrected by, contributions extracted
able computer algorithnj27,28, much less can be done from the PUHF wave function yields the exact energy in this
to reduce large storage requirements for triexcited and tetrdimit, in spite of the fact that the standard uncorrected CCD
excited cluster amplitudes. Orthogonal spin adaptatiorapproach becomes singular in the strongly correlated region
[22,41-44 and adaptation to spatial symmettgr other [23,52, and in spite of the fact that th€; cluster compo-
available symmetrigsertainly help herécf., e.g., Refs[23,  nents generally do not vanish. In fact, the cyclic polyene
43, 45, and[46]), but the primary problem of large memory ground state becomes highly degenerate in the fully corre-
requirements can hardly be eliminated. lated limit (fivefold degenerate for benzend=6, 42-fold

For these reasons one often employs various approximatitegenerate foN=10 cycle, etg. and the analytic continua-
approaches, such as, for example, noniterative perturbativéon from 8<0 region of the truelAl‘g ground-state wave
estimates of singly T;), triply (T3), and quadruply T,)  function of the benzene model =0 limit does contain
excited clusters, referred to as the CEBT(CCD) or T, clusters[54]. However, one can show that there exists a
CCDST] [18,22,24, CCSD+T(CCSD or CCSOT]  linear combination of two'Aj, states, which aB=0 does
[17,22,24, CCSD(T) [19], CCSDT"‘Q(CCSDT) or not ContainT3 ClUSterS[SS].

CCSDTQ] [25], and CCSBXTQ* (CCSD or CCSOTQ]* Using additional simplifications in the form of the PUHF
[26] schemes, or their iterative CCSDTF15,16,20,22and  wave function(relevant to the PPP Hamiltonians; cf. Sec.
CCSDTQn [25] counterparts(cf., also, Refs[4,6,27,28,  ||I), a SRCC method accounting for the effect of quadruple

and [40]). In these approaches, the quadruply and/or triplyexcitations, termed CCDQhas been suggested, and the ex-
excited cluster amplitudes are approximated via many-bodylicit CCDQ' equations derived53]. Further theoretical
perturbation theoryMBPT) in terms of lower-ordeff; and  analysis of CCDQ equations has shown that whenever
T, clusters and thus need not be stored. This leads to SUPUHF provides exacl, components(as it does, for ex-
stantial savings in computational costsf. Ref. [40], and  ample, in the fully correlated limit of cyclic polyengs6]),
references therejneven though these may still be excessivethe corrections due to thE, clusters cancel certain nonlinear
when larger systems are considered. Moreover, even wheflagrams of CCD theory, so that CCD@ethod reduces in
computationally feasible, the perturbative CC approaches arngjs case to one of the approximate coupled-gAiEP) or
often limited to near equilibrium geometries. For example,approximate CCD(ACCD) approacheg57—60, in which
when computing potential energy surfad€¥3 of simple  only those}(T,)? diagrams that can be factorized over one
diatomics, such as HF Oer the perturbative CC methods or more hole |ine$diagrams 4 and 5in F|g 1 of RE{S?] or
yield incorrect shapes of PES at large internuclear distancegl) and (e) in Fig. 4 of Ref.[22]] are retained53]. This led
(cf., e.g., Refs[37], [47], and[48]). to the formulation of a slightly modified approach, termed
Replacing the restricted Hartree-Fo@kHF) reference by  ACPQ (approximate coupled-pair theory with quadruples
its unrestricted UHF) analog may improve the results, but which is identical to ACP-45 method of Ref&7] and[58]
the corresponding wave functions are spin contaminated angk ACCD method of Ref[60] up to a numerical factor of 9
the computational costs of such CC-UHF calculations subin the nonlinear diagram &ig. 1 of Ref.[57]) when pro-
stantially increase due to the fact that we must use twice ggcted onto the so-called triplet-coupled biexcited stéses
many moleculafspin orbitals than in CC-RHF calculations Sec. 1). This simple formulation of the ACPQ approach
(cf., e.g., Ref.[47]). In general, when the configurational (hereafter referred to as the ACCBnethod was possible
quasidegeneracy49] (or nondynamical correlatiorsets in,  thanks to the orthogonally spin-adapté@dSA) formulation
the connected quadruply excited clusters are no longer ne@f the SRCC theory22,41—44. Other possible cancellations
ligible relative to their disconnectelfT,)? counterparts, and  of nonlinear diagrams in the fully correlated limit of cyclic
it becomes difficult to balance the effect of larig and T, polyene model were analyzed in RE56].
contributions(cf., e.g., Refs[23,24,31,4Q and[50]). In se- The original CCDQ method[53] itself has never been
vere cases of quasidegeneracy, such as those found in cycligplemented and tested. However, the ACQbethod and
polyenes in the strongly correlated limit, where orbital andits ACCSD counterpart have been implemented and proved
configurational degeneracies are heavily mi{@®@], and  highly successful in a number of modéi3,24,52,59as well
where T, components are largé51], the conventional as actual[24,48 applications, eliminating the singular be-
CCSD, or even CCSDT approaches, completely break dowRavior of CCSD theory in the strongly correlated regime of
(in fact become singulaf23,52. cyclic polyene model and improving in most cases the
An alternative category of SRCC approaches, which exCC(S)D results. The ACCD and ACCSD approaches,
ploits easily available wave functions of non-CC origin to when applied in conjunction with perturbative estimates of
estimate the contribution frofi, (and, if possiblelTs) clus-  triply and/or singly excited clusterffACCD’ +ST(ACCD')
ters, was initiated by Paldus,iZ2k, and Takahashi in Ref. = ACPQ+ST(ACPQ or ACCD'[ST],
[53]. In this particular case, the projected UFFFUHP) wave =~ ACCSD'+T(ACCSD') or ACCSD|T], and ACCSDT
function, which has a relatively simple yet sufficiently rich = ACPTQ method$23]}, proved successful as well, provid-
structure, was used to provide information aboutThelus-  ing a reasonable estimate of the effecflgfclusters in non-
ter components. The motivation for this choice was the factlegenerate and quasidegenerate ca$28,24. The
that for the Pariser-Parr-PoplEPP model Hamiltonians the ACCD’'[ST] or ACCSD[T] approaches were particularly
(PPUHF method often yields the exact energy in the fully useful in cases where the conventional CCD and CCSD
correlated limit(i.e., when the resonance integrd—~0).  methods fail due to the neglect @f, clusters[23]. In these
Specifically, for cyclic polyenes (H with a nondegenerate difficult cases, the ACCDor ACCSD methods were the
ground stateN=4v+2, v=1,2,..., the CCD(CC with  only CC procedures that enabled us to calculate pair-cluster
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components that were in turn used to estimateTtheluster The resultingab initio method, designated as CCSDQ
contributions using the MBPT-like expressioizs]. and its perturbative version corrected for triexcited clusters,
In a recent study, Kucharski, Balkovand Bartlettf40]  referred to as CCSD@ T(CCSDQ) or CCSDQ([T], are ap-
questioned the ability of ACCDor ACCSD approaches to Plied to model systems in which the amount of configura-
estimate the effect of , cluster contributions. They showed tional degeneracy can be continuously varied by changing a
[40] that in some quasidegenerate systems the inclusion ¢ingle parameter describing their geometries. These include
T, clusters in the CCSD formalism changes the CCSD enkl4 Systems with two different geometriéthe so-called H4
ergy in the opposite direction than suggested by ACop and P4 models of Jankowski and Pald&3]), using both
ACCSD calculationgi.e., contrary to ACCS)D’ results, the  Minimum basis se(MBS) [57] and double zeta plus polar-
“true” T, contributions worsen the CCSD results, and ondZation basis selDZP) [59], as well as the MBS H8 model of
needsT, terms, which are absent in AC§D’ theories, to  Jankowski, Meissner, and Wasilews}66], composed of
compensate the energy changes dug b A similar situa- eight hydrogen atoms. The I.atter model mvolves_ a Iarger
tion was found in the corresponding semiempirical four-Number of electrons, has a sizable quadruply excited mani-
electron models by Planelles, Paldus, and[%4,61 who fold anql up to eightfold gxmtaﬂon; in the full configuration
used the valence bonVB) corrected CC theory62], in Interaction (FCI) expansion. We investigate the DZP H4_
which theT; and T, clusters are extracted from simple VB Model, since the same model was used by Kucharski,
wave functions and subsequently used to correct the standaRflkova and Bartlett in their critical study40]. To assess
CCSD method. However, this study also clearly showed thaf’® duality of T, clusters resulting from CCSDQand
the T; and T, contributions to the energy may be highly ACCSD calculations, we compare the CCSD@nd
nonadditive, particularly in quasidegenerate situations wher€CSDQ[T] results with ACCSD and ACCSDI[T] ones, as
the relative importance of these clusters is high, also, wel[ as with limited C] and CC methods involving quadruple
Refs.[23] and [31]). Furthermore, in spite of an excellent €xcitations. The quality of CCSD@nd CCSDQ[T] results
performance of ACCSBtype methods in a number of in- 1S also assessed by comparing them with the exact FCI data.
stanceg23,24,48,52,56—60and of a convincing analysis in _ 1hroughout the present paper we use the OSA formula-
the cyclic polyene casgs3] which indicates the ability of fion of SRCC method22,41-44, both in theoretical devel-
these approaches to account for fhg clusters, we must opments and programming, which enables substantial com-

keep in mind that the basic assumptions for their validityPutational memory and time savingé7] (cf., also, Ref. -
may not always hold. We cannot expect, for example, that68)). This formulation has the advantage of using the mini-
simple PUHF wave function will always be a good source ofMum number of cluster amplitudes, in addition to an obvious
T, clusters or that the PUHF wave function will always give @PPeal of exploiting the spin symmetry of the Hamiltonian
good estimates of boff, andT, components, as assumed in and a direct connection with the correspondmg spln—adaptgd
the derivation of ACCD formalism [53]. While the first C_l approaches. We use the OSA_verS|on of CC thgory in
problem can be resolved by examining other source®of diagrammatic form based on graphical methods of spin alge-

and T, contributions(cf. the VB corrected CC resuilts men- Pras(69].

tioned above54,61,62), the latter problem requires an ex- V€ organize the paper as follows. Section Il contains a
ploration of the original CCDQapproach 53], or its more brief outline of the SRCC approach, with emphasis on the

accurate CCSDQanalog(see Sec. I, in order to find out CCSDTQ method and its various approximate versions of

to what extent the assumptions of AGIID’ approximations POth standard and nonstandard tyfies, e.g., Ref.[40).
are satisfied in realistic calculations. This should enable us t§n€ Structure of UHF and PUHF wave functions in relation-
better understand the behavior of ASID'-type ap- ship to Thoulesstheorem, stability of HF solutions, and the
proaches and the reasons why in some cases the®0C role of various cluster components is analyzed in Sec. Ill. In

theory gives the results that seem to contradict the results otec: IV we present basic _equations.of th? OSA CCEDQ
more accurate CC calculations with explicit inclusion ofqua-""ppro"’lCh anq discuss their connection W'th the ACCSD
druply excited clusterf4q]. method. Section V then describes the details of computer

We thus decided to examine the cluster structure of PUHr'gmpIementation of CCSDQand CCSDQT] methods, and

solutions and to implement and test (IDQ’ methods at  >€C- V! presents the results of our study of P4, H4, and H8
theab initio level, using the same type of exponential expan_systems._Secn_on .V” summarizes the.resu!ts, \./vh|le. the dia-
sions for UHF and PUHF wave functiorisf. Thouless gramma}tlc derivation of CCSDQequations is given in the
theorem for single-determinantal wave functig6s,64) as  APpPendix.

utilized in the original study{53]. In general, we have to

c_onsidfar all possible contributi(_)ns_appea_ring in th_ese expany gNGLE-REFERENCE COUPLED-CLUSTER THEORY

sions, including those that vanish in cyclic polyenic case. In

particular, we explore the role of monoexcited clusters defin- To introduce CCSDQand CCSDQT] approaches and
ing these exponential expansions in relationship with thelerive the required equations, we briefly review the basic
problem of triplet instability of HF solutionécf., e.g., Ref. SRCC formalism. We divide the existing CC approaches into
[64]), using the symbolic manipulation languagerLE [65]  standard and nonstandard ones.

and double zetéDZ) molecular hydrogen model. After de-
riving the pertinent equations, we describe our general-
purposeFORTRAN program performing the cluster analysis of
PUHF wave functions and correcting the CCSD equations The SRCC theory generates the exact eigenfunction
for T, cluster contributions obtained by such an analysis. |¥,) of the many-electron HamiltoniaH through action of

A. Standard approaches
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an exponential operat@’ on a suitable independent particle the referencd®,) involves only doubly occupied orbitals,

model reference configuratidd,),

[Wo)=eT|Dg), (Do|Wo)=(Do|Po)=1. D

For anN-electron system, the cluster operalors given by
a sum

N
T=> T, )
j=1

and thej-body cluster componenis; are expanded in terms
of suitably chosen set of excitation operatﬁ)‘,é,) generating

. . J
the j-fold excited configurationisﬂbl(:)>=Gl(;)|<1)o>,
T,—=Z tlG{. 3)
J
The coefficients(!) are referred to as cluster amplitudes.

The cluster operatol generates all possible fully con-
nected [5,7] components of/¥,) when acting on|®).

There is a simple relationship between the excitation oper

tors C; defining CI expansion for the wave functigw o),

N
[¥o)=(1+C)|@g), C=2, Cj,

4)

and the cluster componernts (see, e.g., Ref§4-7)),
C1=Ty, 5
Co=To+3(T1)?% (6)
Ca=Ta+ T To+5(Ty)?, (7
Ca=Ts+3(T)?+ T T+ 3(T)?To+5(TD*  (8)

(for general relationship, cf., e.g., Refg] and[8]).

and the one- and two-body components of the spin-
independent Hamiltoniatdy, designated a&, and Vy,
respectively, are defined in terms of one- and two-electron
integrals(k|z|k’) and(kl|v|k’l") as follows:

Fn=2 (KIf|k")N[Ey], (12
KK/
VN:%k;k;V (kI [K"T")N[E Ey -1, (13

where, for simplicity, we dropped the interaction operator
v from (kl|v|k’l") and
n
(KIflky=(Kizlk')+ 3 (2(kal[k'a)~ (kal ak')).
(14

Here,N[ ] denotes the normal product relative to the Fermi
vacuum|®,) andE,,, are the orbital unitary group genera-

dors[71],

1/2

Ekk’ = :2_1/2 Xlo.xkro. y (15)

with XEU (X«,) designating the usual Fermion creati@m-
nihilation) operators associated with a given orthonormal
spin-orbital basislka)=|k)®|3,0), o==3. The orbitals
occupied inj®g) (holes are labeled by, b, a’, b’, etc.,
and the unoccupied onégsarticleg byr, s, r', s, etc. The
indicesk,l,k’,I" run over all(occupied and unoccupigdr-
bitals. Choosing the RHF solution fp,) makes the opera-
tor f diagonal,

(K[f[k")= S &, (16)

with ¥ representing the RHF orbital energies. Note that the

The general SRCC equations for the wave functionenergyAE (correlation energy whepb,) is the RHF refer-

| W) (as represented by the cluster operdtprand for the
corresponding energl then take the following fornp5,7]:

(Dol(GI") (HneN | Po)=0  (j=1.2,....N), (9)

(Pol(HneT)c| o) =AE=E—(Po|H|Po),  (10)

ence involves at most pair clusters,,

AE=(Do|[Hn(T1+ T2+ 3T ]| Do) 17
In standardSRCC approaches, expansi@ is truncated at
a suitable(preferably low excitation level,j =] and

equations projected on higher thap,-fold excited configu-

where the subscrip€ designates the connected part of arations are eliminated from systef@). For example, equa-

given expression and

Hy=H—(Do|H|®g)=Fn+Vy (11

tions of the standard CCSDTQ approdch Refs.[27-31)),
where

designates the normal-product form of the Hamiltonian

[5,7,70. In the closed-shell case considered hexe=2n),

<‘D0|(Gﬁ))T[HN(1+T1+ Tot3Ti+Ta+ TiTo+5T5)]c|®o) =0,
(Dol (GID)THN(L AT+ Tot 3 T3+ Tat TyTot §To+ Tut TyTot+ 315+ 3TiTo+ 23T Ic| ) =0,

<<I>0|(sz’))T[HN(T2+T3+T1T2+T4+ TiTat3Tot 3T ot TyTat ToTat 5T o+ 3T iT5+5TiTo)]c|®o)=0,

T=TCOPT=T, + T+ T3+ Ty, (18)
take the form
(19
(20
(21)
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(Dol (GID) THN(Tat Tyt TyTat 3To+ TyTyt ToTat 3TiTot 3T1T5+ ToTat 5(Ts)?

F T+ Ty T T+ T+ T3 o+ 5 ToTol | @) =0. (22)

In nondegenerate situations, it is sufficient to trunchtat ~ where G} (I'}) and GL(i) [['5;(i)], i=0,1, designate the
the doubly excited level OSA monoexcited and biexcited operators, which generate
ccsp normalized (unnormalizeg monoexcited and particle-
T=T =T+ Ts. (23 particle—hole-hole coupled biexcited singlet configurations

However, when quasidegeneracy becomes apprediablé with respect to®o) (see, e.g., Refd22], [44], and[67)),
does, for example, in metalliclike or extended systemsf""f]d<r|t1|a> ((r|m|a)) and (rs|t;|ab); ((rs|,|ab);) are
[23 4’9 51,52 or ' in  highly distorted  systems the corresponding normalizédnnormalized cluster ampli-
[25:26:28:31,40,47,48,50,57,59]§6he basic assumption of tudes. These operators represent special cases of general

CCD and CCSD approaches, which we symbolically expresg)fgitation operators Gi(SMg  [Iy(SMg] and
as GL(San,S®S,Mg) [T51(Sab,S®%;S,Mg)], which generate

OSA singlet §=0) or triplet (S=1) monoexcited configu-
T,<3(T,)?, (24)  rations and singlet=0), triplet (S=1) or quintet §=2)

) doubly excited configurations, when acting [dry), namely,
no longer applies and, clusters must be accounted for.

Otherwise the CCSD or CCSDT approaches may suffer a

singular behaviof23,53. G,=T,=G4(0,0, (27
The standard CCSD equatiofi&gs. (19) and (20) with
T3;=T,=0] assume a particularly transparent form when we 'S (1) = NISTS(1) = GIS(i.i:0,0)
use the OSA formalism of Ref$22] and[41-44. In this ab ab™ ab\l/ ™ Mabits T Heh
caseT, andT, take the form22,24,42—-44,6) NS =[(1+ 8ap) (1+ 512 (28)
— r__ r
Tl_aZ, <r|t1|a>Ga—§ (rlmla)l, 29 Here, N} is the normalization factor that also relates

(rs|t,|ab); and{rs|r,|ab); cluster amplitudes,

1
T2=a2b EO (rs|ty]ab)GL(i)
r<s

(rs|tolab)i=Ngi(rs| 5| ab); . (29
1
H r r rs rs
_1 rs|m|aby IS (i), 26 The general multiplet operato@;, [I';] and G, [I';;] are
Aa,l%,s =0 (rs|ralab)il"ai(1) (26) defined as follows$41]:

GLSM9=TL(SM9=([SI2"?* 3 (SMs 30|30 )X],Xar,, (30)

04,0

GL(Sap, S S Mo =NE TS (Sa0, 5% S M) =NS([SI[SS) Y2 X > . (3 04,5 0p|SapTan)(3 0,3 0°|S°0")

ros
0q,0p,0 ,0° Tgp,0

X(SMs,Sapap| S0")X]  Xag XL, Xbor, (3D)

where (jimy,j,m,/jm) designates the standard SU(2) differ from those of Ref.[41] by the phase factor
Clebsch-Gordan coefficient arfK]=2X+1 for any spin  (—1)Sab"1,
guantum numbeK. Notice that in Eq(31) we reversed the With the above definitions, the OSA CCSD equations can

order of coupling for holes in comparison to Ré#1], so  be written in the following symbolic forni44]:
that the biexcited configurations

rs s® 3
. b;SMS>S =Gap(Sap,. S S Mg)| Do) (32 nZO An(GH=0, (33)
ab -
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4 standardtype, which do not store or iterafig; and T, clus-
E A [GE i)]=0 (i=0,1), (34)  ters. Another useful alternative is to employ the concept of
n=0 multi-dimensional reference space and reduce the number of

triples and quadruples rather than to approximate them as in

nonstandard SRCC methods. Such proced(thesso-called

SSCC formalism of Refd.14], [31], and[35-37) will not

An(GlT):<CDO|G|T(HNCr,1)C|q)O> [G=G.,G(i)], be discussed in this paper as they no longer represent pure
(35) SRCC approach.

where G?=(G)" and G2(i)=[G5(i)]". The individual
contributions

are defined in terms of Cl-like excitation operatdZs,, B. Nonstandard approaches. Decoupling the CCSDTQ
n=0—4, where[cf. Egs.(5)—(8)] equations
Ci=1, (36) We define thenonstandardCC methods as those SRCC
approaches in which clusters higher than pair clusters, in
'—C. (i= particularT; and T,, are no longer treated as independent
Ci=C; (j=12, (37 ; ; X .
variables whose values are determined simultaneously with
CL=T T+ (T3, (39) T, 'and T, by solving QC equations. Instead, We_estimate
their values from some independent source or using MBPT
Cl=1(Tp)2+ 1(T) 2T+ (T4 (39) arguments, and accordingly correct the standard CCSD equa-

tions (CCSDT equations if only, is being approximated
Explicit expressions for An(G¥, n=0-3, and N the following we concentrate on the corrections to the
ALG2(i)], i=0,1,n=0—4, in terms of cluster amplitudes OSA CCSD equations of Ref44] [cf. Eqs.(33) and (34)].
(r|m|a) and(rs|72|ab), and one- and two-electron molecu- __Rewriting the first two equations of the complete
lar integrals(k|f|k’) and(kI||k’l’ ) were given in Ref[44]. CCSDT% system, E((qzs)(lg)rand (20), in the OSA form
Every termA,(G?) and A,[G2%(i)] reduces to a sum of [WhenGi;’=GzandG'=G a(i)], we obtain[cf. Eqs.(33)
several diagrammatic contrlbutlons which are evaluated usand (34)]
ing the diagrammatic approach based on the graphical meth- 3
ods of spin algebraf22,41-44. For example the}(T,)? E A(GY)+04(GY)=0 (41)
term of the OSA CCD theory\ {9 G2%(i)], splits into five = " sl =8
contributions corresponding to five distinct Goldstone-
Hugenholtz diagramsésee Fig. 1 of Ref[57] or Fig. 4 of 4

Ref.[22]), 2 AG[GRA(I)]+O[GRA(1)]+O,[GAi)]+ 0, Gi)]
5
AGGE(0) 1= 3ol (HNTH)clPo) = 3 ALIGE()], —0 (=04, “2
(400  Where
where A{[G2%(i)] designates the contribution from the — ©3(G])=(®o|G](HNTa)c|®Po) [Gi=G},GLiy(i)],
kth diagram. In the following, we label these diagrams in the (43
same way as in Ref22] or [57]. ab ab
As already mentioned, in degenerate cases we must go O4[GFS(1)]=(Do| G () (HNT4)c| Do), (44)
beyond the CCSD approximation and account forthend ) )
T, clusters. Unfortunately, CCSDT and CCSDTQ involve a 014G ]=(Po|Gi(1)(HNT1Ta)c|Po)  (45)

large number of triply and quadruply excited cluster ampli-

tudes and are computationally very demandinff Eqs. are the corrections to CCSD equations involviig and
(19—(22)]. A spin-free formulation helps to reduce compu- T4. OnceT; and T, are available, we can calculate correc-
tational costg20,21,27,28 but special precautions must be tions ©, Egs.(43)—(45), and solve the resulting CCSD-like
taken to eliminate linear dependencies among spin-free triexsystem, Eqs(41) and(42), for T, and T, (cf. Ref.[62]). In
cited and tetraexcited cluster amplitud@$, since otherwise particular, using the exadt; and T, amplitudes when cal-
CCSDT and CCSDTQ equations may become ill-culating these corrections, the exdgt and T, clusters re-
conditioned and the iterative procedures used to solve thesult, and thus the exact energgf. Eq. (17)]. Clearly, the
may diverge[28]. The above difficulty can be avoided by exactT; and T, components are only available if we know
switching to the OSA formulation that employs the mini- the FCI wave function, so that in practical exploitations of
mum number of amplitudes, but its implementation for thethis idea we must rely on approximations B and T, in

full CCSDT or CCSDTQ method is rather complét. Ref.  order to decouple the CCSD-like system, E@d) and(42),
[43]). In any case, the standard CCSDT and CCSDTQ methfrom the rest of the CCSDTQ chain.

ods are computationally too demanding to be used for larger Basically, there are two options available to us. We can
systems and, at least for the time being, they will remaireither use the MBPT analysis of CC equations to relfe
most useful in benchmark calculations, particularly in casesnd T, clusters with their lower-ordeT,; and T, counter-
where the exact FCI calculations are difficult to perform.parts, or utilize some readily available wave function of
This leaves room for approximate CC approacheswafi- non-CC type to estimaf€; andT, contributions. The former
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approach is widely exploited and was briefly reviewed in theuse them to calculate the required correctiénsEgs.(43)—
Introduction. For example, in the iterative CCSDT-1 or (45), in order to decouple Eq¢41) and(42) from the rest of

CCSDT-1a approaches of R¢L5], the corrections to CCSD

equations due td; clusters,g(GlT), Eq. (43), modify the
linear T, terms by expressions involving{®Vy, where
Rgp) designates the-body part of the reduced resolvent,
QP 3 |OPX @)
-Fv ~Fu

Ry = (46)

This gives[22]
O5CSPTHG) = (Do GIVIRE VT, Do)

[G1=Ga.Ga(i)], (47)
so that the linear term
A2 dG)=(Po|G{TVN(T2+ Ta)]c| Do)
=(o|GIWNTo|®g)  [Gy=GL,GL(i)],
(48)
where

Wy=Vy+VyREVy (49)

represents an “effective interaction” operator, which ac-

counts for T3 components. In the noniterative CCHD

the CC chain.

Approaches of this kind constitute the second category of
nonstandard methods, since they do not result from general
CC theory by conventional truncation at a given excitation
level. The main characteristic of these approaches, consid-
ered by Paldus, 2ek, and Takahash&3], is the fact that the
three- and four-body cluster components are determied
fore initiating the CC iterative procedure. Recall that in the
above-mentioned perturbative CC approaches, the correc-
tions due toT; andT, are calculatedluring or afterthe CC
iterative procedure.

As may be expected, the effectiveness of nonstandard
methods will strongly depend on the initial choice of the
wave function used to evaluaie; and T, components. A
compromise must be found between the accuracy and the
cost of the calculated; and/orT, amplitudes, since other-
wise we could end up with an impractical method, which is
inapplicable to larger systems.

It was suggested by Planelles and co-worké$,61,63
that very good results may be obtained by extractingTthe
and T, components from a VB wave function involving a
small number of covaleriaind, if necessary, ionistructures
that are chosen to reasonably describe a given quasidegener-
ate situation, for example, a given bond breaking or bond
formation process. Another suggestion was made by Stolarc-
zyk [72], who proposed to use the complete active space

method we evaluate the triple-excitation contribution accordSelf-consistent field CASSCH wave function. This may
ing to the formula that is reminiscent of the well-known have a number of advantages, since the CASSCF method

MBPT(4) energy expression, hamely,

AET(CESD= (0| (TFSSD TV RV TS D), (50)

where T5<SP
CCSOT] energy is defined as a sum

ECCS[{T] — ECCSD+ A ET(CCSQ_ (51)

is the CCSDT, cluster component. The total

with a proper choice of the active space correctly describes
all quasidegenerate situations involving the dissociation of
the system into open-shell fragments. Simultaneously, the
CASSCF method uses orthogonal orbitals, which are much
easier to handle than nonorthogonal orbitals of VB ap-
proaches. Finally, CASSCF wave functions are currently
easily available thanks to a number of standard electronic
structure packages, such @MESS [73], HONDO [74],
GAUSSIAN 92 [75], or MOLCAS [76]. The only open problem

All such perturbative approaches provide useful informatiorwith StolarczyKs suggestion is the proposed computational
about T3 and T, clusters at a relatively small cost when strategy(even though no actual implementation nor explicit
compared to CCSDT or CCSDTQ methods. However, theséormalism was presented in Rgi72]). He suggests using
approaches are likely to fail in quasidegenerate situations fasne of the CASSCF configuratioripresumably, the domi-
a number of reasons. When configurational quasidegeneracyant oné as a reference. In such a case, his formalism will

becomes appreciable, boliy and T, contributions may be

represent an approximation to the SSCC theory developed

large and the assumption of their additivity as well as theearlier by Piecuch, Oliphant, and Adamowi{dl], in which

MBPT arguments may no longer holdcf. Refs.

a few internal(all-active triexcited and tetraexcited cluster

[23,24,31,40,50). In severe cases of quasidegeneracy, suclamplitudes are fixed to their CASSCF values instead of be-
as those found in cyclic polyene PPP model, both the staring iterated as suggested in Rgf4] (in fact, SSCC calcu-
dard CCSD method and the iterative CCSDT-1 approachations using CASSCF reference were performed in Ref.

completely break down and become sing(28]. Thus, the

[36]). It might be worthwhile to contemplate another compu-

CC(S)D amplitudes are no longer available to calculate en+tational strategy, in which a transformation of the CASSCF
ergy corrections, Eq50), and another method of accounting wave function to the RHF molecular orbitdMO) basis is

for T and T, clusters must be found.

carried out prior to its cluster analysis. Clearly, this will lead

An alternative to the MBPT arguments, which often noto quite rich triexcitation and tetraexcitation manifolds even

longer apply in quasidegenerate situations, is to exploit avhen small active space is used in CASSCF calculations.
suitable non-CC wave function as a source of informatiorBoth strategies are now investigated by us and the results
about theT; and T, clusters. By performing cluster analysis will be presented elsewhef&7].

of such a wave function we are able, at least in principle, to In fact, the aforementioned distinction between the

evaluate approximate values of triples and quadruples an@ASSCF corrected SRCCSD theory using the RHF refer-
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ence and its variant using the dominant CASSCF configuraas a CC referencéeven though there may exist broken-
tion as a reference is reminiscent, to some degree, of theymmmetry RHF solutions with lower energy in a singlet
distinction between the CCSD approach employing RHF orunstable regiorf64,79, we are not going to use them as
bitals, which we subsequently correct fb5 components by |®); cf., e.g., Ref[82]), the T, components resulting from
analyzing the cluster structure of the PUHF wave functionthe cluster analysis of the PUHF wave function as well as the
and the standard spin-orbital CCSD approach using the UHEorresponding correctior®,[ G2%(i)], Eq. (44), will be au-
reference. No expliciT, contributions(relative to the UHF  tomatically symmetry adapted. We will thus be able to fully
vacuum are present in the latter case, whereas quite a rickxploit both spin and point-group symmetries in
T, manifold (relative to the RHF referengés generated in  T,-corrected CCSDQcalculations(cf. Sec. \J, making the
the former case. Th&,-corrected SRCCSD theory, in which CCSDQ@ method no more expensive than the standard OSA
T, clusters are extracted from the PUHF wave function, iSCCSD approach.

discussed next. Although we employ PUHF wave functions throughout
this paper, we wish to emphasize that the same procedure
IIl. CLUSTER STRUCTURE OF THE PUHF WAVE would apply to the projected Hartree-FoRHF) methods
FUNCTION [83], such as the alternant molecular orbitaMO) approach

[84]. In both cases, the broken-symmetry single-

The UHF wave functions of the DOD@lifferent orbitals ~ determinantal wave function of the DODS type and varia-
for different sping type are currently available even for large tional principle are employed. However, in the PHF ap-
molecular SystemS, and it is well known that the UHF ap_pl’oaCheS, the Single'determinantal wave function is first
proach or its projected PUHF version correctly describe thdrojected onto the appropriate subspace of the spin space
dissociation of many molecular systems into the open-shefisinglet for the ground-state closed-shell probldrefore the
fragments. In the strongly correlated regime of the PPP cyactual orbital optimization is carried out. The PUHF wave
clic polyene model, where the standard CCSD theory usindunction exploited in this paper is obtained by first perform-
the RHF reference breaks dov[/zs,sz, the PUHF method N9 the orbital Optimization USing the DODS wave function
provides exact pair clusters, and thus the exact energydHF approachfollowed by the projection of the resulting
[56,78. This indicates that the PUHF wave function may UHF solution onto the appropriate spin subspace. This dis-
serve as a reliable source of information about Theclus- tinction is immaterial for the cluster analysis performed be-
ters. low, and the formal results presented in this paper would be

Of course, instead of extracting, cluster components the same for any broken-symmetry solution of DODS or
from the PUHF wave functiofCCSDQ approach, we can  €ven RHF typeincluding UHF, PHF, and AMO wave func-
S|mp|y use the UHF solution as a reference in the spinllons or closed-shell solutions found for SIf_]gIet UnSt-able
orbital CCSD theory(CCSD-UHF methol Although the [64,79 RHF cases; for a general classification of various
usefulness of the latter approach lies primarily in its simplic-types of UHF solutions, see Ref82] and[85]). However,
ity and generality, we find the CCSDQrocedure worth in actual implementation of the CCSD@gthod, we use the
exploring for the following reasons. First of all, in the triplet ground-state UHF or PUHF wave function as a source of
unstable region of RHIF64,79,8Q, the UHF wave function T4 Cluster component&f. Sec. V. _ _
is spin contaminated and the level of spin contamination may 19 analyze the cluster structure of a single-determinantal
remain relatively high at the correlated CCSD-UHF level, DODS (UHF, PHF, AMO or broken space symmetry RHF
particularly for systems involving multiple bond breaking, Wave functions, it is useful to recall Thouléstheorem
such as M [47,81. As a result, the transition between the [63,64], which states that any single-determinantal wave
triplet stable and triplet unstable regions may manifest itselfunction |®), having a nonzero overlap with the reference
by a nonanalytic behavior of CC and MBPT PESin spite  configuration|®,), can be written in the form
of relatively good CCSD-UHF results in the bond-breaking
region[47,81. With T, cluster components extracted from
the PUHF wave function, we should be able to describe
bond-breaking phenomena without introducing the spin con-
tamination of the CCSD-UHF approach. Second, CCSDwhere U’f is @ monoexcitation operator. In our ca$é),§>
UHF uses twice as manspin) orbitals as CCSD-RHF or represents the ground-state UHF, PHF, or AMO wave func-
CCSDQ, and does not allow for a number of simplifications tion (X=UHF, PHF, or AMO), or broken-symmetry RHF
in the CC formalism that are normally possible due to thesolution, which we will use as a source © components,
presence of spin and spatial symmetries of the systétF  and|®,) is the standard closed-shell, symmetry-adapted ref-
wave functions have not only broken spin symmetry, buterence configuratiofusually, the ground-state RHF solution,
often break the spatial symmetry of the Hamiltonian as)well the same one as used later in CC calculajioSsnce we
Consequently, t_he CCSD-UHF method is computationallyassume|q>§> and |®,) to be eigenfunctions ofS, with
more demanding than OSA CCSD-RHF, or thep =0, the operatot)} takes the form
T,-corrected CCSDQmethod.

In fact, projection of the closed-shell ground-state UHF
wave function onto the singlet subspace automatically |;x_ (o) t _ (a) t
projects out components that are not totally symmetric with ! ; E (rolui”aoyX; Xa,=(rajuy”|ae) X Xa,

|D%)=el1|dy), (52)

respect to the spatial symmetry group of the Hamiltonian. 8 ‘
Thus, if we use the lowest symmetry-adapted RHF solution +(rBlui”|aB)X;gXap, (53
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where a=13,3) (8=13,—3)) designates the usual spin-up rich enough to provide information about the relative impor-
(spin-down) spin function. We can thus expre@éf interms  tance ofU’l((S,O) components, yet simple enough to enable a
of the OSA singlet §=0) and triplet §=1) monoexcitation graphical visualization of various components of the UHF

operatorsG;(S,0), Eq.(30), obtaining wave function. In the simpler MBS Hmodel, the singlet
componemu)l((o,O) vanishes.
UY=U%(0,0+U%(1,0), (54 Let us designate the four RHF molecular orbitals
(MQ'’s) of our DZ H, model by ¢,
where (p1=10y,dy=10y,¢3=204,$4=20,), and their UHF

counterparts corresponding to spin-up and spin-down spin
UX(S,0=> (rlujja)s GL(S,00 (S=0,1) (55 functions by and ¢, respectively (=1—4). The
ar coefficients ¢ relating the occupied UHF MO'sp{"*

designate the singletS&0) and triplet §=1) components (0=a.f) Wlth RHF MO's &,

of UF and(r|u,|a)s the corresponding amplitudes. Since the

operatorsU5(0,0) andU5(1,0) mutually commute, we can Lf,?F?Z i, (59
write =t
X X then satisfy the relations
|®g)=eY10eY1(10 D). (56)
ci¥=cP=c; (=13, (60)
We can also write
cf=—c{f'=¢c; (j=24), (61)
UI(S0)= 2 (rlla)s [XigXast (- 1)XiXaal, (87 or, equivalently,
where UHF_C1¢1+02¢2+03¢3+C4¢41 (62)
UHF _ _
(rllays=2" Y |uslas= 3L(rBlu|ag) Lo =C1dimCbe T CodamCude (09

As a consequence, the singlet and triplet components of the
monoexcitation operatotJ{"", relating the renormalized

Clearly, the numerical values of the OSA amphtudesground -state  UHF  solution|®g"")=c; 2|47 a iy Bl
(r||a)s or (r|u;|a)s depend on the specific form ¢fb))  Wwith the RHF configurationdo)=|$,a ¢, 4| via Eq. (56)
employed. assume a particularly simple form, namely,

_Prlor t_o cIust(_ar analyz_|nq<I>0>, we prOJeqt out higher UUHF(O 0=(3|uy|1) G 0 0, (64)
spin multiplets(triplets, quintets, etg.that are irrelevant for
the ground-state singlet problem. This must be done with UUHF(l 0=(2|uy|1), 1(1 0 +(4|uy|1), G 1 0,

+(—1)¥ralui”|aa)]. (58

care, since some terms contain both the singlet and triplet (65)
components 01‘U>1<. The role of these components is dis-
cussed next. where

The initial formulation of CCDQ and ACCD methods
[53] neglected the singlet componen{(0,0), which is ab- (3lusl1)o=2es /ey, (66)
sent in the UHF solution for PPP cyclic polyene models that __
were examined in our earlier study of ACCEheory[52]. (@lugf1)1==2c, /ey, (67)
As will be seen below, it is the triplet componeldq(l,O) (4luy|1),= — \/504/01. (69)

that is responsible for the energy lowering whenever the

RHF solution is triplet unstable, so it was reasonable to asNotice that the operatoUUHF(O 0) is totally symmetric
sume thatU5(0,0)=0. Even in other minimum basis set (Zg), while its triplet analogu{"f(1,0) transforms accord-
models, or models having a sufficiently high symmetry, theing to the3, representation ob.,,. This indicates that the
assumptiorlJ} (0 0)=0 is justified(cf. Sec. V). In general, decomposition ofJ}{"F into spin-adapted singlet and triplet
however, theUl(O 0) component does not vanish and mustcomponents is equwalent to a splitting of the operator
be considered together with its triplet counterpart. This is theJ{"" into space-symmetry adapted and broken-symmetry
case in moskb initio applications. We thus consider both components. As a result, the exponential operators of Eg.
componentsUl(S 0) (S=0,1) in the cluster analysis of (56) that are associated with the individual cluster compo-
|DY). nentsU;"7(0,0) andu{"F(1,0) take the form

UHF
A. A simple example V17 (00=1+U7"7(0,0+3[UF"(0,0]?

We illustrate the role of bothy%(0,0) andu%(1,0) com- =1+(3Juy|1)o G3+3((3luy| 1)) G30),
ponents for a DZ model of the hydrogen molec(ééminat- (69)
ing the 2p polarization function from the DZP basis set of
Ref. [59]). The resulting two-electron—four-orbital model is and
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(l 0_ 1+ UUHF(l 0)+ [UUHF(l,O)]Z
=1+(2|uy|1); GE(1,00+(4]uy|1); G1(1,0— 3((2u4|1)1)? GI5(0)— 3((4|u1|1)1)? G1%(0)

\/—<2|U1|1>1 (4|ug|1); GZ} (70)

Equations(69) and (70) enable us to analyze the cluster structure of the UHF soIthdI#T'F% which now becomes
|DEHFy = U1 (096U L0] Do) ~[O(15 )+ (35| Do), (71)

where the operatorQ(lE ) and Q(3X)) acting on|®,) generate, respectively, the singlet and triplet components of
|(I)UHF>

Q(13g)|Po)=Ps_o|P5"")=|5""), (72
QCE))|Doy=Ps-1| 5™, (73
with Pg_g, representing the corresponding projection operators. In particular, we find that

Q2 5)=1+(3Jus|1)o G+ 3((3]usl1)0)? GFH(0)—3((2]us|1)1)? GZH0) - 3((4|uy|1),)? G1(0)

\/—<2|U1|1>1 (4luy|1); GT (74)

1
—=(2|uy|1); (3|uy|1)y G3%(0,1;1,0

V2

QG35 =(2]ug|1); GI(1,0+(4|uy|1), G1(1,0—

\/—<3|U1|1>0 (4lu;]1); G3%0,1;1,0. (75)

To prove Egs.(69—(75), we used general relationships of the UHF wave function, which in this case is fully de-

(cf. Refs.[41] and[53]) scribed by only three independent coefficie&u,|1)o,
(2|u4]1),, and(4|u,|1), or[cf. Egs.(66)—(68)] c,, c5, and
GL(0,0G}(0,0=3T'3(0,0;0,0 +(3/2T5(1,1;0,0, c, (assuming the UHF orbitals to be normalized, i.e.,

(76) ci=+1- 022— cgz— 042). This simple three-parameter descrip-
) 1prs ) tion enables us to analyze the relative importance of singlet
GH(LOGH(0,0=(1N2)TEH(1,1;1,0+ 5T 5(1,0:1,0 and triplet components {"F(0,0) andu{"(1,0) in detail.
—11"%(0,1;1,0, (77) To carry out this analysis, we used the symbolic manipu-
lation languagemAPLE [65] in conjunction with a simple
GL(1,0G(1,0= 1rrb(0 0;0,0 +[1/(24/3)]T'5,(1,1;0,0 interface(written by ourselves iFORTRAN), which allowed
us to access molecular integrals generatedsByESS [73],
+2/3r5(1,1;2,0, (78  sothat they could be read, if necessary, intm&LE session.

MAPLE formulas describing various energies, such as the
which follow from definitions of the OSA excitation opera- UHF energy

tors (30) and (31). Notice that the coefficients standing at

various excitation operators in Eq§4) and (75), which in EVHF=(d¢"F[H| D" ) /(D D™, (79
the exact(FCI) limit would be independent variables, are no

longer independent and reflect the particular cluster structurgs PUHF counterpart

EPURF= (W EUHAH W BV (WU AW EOHR = (o [Q (S ) TTHQCS )| Do) (D[ (S HTTQ (S ) Do), (80)

or energies associated with individual cluster componefts™(s,0), e.g.,

UUHF

E[UUHF(S,O)]:<CI)0|E[UgHF(S'O)]THeU?HF(S'O)|q)o>/<(1)o|e[U$HF(S’O)]T (SO|), (81)
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were calculated as Cl expectation values
E:E|’JCTH|JCJ/E||C||2 (H|J:<q)||H|CI)J>), W|th Cl Coef'
ficients C, expressed in terms of UHF MO coefficierts,

c3, andc, via Egs.(64)—(75). This was possible thanks to
the small dimension of the configuration spaces involi&d
for the singlet and 4 for the triplet The matrix elements
H,; between the OSA configurations were programmed us-
ing the formulas of Ref{41]. The UHF energy formula was
also programmed as a standard expression in terms of one-
electron density matrices, with the UHF orbitals expressed as
a linear combination of ground-state RHF MQfsst gener-
ated byGAaMmESS), Egs.(62) and (63).

With the help ofwAPLE we were able to explore the ana-
lytical properties of the UHF energy surfaB&"F, Eq.(79),
regarded as a function of three variablese (—1,1),
i=2,3,4, in the region where the RHF solution is triplet un-

(b)
stable. For the DZ Fimodel with the internuclear separation o3
R=3.0 a.u.(the RHF solution becomes triplet unstable for 02!
R>2.25 a.u), we found that EY"F(c,,c;3,c,) has a ;
global minimum of —1.015761 hartree at two local 0.
minima (C,,C3,C4)=(0.467238,0.020604;0.038059) and
(c,,c3,€4) =(—0.467238,0.020604,0.038059) [assuming ON
the phase convention in whiah is a positive square root of
(1—c2—c2—c?)], and a saddle point of 0.983 418 hartree o.
at (c,,c3,¢4)=(0,0,0). Clearly, the global minimum of /
EY"F(c,,c3,c,4) represents the ground-state UHF energy, e \ /
whereas the saddle point4,cs,c,) =(0,0,0) corresponds to sl = /

the ground-state RHF energy, which we independently con- &) 05
firmed by performing the UHF and RHF calculations using
GAMESS Notice that the UHF solution mixes the orbitals ©
belonging to different irreducible representationdaf;,, so
that the UHF wave function represents a broken-symmetry
solution. If we restrict to symmetry-adapted solutions, i.e., if
we vary onlyc; and setc,=c,=0, the RHF saddle point
becomes a minimum. The minima on tE&"(c,,c5,¢,)
surface are depicted in Figs(al and (b), for c5 fixed to its
optimum value of 0.020604. The presence of two minima
reflects the invariance under a spin-flip operation, which in
our parametrization implies thatCy4)— —Cy) and
C1(3y—C1(3), Or U (S,00—(—1)SUY"7(S,0) (S=0,1).

The important result is that at bofE’"F minima the co-
efficientc,, defining the singlet componebiy""(0,0), does
not vanish. This is clearly illustrated by Fig(cl, where we
plotted the UHF energy for the DZ Hmodel withR=3.0
a.u. as a function o5 for two different choices of the pa- FIG. 1. Energy hypersurfade""(c,,c3,c,) (in hartreg for the
rameters ¢, and c,. The first choice, namely, DZ H, model with the internuclear separati® 3.0 a.u.(a) and
(c,,c4)=(0.467238;-0.038059), corresponding to one of (b) show the cross sections corresponding to the optimum value of
the minima on theEYHF surface, clearly indicates that the Cs for the UHF energy minimum, i.e.E"""(c,,0.020604c,),
ground-state UHF wave function is characterized bywhile (c) shows the functiorEH7(0.467238,c5, — 0.038059) ob-
the nonzero value of cy; The function tained fromEY"F(c,,c5,¢4) by fixing ¢, andc, to their optimum
EUHF(0.467238¢5,—0.038059) has a minimum ats values at one of the two minima on.tIEé’HF(cz,cg,cél) hypersur-
—0.020604. The second choice, namelg,,€,)=(0,0), face that are apparent in cross secti@sand (b) (see the text for

shows that by eliminating the triplet componeuf"(1,0), detaily.
we only obtain a single minimum ag=0, which describes o i ) UHF UHF
the symmetry-adapted RHF solution. C(.)n5|.der|ng or ignoring th&;7(0,0) andU7 " (1,0) con-
In order to see how the singlet and triplet components Ofrlbuﬂgps. In particular, we plotted the energies
UYHF affect the UHF energy at various internuclear separaE[U1 " (S,0)] (S=0,1), Eq.(81), which are associated with

UHF
tions R, we plotted in Fig. 2 several potential energy curvesthe wave functiong"1 (S'°)|<Do>, S=0 or 1, and their ap-
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0.7 e YEFC(IS)+ET(S )], rather than the energy
' ] EFCY('s,) itself, reflecting the presence of bofft ; and

32: components in the UHF wave function. By projecting
the desired'> ! component out of the UHF wave function
[cf. Egs.(72) and (80)] we obtain the energy curve that al-

my most perfectly matches the exact FCI cul'('s ) (see
D 09 Fig. 2. This indicates that the UHF wave function carries
> T useful information about the IoweéEg+ state, which can be
B I retrieved by a suitable projection. In fact, in the triplet un-
< » stable region, the UHF wave function contains a fair amount
~— -1.0¢ R ] of information about the lowest®s| state (see the
L G 1 Ps—;|/UHF) curve in Fig. 2. This information can be re-
—o— . iun ] trieved by a suitable projection onto the triplet subspate
T exp[U, T (0,0)]1RHF)
anls —= e Ee. (731
R —e— pulope For larger many-electron systems, the spin contamination
- R of the UHF wave function can be even more substantial,
qolv i oo YL involving a number of higher multiplets. In general, it is
' 20 40 6.0 80 10.0 laborious to project out the desired multiplets. Moreover, we
R (a.u.) cannot expect a simple UHF solutiofor any broken-

symmetry single-determinantal wave functioto contain
complete information about the states involved due to an
FIG. 2. Various potential energy curves for the DZ khodel  apparent lack of generality of the UHF wave function. On
obtained with RHF and various UHF wave functions involving or the other hand, we do not need all the information contained
neglectingl;"""(0,0) andU7""(1,0) contributions. FCI potential in the UHF solution in order to correct the closed-shell
energy curves describing the lowety and S states are shown  CCSD method in cases where it breaks. The CCSD method
for a comparison. contains the most important pair components of the corre-
proximate versions obtained by retaining only the linear tern*ated. wave function, so that we only have to estimate the
missing connected cluster components, such;andT,, to

; UHF, ) ; ; ;
n Us (S’?)' \{ﬂ\J/ﬁHEndrfsee F't% ZF:TFt singlet a_md tnpleFt extend its applicability to quasidegenerate situations. This
components ofJy™" change the €nergy In opposite requires knowledge of the cluster structure of the single-

. . . HF .
directions. The singlet componed}"""(0,0) raises the RHF determinantal, broken-symmetry solutions, such as UHF. We
energy, which is a consequence of the fact that the RH%maIyze this cluster structure next.

solution is singlet stable, so that no further energy lowering

can be achieved by the action of the totally symmetric singlet

UHF,
operatoreV1  (°9. However,UY""(1,0) lowers the energy. B. The general case

In fact, we obtain quite a substantial energy lowering relative The above example of the DZ,Hnodel illustrates that in

to the RHF energy when considering only linear termsgeneralab initio situationsu’(0,0) does not vanish. In fact,
in  UY"(1,0) (e, wusing the wave function we were able to confirm this observation in a number of
[1+U"F(1,0)]|®0)). Including the nonlinear terms as other systems, such as various diatomics and triatomics, by
well, we obtain the energy curvE[UfHF(l,O)], Eq. (81), using our program, which analyzes the structure of UHF so-
which is very close to the UHF curie™F. It is interesting  lutions and computes the components;"7(0,0) and

to observe, however, that without the singlet component{"(1,0) from the knowledge of UHF and RHF orbitals
U?H"(0,0), the energy curv&[U"7(1,0)] lies invariably  (for a brief description of this program, see Sed. ¥t is
above the UHF energy curve. Thus, the singlet and tripleinteresting to observe that as long j@B,) represents the
components oU"" have a highly nonadditive character. lowest symmetry-adaptedotally symmetrig RHF configu-
Although they change the energy in opposite directions whemation, the correspondingy fHF(O,O) component is totally
considered separately, their simultaneous presence invariabdymmetric as well, whileUy"7(1,0) does not contain the
lowers the energy. We thus need both componentsotally symmetric component. Realizing that in geneal
U7"7(S,0), S=0 and 1, to transform the RHF wave function initio situations both singlet and triplet components\bf

into the ground-state UHF solution. must be included in Eq52), we can write[cf. Eq. (56)]
Another interesting feature of these solutions is illustrated

in Fig. 2. Although the UHF wave function properly de- PS:0|®)O<>EPSZOGUT(O’O)GU?L((]"O)|Q)O>

scribes the dissociation into the open-shell fragméHtsit- « <

oms in 2S state$, the UHF energy curve has an incorrect =eU100pg_eV110|d ), (82)

shape in the intermediate region Rf In the vicinity of the

triplet instability onset R=R.=2.25 a.u), the UHF energy .

curve strongly deviates from the exa&Cl) curve describ- where we used the fact that'1©®% commutes with the pro-
ing the 12;; ground state, and foR>R., the UHF energy jection operatorPs_,, as it contains only singlet compo-
approximates the arithmetic average of the FCI energiesents (JJk!)[U’l((0,0)]k. Simultaneously, the projected
associated with the lowest’S) and 33 states, |dg) wave function can be given the following form:
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Equations(88)—(91) are essential for the formulation of
the CCSDQ approach. They show that no estimate of con-
where CXZEJ-N=1CX is the corresponding Cl excitation nected triexcited clusters can be obtained by analyzing the
operator relative to |®g) [cf. Eg. (4] and cluster structure of broken-symmetry, single-determinantal
K=In(1+CX)=EJ-N:1Kj defines the cluster structure of the states, such as UHF. However, the projected UHF solution
projected broken-symmetry solution, which is to be used tgarries information about the connected quadruply excited
estimateT; and T,. Comparison of Eqs(82) and (83) sug- clustersT,, so that we can use th'e corresponding c!uster
gests that the singlet componedt(0,0), albeit nonzero, Ccomponent¥,, Eq.(91), as a substitute for trué, contri-
cannot be engaged in forming the connected cluster compdutions inT,-corrected CCSD equations, E¢41) and(42).
nentsK; with j>1. Let us analyze this fact and its possible W discuss the resulting OSA CCSDepproach in the next
implications for the CCSDQformalism in detail. section.

If we apply the general relationship between the Cl and

Ps—o|®3)=(1+C*)|do)=eX|Dy), (83

CC excitation operators given by Eq5)—(8) to many-body

components ofc* and K, and compare the resulting rela-

tions with Eq.(82), we obtain

CI=K,;=U3(0,0, (84)

CX=K,+1(K1)2=1[UF(0,0 12+ 1Ps_o[U(1,01?,
(85)

Cy=Ka+K Ko+ 5(Kp)*=2[UF(0,0]°

+3U5(0,0Ps_[UT(1,01%, (86)

Ci=Ka+ 3(Kz)*+KKg+ 3(Ky) Kot F3(Ky)*
= 7[U5(0,01%+ 2[US(0,01Ps_o[UF(1,0)12

+27Ps_o[UT(1,0]% (87)

IV. APPROXIMATE ACCOUNT OF T, CLUSTERS
BY CCSDQ' METHOD

We now describe basic equations of the PUHF-corrected
CCSD formalism(referred to as the CCSDQnethod, in
which theT, components are estimated by cluster analyzing
PUHF-type solutions. We employ the OSA formulation of
CC theory(cf. Sec. I) and the results of cluster analysis of
PUHF solutiong(cf. Sec. ).

We have seen in the preceding section fatis entirely
described by the triplet componem’l((l,O), making the
presence or absence of the singlet componé{(0,0) in
U>1( irrelevant. Thus, the terrr®4[G?Sb(i)] that are required
to correct the CCSD system of equationsTqrcontributions
[cf. Egs.(41)—(45)] are given by exactly the same formulas
that were derived in Ref53], whereU?(0,0) was neglected.
We present below an independent derivation of these formu-
las, which is based on graphical methods of spin algebras.

The above system of equations can be easily solved for clus- It follows from Eq.(91) that the calculation o, requires
ter component;, j=1—-4. This allows us to write the the knowledge oK,. We thus need an explicit relationship

following equations:
K;=U3(0,0), (88)
Ko=3Ps-o[UT(1,01%, (89)
K3=0, (90
K4=2Ps-o[UT(1,0]* = 3(K2)* (91)

We can see that the monoexcited cluster compokgnis
given by the singlet componem’l((0,0), while higher ex-

between the amplitudegr||a),, defining the operator
UX(1,0) [cf. Eq. (57], and the OSA amplitudes
(rs|ky|ab); (or their unnormalized analogss|x,|ab);) de-
fining pair clusterX,,

asb i=
r<s

1
Ko= 2>, 20 (rslkolab); Gay(i)

1

%aE >, (rs|,lab); TH().

,b,r,si=0

(94)

cited componentsK; (j>1) are formed by powers of This relationship takes the forpef. Eq.(89)]

U>1<(1,0). Consequently, with the exception of monoexcited
contributionK, all component; excited an odd number
of times vanish. This becomes clear when we rewrite Eg.

(82) as
Ps:o|q)é>:eKlpszer)l((l’o)M’o% (92

and realize that od¢even powers ofU5(1,0) give the mul-
tiplets|S,0) with odd (even values ofS [cf., e.g., Eq(78)],

X
so that contributions t@Y1(1? excited an odd number of

times are annihilated by the singlet projectiBg-, and
I:’3:0(3U>1((1’C))|CI)0> =el2™Kat | D). (93

In particular, no triexcited cluster componégy is present in
the projected wave functioRg_o|®j).

(rs|kalab); = NG(rs| kolab); = (®o|G22(i) K| Do)
= N22(— 1) " 1[i]~Y2520(i )(r || a)1(s| | b)1,
(95)
where

Sa(i)=8(i)=1+(-1)'(kl) (96)
designates the two-index symmetrizé=({Q) or antisymme-
trizer (i=1), with (kl) representing the transposition of in-
dicesk andl. A simple diagrammatic proof of Eq95) is
described in the Appendix, whereas the algebraic proof of
Eq. (95) can be found in Refl53].

While the (rs|k,|ab); amplitudes are important for the
following developments, there is no need to calculate the
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amphtudes definingK, clusters
0,4 G% ®(i)] corrections.
theory can be entirely formulated in terms of thecompo-

nents, Eq.(94). Let us concentrate on this aspect of the

CCsSDQ@ formalism.
Since K3=0, the corresponding correction®3(G/)
[G,=GL,G5(i)]and®,; { G22(i)], Egs.(43) and(45), van-

in order to evaluate
In fact, theK,-corrected CCSD

1223

{OF LG22 THuL=(Po|GEA(i ) K| Do) (P o| VK 2| Do)
=(Do{G2(1)Vn3(K2) % uL| Do)

={0},, 1G22 oL - (109

Thus, the unlinked components 0@) A Gls (|)] and

ish, so that the<,-corrected CCSD system of equations be-@ 24 Ga P(i)] cancel out.

comes

3
2 An(GD) 97)

4
2 (H]+O[G(i)]=0 (=01, (98

where
O4[Gi(i)]= (Do GE(1) (HNK4) | Po)
= (D[ GE(1) VK4 o) = O [ GF(i)]
— 03, GR(D], (99
with

O L GE2(i)]1=(Po| GE2(I) VN[ UT(1,0 14 Do),
(100

0%, 4 G22(i)]1=(Do|GE2(i) VN3 (K2)?|Dp). (101

To obtain Eqs(99)—(101), we used Eq(91) and the fact that

In order to present the fin&,-corrected CCSD equa-
tions, we must derive epriC|t formulas for the linked terms
{®§;4[Gf‘§(i)]}L and{@ 24 Gfs P(i)1}. . The latter term can
be rewritten as follows:

{0724 GE2() T} = (Pol{G2(1) VN3 (K2) %} | Do)
=(Do[{G2(I)[ VN3 (K2)2lch | Do)
= (Do| G22I VN3 (K2)?]c|Po)

=ASGR()(T,—Ky), (109

or, simply[cf. Eq. (40)],
{05246} = 2 APIGR()(T—Ky),
(106)

where we utilized the fact that no linked vacuum contribu-
tions can be formed from;ab(|) and the disconnected part
of Vy3(K,)?, and that no unlinked vacuum contributions can

no vacuum disconnected diagrartgisconnected diagrams be obtained fronG?, (|) and[Vy3(K,)?] ¢ . We thus see that

with no external lines; cf., e.g., Reff5] and[7]) can be

formed from the operatorG‘?Sb(i), Hy or Vy, andK,. We

also dropped the projectoPs_, from Eqg. (100), since

GL,(i) generate singlet biexcitations.

{0 42, iGab(l)]}L reduces to the standag(iT,)? term of the
OSA CCD theory, Eq.(40), in which theT, clusters are
replaced by their PUHF-type counterpalts (which we in-

It can be furtherdicated by the symbol',—K,). In other words, we obtain

proved(cf Ref.[53]) that the unllnkec[5 7] components of {®% 2iGﬁ*Sb(l)]}L by replacmg the amplltude{$s|7-2|ab>, in
0%, [G¥()] and O).,{G¥(i)] cancel out, so that the explicit expressions foh S G22(i)] or A G22(i)]

4[Gﬁ"sb(|)] Eq. (99), reduces to

OX[G(1)]={O%.LG¥() ]} —{0%, JGX (l)]}t,oz)

where the subscript designates the linked part of a given
expression. The easiest way to derive Ef?2) is based on

the observation that the unlinked part @ﬁf A GEs b(i)] can
be written as

{0} A G P() oL =(Pol{G2(IHVNH[UT(1,014uL|Po)
= (Do GEX(i) 3 UF(1,012| o)

X{(Do|Vn3[UT(1,01% Do), (103

(k=1-5) of Ref.[44] by the|r<rs|K2|ab>, analogs deflned
by Eqg. (95).
It thus remains to derive the explicit equations for

{OF LGN =(P{GE(I)VH[UT(1,01% | D).
(107

As shown in the Appendixsee, also, Ref53]), the linked
part of® 4 Grs B(i)] splits into three diagrammatic contri-
butions,

{OF LG =0% 4@+ 0] 4(b)+ 0740,

(108

whereUL stands for the unlinked part of a given expressionwhere a, b, and ¢ designate three Goldstone-Hugenholtz
Since G,i(i) generate singlet biexcited conﬁgurauons wediagrams that can be obtained in this case. By using the

can reinsert the projectdPs_q in front of 2[U (1,0))? to
produce the cluster operatét, [cf. Eq. (89)]. In this way,
we find that

diagrammatic method based on the graphical methods of
spin algebra$69], we can prove tha®§;4(c) vanishes and
that (cf. the Appendix
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_ Interestingly enough, it can be further proved that
0L =N X (a'b'(|r's')
a’',b’'r’,s'
X(r'[[a)o(s"|[0)1Srs(i)(r[|a"}a(s|[b")1,
(109

O34 @=[ITPAY[GR()(T,—Ky), (111

0%.4(b)=AP[GA()](T,—Ky), (112

OL D =NI(~1)" 17 > (a'b'[|r's)

a'b'r's

where on the right-hand side of Eqd.11) and (112 are,
respectively, the fifth and fourth diagrammatic contributions
X(r'[|b")1Ss()S*(i)(r][a")o(s"|[a)o(sl[b)1,  to thel(T,)? term ASCY G22(i)] of the CCD theory(ct. Fig.
(110 1 of Ref.[57] or Fig. 4 of Ref[22]), in which T, is replaced
by K,. To prove Egs(111) and (112), we must use Egs.
where(r’||a);, etc. are the amplitudes occurring in Egs. (109 and(110 and exploit the explicit relationship between
(57) and(58). Similar expressions fof®.,[G%(i)]},_ were  the amplitudegr||a); and the OSA amplitude&s|k,|ab);
obtained in Ref[53], where the algebraic rather than dia- or (rs|«,|ab); defining pair cluster«, [cf. Eq. (95)].
grammatic arguments were employed. We thus see that the Inserting Eqs(111) and(112) into Eq.(108 and combin-
linked part of@f;“[Gfsb(i)] is given by rather simple alge- ing the resulting expression with EG.06) allows us to write
braic expressions involving molecular integrals and the amthe following equation for the correctio@f[G?sb(i)],
plitudes(r||a), definingU3(1,0). Eq. (102,

5
®21([G?sb(i)]=A514)[G?sb(i)](Tz—’Kz)+[i]zAgs)[G?sb(i)](T2—>K2)_k21 APLGE(I)](T—Kp)
= - APIGE()](T,—Ky) — AP [GR() (T Ka) — ARG (T Ky) + 881 AP [G2(1) (T, —Ky).

(113

It is remarkable that the entit€, correction to CCSD equa- of the cyclic polyene model; cf. Ref[56]), then the

tions can be expressed in terms of §(@,)? terms of the  ®[G2%(i)] correction cancels out the first three nonlinear

CCD theory, withT, replaced byK,. diagrams of the CCD theonA V[G22(i)] (k=1-3), and
Equationg97) and(98), together with Eq(113), are basic  gjightly modifies the fifth contribution [ G2°(i)]. Indeed,

equations of the CCSDCformalism. It is immediately ob- i this special case the CCSD@quations reduce to
vious that they are no more complex than the standard OSA

CCSD equations. Th@f[G?sb(i)] term is evaluated only 3

once, before we initiate the iterative procedure for solving > An(GH=0, (115
the CC system of equations, by computing the CCD-like n=0

diagrammatic expressions usiig amplitudes, which are in 3

turn evaluated using th@||a), amplitudes and the relation- ab; ACCSD'  ~abyiy1_ .

ship (95). The ®[G2%(i)] term is then used to correct the Zo AnlGrs(DIF A G 1)]=0 (120D,
absolute ternjcf. Eq. (35) and, e.g., Ref{44]] (116

Ao G2(1)]=(Do|[GE(i) V| Do) where

= NIS[i1Y2S,c()(rs||ab). (114 ALCCSP [GE(1)]= (Dol G(I){HN[3(T1)?T,

1 4 (4)r ~ab,;

Clearly, the resulting formalism employs fewer amplitudes 2Ty el ®o) + A4 T[GrsT1)]
than the spin-orbital CCSD theory employing the UHF orbit- +IPAP G2 (117
als, and contrary to the latter method, the problem of spin
contamination is entirely eliminated. We only have to knowEquations(115—(117) are basic equations of the so-called
the amplitudegr||a),. A simple program, which allows us ACCSD' method, which reduces to the well-known ACPQ
to calculate(r||a),; from the knowledge of the UHF and (or ACCD') method of Ref[53] whenT;=0. It should be
RHF orbitals, is described in the next section. We shouldemphasized that reduction of the CCSDgguations to those
also notice that the CCSDQ@quationg97), (98), and(113 of the ACCSD formalism is based on a rather strong as-
reduce to the CCDQequations of Ref{53] whenT;=0. sumption, namely, that bofh, andT, components resulting

We also recall that when the pair clustefs=K, are from the cluster analysis of the PUHF solution are exact or
exact(as, for example, in the strongly correlat8e=0 limit  nearly exact. This is indeed the case in the strongly corre-
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lated regime of the PPP cyclic polyene model, but may notind of some or all nonlinear terms, aAqT) represents a
be the case in generab initio situations. The CCSDQfor-  square matrix with all linear and the remaining nonlinear
malism is based on a much weaker assumption requiring thaérms that were moved from the right-hand side to the left-
only T, corrections are fairly well represented by the PUHFhand side of Eq(118 and conveniently quasilineariz¢80]
wave function, which is justified by a qualitatively good de- (cf., also, Ref[87]). In the case of CCSD and ACC3[he

scription of the bond-breaking phenomena by the PUHF soabsolute terms occurring B(T) are defined aﬁo(Gr)' Eq.

lutions. We should also reiterate that the above simple rela(35), where G, =G,G5(i). As explained in Sec. IV, the

tionship between the CCSDQand ACCSD formalisms  apsolyte terms of the CCSDQormalism are defined by

relies on the OSA formulation of the .SRCC theor_y. Ao(G?) for equations projected on singly excited configura-
The general-purpose computer implementation of theiions and as

CCSD@ and CCDQ methods is described in the next sec-

tion. Together with CCSDQand ACCSD, we also consider : , ,

the CCgDQ[T] and ACCg%[T] approaches, in which in AGEPAGR()]= A GE(1)]+O5[GI()] (119
addition toT, contributions estimated via E¢L13) we also ] ] o i ]
calculateTs energy corrections using EGG0). The relevant  fOr equations projected on biexcited configuratigefs Eqs.
(rs|t,)ab); amplitudes are then obtained from the CCSDQ (113 and(114)]. , ,

and ACCSD calculations, respectively. Unfortunatelyg We express then(+ 1)st apprloX|malte ofl as a linear
components cannot be obtained from cluster analysis of thgombman'?n of the initial guess"=U! ) andn correction
PUHF solution, so that we must rely on some other approxivectorsu®, k=2, ... n+1, calculated in subsequent itera-
mation to estimate their contribution. We decided to usdions of the RLE procedure,

simple perturbative estimates@CSDQ) or T(ACCSD). i1
Another possibility would be to consider th€, corrected TEZ S 4 Uk
CCSDT equations, which would result in a much more com- T Ak
plex and computationally highly demanding CCSDT-like

formalism. We do not pursue this approach, whose domaigyit, scaling factorse, chosen to minimize the Euclidean
of applications would be rather limited. norm of the “error” vector

(120

V. COMPUTATIONAL DETAILS o= A(T(M). T+D_ g(Tim). (121)

All CC calculations reported in this paper were carried
out with the general-purpose programs written in our laboraTypically, the correctiondJ® are calculated by using the
tory. The CCSD, ACCSQ CCSOT], and ACCSD[T] pro- inverse of the diagonal part &f(T) [designated by(T)] to
grams were described in RefR4] and[67]. The relevant estimatd A(T)] 1,
OSA expressions forA,(G/) [G,=G.,G5(i)] and the
CCSD energy were presented in REef4], whereas the re- Ut D=[D(TM)]~.BW, (122
quired OSA expressions for the triexcited corrections
AET® (X = CCSD, ACCSD) were given in Ref[22]. The  where
CCSDQ@ and CCSDQT] programs use the same type of
expressions, so that they have the same structure as the n
CCSD and CCS[Y] codes, except for small differences in BIW=B(TM)— > B, BM=A(T™M).u®,
defining the absolute terms, which are computed only once k=1
before initiating the actual iterative procedure for solving the
CC equations. Although the CCSD@ormalism can utilize , ) , )
any broken symmetry single-determinantal wave function tdi Most cases, a simple first-order MBPT estimateTof
evaluate theT,=K, corrections, the computer implementa- gives a reasonable convergence. Other initial guesses, such

tion described below uses the ground-state UHF wave func@S the second-order MBPT estimate o), or the previ-
tion. ously converged amplitudes for the nearby geometrgen-

eral, the converged amplitudes for the nearby values of the
A. CCSDQ’ equations parameters used to describe the sys$taran also be used in
our program.
) ; : An important feature of the above algorithm is the possi-
CCSDQ, programs are based on the iterative algorithm devyjji, 1o quasilinearize selected nonlinear terms. For ex-
scribed in Ref{30], which is in turn related to the reduced- gmpje in a number of quasidegenerate situations, it is useful
linear e_quanor(RLE) procedure of Purvis and BartldB6]. . include the}(T,)? clusters inA(T)-T, so that the de-
ACCOI‘dIer]g to t?e procedure of Ref30], we (prress ]!Eqs. nominator matrixD(T) is modified by terms involving large
'(:’3) arEy (34) (for CCSD approglch (1lf5) an (136) (for pair-cluster amplitude$30]. This is particularly important
ccsb aﬁpr]?acm or (97) and (98) (for CCSDQ ap- o the ACCSD and CCSDQ approaches, which are in-
proach) in the form tended to be used in severe cases of quasidegeneracy, where
A(T)-T=B(T), (1189 the standard CCSD theory is no longer applicable or even
breaks down. To improve the convergence of the CCSDQ
whereT is a column vector consisting of cluster amplitudes,algorithm in the region where the standard CCSD theory
B(T) is a column vector containing negative of the absolutebecomes singular, we introduced a new quasilinearization

(123

Let us recall that the CCSD and ACCS[las well as
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scheme fog(T,)? terms, in which we optionally quasilinear- B. Cluster analysis

ize a_nd |_nclude4|m(g')_~T only_the QCCUb-[Ike noqllnear The most important new element of the current CC codes
contributionsA{[G2(i)] and[i]*A$Y[Gi(i)], while re-  allowing for the CCSDQ calculations is the set of routines
taining the remaining(T)? terms inB(T). This is justified  that perform the cluster analysis of the PUHF wave function
by the fact that in severe cases of configurational quasidegnd correct the CCSD equations by the relevant
generacy the contr|but|ons of the first three nonlinear dla@UHF[Gab(|)] terms. According to the general theory of Sec.
gramsA {O[GP(i)] (k=1-3), mutually cancel ou52], S0 i1, we must first extract the coefficients||a)s, defining the
that when we move the ACCHike termsA {[G22(i)] and operatorsU‘i’HF(S,O), from the PUHF solution. These are in
[I1?PAP[G2(i)] to the left-hand-side of Eq(118), the turn defined in terms of the spin-orbital coefficients
right-hand-side vectoB(T) reduces to the negative of the <rg|u(1<’)|ag>, where o= a, 8 designates the spin-up and
vector containing the CCSDQ absolute terms spin-down spin functiongsee Eq.(58)]. The latter coeffi-
{AO(GE),AOCCSDQ[Gf‘sb(i)]}_ This quasilinearization im- cients can be calculated using the transformation matrices
proves the convergence of the CCSD§heme whenever C”=||c(7||V|_, between the UHF and RHF orbitals,
the cluster analysis of the PUHF wave function yields very "
accurate cluster componer(&ee the discussion below UHF_ E RHE

To further improve the convergence of our Qi@ par- Lo & & Ck' d’ : (128
ticular, CCSDQ) algorithms, we decided to allow for better
estimates of A(T)] ™ for calculatingU™* %), Eq.(122. In-  Here, M is the number of RHRUHF with @ or 3 sping
stead of relying on a simple approximatiéT)~D(T), we  orbitals or the dimension of the atomic orbit&lO) basis set
write [88] used in the corresponding LCAQinear combination of

atomic orbital$ expansions defining both MO sets,

A(T)=D(T)+A(T), (1249
by = E A X (129
or (dropping for a moment the explicit dependenceTgn
M
Al=D'-D '.A.(D+A) Y, (125 HRAF= 2 b (130
kA

whereA=A(T) is the off-diagonal part oA(T). Expanding
the right-hand side of Eq125), we obtain(retaining at most
linear terms inA)

Xu (v=1,... M) being the AO’s. To find the desired rela-
tionship, we must expand the UHF wave function

|(DUHF>_|¢UHF UHFﬂ ¢UHF UHFﬂ| (131)
A"'~D'-D LA.D'=D '+D ! (D-A).D? . . .
in terms of the RHF configuration

|DRHPY = | pRHFy pRHFg. . gRHF gRHFG.  GRHF, oRHF gl
(132

=2D"'-DL.A.D Y, (126

which allows us to express the improved correction vectors

(n+1) . . . . . . .
U as follows: and various excited configurations relative|®}"), using

) ) Eqg. (128, and compute the coefficients at
yn+ )=2[D(T(n))]_ .B(Dn)

—[D(TM)] L A(T™).[D(T™M)]L.BY. (127)

ro RHFO'
r
a0_> = ’ ¢EF:HF0_> = X! Xag| D§), (133

Note that there is no need to stofdT) to calculate the where we rely on our labeling convention with

improved vectot)"*1), Eq.(127). The dimensions of arrays a=1,2,...,n designating the occupied orbitals and
D(T™) andBY" are the same as dimensionsTobr UY, so  r=n+1n+2,... M the unoccupied orbitals ifbR"".
that the matrix produc(T™).[D(T™M)]1.B{" can be Since we used the intermediate normalization in defining

calculated using the routines that are deS|gned to calculate{"™ [cf. Eg. (52)], the monoexcited coefficient
the productsB{", Eq. (123. In fact, the same applies to (rcrlu(l”)|acr) is given by the ratio
higher-order analogs of the formuld27), which contain

, . . . ro
glsngeerll?owers oA\ [88], and which we included in our codes <ro|u(1")|aa>= < aU’ cngF> /<®§HF|¢BJHF>.

We found out that the improved estimate fokx(T)] * (134

reduces the number of required iterations by as much as 30—
40% (assuming the simple first-order MBPT estimate as thelhe denominator is given by the product of two determi-
initial guess forT, and the convergence thresholds of 7—10nants: the determinant of a matrix with entries consisting of
decimal places in the energyAlthough every iteration re- all possible overlaps between the occupied RHF MO’s and
quires more time when E@127) is used, the overall benefit the occupied UHF MO'’s associated withspins, and a simi-
in cpu time is often substantial. lar determinant fo3 spins,
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(PF D"y =detl( oM pPHTIR —4 matrix S, are read into the program from the relevant files
RHE +UHE 1 generated byGAMESS [73]. The resulting biexcited cluster
xdetl{( gy b5 Migi-1 amplitudes(rs|k,|ab);, as well as their monoexcited ana-

logs definingK;, which are clearly identical to the singlet
coefficients(r|u,|a), [see Eq(88)],

An analogous formula can be obtained for the numerator,

=deficlIf,_ detic?Ip _,. (139

(rlkqla)=(r|usa)o=2"4r||a),, (140

namely,
ro _ are then stored on a digkhe triplet coefficientgr|uy|a),
®FHF) =detic (I (a—r)I] _detictIT, _,, are not saved as they are only needed to construct
0 kI kil=1 ki ki=1
ao (136 (rslky|ab); amplitude$. Both the amplitudegrs|k,|ab);
defining K, and the singly excited singlet coefficients
wherea= g, B=a, andIC {7 (a—r)If,_, is obtained from (rlki|a), Eq.(140), are read by the CCSD(rogram. The
the matrix\lcﬁ‘{)l\ﬂhl by replacing theath (a=1,2,. .. ,n) <r3Ll(F2|aEgi- coefﬂmen?s are primarily used to computg the
row, containing the expansion coefficientsc(? ©, "G5 (i)] corrections. We employed EqL13) for this
|:1'2 n, for all occupied UHF MO's havingr spinal b,y purpose, since it allows us to utilize the routines that nor-
h T (o  Mmally calculate the standard CCD diagrammatic contribu-
the first n elements of therth row of C ) ARGV Th lting® UM G2
(r=n+1n+2,... M) containing the coefficients{?” that tions A4”[Grs(i)]. The resulting®,™[Gys(i)] terms are

correspond to the given unoccupied orbitaf"". The  then used to define the absolute telﬁ_fﬁCSDQ[G?sb(i)]f Eq.
entries of the matriXI'E(k‘,’)(a—w)IIE,_l are thus defined as (119. All these operations are carried out before initiating
n the actual iterative procedure for solving CC equatitsee

follows:
WS the discussion aboye In addition, both(rs|k,|ab); and
c@ if k=a (r|kq|a) are used to evaluate the PUHF-based CCSD energy
Ef(’{)(a—w): (k,1=1,2,...,n). expression, in which th&, andT, clusters are replaced by

(0) i ' .
ci otherwise their PUHF analog&, andK,, respectively,

(137

Substituting Eqs(135 and(136) into Eq.(134), we arrive at
the following result for(r o|u{”|ac):

AECCSEPURR = (@ | [Hyy(Ky + Ko+ 3KE) 1| o).
(141
()] a.  Aeg(= () n ()N The analogous CCD energy express[anECCP(PUHF) Eq,
(rojuy”|ao) =detlcii" (a—r)ll,—./detici{ Ik - (141), with K,=0] is evaluated as well. These energies are
(138 . ; . X
useful for assessing the quality of the monoexcited and biex-
Thus, the required monoexcited coefficierftsr|u{”|ac) cited cluster amplitudes, resulting from the analysis of the
can be easily calculated using thexn submatrices PUHF wave functior(cf. the discussion beloyand thus of
B (a—r)If,_, andiE P (a—r)I",_,, Eq.(137), of the tEetptﬁ”Oma”?e ff ;,he Acfcs?pp“ﬁad" Wh'c? assumes
relevant transformation matrice€(® and C®), respec- 2 NE Palr CIUSIETS; are fairly well represented by the

tively, between the RHF and UHF orbitals. The latter matri-PUHF solution.
ces can be conveniently expressed in terms of the LCAO

coefficients defining both MO sefsf. Egs.(129 and(130)] C. Code testing
and the overlap matriSEII(X#I)(JIIff,V:l characterizing the Both the cluster analysis program and the final CCSDQ
AO set{ Xﬂ}fhle. Indeed, it can be easily verified that code were thoroughly tested. In particular, it was very useful
() m1 A(0)_ af (o) to apply these programs to situations where the UHF or
c=B "-A""=B"-S-A'7, (139 PUHF wave function provides exact values of the monoex-

(0)— 1 a(e) M _ M cited and biexcited cluster amplitudes. These situations in-
where A =lla il -1 and B=Ib,l,/ -, are the trans-  cjqe the PPP and Hubbard cyclic polyene models in the
for[}‘ﬁ'ﬁ” matncethF)e’\Eween the UHF and RHF MO setsgongly correlated £=0) limit (we used@=0 benzene
{&k,q k=1 and {¢y " }i=;, respectively, and the AO set mggel for testing and the so-called MBS S4 modg34],
{X.})i-1- Equation(139 enables us to determine the trans- consisting of four hydrogen atoms arranged in a square
formation matricesC'”) (o=a,B), which are in turn ex- (D, configuration, in the dissociation (H-4H) limit. In
ploited to calculate the coefficien® o|u{”|ac) via Eq. the latter case, we were stretching the nearest-neighbor
(138. The required OSA amplitude&||a)s, defining the H—H separation to 10-50 a.u. In these cases, the cluster
singlet and triplet components of the monoexcitation operaanalysis program gave us the exdgtand T, components
tor UYMF, are then given by Eq(58). Finally, the triplet (T,=0 for these mode)s which were independently ob-
amplitudes(r||a), are used to calculate the cluster coeffi- tained by the cluster analysis of the FCI wave function. Also,
cients(rs|k,|ab); defining the pair-cluster operatdt, by ~ the CCSDQ energy was identical witid ECCSP(PUHF) Eq,
employing the relationshif5). (141, as well as with the UHF and FCI energies. The

The operations just outlined form an essential part of &CCSDQ energy was also identical with the ACCSEn-
small program that performs the cluster analysis of theergy, in agreement with the fact that diagram cancellation
PUHF wave function. The required LCAO coefficients, de-leading to ACCSD(cf. Egs.(115—(117)] is exact whenever
fining the UHF and RHF MO sets as well as the AO overlap(P\UHF gives exacfl, and T, components.
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In some cases, we were able to retrieve Thecompo-  [cf. Eqs.(71)—(75)]. By computing the corresponding expec-
nents directly from the UHF wave function and computetation valuegcf. Eq. (79)], we were able to reproduce the
O G3%i)] using the standard spin orbital expressionUHF energy obtained independently in the standz&siESS

[14,27-29,62 calculations, which use the UHF energy expression based on
density matrices.
O [ ERS]=(D | ERYVNT L) c|Po) As in the case of our other CC prograf®#,67,9Q, the
current CCSDQ and CCSDQT] codes allow for point-
=1 E (A'B’|v|R'S) 4 group symmetry gdaptation .anq freezin.g of core a_md drop-
R'.S' A'B ping of virtual orbitals. Exploitation of spin and spatial sym-
metries substantially increases the efficiency of these
X(RSRS'[t4 ABA'B') 4, (142 programs and enables us to study realistic cases on relatively
_ ) _ small workstations. As pointed out in Sec. lll, this is an
where |K)= ko) designate spin orkﬂgalsﬁ(gé oo OCCU"important advantage of the PUHF corrected CCSD-RHF
pied;R,S, ... unoccupied ifdo)), Ers=(Exg)" with method, when compared with the CCSD-UHF approach. The

CCSDQ@ approach uses the symmetry-adapted PUHF wave
function to calculate @37 7G2(i)] and the lowest
(KL|v|K'L") 4 the antisymmetrized two-electron integrals, Symmetry-adapted RHF solution &), in contrast to the

CCSD-UHF method, which uses the broken-symmetry UHF

(KLJv|K'L") 4=(KL|v|K'L")=(KL|v|L'K"), wave function as a reference. On the other hand, the CCSD-
(144 UHF method can be applied to several nonsingietublet,

, o, i ) _ triplet, etc) problems of high-spin type, which cannot be

and (RSRS'[t,[ABA'B’) 4 the spin-orbital cluster ampli- eated at this point by the OSA CCSDQ@pproach dis-
tudes definingT, [the subscriptA indicates their antisym- cussed in this study. Examples of the CCSD@nd

metric property with respect to interchanges of occupig®  ccspQ[T] calculations are presented in the next section.
occupied spin-orbital labelf The OSA corrections

O G2%(i)] could then be evaluated by forming the spin-

ERs—EraEse, Era=XkXa, (143

free corrections VI. EXAMPLES
112 To examine the performance of CCSD@nd related
OYFFED)= > eYMF(EDY), (145  CCDQ and CCSDQT] methods, as well as the ACCSD
PR =Y pee and ACCSD|[T] approaches, we performed a number of cal-

. ] o culations for systems in which the configurational degen-
corresponding to spin-free biexcitation operators eracy can be continuously varied by changing a single pa-
S_p g (146 rameter describing their geometries. These include the above
ab™ =ra=sb: mentioned H4 and P4 models, using both the MBS and DZP
asis sets of Ref$57] and[59], respectively, and the MBS
8 model[66], which is composed of four interacting hydro-
gen molecules arranged in a distorted octagonal configura-
O Ga0(i) 1= IN30Ti ]~ Y2520 @ YHF(E2D), (147) tion havingD ,,, spatial symmetry. The CCSD@tudy of the
DZP H4 system should explain the “ill behavior” of the
which reflects an alternative formula f@®L(i), namely ACCSD approach pointed out by Kucharski, Balkowand
[89], Bartlett in Ref.[40]. In all cases, the initial ground-state RHF
and UHF orbitals were obtained withAMESS which was
G2(i)= LN i1 Y2520 EL, . (148  also used to perform the integral transformation from AO to
MO basis sets and to calculate various limited and full CI
We used this procedure to calculadg"[G2"(i)] for the  results.
MBS P4 model consisting of four hydrogen atofos, better, Geometries of all three models are defined by the two
two interacting hydrogen moleculearranged in a rectangu- parametera anda, but only « is varied. The parameteris
lar (D,n) nuclear conformatio57] (cf. Sec. V). In this  defined as the nearest-neighbor H-H internuclear separation
case, there is only one tetraexcited amplitude defifing and, as in previous studies of these modé&$ Refs.
which could easily be extracted from the Cl-like expansion[24,31,33,34,36,40,50,57,59,66,67,91)9% is fixed at 2.0
of the UHF wave function. The resulting corrections a.u.[corresponding to slightly stretched hydrogen molecules
O G2(i)] obtained in this way were invariably identical in order to enhance quasidegeneracy efféctsRef. [34])].
to those generated by our CCSDEde, which uses for this The second parameter determines(i) the displacement of
purpose Eq(113 andK, cluster amplitudes defined by Eq. the two H, molecules from the square configuration for the
(95). Finally, we used the monoexcited cluster amplitudesH4 and P4 models, an@) the displacement of two opposite
(r||a)s or {r|us|a)s, generated by our cluster analysis pro- H, molecules from their position in the regular octagon for
gram, to evaluate the Cl-like expansion describing the UHRhe H8 model. For the trapezoidal H4 modelis the angular
wave functions for small molecular systems, such as thg@arameter that varies between(§fjuare configurationand
MBS H4 model consisting of two interacting hydrogen mol- 0.5 (linear configuration For the rectangular P4 model,
ecules arranged in isosceles trapezoida),| configuration varies betweea=2.0 a.u.(square configuratiorande, the
[57] (cf. Sec. V) and the DZ H model described in Sec. Il latter limit corresponding to a dissociation of thg klystem

and by subsequently converting the spin-free componen
(145 into the OSA form using the relationship
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TABLE I. A comparison of the FCI, RHF, UHF, and various CC enerdiashartreg for the ground
electronic state of the MBS P4 model with=2.0 a.u. and different values ef (in a.u). In this case,
CCD=CCSD, CCOPUHP=CCSOPUHP, ACCD'=ACCSD/, and CCDQ=CCSDQ. The RHF solution
is triplet stable fora>3.0 a.u.

a RHF UHF CCOPUHBP FCI CCD ACCD CCDQ

2.0 —1.858241 —1.957155 —1.946785 —1.975862 —1.978696 —1.976017 —1.977885
2.01 -—1.862506 —1.958413 —1.948910 —1.977266 —1.979877 —1.977887 —1.979064
2.02 -—-1.866709 —1.959682 —1.951045 -—1.978778 —1.981176 —1.979791 -—1.980364
205 —1.878956 —1.963553 —1.957480 —1.983905 —1.985742 —1.985718 —1.984944
2.1 —1.898211 —1.970183 —1.968162 —1.994026 —1.995178 —1.996274 —1.994436
215 —-1.916113 -1.976985 —1.978601 —2.005366 —2.006086 —2.007475 —2.005424
2.2 —1.932761 —1.983905 —1.988659 —2.017204 —2.017658 —2.018988 —2.017082
2.3 —1.962643 —1.997916 —2.007346 —2.040617 —2.040802 —2.041775 —2.040387
2.4 —1.988497 —2.011891 —2.023944 —2.062315 -—2.062386 —2.063047 —2.062100
2.5 —2.010868 —2.025579 —2.038457 —2.081741 -—2.081760 —2.082207 —2.081574
3.0 —2.084760 —2.084766 —2.085322 —2.147821 —2.147794 —2.147857 —2.147794
4.0 —2.136758 —2.136758 —2.136758 —2.194027 —2.194017 —2.194002 -—2.194017
5.0 —2.147975 —2.147975 —2.147975 —2.203366 —2.203363 —2.203354 —2.203363

into the two hydrogen molecules. In practice, it is sufficientexceed(in absolute value0.41 mhartree and are as small as
to study the range 2.0-5.0 a.u. For the H8 modeljaries  —58 phartree fora=2.15 a.u. This should be compared to
between Q(regular octagonal configuratipande; increas- the —2.248-mhartree error obtained with the ACCethod

ing a implies the process ¢+H,+2H,, where H is the ata=2.1 a.u. or—1.8 to —2.1-mhartree errors obtained with
P4-like system formed by two “spectator” Hmolecules this approach fow=2.15-2.2 a.u. In fact, the region where
that remain at all times in their initial position. In practice, it the CCDQ approach gives by far the best results, i.e., the
is sufficient to study the range 0-1.0 a.u. The valauesO  interval[2.1 a.u.,2.2 a.y.(we exclude here negligible errors
for the H4 and H8 models anel=2.0 a.u. for the P4 model for all methods considered fax>3.0 a.u., where RHF is
describe the situation where the ground-state wave functiogiplet stable so that CCBCCDQ), coincides with the
has a two-configurational character: the ground-state RHEaximum errors in the ACCDresults. This indicates that in
configuration has the same weight in the exact ground-stat@yis interval theT, cluster components are already relatively
Wave'functlon as the doubly excited configuration mvolymg poorly described by the UHF approach, while fhig com-
the highest occupiedHOMO) and the lowest unoccupied ponents extracted from the PUHF wave function remain

(L:}MC)l)dMO S. As acljncreases, thetﬂe?iﬁe O;fgé‘; (iofnﬁgu— quite close to their FCI counterparts. This becomes obvious
rational degeneracy decreases, so that the v = 10"~ \when we compare individual FCI and PUHF cluster ampli-

the H4 and H8 models, and>2.5 a.u. for the P4 model, tudes. This can be easily done in this case, since in the MBS

describe situations where the ground state is dominated b&g . . .

: : TR 4 model there are only six OSA biexcited amplitudes and
he RHF conf h h le of the HOMO- ) ;
the configuration with diminishing role of the HOMO one T, amplitude(see Table . We find that the FCIT,

LUMO biexcitation (for more details see, e.g., Refs. )
[31,34,57,6. gmpl!tude almost perfectly matc_h&a for a= _2.1— 2.2 a.u.,

The results of our calculations are presented in Tabled! SPite of the fact that the quality df, amplitudes is rela-
|-l (MBS P4 model, IV-VI (MBS H4 mode), VII—-IX tively poor in this region. For example, we observe 17.7—
(DZP H4 model, and X-XII (MBS H8 mode). Consider first ~ 26.1% errors for the dominak83t,|22), PUHF amplitude
the MBS P4 model. In this case, the analysis of variougelative to FCI fora=2.1-2.2 a.u., which should be com-
cluster contributions to the electronic energy is drasticallypared to less than 4% error for the same amplitude for
simplified by the absence df;, and T3 components, which @=<2.02 a.u.here, 1 and 2 are occupied orbitals and 3 and 4
vanish due to the high symmetry of the model and the presunoccupied ones in the RHF reference; 2 and 3 are HOMO
ence of only four MO’s in the MBS basis set spanning fourand LUMO, respectively The PUHF biexcited amplitudes
different irreducible representations of tBey, group. Since  (44t2|22)o and(33|t,|11),, vanish, but are nonzero in the
C,=T, andC,=T,+ }(T,)? in this casdcf. Egs.(5)—(8)], FCI case and begin to play an increasingly important role for
we can easily assess the importance of the conneEjed @=2.1 a.u. ) )
contribution by forming the energy difference FOCCD We believe that_a gooo_l measure of the relative quality of
(FCI=CCDQ=CIDQ in this case, where CCDQ and CIDQ the T, andT, amplitudes is the ratio
designate, respectively, CC and limited CI approaches with
doubles and quadruples

The results in Table | indicate that the CCD®ethod Ky=(thc /(o (149
represents a substantial improvement when compared with
the ACCD=ACPQ approach forw=2.05 a.u. In this re-
gion, the errors in the CCDQesults relative to FCI do not where
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TABLE IlI. Cluster amplitudes characterizing FCl and PUHF wave functions for the MBS P4 modehwigh0 a.u. and different values
of « (in a.u). In this caseT; and T3 components vanish. 1(3,4) designate occupie@inoccupied orbitals in the RHF reference; 2 and 3
are HOMO and LUMO, respectively. The quantiy designates the ratié® | G324 0,0,0,0,0) 4| o)/ (Do G23240,0,0,0,05(T,)?| Py,
where the operatdB33240,0,0,0,0[ G33540,0,0,0,0) "= G23(0)G23(0) describes the projection onto the only available quadruply excited
configuration3a384a48|. For «>3.0 a.u., the cluster components characterizing PUHF wave function vanish, since RHF is triplet stable
in this region.

a Method (331,]22)q (44t2[22)g (33t2|1D)o (44t,|11)o (34t5|12) (34t5]12); (3344141122000 K4

2.0 FCI -1.0 0.0 0.0 —0.065070 —0.265435 —0.153249 —0.046971 —0.419229
PUHF -1.0 0.0 0.0 —0.020182 —0.142064 —0.082021 —0.013455 -0.4

2.01 FCI —0.949745 —0.005313 —0.006277 —0.064005 —0.261019 —0.147239 —0.042166 —0.398820
PUHF —0.968031 0.0 0.0 —0.020368 —0.140416 —0.081069 —0.013144 -0.4

2.02 FCI —0.902579 —0.010342 —0.012199 —0.062998 —0.256857 —0.141542 —0.037854 —0.378566
PUHF —0.937381 0.0 0.0 —0.020544 —-0.138771 —0.080120 —0.012838 -04

2.05 FCI —0.778468 —0.023775 —0.027914 —0.060328 —0.245827 —0.126275 —0.027451 —0.319887
PUHF —0.852587 0.0 0.0 —0.021016 —0.133858 —0.077283 —0.011945 -04

2.1 FCI —0.621275 —0.041230 —0.048013 —0.056966 —0.231696 —0.106285 —0.016354 —0.234101
PUHF -0.731412 0.0 0.0 —0.021618 —0.125743 —0.072598 —0.010541 -0.4

2.15 FCI —0.510688 —0.053830 —0.062159 —0.054720 —0.221653 —0.091668 —0.010039 —0.167165
PUHF -0.630216 0.0 0.0 —0.021992 —0.117728 —0.067970 —0.009240 -0.4

2.2 FCI —0.431746 —0.063002 —0.072133 —0.053286 —0.214435 —0.080848 —0.006337 —-0.117772
PUHF —0.544583 0.0 0.0 —0.022146 —0.109819 —0.063404 —0.008040 -04

2.3 FCI —0.330444 —0.075012 —0.084449 —0.051950 —0.205116 —0.066219 —0.002641 —0.056507
PUHF —0.408022 0.0 0.0 —0.021813 —0.094341 —0.054468 —0.005933 -04

2.4 FCI —0.270238 —0.082279 —0.091141 —0.051773 —0.199539 —0.056828 —0.001053 —0.024471
PUHF —0.304581 0.0 0.0 —0.020675 —0.079355 —0.045815 —0.004198 -04

2.5 FCI —0.231146 —0.087031 —0.094935 —0.052204 —0.195888 —0.050203 —0.000292 —0.007168
PUHF —-0.224120 0.0 0.0 —0.018793 —0.064898 —0.037469 —0.002808 -0.4

3.0 FCI —0.148270 —0.096691 —0.098999 —0.057506 —0.187813 —0.032584 0.000448 0.012342
PUHF —0.003625 0.0 0.0 —0.000667 —0.001555 —0.000898 —0.000002 -04

4.0 FCI —0.108360 —0.098634 —0.094579 —0.069742 —0.183127 —0.017760 0.000195 0.005775
PUHF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.0 FCI —0.097366 —0.096397 —0.091773 —0.078974 —0.181727 —0.010576 0.000053 0.001586
PUHF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(th)c=(Po|G33350,0,0,0,0T,| Do) As we can see from Table Il, the FCI ratiq“' is far away

1 - from —0.4 for «€[2.1 a.u.,2.2 a.{, and the primary reason
=(D|G33(0)G2A(0) T4 o) =(3344t4]112200000  for that is a poor quality oK, amplitudes in this region. As
(150 a result, the CCDQapproach works very wellK, is very
good, whereas the ACCDapproach, which is based on the
and assumption of good quality of bo#d, andK, clusters, gives
maximum errors. The PUHF ratid,"" = — 0.4 almost per-
(tp=(Do|G11290,0,0,0,04(T,)2|d,) (151 fectly matches its FCI valud;” only for «<2.05 a.u.,
where the degree of configurational quasidegeneracy reaches

designate, respectively, the connectéd)(and disconnected it§ maximum level. This explair_ls why th? ACCIBpproach
[4(T,)?] tetraexcited amplitudes obtained with methxd gives extr_emely good results in the vicinity of the square
(X=FCI, PUHF). In the PUHF case, it can be rigorous|yconf|gurat|on of the MBS P4 modd¢for «=2.0 a.u., the

proved that this ratio is independent @fand equals-0.4, ~ €Tor in ACCD results is only—0.155 mhartree, while CCD
since and CCDQ give more than 2-mhartree errof absolute

valug relative to FCI; cf. Table]l In fact, in the immediate
2 vicinity of @=2.0 a.u. limit, the ACCD approach provides
(th9R = — §<3||2>2(4||1)2, (152  us with a very good estimate of tHg, contribution to the
energy obtained by forming the energy difference ACCD
—CCD (see Table Il and, as our experiments with the S4
model indicate, the superb quality of ACCD, corrections
. is even better when we dissociate the ¢luster into four
PUHR _ 2 2 hydrogen atomsthis can be achieved using the parametriza-
(ta F>D_§<3”2> (4ll1)" (153 tion of the P4 model by increasira= « to ). In this case,

and
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TABLE Ill. The effect of connected tetraexcited clusters on

CCD=CCSD energiegin mhartreg¢, as obtained by comparing
CCDQ, CCDd, and ACCD methods, for the ground electronic
state of the MBS P4 model with=2.0 a.u. and different values of
a (in a.u). In this case, CCD@FCI and for «>3.0 a.u.
CCDQ =CCD.

CcCDQ ccDg ACCD'’

a —CCD —CCD —CCD
2.0 2.834 0.811 2.679
2.01 2.611 0.813 1.990
2.02 2.398 0.812 1.385
2.05 1.837 0.798 0.024
2.1 1.152 0.742 —1.096
2.15 0.720 0.662 -1.389
2.2 0.454 0.576 -1.330
2.3 0.185 0.415 -0.973
2.4 0.071 0.286 —0.661
2.5 0.019 0.186 —0.447
3.0 —0.027 0.0 —0.063
4.0 —0.010 0.0 0.015
5.0 —0.003 0.0 0.009

(thU"R ¢ approaches the FCI value ef2 describing the dis-
sociated S4 model, sinc€8||2)=(4||1)=1 in this limit.
However, fora=2.1 a.u., the ACCDestimates of, cluster
contributions to energy become very potthey have a
wrong sign; see Table I since pair clusters are no longer
adequately represented by the PUHF approximation.

The CCDQ method exhibits totally different behavior.
The CCDQ estimate of theT, contribution, as obtained by
forming the energy difference CCDQ CCD, is invariably
positive (we exclude in this analysis the>3.0 a.u. region
where UHF=RHF), in agreement with its FCI analog ob-
tained by forming the energy difference FOCCD
=CCDQ-CCD. Fora=2.1-2.2 a.u., we obtain amazingly
good agreement between CCB@CD and CCDQ-CCD
energy incrementésee Table I}, in perfect agreement with
the results of Table II.

TABLE IV. A comparison of the FCI, RHF, UHF,
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Let us next consider the MBS H4 model. This model has
lower (C,,) symmetry and, as a result, tfig and T; con-
tributions no longer vanish. We can thus explore the perfor-
mance of the more complete CCSD@nd ACCSD ap-
proaches and of their perturbative CCSIT) and
ACCSD/[T] analogs. Thé 5 contributions are small enough
to justify the use of perturbative estimates, such as JT$D
ACCSD/[T], and CCSD{T], over a wide range ofx val-
ues.

The results of Table IV indicate that far>0.2, the RHF
solution is triplet stable (RHF=UHF), so that
CCSDQ@=CCSD and CCSDQT] = CCSOT] in this re-
gion. It is immediately obvious from Table V that in the
strongly degenerate regione&0.01-0.1), the CCSDQ
and CCSDQT] approaches are by far the best. In this re-
gion, the errors in CCSDQand CCSDQT] energies rela-
tive to FCI range betweer 0.85 mhartree forv=0.01 and
less than 0.1 mhartre€85 whartree for CCSDQT]) for
a=0.1. This should be compared to nearly2-mhartree
errors obtained fora=0.01 with the CCSD, ACCSD
CCSOT], and ACCSD[T] methods. Forr>0.1, the overall
best resultgerrors less than 2@hartreg are obtained with
the standard CCSD approach indicating thatand T, con-
tributions cancel out. Inclusion @f; decreases and inclusion
of T, (via FCI or CCSDQ) increases the energy, and for
a>0.1 both effects are of a similar magnitude but of oppo-
site sign.

The ACCSD and ACCSD[T] approaches give the best
result only in the immediate vicinity of the=0 limit (for
a<0.01) where, as in the P4 model, the PURFand T,
clusters are of good quality. Fer>0.01, the quality of the
ACCSD results substantially deteriorates, whereas the errors
in the CCSDQ energies monotonically decrease with in-
creasingr. This indicates that for™0.01 we cannot rely on
the PUHF estimates of bofh, andT, components, since the
former ones are rather poor. However, g clusters ap-
proximate FCIT, components rather well and, as a result,
the CCSDQ method gives very good results far>0.01.
This becomes obvious when we compare the energy differ-
ences CISD@ CCSD and CIDQ@- CCD [cf. Egs. (5)—(8)]

CAPUHP), and CCSMPUHP energiegin hartreg

for the ground electronic state of the MBS H4 model wath 2.0 a.u. and different values af. The RHF

solution is triplet stable forr>0.2.

@ RHF UHF CCOPUHP CCSDPUHP FCl

0.0 —1.858241 —1.957155 —1.946785 —1.946785 —1.975862
0.005 —-1.871397 —1.961129 —1.953479 —1.953480 —1.980593
0.01 —1.883894 —1.965182 —1.960187 —1.960190 —1.986202
0.015 —1.895765 —1.969308 —1.966837 —1.966841 —1.992476
0.02 —1.907040 —1.973492 —1.973371 —1.973378 —1.999187
0.05 —1.963612 —1.998933 —2.008542 —2.008555 —2.040040
0.1 —2.025560 —2.036852 —2.049701 —2.049710 —2.090882
0.12 —2.042361 —2.049282 —2.061096 —2.061103 —2.105137
0.15 —2.061704 —2.064879 —2.074305 —2.074309 —2.121744
0.2 —2.083189 —2.083904 —2.089149 —2.089150 —2.140449
0.3 —2.104642 —2.104642 —2.104642 —2.104642 —2.159418
0.4 —2.113001 —2.113001 —2.113001 —2.113001 —2.166906
0.5 —2.115237 —2.115237 —2.115237 —2.115237 —2.168926
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TABLE V. A comparison of the FCI and various CC energigs hartre¢ for the ground electronic state of the MBS H4 model with
a=2.0 a.u. and different values of. For >0.2, CCD@=CCD and CCSDQ=CCSD.

” FCl ccb ccsD ACCSD  CCSOT] ACCSD[T] CCDQ ccsDg  CCSDQ[T]

0.0 —-1.975862 —1.978696 —1.978696 —1.976017 —1.978696 —1.976017 —1.977885 —1.977885 —1.977885
0.005 —1.980593 —1.982752 —1.982760 —1.981969 —1.982761 —1.981970 —1.981944 —1.981953 —1.981954
0.01 —1.986202 —1.987808 —1.987829 —1.988198 —1.987831 —1.988200 —1.987027 —1.987049 —1.987051
0.015 —1.992476 —1.993665 —1.993693 —1.994684 —1.993695 —1.994687 —1.992929 —1.992959 —1.992960
0.02  —1.999187 —2.000074 —2.000103 —2.001369 —2.000104 —2.001370 —1.999395 —1.999424 —1.999425
0.05 —2.040040 —2.040247 —2.040250 —2.041174 —2.040269 —2.041189 —2.039897 —2.039900 —2.039919
0.1 —2.090882 —2.090878 —2.090889 —2.091293 —2.090942 —2.091343 —2.090783 —2.090793 —2.090847
0.12  —2.105137 —2.105117 —2.105125 —2.105451 —2.105183 —2.105506 —2.105062 —2.105070 —2.105128
015 —2.121744 —2.121720 —2.121724 —2.121983 —2.121782 —2.122038 —2.121696 —2.121701 —2.121759
0.2 —2.140449 —2.140422 —2.140432 —2.140643 —2.140485 —2.140693 —2.140417 —2.140427 —2.140480
0.3 —2.159418 —2.159355 —2.159412 —2.159607 —2.159454 —2.159648 —2.159355 —2.159412 —2.159454
0.4 —2.166906 —2.166804 —2.166905 —2.167110 —2.166942 —2.167146 —2.166804 —2.166905 —2.166942
0.5 —2.168926 —2.168808 —2.168925 —2.169136 —2.168961 —2.169171 —2.168808 —2.168925 —2.168961

with analogous CC differences C§DQ’'—CC(S)D and
ACC(S)D’'—CC(S)D (cf. Table VI). It is apparent from
Table VI that the ACCSDestimate of thel , energy contri-

the CCSD and ACCSD results for allvalues, indicating the
need forT, clusters to balanc&; contributions. In the case
of the CCSDQ approach, the perturbativg GCSDJ) cor-

bution is reasonable only fow=0. In this region both
ACCSD' and ACCSD[T] perform remarkably well. How- which indicates thaT,, T,, andT, are well represented by
ever, for =0.01, the ACCSD T, energy contributions the CCSDQ method in this region. Actually, the
have a wrong sign, which is a consequence of the poor quaECSDJ[T] has a clear advantage over ACC$D] since
ity of K, clusters, even thoughk, mimics its “exact” the former method becomes CCHD when RHF is triplet
CISDQ counterpart remarkably well, particularly for stable, which happens in the region in whigh plays a
0.0l<a<0.15. TheK, energy contribution is invariably negligible role.
positive, in agreement with the CISDQ results. Most of the above remarks also apply to a more realistic
As in the case of the MBS P4 model, the CCSD€sults  (in a sense that larger basis set is employ2dP H4 model,
are best when the ACCSbnes are worst. This clearly in- in which case RHF is triplet stable far>0.3 (see Table
dicates the need for an accurate treatmenf;ofndT, clus-  VII). There are, however, differences as well. Contrary to the
ters prior to an approximate account Bf. This is guaran- MBS H4 model, where the CCSD energies were below the
teed by the CCSDQapproach but not by ACCSD A FCI energies fora<0.1 and above the FCI energies for
similar observation applies ;. Although it plays a minor «a>0.1 (cf. Table V), the CCSD energies are invariably
role in the MBS H4 model, its perturbative account worsensabove the FCI ones in the DZP casee Table VIIJ. Thus,

rection improves the CCSDQresults for «=0.05-0.15,

TABLE VI. The effect of connected tetraexcited clusters on CCD and CCSD endigiethartre¢, as
obtained by comparing CCDQCCSD{J, ACCD’, and ACCSD results with CIDQ and CISDQ data, for the
ground electronic state of the MBS H4 model wil=2.0 a.u. and different values ef. For «>0.2,
CCDQ =CCD and CCSD@=CCSD.

CIDQ CISDQ ccDQ ccsby ACCD' ACCSD
a —-CccD —CcCcsD —CccD —CcCcsD —CcCD —CcCSsD
0.0 2.834 2.834 0.811 0.811 2.679 2.679
0.005 2.167 2.168 0.808 0.807 0.786 0.791
0.01 1.626 1.629 0.781 0.780 ~0.380 ~0.369
0.015 1.214 1.217 0.736 0.734 ~1.006 ~0.991
0.02 0.911 0.916 0.679 0.679 ~1.280 ~1.266
0.05 0.234 0.232 0.350 0.350 ~0.926 ~0.924
0.1 0.091 0.085 0.095 0.096 —0.406 —0.404
0.12 0.080 0.075 0.055 0.055 -0.327 -0.326
0.15 0.074 0.070 0.024 0.023 —0.260 —0.259
0.2 0.069 0.071 0.005 0.005 -0.212 ~0.211
0.3 0.066 0.071 0.0 0.0 ~0.199 ~0.195
0.4 0.062 0.070 0.0 0.0 ~0.209 ~0.205
0.5 0.060 0.070 0.0 0.0 -0.215 ~0.211
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TABLE VII. A comparison of the FCI, RHF, UHF, CC®PUHF), and CCSIDPUHF) energiegin hartree
for the ground electronic state of the DZP H4 model vath 2.0 a.u. and different values of. The RHF
solution is triplet stable for>0.3.

a RHF UHF CCOPUHR CCSOPUHP FCI

0.0 —1.931750 —2.023191 —2.010123 —2.010101 —2.063112
0.005 —1.941796 —2.025161 —2.014980 —2.014961 —2.065627
0.01 —1.951445 —2.027357 —2.019953 —2.019936 —2.069401
0.015 —1.960709 —2.029757 —2.024973 —2.024960 —2.074121
0.02 —1.969599 —2.032340 —2.029988 —2.029978 —2.079470
0.05 —2.015652 —2.050315 —2.058212 —2.058215 —2.114299
0.1 —2.069109 —2.081256 —2.093609 —2.093614 —2.160115
0.12 —2.084181 —2.092008 —2.103804 —2.103808 —2.173349
0.15 —2.101808 —2.105761 —2.115763 —2.115766 —2.188929
0.2 —2.121595 —2.122762 —2.129221 —2.129222 —2.206548
0.3 —2.141080 —2.141131 —2.142689 —2.142689 —2.224122
0.4 —2.148427 —2.148427 —2.148427 —2.148427 —2.230887
0.5 —2.150368 —2.150368 —2.150368 —2.150368 —2.232700

since T, contributions, as estimated by the difference be-able source oT, clusters per se, although it improves CCSD
tween CCSDQ(CC singles, doubles, and quadruples ap-results for alla values(which is certainly a nice feature of
proach, namely, the so-called CCSDQ-1a; see Réf) and  this method from a practical point of view, considering its
CCSD energies, remain positive for all values @f(see  simplicity). Again, the reason for this behavior does not in-
Table IX), their inclusion in CCSD theory should increase dicate the inadequacy of the underlying theoretical analysis
the error relative to FCI. Only when simultaneously accountieading to ACCSD theory, as one might wrongly conclude
ing for T3 clusters, which compensate the error in CCSDQfrom the remarks made in Rgi0], but from a simple fact
results by lowering the CCSDQ energy, can accufexac}  that the PUHRK, components poorly approximaie clus-
results be expected. It is remarkable how well the CCSDQters that are needed to obtdlip (K,) components by elimi-
and CCSDQ[T] methods follow this pattern. For example, nating the disconnecte}{T,)? terms from the CIC, opera-

for «=0.01(strongly degenerate regigrthe 3.602 mhartree tor.

error in CCSD energy increases to 4.363 mhartree when us- Analysis of the role of individual cluster components for
ing CCSDQ@, and drops to only—0.192 mhartree for the DZP H4 model is difficult because of the mutual cancel-
CCSDQIJT]. The CCSDT] method neglectingr, gives a lation of largeT; and T, contributions and their highly non-
—1.013-mhartree error. For comparison, the relatively smalbdditive character in the strongly degenerate region. For
1.747-mhartree error obtained with ACCSDsuggesting «a=0, the errors in the CCSD, ACCSp CCSOT],

that ACCSD improves the CCSD energy although it should ACCSD[T], CCSD{, and CCSDQT] energies are rather
not) increases to a large (in absolute valug large, namely, 5.508, 4.802; 3.968, —5.732, 6.334, and
—3.737-mhartree error in the case of ACCED. This 3.070 mhartree, respectively. At the same time, our simple
shows that we cannot regard the ACCSbethod as a reli- CCSDQ[T] model is still the best among all the methods

TABLE VIIl. A comparison of the FCI and various CC energi@s hartre¢ for the ground electronic state of the DZP H4 model with
a=2.0 a.u. and different values of. For «>0.3, CCD@=CCD and CCSDQ=CCSD.

a FCI CCD CCsSD ACCSD CCsOT] ACCSDI[T] CCcDQ CCSD@  CCsDQ(T]
0.0 —2.063112 —2.054869 —2.057604 —2.058310 —2.067080 —2.068844 —2.054050 —2.056778 —2.066182
0.005 —2.065627 —2.058604 —2.061154 —2.062709 -—2.067626 —2.070232 -—2.057806 —2.060349 —2.066751
0.01 —2.069401 —2.063415 —2.065799 —2.067654 —2.070414 —2.073138 —2.062662 —2.065038 —2.069593
0.015 —2.074121 -2.068955 —2.071192 —2.073044 —2.074646 —2.077162 —2.068260 —2.070489 —2.073893
0.02 —2.079470 —2.074930 —2.077039 —2.078752 —2.079746 —2.081951 -—-2.074296 —2.076397 —2.079065
0.05 —2.114299 —2.111409 —2.113037 —2.113863 —2.114259 -—2.115177 —2.111080 —2.112704 —2.113915
0.1 —2.160115 —2.157889 —2.159204 -—2.159608 —2.160039 —2.160461 —2.157788 —2.159103 —2.159935
0.12 —2.173349 —2.171228 —2.172490 —2.172844 —2.173273 —2.173640 —2.171167 —2.172428 —2.173209
0.15 —2.188929 —2.186897 —2.188118 —2.188435 —2.188856 —2.189184 —2.186868 —2.188088 —2.188826
0.2 —2.206548 —2.204561 —2.205778 —2.206078 —2.206481 —2.206791 —2.204553 —2.205770 —2.206473
0.3 —2.224122 —2.222083 —2.223374 —2.223685 —2.224064 —2.224386 —2.222082 —2.223374 —2.224064
0.4 —2.230887 —2.228775 —2.230137 —2.230467 —2.230831 —2.231173 —2.228775 -—2.230137 —2.230831

0.5 —2.232700 —2.230560 —2.231948 —2.232285 —2.232645 —2.232994 —2.230560 —2.231948 —2.232645
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TABLE IX. The effect of connected tetraexcited clusters on CCD and CCSD endigiethartre¢, as
obtained by comparing CCDQCCSDJ, ACCD’, and ACCSD results with CCDQ-1a and CCSDQ-1a
data, for the ground electronic state of the DZP H4 model with2.0 a.u. and different values of. For
a>0.3, CCD@=CCD and CCSDQ=CCSD.

CCDQ-1a° CCSDQ-1& ccoQ ccsbg ACCD’ ACCSD
a —-CCD —CcCcSsD —-CCD —CcCcsD —-CcCD —CcCcSsD
0.0 1.094 1.155 0.819 0.826  —0.743 ~0.706
0.005 0.706 0.754 0.798 0.805  —1.547 —1.555
0.01 0.451 0.489 0.753 0761  —1.817 —1.855
0.015 0.290 0.317 0.695 0.703  —1.797 —1.852
0.02 0.188 0.207 0.634 0.642  —1.650 —~1.713
0.05 0.015 0.019 0.329 0333  —0.785 -0.826
0.1 0.000 0.002 0.101 0.101  —0.385 —0.404
0.12 0.003 0.005 0.061 0.062  —0.338 ~0.354
0.15 0.006 0.009 0.029 0.030  —0.303 -0.317
0.2 0.010 0.013 0.008 0.008  —0.285 -0.300
0.3 0.011 0.015 0.001 0.000  —0.295 ~0.311
0.4 0.011 0.014 0.0 0.0 -0.313 ~0.330
0.5 0.010 0.013 0.0 0.0 -0.319 ~0.337

3 rom Ref.[40].

considered. Actually, the CCSD[J] results remain best for CCSDQ case. Poor ACCSDestimates ofl, cluster contri-
«<0.02, while fora=0.02 CCSIDT] is better, giving errors  butions result in rather large-0.294 to —4.605-mhartree
smaller than 8Quhartree fora=0.05(CCSDQ[T] gives 55  errors fora=0.5—0.005 obtained with the ACCSPI] ap-
—384 phartree errors in the same regjott is not our goal,  proach, which should be compared to small Gartree to
however, to prove the superiority of CCSDQased ap- —1.124-mhartree errors in the same region obtained with the
proaches, but rather to see if they are capable of representi@CSDJ[T] method.

T, clusters better than ACCSDnethods. For this reason, we  Let us look, finally, at the MBS H8 model. In this case,
compare in Table IX accurate estimatesIgfcluster contri-  the manifold of quadruple excitations is larger than for the
butions as given by the energy differences (6\0Q-1la  H4 and P4 models and up to eightfold excited configurations
—CC(S)D with their CQS)DQ’'—CC(S)D and ACQS)D’ appear in the FCI wave function. The RHF solution is triplet
—CC(S)D analogs. We find that ACCSDgives a wrong stable only fora>0.5 a.u.(see Table X The MBS H8
sign of T, energy contributions for all values of, whereas model is very demanding for a variety of methods, including
CCSDQ approximates these contributions quite reasonablMRCC and MRCI investigated in Ref§31,36,50,66,9R It

(K, contributions remain positive for alt valueg. Particu- is also challenging for SRCC approaches, particularly in the
larly impressive are the results far<<0.015. Both the degenerateve<0.1 a.u. region, where it is difficult to balance
CCSDQ-1a and CCSDQestimates ofT, cluster contribu- largeT; and T, contributions[24,31,50. For example, it is
tions decrease to zero asincreases, even though for the sufficient to add perturbative(CCSD correction to CCSD
CCSDQ-1a method this decrease is more rapid than in thenergies, which fow=<0.1 a.u. give large errors relative to

TABLE X. A comparison of the FCI, RHF, UHF, CQPUHP), and CCSIPUHP energieqin hartree
for the ground electronic state of the MBS H8 model wdth 2.0 a.u. and different values ef (in a.u). The
RHF solution is triplet stable fo&x>0.5 a.u.

a RHF UHF CCOPUHP CCSDPUHP FCI

0.0 —4.065533 —4.137980 —4.140227 —4.140278 —4.204793
0.0001 —4.065563 —4.137988 —4.140242 —4.140293 —4.204803
0.001 —4.065828 —4.138059 —4.140385 —4.140435 —4.204886
0.003 —4.066418 —4.138217 —4.140700 —4.140751 —4.205075
0.01 —4.068474 —4.138774 —4.141805 —4.141854 —4.205769
0.03 —4.074276 —4.140389 —4.144951 —4.144998 —4.208036
0.06 —4.082780 —4.142885 —4.149628 —4.149670 —4.212169
0.08 —4.088316 —4.144597 —4.152707 —4.152746 —4.215336
0.1 —4.093745 —4.146349 —4.155747 —4.155783 —4.218763
0.3 —4.142240 —4.165876 —4.183089 —4.183104 —4.257729
0.5 —4.180812 —4.188150 —4.203770 —4.203775 —4.293221

1.0 —4.242846 —4.242846 —4.242846 —4.242846 —4.352990




54 APPROXIMATE ACCOUNT OF CONNECTED QUADRUPY . .. 1235

TABLE XI. A comparison of the FCI and various CC energi@s hartree for the ground electronic state of the MBS H8 model wath 2.0 a.u. and
different values ofx (in a.u). For >0.5, CCDQ@=CCD and CCSDQ=CCSD.

ccsDy
@ FCl ccb CCSD  ACCSD CCSIT] ACCSD[T] CCSDT® CCDQ CCSDQ CCSDQ[T] +T(CCSDT)°®

0.0 —4.204793 —4.198759 —4.199754 —4.201009 —4.205774 —4.208932 —4.195415 —4.196320 —4.201529

0.0001 —4.204803 —4.198773 —4.199767 —4.201025 —4.205780 —4.208941 —4.213165 —4.195430 —4.196334 —4.201537 —4.209732
0.001 —4.204886 —4.198900 —4.199884 —4.201176 —4.205828 —4.209016 —4.213168 —4.195567 —4.196461 —4.201603 —4.209745
0.003 —4.205075 —4.199185 —4.200147 —4.201511 —4.205942 —4.209188 —4.213182 —4.195873 —4.196746 —4.201757 —4.209781
0.01 —4.205769 —4.200211 —4.201099 —4.202693 —4.206408 —4.209824 —4.213279 —4.196978 —4.197780 —4.202363 —4.209960
0.03  —4.208036 —4.203376 —4.204082 —4.206143 —4.208256 —4.211921 —4.214008 —4.200368 —4.201001 —4.204598 —4.210927
0.06 —4.212169 —4.208643 —4.209147 —4.211518 —4.212151 —4.215762 —4.216327 —4.205970 —4.206418 —4.209018 —4.213598
0.08  —4.215336 —4.212410 —4.212816 —4.215225 —4.215284 —4.218708 —4.218595 —4.209950 —4.210308 —4.212459 —4.216087

0.1 —4.218763 —4.216321 —4.216649 —4.219016 —4.218714 —4.221902 —4.221328 —4.214061 —4.214350 —4.216165 —4.219029
0.3 —4.257729 —4.256887 —4.256929 —4.258253 —4.257699 —4.259119 —4.258105 —4.255973 —4.256010 —4.256753 —4.257186
0.5 —4.293221 —4.292531 —4.292534 —4.293356 —4.293092 —4.293936 —4.293304 —4.292249 —4.292252 —4.292806 —4.293022
1.0 —4.352990 —4.352372 —4.352444 —4.352785 —4.352799 —4.353145 —4.352965 —4.352372 —4.352444 —4.352799 —4.352965

3 rom Ref.[31].
bT(CCSDT) is defined agCCSPT— ECCSD

FCI (ranging between 2.442 and 6.034 mharfrée obtain  a.u. due to large positive,(PUHF) corrections that are not
surprisingly small 49hartree to—0.981-mhartree errors compensated by the(TCSDQ) term, instead of giving us
(Cf. the CCSD and CCSD-] reSU|tS in Table )q Th|S indi' small errors found for the H4 model.
cates that the perturbative (QCSD, T(ACCSD), and  The T, cluster components are reasonably well repre-
T(CCSDQ) corrections grossly underestimate the magni-genteq by the PUHF wave function, as the results in Table
tudeho;‘ “true” ES energy qontrlburtllons,bw?lch are Ir? reality x| indicate. In this case, a comparison of the energy differ-
much larger when we estimate them by forming the energy,  ..c CCIDQ' —CC(S)D and ACAS)D'—CC(SD s
difference CCSDT CCSD (cf. Tablg XII and the results in made with the difference of CCSDTQ and CCSDT energies
5:; ng],{)ﬁg?{rﬁ:,qlll g’#}égﬁ)gbtaw‘l'? t0—13.4 mhar- computed in Ref[31]. Although the PUHF wave function
3 seems to underestimate largge contributions obtained by
AET(CCSDY _ ECCSDT_ ECCSD (154 comparing more accurate CCSDTQ and CCSDT results, the
' agreement between CCSDFRECSDT and CCSDQ
_ T(CoSD) T(ACCSD) — CCSD energy differences far=0.06-0.1 a.u.(particu-
whereas the perturbative\E , AE , and  Jarly, for «=0.1 a.u) is rather good. We must not forget that
AET(CCSDQ) corrections range between2 to —3 and—5 T, andT, corrections are highly nonadditive in the MBS H8
to —8 mhartree in the same region. Thus, CCSPQover- model, and it is hard to objectively measure their magnitude.
estimates the FCI energies by 2.8.3 mhartree fow<0.1  Again, ACCSD gives wrong(negative signs for the energy

TABLE XII. The effect of connected tetraexcited and triexcited clusters on CCD and CCSD er(@ngies
mhartre¢, as obtained by comparing CCDQCCSD{, ACCD’, ACCSD, CCSOT], ACCSD[T], and
CCSDQ(T] results with CCSDT and CCSDTQ data, for the ground electronic state of the MBS H8 model
with a=2.0 a.u. and different values of (in a.u). For >0.5, CCD@=CCD and CCSDQ=CCSD.

CCSDTQ* CCDQ CCSD@ ACCD’' ACCSD CCSDT?

a —CCSDT? —CCD —-CCSD —CCD —-CCSD —CCSD TCCSD T(ACCSD') T(CCSDQ)
0.0 3.344 3434 —1.488 —1.255 —6.020 —7.923 —5.209
0.0001 8.327 3.343 3.433-1.491 —-1.258 —13.398 —-6.013 —7.916 —5.203
0.001 8.248  3.333  3.423 —1.520 —1.292 —13.284 —-5.944 —7.840 —5.142
0.003 8.073 3.312 3.401 —1.581 —-1.364 —13.035 —-5.795 —7.677 —5.011
0.01 7.478 3.233 3.319 —-1.776 —1.594 -—-12.180 -5.309 —7.131 —4.583
0.03 5944 3.008 3.081 —2.163 —2.061 —-9.926 —-4.174 -5.778 —3.597
0.06 4137 2.673 2729 —2.404 —-2371 -—-7.180 -3.004 —4.244 —2.600
0.08 3.242 2460 2508 —2.418 —2.409 -—-5.779 -—2.468 —3.483 —2.151
0.1 2551 2260 2.299 —2.363 —2.367 —4.679 —-2.065 —2.886 —1.815
0.3 0.374 0914 0.919 —1.319 —-1.324 -1176 -0.770 —0.866 —0.743
0.5 0.083 0.282 0.282 —0.822 —-0.822 -0.770 —-0.558 —0.580 —0.554
1.0 —0.026 0.0 0.0 -0.343 -0.341 -0.521 -0.355 —0.360 —0.355

8 rom Ref.[31].
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corrections due td@ 4, which, as the CCSDTQCCSDT and function provides useful information abolli, cluster com-
CCSDQ@ —CCSD energies indicate, should remain positiveponents even when the PUHF estimatesTgfcomponents
for all values ofa. In consequence, small positive errier ~ are rather poor.
a=0.03-0.08 a.u) and small negative errordor a~0.1 The PUHF-basedT, cluster components change the
a.u) in the ACCSD results change into large negative3.1 = CCSD energy in exactly the same direction as the “true”
to —3.9-mhartregerrors when ACCSDis augmented by the T, components obtained in more accurate CCSDQ or
perturbative TACCSD') correction (cf., e.g., the CISDQ calculations. Thus, the CCSD@pproach carries a
ACCSD'[T] results in Table X). In fact, these errors would great deal of information about the triig corrections. The
be even larger were we to add the “truel’; correction, same holds for the simpler ACCSInethod, but only when
AET(CCSPT) Eq.(154), to ACCSD energiedcf. the last four  the PUHF wave function provides a good estimate of both
columns in Table XI). It is, in fact, instructive to consider T, andT, clusters. Otherwise, the ACCSInethod changes
the CCSDQ+T(CCSDT) approach obtained by adding the CCSD energy in the wrong direction. This does not di-
AET(CCSDT) Eq.(154), to CCSDQ energies. In this case the minish the usefulness of the ACCSR@pproach, which is
errors reduce to as little as751 to 27uhartree fora>0.06  computationally simpler than CCSD and provides very good
a.u., as opposed to 2.877 to 0.191-mhartree errors obtaingdsults, even in difficulab initio situations involving com-
using the CCSDQT] method in the same region. This indi- plete bond breaking, such as those found for HF and N
cates that the remaining,, T,, and T, contributions are [48,93.
rather well represented by the CCSD@pproach and we We have shown that the monoexcited cluster operator
only need better estimates f corrections. Unfortunately, UY"F, defining the UHF wave function, generally possesses
the PUHF wave function does not provide us with any infor-both singlet and triplet components. Although only the triplet
mation aboufl; components. component is responsible for the energy lowering, both com-
Before summarizing our results, let us point out that thereponents are needed to reach the variational energy minimum
seems to be a straightforward correlation between the qualitgefining the broken-symmetry UHF solution in the region
of CCSDQ and CCSDQT] results and the magnitude of where RHF is triplet unstable. The singlet component of

the energy difference UYHF defines the monoexcited clusters of the PUHF wave
function, whereas all clusters excited an even number of
SPUHF= ECCSDPUHR _ pFCI A ECCSDIPUHR _ A EFCI times are solely determined by the triplet component. In spite

(155  of the presence of the monoexcited componerit {#i'*, all

clusters excited an odd number of times, exceptTpr are
where AEC“SPPUHR s the PUHF-based CCSD energy ex- absent in the PUHF wave function. In particular, ipclus-
pression defined by Eq141) and AE™ its exact(FCl)  ters are present in the PUHF solution. We made an attempt
counterpart. When we analyze the results in Tables I, IV ango estimate thé ; component perturbatively, while comput-
V, VIl and VIII, and X and XI, we immediately recognize ing T, using the CCSDQmethod, but the results are not
that CCSDQ and CCSDQ[T] methods perform best when conclusive. We think that better estimatesTafcomponents
6PUHF, Eq. (159), reaches its minimum value. Indeed, for all are needed, and may be obtained with CASSCF rather than
four models considered in this papef,”""" is a monotoni-  UHF wave function. Work in this direction is under way and
cally decreasing function at in the strongly degenerate re- the results will be presented elsewh§ré].
gion and, after passing through its minimum value, it in-
creases withy to reach the maximum value of AEF®' in ACKNOWLEDGMENTS
the region where the RHF solution is triplet stable, so that
K., K, andAECCSP(PUHP yanish. The minimum values of ~ The continued support by NSERQ.P) is gratefully ap-
SPUHF are reached: ak~2.1 a.u. for the MBS P4 model, at preciated. This work was also sponsored by Wroctaw
a~0.015 for the MBS and DZP H4 models, andeat0.06  Technical University research Projects No. 341-473 and
a.u. for the MBS H8 model. As we have seen before, thes&lo. 331-359.
are the regions where CCSD@nd CCSDQT] approaches
perform best and provide the best descriptiorT gftlusters. APPENDIX: DIAGRAMMATIC DERIVATION
Unfortunately, we cannot us& ", Eq.(155), as a diagnos- OF EQS. (95) AND (109—(110)
tic tool, since it requires knowledge of the FCI energy. ) ) ) )
Nonetheless, the correlation between its magnitude and the !N this Appendix, we use the diagrammatic approach

performance of the CCSDQ@nd CCSDQ[T] approaches is [22,41—44 based on graphical methods of spin algeth&s
worth noting. to derive fundamental Eqg95) and (108—(110 for the

OSA K, amplitudes and the OSA®§;4[Gbe(i)]},_ correc-
tions. These equations were obtained in RB8] using al-
VII. SUMMARY gebraic arguments and the relationship between spin-free
In this paper, we investigated the general cluster structuré-€., nonorthogonally spin adapteand OSA formalisms.
of broken-symmetry UHF solutions and the possibility of ~We first introduce basic orbital and spin diagrams needed
correcting the standard CCSD equationsTaycontributions  to derive Eqs(95) and(108—(110), in particular a graphical
resulting from such an analysis. The aim of this study was tdepresentation of the operatt}(1,0). To facilitate our
formulate, implement, and test the CCSDRethod, which  analysis, we consider a more general monoexcitation opera-
approximately accounts aF, clusters by fixing their values tor UT(S,0), Eq.(55), and seS=1 in final expressions. The
to their PUHF estimates. It was shown that the PUHF waverbital and spin diagrams definirh@(S,O) are shown in Fig.
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(1/2),0, r

r + _
S,0
[S] 172 g S 0 a
a ,
Sab S N?:[I]”z [S]
.
+ t
€)] (b)
r (1/2),0,
a +® FIG. 4. Orbital(a) and spin(b) diagrams representing, Eq.
s NE0[i] 2 [ (1/2).0p (A2). The operatos?P=S25(0)= 1+ (ab) represents two different
rs (1/2),0" ways of labeling the open paths in diagrda. Lines carrying the
b * (1/2),65 spin 3 in diagram(b) are left unlabeled.
(c) (d) The orbital factor corresponding to Fig.(a} is
‘ y (rlusla)s(slus|b)s. The spin diagram of Fig.(#) has only
\\./ two external lines, which can thus be joined to yield the
6—j symbol
i ] sy
I L1
! I uGi,9=U(si)=1{ . ° A3
(|1 )_ ( vl)_ 1 1 S ) ( )
2 2

(e)

FIG. 3. Graphical representation bf‘(S,0), Eq.(55) [(@) and  introduced in Ref[94]. As a result, we have
(B); Gre(i)=[G()]", Eq. (28) [(c) and (d)]; andVy, Eq.(13) — a - : :
[(®)]. (a), (c), andl()e) are orbital andb) and(d) spin d?agrams. A= Nrsb(_ 1M 3 ,S)Sab(l)<r|ul|a)s(s|u1|b)(SA4

3. We also need a graphical representation of the bra biexc

tation operatoiG32(i)=[G5(i)]" and of the two-body part

of the HamiltonianVy . They are given in Fig. 3 as well. K = LN@P—1)itirj1-12
We begin with Eq(95). Clearly, (rslkolab)i=zNi(= 1) 1]

I particular, forS=1 we obtain

X &(i)(r|usla) (slug|b)y,  (A5)
(rs|kolab)=(®o|G2(i)1[US(1,01]®g),  (AL)

since[94]
where we dropped the project®s_o, sinceGL (i) gener- Ui 0= [ (A6)
ates a singlet configuration. We thus consider a more general ' z '
quantity Replacing(r|us|a); and (s|uyb); by (r||a)y and(s|b)s,
_ b 1o X ) respectively, gives Eq95). Note that forS=0, we would
E=(Po|G$(1)z[U1(S,0]% Do), (A2)  obtain the formula for thé(T,)? contribution to the OSA

CCSD equations projected on double excitatippsovided
which reduces to EqA1) whenS= 1. Following the general that we identifyU%(0,0) with T;; see Ref[44]].
rules of the OSA diagrammatic formalisfi@2,41—-44, we We next focus on Eqs(108—(110. Again, instead of
draw all possible Goldstone-Hugenholtz orbital diagrdins {®Z(;4[G?sb(i)]h, Eq. (107, we consider a more general
Brandow representatiprihat arise in this case and the cor- quantity
responding spin diagrams, and find the resulting orbital and
spin factors. For the spin factors, we use graphical methods = ab; AryX 4
of spin algebras developed by Jucys and collabord&9 Y= PG DVhzlUa(SOI [ Po). (A7)
In case of Eq.(A2), only one Goldstone-Brandow orbital There are three distinct Goldstone-Hugenholtz diagrams that
diagram can be drawn. It is shown together with its spin.gn pe drawn in this casef. Eq. (108)]. Their Brandow
graph in Fig. 4. Notice the absence of the bra orbital diagra”l’epresentation is given in Figs(@—5(c), whereas the corre-
representing370(i) in Fig. 4@). As shown in Ref[44] (cf..  sponding spin diagrams are shown in Fig&)66(c). Thus,
also, Refs[22,42,43), we do not have to draw the vertices \ye write
representing projection operators, such$§(i), in orbital
diagrams, as they can always be accounted for by labeling Y=Y(a)+Y(b)+Y(c), (A8)
the open paths of the remaining part of the diagram in all
nonequivalent ways. In case of the operaﬁﬁsb(i), it is  where the individual contributionX¥'(x), x=a,b,c, corre-
convenient to use for this purpose the symmetrizersspond to diagrams(8), 5(b), and %c), respectively. Clearly,
S§3P=53(0) and/orS,s=S,s(0). Thesymmetrizerss?® and  three contributionsY' (x), x=a—c, reduce to contributions
S, in orbital diagrams yield théantisymmetrizersS®°(i) (H)ff;4(x) of Eq. (108 whenS=1.
andS,¢(i) in the resulting algebraic expressidmst]. The orbital factors associated with diagrania)55(c) are
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s' F =N2[i[" [S]?
s, S0, 42 - 8.0 5.0 S0 S0 80
b : ' . \ N \
s b i + ! - + | -
F . F s
(a (b) (c) R SMZ B
FIG. 5. Goldstone-Brandow orbital diagrams representing - B * ¢ T B M J
Eq. (A7). The operators S$°=8%°0)=1+(ab) and so sc SJ S0 so <o swﬂ“’i_
S,s=5,5(0)=1+(rs) are used to represent different ways of label- ' o o ’ e
ing the open paths. The indices,b’ (r’,s’) are free summation @ o ®) ] © ] @ ]
labels of hole(particle type. _ FIG. 6. Spin diagrams corres_pondlng to the 'orbltal dlag_rams of
Fig. 5@—- 5(c) [(8—(c), respectively and the 4jm generalized
Yorb(a)=<a’b’||r’s’)<r|u1|a’)s<r’|u1|a)s \;\:}ig?;r coefficient(d) used to recouple thg¢m coefficients(a)

X(slug|b")(s'|u1|b)s, (A9) o
where Qljnfzjni) is a standard 3j~(or 34m) symbol, in the

YOR(b)=(a'b’[|s'r")(r|usla’)(r'|uy|a) . -
Hese s final expressions fol*P"(a) and Y*P"(b). Here,J is the

X (slug|b)g(s’[ug|b")s, (A10)  intermediate spin coupling number that must be summed
orb o , , over fromJ=0 to J=2 (this summation must be accompa-
YO(c)=—(a'b'|[r's")(r|usa’)(r"|ula)s nied by the factofJ]; cf. Ref.[69]). It is quite obvious from
X (s]uy|b)&(s'[ug|b")s. (A11) Figs. 6a) and Gb) that the resulting spin recoupling coeffi-

cients[obtained by joining the lines of (6 and &b) with
The corresponding spin factofé®(x), x=a—c, can be 6(d)] are repre_sented by diagrams that are separable over
easily evaluated by applying general rules described in Reflr€€ internal lines. Thus, they factorize into products of
[69] to diagrams @)—6(c). Diagrams 63 and Gb) have much simpler 6-j symbolsU(X;,X5), Eq. (A3), and (cf.
four external lines. We thus join these lines with the lines ofRRef. [94])
the 4—jm generalized Wigner coefficie69] depicted in
Fig. 6(d). This results in the 4jm coefficient

S S
S s s 7“*2)*3 /S s (J S V(S,S,J)=[1 . j- (A13)
=(-1 7 3 3
0 0 0 0, =1 0 0 0/\0 0 O
2
=(-1)° S S (A12) In this way, we arrive at the following expressions for the
0 0 0" spin factorsY*?(a) and Y3""(b),

2 S S 2
Y P a)=N22(— 1) Y[i1YqS]2 Y (—1)J[J]U<i,J)V<s,s,J)2( ﬁ : (A14)
J=o 0O 0 O
2 S S J2
Yspi”(b)=N?£(—1)”1[i]1’2[812J20(—1)J[J]U(i,S>V<s,s,J)2<O 0 03) (A15)

Two facts simplify these expressions further. Thg 8ymbolsV(S,S,J) eliminate thel=2 term from Eqs(Al14) and(A15),
sinceV(S,S,2)=0, whereas the 3-symbol § 5 ) eliminates thel=1 term, sinceS+ S+J must be even to give a nonzero
value. As a result) in Egs.(A14) and (A15) must equal zero, so that

Y"(a)= NPT, (A16)
Y b) = IN22(— 1) i ]Y2U i, 9), (AL7)

since[94]
V(S,S,0)2 ((S) 0 2)2=%[S]2, (A18)

and
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U(0ji)=3(-1)"*1 (A19)

The spin facto®Y SP"(c) is easier to evaluate since a loop diagram contributing¢piftroduces the Kronecker delta symbol

ds0[69]. As a result, the lines carrying and the associated vertices representingr®symbols(obtained by removing the

S=0 line from each 34m vertex carryingS) can be eliminated, yielding after a simple manipulation,
YSPc) = N Ss 1112 (A20)

In consequence, the final formulas f¥i(x), x=a—c, obtained by combining the orbital and spin factd¥S™(x), Egs.

(A9)—(A11), and YP(x), Egs.(A16), (A17), and(A20), respectively, are

Y(a)=iNZlI"? X

a' b’ r's'

Y (b)=3N2(— 1) Y i1YU0(3,8) X

a'b'r',s'

Y(c)=—$N¥i1¥%5s0 >

a’'b'r's

where we interchanged the summation indicésands’ in
Eq. (A22). Clearly, for S=1, Y(c)=0}.,(c)=0. The re-

maining two contributionsY (a) andY (b), reduce to Egs.

(109 and (110 for ©).,(a) and ©}.,(b), respectively,
when we use Eq(A6) to eliminateU(i,1) from Eq.(A22)
and replacer|u,|a), by (r||a);.

It is interesting to notice tha¥ (a), Eq.(A21), reduces to

(@'b’|[r's")(r"|us|a)s (s"|us|b)s Sis(i)(r|usla’)s (s|u|b’)s,

(a’b’||r’s’)SrS(i)Sab(i)(r|ul|a’)0 (r'lugla)e (s|us|b)o (s'|uslb")o,

(A21)

(@'b’[[r’s"}(r'[ug|b’)s Ss(i)S*P(i)(rlusla’)s (s'|us]a)s (s|us|b)s, (A22)

(A23)

To prove Egs(A24) and (A25), we must express the UHF
orbitals for 3=0 in terms of the corresponding RHF MQO'’s
and expand the UHF wave function f8=0 in terms of the
RHF configuration and various excited configurations result-
ing from |®§"F) in order to find the amplitudes defining the
monoexcitation$%) and|;3), Eq. (133 (see Appendix A in
Ref.[56] for more detail. From Eqs.(58), (A24), and(A25)

the 4(T,)* contribution to the OSA CCSD equations pro- W€ immediately find

jected on biexcited configuratiorjg4], once we setS=0

and identifyU’l((0,0) with T, . The remaining two diagrams
of Fig. 5[i.e., Y(b) andY(c)] do not have such an inter-

(r|[a)o=0,

(r||a)1: _5r,a+nr

(A26)
(A27)

pretation, since they do not represent the connected diagrams

of the CCSD theory.

so that(rs|k,|ab); becomes

As a last remark, let us notice that the general formula for

the K, amplitudes(rs|k,|ab);, Eq.(95), that we derived in

this Appendix, reduces to the expression for the exact pair-

cluster amplitudes characterizing tBe= 0 limit of the cyclic
polyene model witiN=4v+2=2n sites[56] (in this case,
PUHF solution represents the exact wave fungtiomce we
realize that in this special case

(raju®ae)= o ain, (A24)

(rBluP|aB)=— 5 asn. (A25)

(rs|k2|ab)i == N;Sb[i ]_UZSab(i ) é\r,b+n55,a-%—n
== N;sb[i]_1/25r+s,a+b8ab(i ) 5r,b+n '
(A28)

where §; ;5 5+p=1 whenr+s=a+b(mod\) and 0 other-
wise, in perfect agreement with the results of RB6&]. Note
that in this casel$(0,0)=0 [cf. Eq.(A26)], which was one

of the main reasons for neglecting the singlet component of
U7 in the initial study on CCDQand ACCO =ACPQ ap-
proacheg53].
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