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Extension of the applicability of the closed-shell coupled-cluster~CC! theory with doubly~CCD! or singly
and doubly~CCSD! excited clusters to quasidegenerate situations requires the inclusion of the connected triply
and quadruply excited cluster componentsT3 and T4 . Since an explicit consideration of these clusters for
larger systems is computationally very demanding, we explore the possibility of estimating theT4 contribution
using the projected unrestricted Hartree-Fock~PUHF! wave function. The resulting CCDQ8 and CCSDQ8
approaches are shown to correctly approximate the effect of the quadruply (Q8) excitedT4 clusters, even when
the PUHF wave function itself cannot serve as a good source of the lower-order pair-cluster components. It is
important that the results of the cluster analysis of the PUHF solution are used directly and no further
approximations are made. Only when both pair-cluster andT4 cluster components are reasonably well approxi-
mated by the PUHF wave function, theT4 cluster contributions cancel out certain CCSD diagrams, and good
CC results can be obtained with the approximate coupled-pair approaches. It is also demonstrated that it may
be more difficult to balanceT3 and T4 clusters relying on simple perturbative approaches, such as
CCSDQ81T~CCSDQ8!. The results of formal considerations, including a thorough investigation of the cluster
structure of the PUHF wave function, are illustrated on several examples. These include a few model systems
composed of four and eight hydrogen atoms in various geometrical arrangements, as described using minimum
and double zeta plus polarization basis sets, for which the exact full configuration interaction data are available.
The orthogonally spin-adapted formulation of CC theory is used throughout.@S1050-2947~96!07407-0#

PACS number~s!: 31.10.1z, 31.15.Dv, 31.15.Ar, 31.25.2v
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I. INTRODUCTION

The single-reference~SR! coupled-cluster~CC! theory@1#
is currently widely exploited for anab initio description of
the electronic structure of atomic and molecular syste
@3–9#. Its success in describing nondegenerate ground s
has stimulated considerable activity aiming to extend its
plicability to quasidegenerate and excited electronic sta
Particularly significant are several formulations and imp
mentations of multireference~MR! CC formalisms of both
genuine ~Fock or Hilbert space! and state-selective~SS!
types~cf., e.g., Refs.@7–14#, and references therein!. These
advances have been paralleled by the development
coding of various SRCC methods that account for c
nected triexcited and tetraexcited cluster compone
@15–25,27–31#.

Although the genuine MRCC theories may represent
expedient solution in general open-shell situations, their
plication to real systems is far from being routine and
mains rather limited. Proper choice of the reference sp
which depends on the fragmentation pathway conside
and of truncation schemes required for realistic calculatio
is rather delicate, so that one often experiences intruder s
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@32# or convergence problems@33,34#. On the other hand
the inclusion of higher than pair clusters in the stand
SRCC formalism can often successfully describe the com
cated cluster structure of quasidegenerate wave funct
~cf., e.g., the so-called SSCC approach@14#, including se-
lected types of triexcited and tetraexcited cluste
@31,35–37#!. Thus, in spite of all the recent progress in t
area of MRCC theory, it is still worthwhile to seek efficien
SRCC approaches that are capable of accounting for c
nected triexcited and tetraexcited clusters. Likewise, m
excited and ionized states of both closed- and open-shell
tems can be successfully described using a single, yet e
tively multiconfigurational, spin-free reference of the unita
group approach~UGA! in the so-called UGA coupled cluste
singles and doubles~CCSD! method@38,39#.

A full, explicit account of higher than pair clusters in th
SRCC theory leads to methods that are computationally v
demanding@e.g., for the CCSDT@20,21# and CCSDTQ
@27–29# methods, considering triples~T! and quadruples~Q!
in addition to singles~S! and doubles~D!, the number of
floating point operations scale asn8 and n10, respectively,
wheren is the dimension of the one-electron space involv
cf., e.g., Refs.@27,28#, and@40##. In addition, special provi-
sions must be made to avoid convergence problems w
solving the resulting nonlinear CC equations~cf., e.g., Refs.
@28# and@30#!. While the performance of CCSDT and CCS
DTQ codes can be substantially improved by using rec
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54 1211APPROXIMATE ACCOUNT OF CONNECTED QUADRUPLY . . .
sively generated intermediates, leading to a fully vecto
able computer algorithm@27,28#, much less can be don
to reduce large storage requirements for triexcited and te
excited cluster amplitudes. Orthogonal spin adaptat
@22,41–44# and adaptation to spatial symmetry~or other
available symmetries! certainly help here~cf., e.g., Refs.@23,
43, 45#, and@46#!, but the primary problem of large memor
requirements can hardly be eliminated.

For these reasons one often employs various approxim
approaches, such as, for example, noniterative perturba
estimates of singly (T1), triply (T3), and quadruply (T4)
excited clusters, referred to as the CCD1ST~CCD! or
CCD@ST# @18,22,24#, CCSD1T~CCSD! or CCSD@T#
@17,22,24#, CCSD~T! @19#, CCSDT1Q~CCSDT! or
CCSDT@Q# @25#, and CCSD1TQ* ~CCSD! or CCSD@TQ# *
@26# schemes, or their iterative CCSDT-n @15,16,20,22# and
CCSDTQ-n @25# counterparts~cf., also, Refs.@4,6,27,28#,
and @40#!. In these approaches, the quadruply and/or tri
excited cluster amplitudes are approximated via many-b
perturbation theory~MBPT! in terms of lower-orderT1 and
T2 clusters and thus need not be stored. This leads to
stantial savings in computational costs~cf. Ref. @40#, and
references therein!, even though these may still be excess
when larger systems are considered. Moreover, even w
computationally feasible, the perturbative CC approaches
often limited to near equilibrium geometries. For examp
when computing potential energy surfaces~PES! of simple
diatomics, such as HF or N2 , the perturbative CC method
yield incorrect shapes of PES at large internuclear distan
~cf., e.g., Refs.@37#, @47#, and@48#!.

Replacing the restricted Hartree-Fock~RHF! reference by
its unrestricted~UHF! analog may improve the results, b
the corresponding wave functions are spin contaminated
the computational costs of such CC-UHF calculations s
stantially increase due to the fact that we must use twice
many molecular~spin! orbitals than in CC-RHF calculation
~cf., e.g., Ref.@47#!. In general, when the configuration
quasidegeneracy@49# ~or nondynamical correlation! sets in,
the connected quadruply excited clusters are no longer
ligible relative to their disconnected12(T2)2 counterparts, and
it becomes difficult to balance the effect of largeT3 andT4
contributions~cf., e.g., Refs.@23,24,31,40#, and@50#!. In se-
vere cases of quasidegeneracy, such as those found in c
polyenes in the strongly correlated limit, where orbital a
configurational degeneracies are heavily mixed@49#, and
where T4 components are large@51#, the conventional
CCSD, or even CCSDT approaches, completely break d
~in fact become singular! @23,52#.

An alternative category of SRCC approaches, which
ploits easily available wave functions of non-CC origin
estimate the contribution fromT4 ~and, if possible,T3) clus-
ters, was initiated by Paldus, Cˇ ı́žek, and Takahashi in Ref
@53#. In this particular case, the projected UHF~PUHF! wave
function, which has a relatively simple yet sufficiently ric
structure, was used to provide information about theT4 clus-
ter components. The motivation for this choice was the f
that for the Pariser-Parr-Pople~PPP! model Hamiltonians the
~P!UHF method often yields the exact energy in the fu
correlated limit ~i.e., when the resonance integralb→0).
Specifically, for cyclic polyenes CNH N with a nondegenerate
ground state,N54n12, n51,2, . . . , the CCD~CC with
-
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doubles! method corrected byT4 contributions extracted
from the PUHF wave function yields the exact energy in t
limit, in spite of the fact that the standard uncorrected CC
approach becomes singular in the strongly correlated reg
@23,52#, and in spite of the fact that theT3 cluster compo-
nents generally do not vanish. In fact, the cyclic polye
ground state becomes highly degenerate in the fully co
lated limit ~fivefold degenerate for benzene,N56, 42-fold
degenerate forN510 cycle, etc.! and the analytic continua
tion from b,0 region of the true1A1g

2 ground-state wave
function of the benzene model tob50 limit does contain
T3 clusters@54#. However, one can show that there exists
linear combination of two1A1g

2 states, which atb50 does
not containT3 clusters@55#.

Using additional simplifications in the form of the PUH
wave function~relevant to the PPP Hamiltonians; cf. Se
III !, a SRCC method accounting for the effect of quadru
excitations, termed CCDQ8, has been suggested, and the e
plicit CCDQ8 equations derived@53#. Further theoretical
analysis of CCDQ8 equations has shown that whenev
PUHF provides exactT2 components~as it does, for ex-
ample, in the fully correlated limit of cyclic polyenes@56#!,
the corrections due to theT4 clusters cancel certain nonlinea
diagrams of CCD theory, so that CCDQ8 method reduces in
this case to one of the approximate coupled-pair~ACP! or
approximate CCD~ACCD! approaches@57–60#, in which
only those1

2(T2)2 diagrams that can be factorized over o
or more hole lines@diagrams 4 and 5 in Fig. 1 of Ref.@57# or
~d! and~e! in Fig. 4 of Ref.@22## are retained@53#. This led
to the formulation of a slightly modified approach, term
ACPQ ~approximate coupled-pair theory with quadruple!,
which is identical to ACP-45 method of Refs.@57# and @58#
or ACCD method of Ref.@60# up to a numerical factor of 9
in the nonlinear diagram 5~Fig. 1 of Ref. @57#! when pro-
jected onto the so-called triplet-coupled biexcited states~see
Sec. II!. This simple formulation of the ACPQ approac
~hereafter referred to as the ACCD8 method! was possible
thanks to the orthogonally spin-adapted~OSA! formulation
of the SRCC theory@22,41–44#. Other possible cancellation
of nonlinear diagrams in the fully correlated limit of cycli
polyene model were analyzed in Ref.@56#.

The original CCDQ8 method @53# itself has never been
implemented and tested. However, the ACCD8 method and
its ACCSD8 counterpart have been implemented and prov
highly successful in a number of model@23,24,52,59# as well
as actual@24,48# applications, eliminating the singular be
havior of CCSD theory in the strongly correlated regime
cyclic polyene model and improving in most cases t
CC~S!D results. The ACCD8 and ACCSD8 approaches,
when applied in conjunction with perturbative estimates
triply and/or singly excited clusters$ACCD81ST~ACCD8!
[ ACPQ1ST~ACPQ! or ACCD8@ST#,
ACCSD81T~ACCSD8! or ACCSD8@T#, and ACCSDT8
[ ACPTQ methods@23#%, proved successful as well, provid
ing a reasonable estimate of the effect ofT3 clusters in non-
degenerate and quasidegenerate cases@23,24#. The
ACCD8@ST# or ACCSD8@T# approaches were particularl
useful in cases where the conventional CCD and CC
methods fail due to the neglect ofT4 clusters@23#. In these
difficult cases, the ACCD8 or ACCSD8 methods were the
only CC procedures that enabled us to calculate pair-clu
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components that were in turn used to estimate theT3 cluster
contributions using the MBPT-like expressions@23#.

In a recent study, Kucharski, Balkova´, and Bartlett@40#
questioned the ability of ACCD8 or ACCSD8 approaches to
estimate the effect ofT4 cluster contributions. They showe
@40# that in some quasidegenerate systems the inclusio
T4 clusters in the CCSD formalism changes the CCSD
ergy in the opposite direction than suggested by ACCD8 or
ACCSD8 calculations@i.e., contrary to ACC~S!D8 results, the
‘‘true’’ T4 contributions worsen the CCSD results, and o
needsT3 terms, which are absent in ACC~S!D8 theories, to
compensate the energy changes due toT4#. A similar situa-
tion was found in the corresponding semiempirical fo
electron models by Planelles, Paldus, and Li@54,61# who
used the valence bond~VB! corrected CC theory@62#, in
which theT3 andT4 clusters are extracted from simple V
wave functions and subsequently used to correct the stan
CCSD method. However, this study also clearly showed
the T3 and T4 contributions to the energy may be high
nonadditive, particularly in quasidegenerate situations wh
the relative importance of these clusters is high~cf., also,
Refs. @23# and @31#!. Furthermore, in spite of an excellen
performance of ACCSD8-type methods in a number of in
stances@23,24,48,52,56–60# and of a convincing analysis in
the cyclic polyene case@53# which indicates the ability of
these approaches to account for theT4 clusters, we must
keep in mind that the basic assumptions for their valid
may not always hold. We cannot expect, for example, t
simple PUHF wave function will always be a good source
T4 clusters or that the PUHF wave function will always gi
good estimates of bothT2 andT4 components, as assumed
the derivation of ACCD8 formalism @53#. While the first
problem can be resolved by examining other sources ofT3
andT4 contributions~cf. the VB corrected CC results men
tioned above@54,61,62#!, the latter problem requires an ex
ploration of the original CCDQ8 approach@53#, or its more
accurate CCSDQ8 analog~see Sec. IV!, in order to find out
to what extent the assumptions of ACC~S!D8 approximations
are satisfied in realistic calculations. This should enable u
better understand the behavior of ACC~S!D8-type ap-
proaches and the reasons why in some cases the ACC~S!D8
theory gives the results that seem to contradict the result
more accurate CC calculations with explicit inclusion of qu
druply excited clusters@40#.

We thus decided to examine the cluster structure of PU
solutions and to implement and test CC~S!DQ8 methods at
theab initio level, using the same type of exponential expa
sions for UHF and PUHF wave functions~cf. Thouless8
theorem for single-determinantal wave functions@63,64#! as
utilized in the original study@53#. In general, we have to
consider all possible contributions appearing in these exp
sions, including those that vanish in cyclic polyenic case
particular, we explore the role of monoexcited clusters de
ing these exponential expansions in relationship with
problem of triplet instability of HF solutions~cf., e.g., Ref.
@64#!, using the symbolic manipulation languageMAPLE @65#
and double zeta~DZ! molecular hydrogen model. After de
riving the pertinent equations, we describe our gene
purposeFORTRAN program performing the cluster analysis
PUHF wave functions and correcting the CCSD equati
for T4 cluster contributions obtained by such an analysis
of
-
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The resultingab initio method, designated as CCSDQ8,
and its perturbative version corrected for triexcited cluste
referred to as CCSDQ81T~CCSDQ8! or CCSDQ8@T#, are ap-
plied to model systems in which the amount of configu
tional degeneracy can be continuously varied by changin
single parameter describing their geometries. These inc
H 4 systems with two different geometries~the so-called H4
and P4 models of Jankowski and Paldus@57#!, using both
minimum basis set~MBS! @57# and double zeta plus polar
ization basis set~DZP! @59#, as well as the MBS H8 model o
Jankowski, Meissner, and Wasilewski@66#, composed of
eight hydrogen atoms. The latter model involves a lar
number of electrons, has a sizable quadruply excited m
fold and up to eightfold excitations in the full configuratio
interaction ~FCI! expansion. We investigate the DZP H
model, since the same model was used by Kuchar
Balková, and Bartlett in their critical study@40#. To assess
the quality of T4 clusters resulting from CCSDQ8 and
ACCSD8 calculations, we compare the CCSDQ8 and
CCSDQ8@T# results with ACCSD8 and ACCSD8@T# ones, as
well as with limited CI and CC methods involving quadrup
excitations. The quality of CCSDQ8 and CCSDQ8@T# results
is also assessed by comparing them with the exact FCI d

Throughout the present paper we use the OSA formu
tion of SRCC method@22,41–44#, both in theoretical devel-
opments and programming, which enables substantial c
putational memory and time savings@67# ~cf., also, Ref.
@68#!. This formulation has the advantage of using the mi
mum number of cluster amplitudes, in addition to an obvio
appeal of exploiting the spin symmetry of the Hamiltoni
and a direct connection with the corresponding spin-adap
CI approaches. We use the OSA version of CC theory
diagrammatic form based on graphical methods of spin a
bras@69#.

We organize the paper as follows. Section II contain
brief outline of the SRCC approach, with emphasis on
CCSDTQ method and its various approximate versions
both standard and nonstandard types~cf., e.g., Ref.@40#!.
The structure of UHF and PUHF wave functions in relatio
ship to Thouless8 theorem, stability of HF solutions, and th
role of various cluster components is analyzed in Sec. III.
Sec. IV we present basic equations of the OSA CCSD8
approach and discuss their connection with the ACCS8
method. Section V then describes the details of compu
implementation of CCSDQ8 and CCSDQ8@T# methods, and
Sec. VI presents the results of our study of P4, H4, and
systems. Section VII summarizes the results, while the d
grammatic derivation of CCSDQ8 equations is given in the
Appendix.

II. SINGLE-REFERENCE COUPLED-CLUSTER THEORY

To introduce CCSDQ8 and CCSDQ8@T# approaches and
derive the required equations, we briefly review the ba
SRCC formalism. We divide the existing CC approaches i
standard and nonstandard ones.

A. Standard approaches

The SRCC theory generates the exact eigenfunc
uC0& of the many-electron HamiltonianH through action of
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an exponential operatoreT on a suitable independent partic
model reference configurationuF0&,

uC0&5eTuF0&, ^F0uC0&5^F0uF0&51. ~1!

For anN-electron system, the cluster operatorT is given by
a sum

T5(
j 51

N

Tj , ~2!

and thej -body cluster componentsTj are expanded in term
of suitably chosen set of excitation operatorsGI j

( j ) generating

the j -fold excited configurationsuF I j

( j )&5GI j

( j )uF0&,

Tj5(
I j

t I j

~ j !GI j

~ j ! . ~3!

The coefficientst I j

( j ) are referred to as cluster amplitudes.

The cluster operatorT generates all possible fully con
nected @5,7# components ofuC0& when acting onuF0&.
There is a simple relationship between the excitation op
tors Cj defining CI expansion for the wave functionuC0&,

uC0&5~11C!uF0&, C5(
j 51

N

Cj , ~4!

and the cluster componentsTj ~see, e.g., Refs.@4–7#!,

C15T1 , ~5!

C25T21 1
2 ~T1!2, ~6!

C35T31T1T21 1
6 ~T1!3, ~7!

C45T41 1
2 ~T2!21T1T31 1

2 ~T1!2T21 1
24 ~T1!4 ~8!

~for general relationship, cf., e.g., Refs.@7# and @8#!.
The general SRCC equations for the wave funct

uC0& ~as represented by the cluster operatorT) and for the
corresponding energyE then take the following form@5,7#:

^F0u~GI j

~ j !!†~HNeT!CuF0&50 ~ j 51,2, . . . ,N!, ~9!

^F0u~HNeT!CuF0&5DE[E2^F0uHuF0&, ~10!

where the subscriptC designates the connected part of
given expression and

HN[H2^F0uHuF0&5FN1VN ~11!

designates the normal-product form of the Hamilton
@5,7,70#. In the closed-shell case considered here (N52n),
a-

n

the referenceuF0& involves only doubly occupied orbitals
and the one- and two-body components of the sp
independent HamiltonianHN , designated asFN and VN ,
respectively, are defined in terms of one- and two-elect
integrals^kuzuk8& and ^kluvuk8l 8& as follows:

FN5(
k,k8

^ku f uk8&N@Ekk8#, ~12!

VN5 1
2 (

k,l ,k8,l 8
^kluuk8l 8&N@Ekk8Ell 8#, ~13!

where, for simplicity, we dropped the interaction opera
v from ^kluvuk8l 8& and

^ku f uk8&5^kuzuk8&1 (
a51

n

~2^kauuk8a&2^kauuak8&!.

~14!

Here,N@ # denotes the normal product relative to the Fer
vacuumuF0& andEkk8 are the orbital unitary group genera
tors @71#,

Ekk85 (
s521/2

1/2

Xks
† Xk8s , ~15!

with Xks
† (Xks) designating the usual Fermion creation~an-

nihilation! operators associated with a given orthonorm
spin-orbital basisuks&[uk& ^ u 1

2,s&, s56 1
2. The orbitals

occupied inuF0& ~holes! are labeled bya, b, a8, b8, etc.,
and the unoccupied ones~particles! by r , s, r 8, s8, etc. The
indicesk,l ,k8,l 8 run over all~occupied and unoccupied! or-
bitals. Choosing the RHF solution foruF0& makes the opera
tor f diagonal,

^ku f uk8&5dkk8«
k, ~16!

with «k representing the RHF orbital energies. Note that
energyDE ~correlation energy whenuF0& is the RHF refer-
ence! involves at most pair clustersT2 ,

DE5^F0u@HN~T11T21 1
2 T1

2!#CuF0&. ~17!

In standardSRCC approaches, expansion~2! is truncated at
a suitable~preferably low! excitation level, j 5 j max, and
equations projected on higher thanj max-fold excited configu-
rations are eliminated from system~9!. For example, equa
tions of the standard CCSDTQ approach~cf. Refs.@27–31#!,
where

T>TCCSDTQ5T11T21T31T4 , ~18!

take the form
^F0u~GI 1

~1!!†@HN~11T11T21 1
2 T1

21T31T1T21 1
6 T1

3!#CuF0&50, ~19!

^F0u~GI 2

~2!!†@HN~11T11T21 1
2 T1

21T31T1T21 1
6 T1

31T41T1T31 1
2 T2

21 1
2 T1

2T21 1
24T1

4!#CuF0&50, ~20!

^F0u~GI 3

~3!!†@HN~T21T31T1T21T41T1T31 1
2 T2

21 1
2 T1

2T21T1T41T2T31 1
2 T1

2T31 1
2 T1T2

21 1
6 T1

3T2!#CuF0&50, ~21!
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^F0u~GI 4

~4!!†@HN~T31T41T1T31 1
2 T2

21T1T41T2T31 1
2 T1

2T31 1
2 T1T2

21T2T41 1
2 ~T3!2

1 1
2 T1

2T41T1T2T31 1
6 T2

31 1
6 T1

3T31 1
4 T1

2T2
2#%CuF0&50. ~22!
m

f
es

r.
r

w

rate
-
ns

neral

s

In nondegenerate situations, it is sufficient to truncateT at
the doubly excited level

T>TCCSD5T11T2 . ~23!

However, when quasidegeneracy becomes appreciable~as it
does, for example, in metalliclike or extended syste
@23,49,51,52# or in highly distorted systems
@25,26,28,31,40,47,48,50,57,59,66#!, the basic assumption o
CCD and CCSD approaches, which we symbolically expr
as

T4! 1
2 ~T2!2, ~24!

no longer applies andT4 clusters must be accounted fo
Otherwise the CCSD or CCSDT approaches may suffe
singular behavior@23,53#.

The standard CCSD equations@Eqs. ~19! and ~20! with
T35T450# assume a particularly transparent form when
use the OSA formalism of Refs.@22# and @41–44#. In this
caseT1 andT2 take the form@22,24,42–44,67#

T15(
a,r

^r ut1ua&Ga
r 5(

a,r
^r ut1ua&Ga

r , ~25!

T25 (
a<b
r<s

(
i 50

1

^rsut2uab& iGab
rs ~ i !

5 1
4 (

a,b,r ,s
(
i 50

1

^rsut2uab& iGab
rs ~ i !, ~26!
2)
s

s

a

e

whereGa
r (Ga

r ) and Gab
rs ( i ) @Gab

rs ( i )#, i 50,1, designate the
OSA monoexcited and biexcited operators, which gene
normalized ~unnormalized! monoexcited and particle
particle–hole-hole coupled biexcited singlet configuratio
with respect touF0& ~see, e.g., Refs.@22#, @44#, and @67#!,
and ^r ut1ua& (^r ut1ua&) and ^rsut2uab& i (^rsut2uab& i) are
the corresponding normalized~unnormalized! cluster ampli-
tudes. These operators represent special cases of ge
excitation operators Ga

r (S,MS) @Ga
r (S,MS)# and

Gab
rs (Sab ,Srs;S,MS) @Gab

rs (Sab ,Srs;S,MS)#, which generate
OSA singlet (S50) or triplet (S51) monoexcited configu-
rations and singlet (S50), triplet (S51) or quintet (S52)
doubly excited configurations, when acting onuF0&, namely,

Ga
r 5Ga

r [Ga
r ~0,0!, ~27!

Gab
rs ~ i !5Nab

rs Gab
rs ~ i ![Gab

rs ~ i ,i ;0,0!,

Nab
rs 5@~11dab!~11d rs!#21/2. ~28!

Here, Nab
rs is the normalization factor that also relate

^rsut2uab& i and ^rsut2uab& i cluster amplitudes,

^rsut2uab& i5Nab
rs ^rsut2uab& i . ~29!

The general multiplet operatorsGa
r @Ga

r # and Gab
rs @Gab

rs # are
defined as follows@41#:
Ga
r ~S,MS!5Ga

r ~S,MS!5~@S#/2!1/2 (
sa ,sr

^SMS , 1
2 sau 1

2 s r&Xrsr
† Xasa

, ~30!

Gab
rs ~Sab ,Srs;S,MS![Nab

rs Gab
rs ~Sab ,Srs;S,MS!5Nab

rs ~@S#/@Srs# !1/2 (
sa ,sb ,sr ,ss

(
sab ,srs

^ 1
2 sa , 1

2 sbuSabsab&^
1
2 s r , 1

2 ssuSrss rs&

3^SMS ,SabsabuSrss rs&Xrsr
† Xasa

Xsss
† Xbsb

, ~31!
an
where ^ j 1m1 , j 2m2u jm& designates the standard SU(
Clebsch-Gordan coefficient and@X#[2X11 for any spin
quantum numberX. Notice that in Eq.~31! we reversed the
order of coupling for holes in comparison to Ref.@41#, so
that the biexcited configurations

U r s

a b
;SMSL

Sab

Srs

5Gab
rs ~Sab ,Srs;S,MS!uF0& ~32!
differ from those of Ref. @41# by the phase factor
(21)Sab11.

With the above definitions, the OSA CCSD equations c
be written in the following symbolic form@44#:

(
n50

3

Ln~Gr
a!50, ~33!
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(
n50

4

Ln@Grs
ab~ i !#50 ~ i 50,1!, ~34!

where Gr
a[(Ga

r )† and Grs
ab( i )[@Gab

rs ( i )#†. The individual
contributions

Ln~GI
†!5^F0uGI

†~HNCn8!CuF0& @GI5Ga
r ,Gab

rs ~ i !#,
~35!

are defined in terms of CI-like excitation operatorsCn8 ,
n5024, where@cf. Eqs.~5!–~8!#

C0851, ~36!

Cj85Cj ~ j 51,2!, ~37!

C385T1T21 1
6 ~T1!3, ~38!

C485 1
2 ~T2!21 1

2 ~T1!2T21 1
24 ~T1!4. ~39!

Explicit expressions for Ln(Gr
a), n5023, and

Ln@Grs
ab( i )#, i 50,1, n5024, in terms of cluster amplitude

^r ut1ua& and^rsut2uab& i and one- and two-electron molecu
lar integralŝ ku f uk8& and^kluuk8l 8& were given in Ref.@44#.
Every termLn(Gr

a) and Ln@Grs
ab( i )# reduces to a sum o

several diagrammatic contributions, which are evaluated
ing the diagrammatic approach based on the graphical m
ods of spin algebras@22,41–44#. For example, the1

2(T2)2

term of the OSA CCD theory,L4
CCD@Grs

ab( i )#, splits into five
contributions corresponding to five distinct Goldston
Hugenholtz diagrams~see Fig. 1 of Ref.@57# or Fig. 4 of
Ref. @22#!,

L4
CCD@Grs

ab~ i !#[ 1
2 ^F0u~HNT2

2!CuF0&5 (
k51

5

L4
~k!@Grs

ab~ i !#,

~40!

where L4
(k)@Grs

ab( i )# designates the contribution from th
kth diagram. In the following, we label these diagrams in
same way as in Ref.@22# or @57#.

As already mentioned, in degenerate cases we mus
beyond the CCSD approximation and account for theT3 and
T4 clusters. Unfortunately, CCSDT and CCSDTQ involve
large number of triply and quadruply excited cluster amp
tudes and are computationally very demanding@cf. Eqs.
~19!–~22!#. A spin-free formulation helps to reduce comp
tational costs@20,21,27,28#, but special precautions must b
taken to eliminate linear dependencies among spin-free tr
cited and tetraexcited cluster amplitudes@2#, since otherwise
CCSDT and CCSDTQ equations may become
conditioned and the iterative procedures used to solve t
may diverge@28#. The above difficulty can be avoided b
switching to the OSA formulation that employs the min
mum number of amplitudes, but its implementation for t
full CCSDT or CCSDTQ method is rather complex~cf. Ref.
@43#!. In any case, the standard CCSDT and CCSDTQ m
ods are computationally too demanding to be used for la
systems and, at least for the time being, they will rem
most useful in benchmark calculations, particularly in ca
where the exact FCI calculations are difficult to perfor
This leaves room for approximate CC approaches ofnon-
s-
th-

-

e

go

-

x-

-
m

h-
er
n
s
.

standardtype, which do not store or iterateT3 andT4 clus-
ters. Another useful alternative is to employ the concept
multi-dimensional reference space and reduce the numbe
triples and quadruples rather than to approximate them a
nonstandard SRCC methods. Such procedures~the so-called
SSCC formalism of Refs.@14#, @31#, and @35–37#! will not
be discussed in this paper as they no longer represent
SRCC approach.

B. Nonstandard approaches. Decoupling the CCSDTQ
equations

We define thenonstandardCC methods as those SRC
approaches in which clusters higher than pair clusters
particularT3 and T4 , are no longer treated as independe
variables whose values are determined simultaneously
T1 and T2 by solving CC equations. Instead, we estima
their values from some independent source or using MB
arguments, and accordingly correct the standard CCSD e
tions ~CCSDT equations if onlyT4 is being approximated!.
In the following we concentrate on the corrections to t
OSA CCSD equations of Ref.@44# @cf. Eqs.~33! and ~34!#.

Rewriting the first two equations of the comple
CCSDTQ system, Eqs.~19! and ~20!, in the OSA form
@whenGI 1

(1)5Ga
r andGI 2

(2)5Gab
rs ( i )#, we obtain@cf. Eqs.~33!

and ~34!#

(
n50

3

Ln~Gr
a!1Q3~Gr

a!50, ~41!

(
n50

4

Ln@Grs
ab~ i !#1Q3@Grs

ab~ i !#1Q4@Grs
ab~ i !#1Q1,3@Grs

ab~ i !#

50 ~ i 50,1!, ~42!

where

Q3~GI
†!5^F0uGI

†~HNT3!CuF0& @GI5Ga
r ,Gab

rs ~ i !#,
~43!

Q4@Grs
ab~ i !#5^F0uGrs

ab~ i !~HNT4!CuF0&, ~44!

Q1,3@Grs
ab~ i !#5^F0uGrs

ab~ i !~HNT1T3!CuF0& ~45!

are the corrections to CCSD equations involvingT3 and
T4 . OnceT3 andT4 are available, we can calculate corre
tions Q, Eqs.~43!–~45!, and solve the resulting CCSD-lik
system, Eqs.~41! and ~42!, for T1 andT2 ~cf. Ref. @62#!. In
particular, using the exactT3 and T4 amplitudes when cal-
culating these corrections, the exactT1 and T2 clusters re-
sult, and thus the exact energy@cf. Eq. ~17!#. Clearly, the
exactT3 andT4 components are only available if we kno
the FCI wave function, so that in practical exploitations
this idea we must rely on approximations ofT3 and T4 in
order to decouple the CCSD-like system, Eqs.~41! and~42!,
from the rest of the CCSDTQ chain.

Basically, there are two options available to us. We c
either use the MBPT analysis of CC equations to relateT3
and T4 clusters with their lower-orderT1 and T2 counter-
parts, or utilize some readily available wave function
non-CC type to estimateT3 andT4 contributions. The former
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approach is widely exploited and was briefly reviewed in
Introduction. For example, in the iterative CCSDT-1
CCSDT-1a approaches of Ref.@15#, the corrections to CCSD
equations due toT3 clusters,Q3(GI

†), Eq. ~43!, modify the
linear T2 terms by expressions involvingR0

(3)VN , where
R0

(p) designates thep-body part of the reduced resolvent,

R0
~p!5

Q~p!

2FN
[

( I p
uF I p

~p!&^F I p

~p!u

2FN
. ~46!

This gives@22#

Q3
CCSDT -1~GI

†!5^F0uGI
†VNR0

~3!VNT2uF0&

@GI5Ga
r ,Gab

rs ~ i !#, ~47!

so that the linear term

L2,3~GI
†![^F0uGI

†@VN~T21T3!#CuF0&

5^F0uGI
†WNT2uF0& @GI5Ga

r ,Gab
rs ~ i !#,

~48!

where

WN5VN1VNR0
~3!VN ~49!

represents an ‘‘effective interaction’’ operator, which a
counts for T3 components. In the noniterative CCSD@T#
method we evaluate the triple-excitation contribution acco
ing to the formula that is reminiscent of the well-know
MBPT~4! energy expression, namely,

DET~CCSD!5^F0u~T2
CCSD!†VNR0

~3!VNT2
CCSDuF0&, ~50!

whereT2
CCSD is the CCSDT2 cluster component. The tota

CCSD@T# energy is defined as a sum

ECCSD@T#5ECCSD1DET~CCSD!. ~51!

All such perturbative approaches provide useful informat
about T3 and T4 clusters at a relatively small cost whe
compared to CCSDT or CCSDTQ methods. However, th
approaches are likely to fail in quasidegenerate situations
a number of reasons. When configurational quasidegene
becomes appreciable, bothT3 and T4 contributions may be
large and the assumption of their additivity as well as
MBPT arguments may no longer hold~cf. Refs.
@23,24,31,40,50#!. In severe cases of quasidegeneracy, s
as those found in cyclic polyene PPP model, both the s
dard CCSD method and the iterative CCSDT-1 appro
completely break down and become singular@23#. Thus, the
CC~S!D amplitudes are no longer available to calculate
ergy corrections, Eq.~50!, and another method of accountin
for T3 andT4 clusters must be found.

An alternative to the MBPT arguments, which often
longer apply in quasidegenerate situations, is to explo
suitable non-CC wave function as a source of informat
about theT3 andT4 clusters. By performing cluster analys
of such a wave function we are able, at least in principle
evaluate approximate values of triples and quadruples
e

-

-

n

e
or
cy

e

h
n-
h

-

a
n

o
nd

use them to calculate the required correctionsQ, Eqs.~43!–
~45!, in order to decouple Eqs.~41! and~42! from the rest of
the CC chain.

Approaches of this kind constitute the second category
nonstandard methods, since they do not result from gen
CC theory by conventional truncation at a given excitati
level. The main characteristic of these approaches, con
ered by Paldus, Cˇ ı́žek, and Takahashi@53#, is the fact that the
three- and four-body cluster components are determinedbe-
fore initiating the CC iterative procedure. Recall that in th
above-mentioned perturbative CC approaches, the cor
tions due toT3 andT4 are calculatedduring or after the CC
iterative procedure.

As may be expected, the effectiveness of nonstand
methods will strongly depend on the initial choice of th
wave function used to evaluateT3 and T4 components. A
compromise must be found between the accuracy and
cost of the calculatedT3 and/orT4 amplitudes, since other
wise we could end up with an impractical method, which
inapplicable to larger systems.

It was suggested by Planelles and co-workers@54,61,62#
that very good results may be obtained by extracting theT3

and T4 components from a VB wave function involving
small number of covalent~and, if necessary, ionic! structures
that are chosen to reasonably describe a given quasideg
ate situation, for example, a given bond breaking or bo
formation process. Another suggestion was made by Stol
zyk @72#, who proposed to use the complete active sp
self-consistent field~CASSCF! wave function. This may
have a number of advantages, since the CASSCF me
with a proper choice of the active space correctly descri
all quasidegenerate situations involving the dissociation
the system into open-shell fragments. Simultaneously,
CASSCF method uses orthogonal orbitals, which are m
easier to handle than nonorthogonal orbitals of VB a
proaches. Finally, CASSCF wave functions are curren
easily available thanks to a number of standard electro
structure packages, such asGAMESS @73#, HONDO @74#,
GAUSSIAN 92 @75#, or MOLCAS @76#. The only open problem
with Stolarczyk8s suggestion is the proposed computatio
strategy~even though no actual implementation nor expli
formalism was presented in Ref.@72#!. He suggests using
one of the CASSCF configurations~presumably, the domi-
nant one! as a reference. In such a case, his formalism w
represent an approximation to the SSCC theory develo
earlier by Piecuch, Oliphant, and Adamowicz@14#, in which
a few internal~all-active! triexcited and tetraexcited cluste
amplitudes are fixed to their CASSCF values instead of
ing iterated as suggested in Ref.@14# ~in fact, SSCC calcu-
lations using CASSCF reference were performed in R
@36#!. It might be worthwhile to contemplate another comp
tational strategy, in which a transformation of the CASSC
wave function to the RHF molecular orbital~MO! basis is
carried out prior to its cluster analysis. Clearly, this will lea
to quite rich triexcitation and tetraexcitation manifolds ev
when small active space is used in CASSCF calculatio
Both strategies are now investigated by us and the res
will be presented elsewhere@77#.

In fact, the aforementioned distinction between t
CASSCF corrected SRCCSD theory using the RHF re
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ence and its variant using the dominant CASSCF configu
tion as a reference is reminiscent, to some degree, of
distinction between the CCSD approach employing RHF
bitals, which we subsequently correct forT4 components by
analyzing the cluster structure of the PUHF wave functi
and the standard spin-orbital CCSD approach using the U
reference. No explicitT4 contributions~relative to the UHF
vacuum! are present in the latter case, whereas quite a
T4 manifold ~relative to the RHF reference! is generated in
the former case. TheT4-corrected SRCCSD theory, in whic
T4 clusters are extracted from the PUHF wave function
discussed next.

III. CLUSTER STRUCTURE OF THE PUHF WAVE
FUNCTION

The UHF wave functions of the DODS~different orbitals
for different spins! type are currently available even for larg
molecular systems, and it is well known that the UHF a
proach or its projected PUHF version correctly describe
dissociation of many molecular systems into the open-s
fragments. In the strongly correlated regime of the PPP
clic polyene model, where the standard CCSD theory us
the RHF reference breaks down@23,52#, the PUHF method
provides exact pair clusters, and thus the exact ene
@56,78#. This indicates that the PUHF wave function m
serve as a reliable source of information about theT4 clus-
ters.

Of course, instead of extractingT4 cluster components
from the PUHF wave function~CCSDQ8 approach!, we can
simply use the UHF solution as a reference in the sp
orbital CCSD theory~CCSD-UHF method!. Although the
usefulness of the latter approach lies primarily in its simp
ity and generality, we find the CCSDQ8 procedure worth
exploring for the following reasons. First of all, in the tripl
unstable region of RHF@64,79,80#, the UHF wave function
is spin contaminated and the level of spin contamination m
remain relatively high at the correlated CCSD-UHF lev
particularly for systems involving multiple bond breakin
such as N2 @47,81#. As a result, the transition between th
triplet stable and triplet unstable regions may manifest its
by a nonanalytic behavior of CC and MBPT PES8s, in spite
of relatively good CCSD-UHF results in the bond-breaki
region @47,81#. With T4 cluster components extracted fro
the PUHF wave function, we should be able to descr
bond-breaking phenomena without introducing the spin c
tamination of the CCSD-UHF approach. Second, CCS
UHF uses twice as many~spin! orbitals as CCSD-RHF o
CCSDQ8, and does not allow for a number of simplification
in the CC formalism that are normally possible due to
presence of spin and spatial symmetries of the system~UHF
wave functions have not only broken spin symmetry, b
often break the spatial symmetry of the Hamiltonian as we!.
Consequently, the CCSD-UHF method is computationa
more demanding than OSA CCSD-RHF, or t
T4-corrected CCSDQ8 method.

In fact, projection of the closed-shell ground-state UH
wave function onto the singlet subspace automatic
projects out components that are not totally symmetric w
respect to the spatial symmetry group of the Hamiltoni
Thus, if we use the lowest symmetry-adapted RHF solut
a-
he
r-

,
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as a CC reference~even though there may exist broke
symmmetry RHF solutions with lower energy in a sing
unstable region@64,79#, we are not going to use them a
uF0&; cf., e.g., Ref.@82#!, theT4 components resulting from
the cluster analysis of the PUHF wave function as well as
corresponding correctionsQ4@Grs

ab( i )#, Eq. ~44!, will be au-
tomatically symmetry adapted. We will thus be able to fu
exploit both spin and point-group symmetries
T4-corrected CCSDQ8 calculations~cf. Sec. V!, making the
CCSDQ8 method no more expensive than the standard O
CCSD approach.

Although we employ PUHF wave functions througho
this paper, we wish to emphasize that the same proce
would apply to the projected Hartree-Fock~PHF! methods
@83#, such as the alternant molecular orbital~AMO! approach
@84#. In both cases, the broken-symmetry sing
determinantal wave function of the DODS type and var
tional principle are employed. However, in the PHF a
proaches, the single-determinantal wave function is fi
projected onto the appropriate subspace of the spin sp
~singlet for the ground-state closed-shell problem! before the
actual orbital optimization is carried out. The PUHF wa
function exploited in this paper is obtained by first perform
ing the orbital optimization using the DODS wave functio
~UHF approach! followed by the projection of the resulting
UHF solution onto the appropriate spin subspace. This
tinction is immaterial for the cluster analysis performed b
low, and the formal results presented in this paper would
the same for any broken-symmetry solution of DODS
even RHF type~including UHF, PHF, and AMO wave func
tions or closed-shell solutions found for singlet unsta
@64,79# RHF cases; for a general classification of vario
types of UHF solutions, see Refs.@82# and @85#!. However,
in actual implementation of the CCSDQ8 method, we use the
ground-state UHF or PUHF wave function as a source
T4 cluster components~cf. Sec. V!.

To analyze the cluster structure of a single-determina
DODS ~UHF, PHF, AMO! or broken space symmetry RH
wave functions, it is useful to recall Thouless8 theorem
@63,64#, which states that any single-determinantal wa
function uF0

X&, having a nonzero overlap with the referen
configurationuF0&, can be written in the form

uF0
X&5eU1

X
uF0&, ~52!

whereU1
X is a monoexcitation operator. In our case,uF0

X&
represents the ground-state UHF, PHF, or AMO wave fu
tion (X5UHF, PHF, or AMO), or broken-symmetry RHF
solution, which we will use as a source ofT4 components,
anduF0& is the standard closed-shell, symmetry-adapted
erence configuration~usually, the ground-state RHF solutio
the same one as used later in CC calculations!. Since we
assumeuF0

X& and uF0& to be eigenfunctions ofSz with
MS50, the operatorU1

X takes the form

U1
X5(

a,r
(
s

^rsuu1
~s!uas&Xrs

† Xas5^rauu1
~a!uaa&Xra

† Xaa

1^rbuu1
~b!uab&Xrb

† Xab , ~53!
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where a5u 1
2,

1
2& (b5u 1

2,2
1
2&) designates the usual spin-u

~spin-down! spin function. We can thus expressU1
X in terms

of the OSA singlet (S50) and triplet (S51) monoexcitation
operatorsGa

r (S,0), Eq.~30!, obtaining

U1
X5U1

X~0,0!1U1
X~1,0!, ~54!

where

U1
X~S,0!5(

a,r
^r uu1ua&S Ga

r ~S,0! ~S50,1! ~55!

designate the singlet (S50) and triplet (S51) components
of U1

X and^r uu1ua&S the corresponding amplitudes. Since t
operatorsU1

X(0,0) andU1
X(1,0) mutually commute, we ca

write

uF0
X&5eU1

X
~0,0!eU1

X
~1,0!uF0&. ~56!

We can also write

U1
X~S,0!5(

a,r
^r uua&S @Xrb

† Xab1~21!SXra
† Xaa#, ~57!

where

^r uua&S5221/2^r uu1ua&S5 1
2 @^rbuu1

~b!uab&

1~21!S^rauu1
~a!uaa&#. ~58!

Clearly, the numerical values of the OSA amplitud
^r uua&S or ^r uu1ua&S depend on the specific form ofuF0

X&
employed.

Prior to cluster analyzinguF0
X&, we project out higher

spin multiplets~triplets, quintets, etc.! that are irrelevant for
the ground-state singlet problem. This must be done w
care, since some terms contain both the singlet and tri
components ofU1

X . The role of these components is di
cussed next.

The initial formulation of CCDQ8 and ACCD8 methods
@53# neglected the singlet componentU1

X(0,0), which is ab-
sent in the UHF solution for PPP cyclic polyene models t
were examined in our earlier study of ACCD8 theory @52#.
As will be seen below, it is the triplet componentU1

X(1,0)
that is responsible for the energy lowering whenever
RHF solution is triplet unstable, so it was reasonable to
sume thatU1

X(0,0)50. Even in other minimum basis se
models, or models having a sufficiently high symmetry,
assumptionU1

X(0,0)50 is justified~cf. Sec. VI!. In general,
however, theU1

X(0,0) component does not vanish and mu
be considered together with its triplet counterpart. This is
case in mostab initio applications. We thus consider bo
componentsU1

X(S,0) (S50,1) in the cluster analysis o
uF0

X&.

A. A simple example

We illustrate the role of bothU1
X(0,0) andU1

X(1,0) com-
ponents for a DZ model of the hydrogen molecule~eliminat-
ing the 2p polarization function from the DZP basis set
Ref. @59#!. The resulting two-electron–four-orbital model
h
et

t

e
s-

e

t
e

rich enough to provide information about the relative impo
tance ofU1

X(S,0) components, yet simple enough to enabl
graphical visualization of various components of the UH
wave function. In the simpler MBS H2 model, the singlet
componentU1

X(0,0) vanishes.
Let us designate the four RHF molecular orbita

~MO’s! of our DZ H2 model by f i
(f151sg ,f251su ,f352sg ,f452su), and their UHF
counterparts corresponding to spin-up and spin-down s
functions byf i ,a

UHF and f i ,b
UHF, respectively (i 5124). The

coefficients ci
(s) relating the occupied UHF MO’sf1,s

UHF

(s5a,b) with RHF MO’s f i ,

f1,s
UHF5(

i 51

4

ci
~s!f i , ~59!

then satisfy the relations

ci
~a!5ci

~b![ci ~ i 51,3!, ~60!

cj
~a!52cj

~b![cj ~ j 52,4!, ~61!

or, equivalently,

f1,a
UHF5c1f11c2f21c3f31c4f4 , ~62!

f1,b
UHF5c1f12c2f21c3f32c4f4 . ~63!

As a consequence, the singlet and triplet components of
monoexcitation operatorU1

UHF, relating the renormalized
ground-state UHF solutionuF0

UHF&5c1
22uf1,a

UHFaf1,b
UHFbu

with the RHF configurationuF0&5uf1af1bu via Eq. ~56!,
assume a particularly simple form, namely,

U1
UHF~0,0!5^3uu1u1&0 G1

3~0,0!, ~64!

U1
UHF~1,0!5^2uu1u1&1 G1

2~1,0!1^4uu1u1&1 G1
4~1,0!,

~65!

where

^3uu1u1&05A2c3 /c1 , ~66!

^2uu1u1&152A2c2 /c1 , ~67!

^4uu1u1&152A2c4 /c1 . ~68!

Notice that the operatorU1
UHF(0,0) is totally symmetric

(Sg), while its triplet analogU1
UHF(1,0) transforms accord

ing to theSu representation ofD`h . This indicates that the
decomposition ofU1

UHF into spin-adapted singlet and triple
components is equivalent to a splitting of the opera
U1

UHF into space-symmetry adapted and broken-symme
components. As a result, the exponential operators of
~56! that are associated with the individual cluster comp
nentsU1

UHF(0,0) andU1
UHF(1,0) take the form

eU1
UHF

~0,0!511U1
UHF~0,0!1 1

2 @U1
UHF~0,0!#2

511^3uu1u1&0 G1
31 1

2 ~^3uu1u1&0!2 G11
33~0!,

~69!

and
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eU1
UHF

~1,0!511U1
UHF~1,0!1 1

2 @U1
UHF~1,0!#2

511^2uu1u1&1 G1
2~1,0!1^4uu1u1&1 G1

4~1,0!2 1
2 ~^2uu1u1&1!2 G11

22~0!2 1
2 ~^4uu1u1&1!2 G11

44~0!

2
1

A2
^2uu1u1&1 ^4uu1u1&1 G11

24~0!. ~70!

Equations~69! and ~70! enable us to analyze the cluster structure of the UHF solutionuF0
UHF&, which now becomes

uF0
UHF&5eU1

UHF
~0,0!eU1

UHF
~1,0!uF0&5@V~1Sg

1!1V~3Su
1!#uF0&, ~71!

where the operatorsV(1Sg
1) and V(3Su

1) acting on uF0& generate, respectively, the singlet and triplet components
uF0

UHF&,

V~1Sg
1!uF0&[PS50uF0

UHF&[uC0
PUHF&, ~72!

V~3Su
1!uF0&[PS51uF0

UHF&, ~73!

with PS50,1 representing the corresponding projection operators. In particular, we find that

V~1Sg
1!511^3uu1u1&0 G1

31 1
2 ~^3uu1u1&0!2 G11

33~0!2 1
2 ~^2uu1u1&1!2 G11

22~0!2 1
2 ~^4uu1u1&1!2 G11

44~0!

2
1

A2
^2uu1u1&1 ^4uu1u1&1 G11

24~0!, ~74!

V~3Su
1!5^2uu1u1&1 G1

2~1,0!1^4uu1u1&1 G1
4~1,0!2

1

A2
^2uu1u1&1 ^3uu1u1&0 G11

23~0,1;1,0!

1
1

A2
^3uu1u1&0 ^4uu1u1&1 G11

34~0,1;1,0!. ~75!
s

-
at

o
tu

-

e.,
p-
glet

u-

the
To prove Eqs.~69!–~75!, we used general relationship
~cf. Refs.@41# and @53#!

Ga
r ~0,0!Gb

s~0,0!5 1
2 Gab

rs ~0,0;0,0!1~A3/2!Gab
rs ~1,1;0,0!,

~76!

Ga
r ~1,0!Gb

s~0,0!5~1/A2!Gab
rs ~1,1;1,0!1 1

2 Gab
rs ~1,0;1,0!

2 1
2 Gab

rs ~0,1;1,0!, ~77!

Ga
r ~1,0!Gb

s~1,0!52 1
2 Gab

rs ~0,0;0,0!1@1/~2A3!#Gab
rs ~1,1;0,0!

1A2/3Gab
rs ~1,1;2,0!, ~78!

which follow from definitions of the OSA excitation opera
tors ~30! and ~31!. Notice that the coefficients standing
various excitation operators in Eqs.~74! and ~75!, which in
the exact~FCI! limit would be independent variables, are n
longer independent and reflect the particular cluster struc
 re

of the UHF wave function, which in this case is fully de
scribed by only three independent coefficients^3uu1u1&0 ,
^2uu1u1&1 , and^4uu1u1&1 or @cf. Eqs.~66!–~68!# c2 , c3 , and
c4 ~assuming the UHF orbitals to be normalized, i.
c15A12c2

22c3
22c4

2). This simple three-parameter descri
tion enables us to analyze the relative importance of sin
and triplet componentsU1

UHF(0,0) andU1
UHF(1,0) in detail.

To carry out this analysis, we used the symbolic manip
lation languageMAPLE @65# in conjunction with a simple
interface~written by ourselves inFORTRAN!, which allowed
us to access molecular integrals generated byGAMESS @73#,
so that they could be read, if necessary, into aMAPLE session.
MAPLE formulas describing various energies, such as
UHF energy

EUHF5^F0
UHFuHuF0

UHF&/^F0
UHFuF0

UHF&, ~79!

its PUHF counterpart
EPUHF5^C0
PUHFuHuC0

PUHF&/^C0
PUHFuC0

PUHF&5^F0u@V~1Sg
1!#†HV~1Sg

1!uF0&/^F0u@V~1Sg
1!#†V~1Sg

1!uF0&, ~80!

or energies associated with individual cluster componentsU1
UHF(S,0), e.g.,

E@U1
UHF~S,0!#5^F0ue@U1

UHF
~S,0!#†

HeU1
UHF

~S,0!uF0&/^F0ue@U1
UHF

~S,0!#†
eU1

UHF
~S,0!uF0&, ~81!



es

o

u

on
d

-

n
n
or

l

f

f
gy

o
ng
ls

et
, i
t

m
i

-
,
of
e
b

o
ra
e

s

e of

1220 54PIOTR PIECUCH, ROBERT TOBOL”A, AND JOSEF PALDUS
were calculated as CI expectation valu
E5( I ,JCI* HIJCJ /( I uCI u2 (HIJ5^F I uHuFJ&), with CI coef-
ficients CI expressed in terms of UHF MO coefficientsc2 ,
c3 , andc4 via Eqs.~64!–~75!. This was possible thanks t
the small dimension of the configuration spaces involved~6
for the singlet and 4 for the triplet!. The matrix elements
HIJ between the OSA configurations were programmed
ing the formulas of Ref.@41#. The UHF energy formula was
also programmed as a standard expression in terms of
electron density matrices, with the UHF orbitals expresse
a linear combination of ground-state RHF MO’s~first gener-
ated byGAMESS!, Eqs.~62! and ~63!.

With the help ofMAPLE we were able to explore the ana
lytical properties of the UHF energy surfaceEUHF, Eq. ~79!,
regarded as a function of three variablesciP(21,1),
i 52,3,4, in the region where the RHF solution is triplet u
stable. For the DZ H2 model with the internuclear separatio
R53.0 a.u.~the RHF solution becomes triplet unstable f
R.2.25 a.u.!, we found that EUHF(c2 ,c3 ,c4) has a
global minimum of 21.015761 hartree at two loca
minima (c2 ,c3 ,c4)5(0.467238,0.020604,20.038059) and
(c2 ,c3 ,c4)5(20.467238,0.020604,0.038059) @assuming
the phase convention in whichc1 is a positive square root o
(12c2

22c3
22c4

2)#, and a saddle point of20.983 418 hartree
at (c2 ,c3 ,c4)5(0,0,0). Clearly, the global minimum o
EUHF(c2 ,c3 ,c4) represents the ground-state UHF ener
whereas the saddle point (c2 ,c3 ,c4)5(0,0,0) corresponds to
the ground-state RHF energy, which we independently c
firmed by performing the UHF and RHF calculations usi
GAMESS. Notice that the UHF solution mixes the orbita
belonging to different irreducible representations ofD`h , so
that the UHF wave function represents a broken-symm
solution. If we restrict to symmetry-adapted solutions, i.e.
we vary onlyc3 and setc25c450, the RHF saddle poin
becomes a minimum. The minima on theEUHF(c2 ,c3 ,c4)
surface are depicted in Figs. 1~a! and ~b!, for c3 fixed to its
optimum value of 0.020604. The presence of two mini
reflects the invariance under a spin-flip operation, which
our parametrization implies thatc2(4)→2c2(4) and
c1(3)→c1(3) , or U1

UHF(S,0)→(21)SU1
UHF(S,0) (S50,1).

The important result is that at bothEUHF minima the co-
efficientc3 , defining the singlet componentU1

UHF(0,0), does
not vanish. This is clearly illustrated by Fig. 1~c!, where we
plotted the UHF energy for the DZ H2 model with R53.0
a.u. as a function ofc3 for two different choices of the pa
rameters c2 and c4 . The first choice, namely
(c2 ,c4)5(0.467238,20.038059), corresponding to one
the minima on theEUHF surface, clearly indicates that th
ground-state UHF wave function is characterized
the nonzero value of c3: The function
EUHF(0.467238,c3 ,20.038059) has a minimum atc3
50.020604. The second choice, namely, (c2 ,c4)5(0,0),
shows that by eliminating the triplet componentU1

UHF(1,0),
we only obtain a single minimum atc350, which describes
the symmetry-adapted RHF solution.

In order to see how the singlet and triplet components
U1

UHF affect the UHF energy at various internuclear sepa
tions R, we plotted in Fig. 2 several potential energy curv
s-

e-
as

-

,

n-

ry
f

a
n

y

f
-

s

considering or ignoring theU1
UHF(0,0) andU1

UHF(1,0) con-
tributions. In particular, we plotted the energie
E@U1

UHF(S,0)# (S50,1), Eq.~81!, which are associated with

the wave functionseU1
UHF(S,0)uF0&, S50 or 1, and their ap-

FIG. 1. Energy hypersurfaceEUHF(c2 ,c3 ,c4) ~in hartree! for the
DZ H2 model with the internuclear separationR53.0 a.u.~a! and
~b! show the cross sections corresponding to the optimum valu
c3 for the UHF energy minimum, i.e.,EUHF(c2 ,0.020604,c4),
while ~c! shows the functionEUHF(0.467238,c3 ,20.038059) ob-
tained fromEUHF(c2 ,c3 ,c4) by fixing c2 andc4 to their optimum
values at one of the two minima on theEUHF(c2 ,c3 ,c4) hypersur-
face that are apparent in cross sections~a! and ~b! ~see the text for
details!.
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proximate versions obtained by retaining only the linear te
in U1

UHF(S,0). We find ~see Fig. 2! that singlet and triplet
components ofU1

UHF change the RHF energy in opposi
directions. The singlet componentU1

UHF(0,0) raises the RHF
energy, which is a consequence of the fact that the R
solution is singlet stable, so that no further energy lower
can be achieved by the action of the totally symmetric sing

operatoreU1
UHF(0,0). However,U1

UHF(1,0) lowers the energy
In fact, we obtain quite a substantial energy lowering relat
to the RHF energy when considering only linear ter
in U1

UHF(1,0) „i.e., using the wave function
@11U1

UHF(1,0)#uF0&…. Including the nonlinear terms a
well, we obtain the energy curveE@U1

UHF(1,0)#, Eq. ~81!,
which is very close to the UHF curveEUHF. It is interesting
to observe, however, that without the singlet compon
U1

UHF(0,0), the energy curveE@U1
UHF(1,0)# lies invariably

above the UHF energy curve. Thus, the singlet and trip
components ofU1

UHF have a highly nonadditive characte
Although they change the energy in opposite directions w
considered separately, their simultaneous presence invar
lowers the energy. We thus need both compone
U1

UHF(S,0), S50 and 1, to transform the RHF wave functio
into the ground-state UHF solution.

Another interesting feature of these solutions is illustra
in Fig. 2. Although the UHF wave function properly de
scribes the dissociation into the open-shell fragments~H at-
oms in 2S states!, the UHF energy curve has an incorre
shape in the intermediate region ofR. In the vicinity of the
triplet instability onset (R5Rc52.25 a.u.!, the UHF energy
curve strongly deviates from the exact~FCI! curve describ-
ing the 1Sg

1 ground state, and forR.Rc , the UHF energy
approximates the arithmetic average of the FCI energ
associated with the lowest1Sg

1 and 3Su
1 states,

FIG. 2. Various potential energy curves for the DZ H2 model
obtained with RHF and various UHF wave functions involving
neglectingU1

UHF(0,0) andU1
UHF(1,0) contributions. FCI potentia

energy curves describing the lowest1Sg
1 and 3Su

1 states are shown
for a comparison.
F
g
t

e
s

t

t

n
bly
ts

d

s

1
2@EFCI(1Sg

1)1EFCI(3Su
1)#, rather than the energy

EFCI(1Sg
1) itself, reflecting the presence of both1Sg

1 and
3Su

1 components in the UHF wave function. By projectin
the desired1Sg

1 component out of the UHF wave functio
@cf. Eqs.~72! and ~80!# we obtain the energy curve that a
most perfectly matches the exact FCI curveEFCI(1Sg

1) ~see
Fig. 2!. This indicates that the UHF wave function carri
useful information about the lowest1Sg

1 state, which can be
retrieved by a suitable projection. In fact, in the triplet u
stable region, the UHF wave function contains a fair amo
of information about the lowest3Su

1 state ~see the
PS51uUHF& curve in Fig. 2!. This information can be re-
trieved by a suitable projection onto the triplet subspace@cf.
Eq. ~73!#.

For larger many-electron systems, the spin contamina
of the UHF wave function can be even more substant
involving a number of higher multiplets. In general, it
laborious to project out the desired multiplets. Moreover,
cannot expect a simple UHF solution~or any broken-
symmetry single-determinantal wave function! to contain
complete information about the states involved due to
apparent lack of generality of the UHF wave function. O
the other hand, we do not need all the information contain
in the UHF solution in order to correct the closed-sh
CCSD method in cases where it breaks. The CCSD met
contains the most important pair components of the co
lated wave function, so that we only have to estimate
missing connected cluster components, such asT3 andT4 , to
extend its applicability to quasidegenerate situations. T
requires knowledge of the cluster structure of the sing
determinantal, broken-symmetry solutions, such as UHF.
analyze this cluster structure next.

B. The general case

The above example of the DZ H2 model illustrates that in
generalab initio situationsU1

X(0,0) does not vanish. In fact
we were able to confirm this observation in a number
other systems, such as various diatomics and triatomics
using our program, which analyzes the structure of UHF
lutions and computes the componentsU1

UHF(0,0) and
U1

UHF(1,0) from the knowledge of UHF and RHF orbita
~for a brief description of this program, see Sec. V!. It is
interesting to observe that as long asuF0& represents the
lowest symmetry-adapted~totally symmetric! RHF configu-
ration, the correspondingU1

UHF(0,0) component is totally
symmetric as well, whileU1

UHF(1,0) does not contain the
totally symmetric component. Realizing that in generalab
initio situations both singlet and triplet components ofU1

X

must be included in Eq.~52!, we can write@cf. Eq. ~56!#

PS50uF0
X&[PS50eU1

X
~0,0!eU1

X
~1,0!uF0&

5eU1
X

~0,0!PS50eU1
X

~1,0!uF0&, ~82!

where we used the fact thateU1
X(0,0) commutes with the pro-

jection operatorPS50 , as it contains only singlet compo
nents (1/k!) @U1

X(0,0)#k. Simultaneously, the projecte
uF0

X& wave function can be given the following form:
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PS50uF0
X&5~11CX!uF0&[eKuF0&, ~83!

where CX5( j 51
N Cj

X is the corresponding CI excitatio
operator relative to uF0& @cf. Eq. ~4!# and
K5 ln(11CX)5(j51

N Kj defines the cluster structure of th
projected broken-symmetry solution, which is to be used
estimateT3 andT4 . Comparison of Eqs.~82! and ~83! sug-
gests that the singlet componentU1

X(0,0), albeit nonzero,
cannot be engaged in forming the connected cluster com
nentsK j with j .1. Let us analyze this fact and its possib
implications for the CCSDQ8 formalism in detail.

If we apply the general relationship between the CI a
CC excitation operators given by Eqs.~5!–~8! to many-body
components ofCX and K, and compare the resulting rela
tions with Eq.~82!, we obtain

C1
X5K15U1

X~0,0!, ~84!

C2
X5K21 1

2 ~K1!25 1
2 @U1

X~0,0!#21 1
2 PS50@U1

X~1,0!#2,
~85!

C3
X5K31K1K21 1

6 ~K1!35 1
6 @U1

X~0,0!#3

1 1
2 U1

X~0,0!PS50@U1
X~1,0!#2, ~86!

C4
X5K41 1

2 ~K2!21K1K31 1
2 ~K1!2K21 1

24 ~K1!4

5 1
24 @U1

X~0,0!#41 1
4 @U1

X~0,0!#2PS50@U1
X~1,0!#2

1 1
24 PS50@U1

X~1,0!#4. ~87!

The above system of equations can be easily solved for c
ter componentsK j , j 5124. This allows us to write the
following equations:

K15U1
X~0,0!, ~88!

K25 1
2 PS50@U1

X~1,0!#2, ~89!

K350, ~90!

K45 1
24 PS50@U1

X~1,0!#42 1
2 ~K2!2. ~91!

We can see that the monoexcited cluster componentK1 is
given by the singlet componentU1

X(0,0), while higher ex-
cited componentsK j ( j .1) are formed by powers o
U1

X(1,0). Consequently, with the exception of monoexcit
contributionK1 , all componentsK j excited an odd numbe
of times vanish. This becomes clear when we rewrite
~82! as

PS50uF0
X&5eK1PS50eU1

X
~1,0!uF0&, ~92!

and realize that odd~even! powers ofU1
X(1,0) give the mul-

tiplets uS,0& with odd ~even! values ofS @cf., e.g., Eq.~78!#,

so that contributions toeU1
X(1,0) excited an odd number o

times are annihilated by the singlet projectionPS50 and

PS50eU1
X

~1,0!uF0&5eK21K41•••uF0&. ~93!

In particular, no triexcited cluster componentK3 is present in
the projected wave functionPS50uF0

X&.
o

o-

d

s-

d

.

Equations~88!–~91! are essential for the formulation o
the CCSDQ8 approach. They show that no estimate of co
nected triexcited clusters can be obtained by analyzing
cluster structure of broken-symmetry, single-determinan
states, such as UHF. However, the projected UHF solu
carries information about the connected quadruply exc
clustersT4 , so that we can use the corresponding clus
componentsK4 , Eq. ~91!, as a substitute for trueT4 contri-
butions inT4-corrected CCSD equations, Eqs.~41! and~42!.
We discuss the resulting OSA CCSDQ8 approach in the nex
section.

IV. APPROXIMATE ACCOUNT OF T4 CLUSTERS
BY CCSDQ8 METHOD

We now describe basic equations of the PUHF-correc
CCSD formalism~referred to as the CCSDQ8 method!, in
which theT4 components are estimated by cluster analyz
PUHF-type solutions. We employ the OSA formulation
CC theory~cf. Sec. II! and the results of cluster analysis
PUHF solutions~cf. Sec. III!.

We have seen in the preceding section thatK4 is entirely
described by the triplet componentU1

X(1,0), making the
presence or absence of the singlet componentU1

X(0,0) in
U1

X irrelevant. Thus, the termsQ4@Grs
ab( i )# that are required

to correct the CCSD system of equations forT4 contributions
@cf. Eqs.~41!–~45!# are given by exactly the same formula
that were derived in Ref.@53#, whereU1

X(0,0) was neglected
We present below an independent derivation of these for
las, which is based on graphical methods of spin algebra

It follows from Eq.~91! that the calculation ofK4 requires
the knowledge ofK2 . We thus need an explicit relationshi
between the amplitudeŝ r uua&1 , defining the operator
U1

X(1,0) @cf. Eq. ~57!#, and the OSA amplitudes
^rsuk2uab& i ~or their unnormalized analogs^rsuk2uab& i) de-
fining pair clustersK2 ,

K25 (
a<b
r<s

(
i 50

1

^rsuk2uab& i Gab
rs ~ i !

5 1
4 (

a,b,r ,s
(
i 50

1

^rsuk2uab& i Gab
rs ~ i !. ~94!

This relationship takes the form@cf. Eq. ~89!#

^rsuk2uab& i5Nab
rs ^rsuk2uab& i5^F0uGrs

ab~ i !K2uF0&

5Nrs
ab~21! i 11@ i #21/2Sab~ i !^r uua&1^suub&1 ,

~95!

where

Skl~ i ![Skl~ i !511~21! i~kl ! ~96!

designates the two-index symmetrizer (i 50) or antisymme-
trizer (i 51), with (kl) representing the transposition of in
dicesk and l . A simple diagrammatic proof of Eq.~95! is
described in the Appendix, whereas the algebraic proo
Eq. ~95! can be found in Ref.@53#.

While the ^rsuk2uab& i amplitudes are important for th
following developments, there is no need to calculate
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amplitudes defining K4 clusters in order to evaluat
Q4@Grs

ab( i )# corrections. In fact, theK4-corrected CCSD
theory can be entirely formulated in terms of thek2 compo-
nents, Eq.~94!. Let us concentrate on this aspect of t
CCSDQ8 formalism.

Since K350, the corresponding correctionsQ3(GI
†)

@GI5Ga
r ,Gab

rs ( i )# andQ1,3@Grs
ab( i )#, Eqs.~43! and~45!, van-

ish, so that theK4-corrected CCSD system of equations b
comes

(
n50

3

Ln~Gr
a!50, ~97!

(
n50

4

Ln@Grs
ab~ i !#1Q4

X@Grs
ab~ i !#50 ~ i 50,1!, ~98!

where

Q4
X@Grs

ab~ i !#5^F0uGrs
ab~ i !~HNK4!CuF0&

5^F0uGrs
ab~ i !VNK4uF0&5Q4;4

X @Grs
ab~ i !#

2Q4;2,2
X @Grs

ab~ i !#, ~99!

with

Q4;4
X @Grs

ab~ i !#5^F0uGrs
ab~ i !VN

1
24 @U1

X~1,0!#4uF0&,
~100!

Q4;2,2
X @Grs

ab~ i !#5^F0uGrs
ab~ i !VN

1
2 ~K2!2uF0&. ~101!

To obtain Eqs.~99!–~101!, we used Eq.~91! and the fact that
no vacuum disconnected diagrams~disconnected diagram
with no external lines; cf., e.g., Refs.@5# and @7#! can be
formed from the operatorsGrs

ab( i ), HN or VN , andK4 . We
also dropped the projectorPS50 from Eq. ~100!, since
Gab

rs ( i ) generate singlet biexcitations. It can be furth
proved~cf. Ref. @53#! that the unlinked@5,7# components of
Q4;4

X @Grs
ab( i )# and Q4;2,2

X @Grs
ab( i )# cancel out, so tha

Q4
X@Grs

ab( i )#, Eq. ~99!, reduces to

Q4
X@Grs

ab~ i !#5$Q4;4
X @Grs

ab~ i !#%L2$Q4;2,2
X @Grs

ab~ i !#%L ,
~102!

where the subscriptL designates the linked part of a give
expression. The easiest way to derive Eq.~102! is based on
the observation that the unlinked part ofQ4;4

X @Grs
ab( i )# can

be written as

$Q4;4
X @Grs

ab~ i !#%UL[^F0u$Grs
ab~ i !VN

1
24 @U1

X~1,0!#4%ULuF0&

5^F0uGrs
ab~ i ! 1

2 @U1
X~1,0!#2uF0&

3^F0uVN
1
2 @U1

X~1,0!#2uF0&, ~103!

whereUL stands for the unlinked part of a given expressio
Since Gab

rs ( i ) generate singlet biexcited configurations, w
can reinsert the projectorPS50 in front of 1

2@U1
X(1,0)#2 to

produce the cluster operatorK2 @cf. Eq. ~89!#. In this way,
we find that
-

r

.

$Q4;4
X @Grs

ab~ i !#%UL5^F0uGrs
ab~ i !K2uF0&^F0uVNK2uF0&

5^F0u$Grs
ab~ i !VN

1
2 ~K2!2%ULuF0&

[$Q4;2,2
X @Grs

ab~ i !#%UL . ~104!

Thus, the unlinked components ofQ4;4
X @Grs

ab( i )# and
Q4;2,2

X @Grs
ab( i )# cancel out.

In order to present the finalK4-corrected CCSD equa
tions, we must derive explicit formulas for the linked term
$Q4;4

X @Grs
ab( i )#%L and$Q4;2,2

X @Grs
ab( i )#%L . The latter term can

be rewritten as follows:

$Q4;2,2
X @Grs

ab~ i !#%L5^F0u$Grs
ab~ i !VN

1
2 ~K2!2%LuF0&

5^F0u$Grs
ab~ i !@VN

1
2 ~K2!2#C%LuF0&

5^F0uGrs
ab~ i !@VN

1
2 ~K2!2#CuF0&

5L4
CCD@Grs

ab~ i !#~T2→K2!, ~105!

or, simply @cf. Eq. ~40!#,

$Q4;2,2
X @Grs

ab~ i !#%L5 (
k51

5

L4
~k!@Grs

ab~ i !#~T2→K2!,

~106!

where we utilized the fact that no linked vacuum contrib
tions can be formed fromGrs

ab( i ) and the disconnected pa
of VN

1
2(K2)2, and that no unlinked vacuum contributions c

be obtained fromGrs
ab( i ) and@VN

1
2(K2)2] C . We thus see tha

$Q4;2,2
X @Grs

ab( i )#%L reduces to the standard1
2(T2)2 term of the

OSA CCD theory, Eq.~40!, in which the T2 clusters are
replaced by their PUHF-type counterpartsK2 ~which we in-
dicated by the symbolT2→K2). In other words, we obtain
$Q4;2,2

X @Grs
ab( i )#%L by replacing the amplitudeŝrsut2uab& i in

the explicit expressions forL4
CCD@Grs

ab( i )# or L4
(k)@Grs

ab( i )#
(k5125) of Ref. @44# by their ^rsuk2uab& i analogs defined
by Eq. ~95!.

It thus remains to derive the explicit equations for

$Q4;4
X @Grs

ab~ i !#%L[^F0u$Grs
ab~ i !VN

1
24 @U1

X~1,0!#4%LuF0&.
~107!

As shown in the Appendix~see, also, Ref.@53#!, the linked
part of Q4;4

X @Grs
ab( i )# splits into three diagrammatic contr

butions,

$Q4;4
X @Grs

ab~ i !#%L5Q4;4
X ~a!1Q4;4

X ~b!1Q4;4
X ~c!,

~108!

where a, b, and c designate three Goldstone-Hugenho
diagrams that can be obtained in this case. By using
diagrammatic method based on the graphical methods
spin algebras@69#, we can prove thatQ4;4

X (c) vanishes and
that ~cf. the Appendix!
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Q4;4
X ~a!5Nrs

ab@ i #1/2 (
a8,b8,r 8,s8

^a8b8uur 8s8&

3^r 8uua&1^s8uub&1Srs~ i !^r uua8&1^suub8&1 ,

~109!

Q4;4
X ~b!5Nrs

ab~21! i 11@ i #21/2 (
a8,b8,r 8,s8

^a8b8uur 8s8&

3^r 8uub8&1Srs~ i !Sab~ i !^r uua8&1^s8uua&1^suub&1 ,

~110!

where ^r 8uua&1 , etc. are the amplitudes occurring in Eq
~57! and~58!. Similar expressions for$Q4;4

X @Grs
ab( i )#%L were

obtained in Ref.@53#, where the algebraic rather than di
grammatic arguments were employed. We thus see tha
linked part ofQ4;4

X @Grs
ab( i )# is given by rather simple alge

braic expressions involving molecular integrals and the a
plitudes^r uua&1 definingU1

X(1,0).
-

S

in
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-
e

e
it
pi
w
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d
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-

Interestingly enough, it can be further proved that

Q4;4
X ~a!5@ i #2L4

~5!@Grs
ab~ i !#~T2→K2!, ~111!

Q4;4
X ~b!5L4

~4!@Grs
ab~ i !#~T2→K2!, ~112!

where on the right-hand side of Eqs.~111! and ~112! are,
respectively, the fifth and fourth diagrammatic contributio
to the 1

2(T2)2 termL4
CCD@Grs

ab( i )# of the CCD theory~cf. Fig.
1 of Ref.@57# or Fig. 4 of Ref.@22#!, in whichT2 is replaced
by K2 . To prove Eqs.~111! and ~112!, we must use Eqs
~109! and~110! and exploit the explicit relationship betwee
the amplitudeŝ r uua&1 and the OSA amplitudeŝrsuk2uab& i
or ^rsuk2uab& i defining pair clustersK2 @cf. Eq. ~95!#.

Inserting Eqs.~111! and~112! into Eq.~108! and combin-
ing the resulting expression with Eq.~106! allows us to write
the following equation for the correctionQ4

X@Grs
ab( i )#,

Eq. ~102!,
Q4
X@Grs

ab~ i !#5L4
~4!@Grs

ab~ i !#~T2→K2!1@ i #2L4
~5!@Grs

ab~ i !#~T2→K2!2 (
k51

5

L4
~k!@Grs

ab~ i !#~T2→K2!

52L4
~1!@Grs

ab~ i !#~T2→K2!2L4
~2!@Grs

ab~ i !#~T2→K2!2L4
~3!@Grs

ab~ i !#~T2→K2!18d i1L4
~5!@Grs

ab~ i !#~T2→K2!.

~113!
ar

d
Q

s-

or
rre-
It is remarkable that the entireK4 correction to CCSD equa
tions can be expressed in terms of the1

2(T2)2 terms of the
CCD theory, withT2 replaced byK2 .

Equations~97! and~98!, together with Eq.~113!, are basic
equations of the CCSDQ8 formalism. It is immediately ob-
vious that they are no more complex than the standard O
CCSD equations. TheQ4

X@Grs
ab( i )# term is evaluated only

once, before we initiate the iterative procedure for solv
the CC system of equations, by computing the CCD-l
diagrammatic expressions usingK2 amplitudes, which are in
turn evaluated using thêr uua&1 amplitudes and the relation
ship ~95!. The Q4

X@Grs
ab( i )# term is then used to correct th

absolute term@cf. Eq. ~35! and, e.g., Ref.@44##

L0@Grs
ab~ i !#5^F0u@Grs

ab~ i !#VNuF0&

5Nab
rs @ i #1/2Srs~ i !^rsuuab&. ~114!

Clearly, the resulting formalism employs fewer amplitud
than the spin-orbital CCSD theory employing the UHF orb
als, and contrary to the latter method, the problem of s
contamination is entirely eliminated. We only have to kno
the amplitudeŝ r uua&1 . A simple program, which allows u
to calculate^r uua&1 from the knowledge of the UHF an
RHF orbitals, is described in the next section. We sho
also notice that the CCSDQ8 equations~97!, ~98!, and~113!
reduce to the CCDQ8 equations of Ref.@53# whenT150.

We also recall that when the pair clustersT25K2 are
exact~as, for example, in the strongly correlatedb50 limit
A

g
e

s
-
n

d

of the cyclic polyene model; cf. Ref.@56#!, then the
Q4

X@Grs
ab( i )# correction cancels out the first three nonline

diagrams of the CCD theory,L4
(k)@Grs

ab( i )# (k5123), and
slightly modifies the fifth contributionL4

(5)@Grs
ab( i )#. Indeed,

in this special case the CCSDQ8 equations reduce to

(
n50

3

Ln~Gr
a!50, ~115!

(
n50

3

Ln@Grs
ab~ i !#1L4

ACCSD8 @Grs
ab~ i !#50 ~ i 50,1!,

~116!

where

L4
ACCSD8 @Grs

ab~ i !#5^F0uGrs
ab~ i !$HN@ 1

2 ~T1!2T2

1 1
24 ~T1!4#%CuF0&1L4

~4!@Grs
ab~ i !#

1@ i #2L4
~5!@Grs

ab~ i !#. ~117!

Equations~115!–~117! are basic equations of the so-calle
ACCSD8 method, which reduces to the well-known ACP
~or ACCD8! method of Ref.@53# when T150. It should be
emphasized that reduction of the CCSDQ8 equations to those
of the ACCSD8 formalism is based on a rather strong a
sumption, namely, that bothT2 andT4 components resulting
from the cluster analysis of the PUHF solution are exact
nearly exact. This is indeed the case in the strongly co
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lated regime of the PPP cyclic polyene model, but may
be the case in generalab initio situations. The CCSDQ8 for-
malism is based on a much weaker assumption requiring
only T4 corrections are fairly well represented by the PUH
wave function, which is justified by a qualitatively good d
scription of the bond-breaking phenomena by the PUHF
lutions. We should also reiterate that the above simple r
tionship between the CCSDQ8 and ACCSD8 formalisms
relies on the OSA formulation of the SRCC theory.

The general-purpose computer implementation of
CCSDQ8 and CCDQ8 methods is described in the next se
tion. Together with CCSDQ8 and ACCSD8, we also consider
the CCSDQ8@T# and ACCSD8@T# approaches, in which in
addition toT4 contributions estimated via Eq.~113! we also
calculateT3 energy corrections using Eq.~50!. The relevant
^rsut2uab& i amplitudes are then obtained from the CCSD8
and ACCSD8 calculations, respectively. Unfortunately,T3
components cannot be obtained from cluster analysis of
PUHF solution, so that we must rely on some other appro
mation to estimate their contribution. We decided to u
simple perturbative estimates T~CCSDQ8! or T~ACCSD8!.
Another possibility would be to consider theK4 corrected
CCSDT equations, which would result in a much more co
plex and computationally highly demanding CCSDT-li
formalism. We do not pursue this approach, whose dom
of applications would be rather limited.

V. COMPUTATIONAL DETAILS

All CC calculations reported in this paper were carri
out with the general-purpose programs written in our labo
tory. The CCSD, ACCSD8, CCSD@T#, and ACCSD8@T# pro-
grams were described in Refs.@24# and @67#. The relevant
OSA expressions forLn(GI

†) @GI5Ga
r ,Gab

rs ( i )# and the
CCSD energy were presented in Ref.@44#, whereas the re-
quired OSA expressions for the triexcited correctio
DET(X) (X 5 CCSD, ACCSD8! were given in Ref.@22#. The
CCSDQ8 and CCSDQ8@T# programs use the same type
expressions, so that they have the same structure as
CCSD and CCSD@T# codes, except for small differences
defining the absolute terms, which are computed only o
before initiating the actual iterative procedure for solving t
CC equations. Although the CCSDQ8 formalism can utilize
any broken symmetry single-determinantal wave function
evaluate theT45K4 corrections, the computer implement
tion described below uses the ground-state UHF wave fu
tion.

A. CCSDQ8 equations

Let us recall that the CCSD and ACCSD8, as well as
CCSDQ8, programs are based on the iterative algorithm
scribed in Ref.@30#, which is in turn related to the reduced
linear equation~RLE! procedure of Purvis and Bartlett@86#.
According to the procedure of Ref.@30#, we express Eqs
~33! and ~34! ~for CCSD approach!, ~115! and ~116! ~for
ACCSD8 approach!, or ~97! and ~98! ~for CCSDQ8 ap-
proach! in the form

A„T…•T5B„T…, ~118!

whereT is a column vector consisting of cluster amplitude
B„T… is a column vector containing negative of the absol
t

at

-
a-

e

e
i-
e

-

in

-

s

the

e

o

c-

-

,
e

and of some or all nonlinear terms, andA(T) represents a
square matrix with all linear and the remaining nonline
terms that were moved from the right-hand side to the le
hand side of Eq.~118! and conveniently quasilinearized@30#
~cf., also, Ref.@87#!. In the case of CCSD and ACCSD8, the
absolute terms occurring inB(T) are defined asL0(GI

†), Eq.
~35!, whereGI5Ga

r ,Gab
rs ( i ). As explained in Sec. IV, the

absolute terms of the CCSDQ8 formalism are defined by
L0(Gr

a) for equations projected on singly excited configur
tions, and as

L0
CCSDQ8 @Grs

ab~ i !#5L0@Grs
ab~ i !#1Q4

X@Grs
ab~ i !# ~119!

for equations projected on biexcited configurations@cf. Eqs.
~113! and ~114!#.

We express the (n11)st approximate ofT as a linear
combination of the initial guessT(1)[U(1) andn correction
vectorsU(k), k52, . . . ,n11, calculated in subsequent itera
tions of the RLE procedure,

T~n11!5 (
k51

n11

akU
~k!, ~120!

with scaling factorsak chosen to minimize the Euclidea
norm of the ‘‘error’’ vector

e5A~T~n!!•T~n11!2B~T~n!!. ~121!

Typically, the correctionsU(k) are calculated by using th
inverse of the diagonal part ofA(T) @designated byD(T)# to
estimate@A(T)#21,

U~n11!5@D~T~n!!#21
•BD

~n! , ~122!

where

BD
~n!5B~T~n!!2 (

k51

n

Bk
~n! , Bk

~n!5A~T~n!!•U~k!.

~123!

In most cases, a simple first-order MBPT estimate ofT(1)

gives a reasonable convergence. Other initial guesses,
as the second-order MBPT estimate forT(1), or the previ-
ously converged amplitudes for the nearby geometry~in gen-
eral, the converged amplitudes for the nearby values of
parameters used to describe the system!, can also be used in
our program.

An important feature of the above algorithm is the pos
bility to quasilinearize selected nonlinear terms. For e
ample, in a number of quasidegenerate situations, it is us
to include the1

2(T2)2 clusters inA(T)•T, so that the de-
nominator matrixD(T) is modified by terms involving large
pair-cluster amplitudes@30#. This is particularly important
for the ACCSD8 and CCSDQ8 approaches, which are in
tended to be used in severe cases of quasidegeneracy, w
the standard CCSD theory is no longer applicable or e
breaks down. To improve the convergence of the CCSD8
algorithm in the region where the standard CCSD the
becomes singular, we introduced a new quasilineariza
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scheme for12(T2)2 terms, in which we optionally quasilinear
ize and include inA(T)•T only the ACCD8-like nonlinear
contributionsL4

(4)@Grs
ab( i )# and @ i #2L4

(5)@Grs
ab( i )#, while re-

taining the remaining1
2(T2)2 terms inB(T). This is justified

by the fact that in severe cases of configurational quas
generacy the contributions of the first three nonlinear d
gramsL4

(k)@Grs
ab( i )# (k5123), mutually cancel out@52#, so

that when we move the ACCD8-like termsL4
(4)@Grs

ab( i )# and
@ i #2L4

(5)@Grs
ab( i )# to the left-hand-side of Eq.~118!, the

right-hand-side vectorB(T) reduces to the negative of th
vector containing the CCSDQ8 absolute terms

$L0(Gr
a),L0

CCSDQ8 @Grs
ab( i )#%. This quasilinearization im-

proves the convergence of the CCSDQ8 scheme wheneve
the cluster analysis of the PUHF wave function yields ve
accurate cluster components~see the discussion below!.

To further improve the convergence of our CC~in par-
ticular, CCSDQ8! algorithms, we decided to allow for bette
estimates of@A(T)#21 for calculatingU(n11), Eq. ~122!. In-
stead of relying on a simple approximationA(T)'D(T), we
write @88#

A~T!5D~T!1D~T!, ~124!

or ~dropping for a moment the explicit dependence onT)

A215D212D21
•D•~D1D!21, ~125!

whereD[D(T) is the off-diagonal part ofA(T). Expanding
the right-hand side of Eq.~125!, we obtain~retaining at most
linear terms inD)

A21'D212D21
•D•D215D211D21

•~D2A!•D21

52D212D21
•A•D21, ~126!

which allows us to express the improved correction vect
U(n11) as follows:

U~n11!52@D~T~n!!#21
•BD

~n!

2@D~T~n!!#21
•A~T~n!!•@D~T~n!!#21

•BD
~n! . ~127!

Note that there is no need to storeA(T) to calculate the
improved vectorU(n11), Eq.~127!. The dimensions of array
D(T(n)) andBD

(n) are the same as dimensions ofT or U(k), so
that the matrix productA(T(n))•@D(T(n))#21

•BD
(n) can be

calculated using the routines that are designed to calcu
the productsBk

(n) , Eq. ~123!. In fact, the same applies t
higher-order analogs of the formula~127!, which contain
higher powers ofD @88#, and which we included in our code
as well.

We found out that the improved estimate for@A(T)#21

reduces the number of required iterations by as much as
40% ~assuming the simple first-order MBPT estimate as
initial guess forT2 and the convergence thresholds of 7–
decimal places in the energy!. Although every iteration re-
quires more time when Eq.~127! is used, the overall benefi
in cpu time is often substantial.
e-
-

y

s

te

0–
e

B. Cluster analysis

The most important new element of the current CC co
allowing for the CCSDQ8 calculations is the set of routine
that perform the cluster analysis of the PUHF wave funct
and correct the CCSD equations by the relev
Q4

UHF@Grs
ab( i )# terms. According to the general theory of Se

III, we must first extract the coefficients^r uua&S , defining the
operatorsU1

UHF(S,0), from the PUHF solution. These are
turn defined in terms of the spin-orbital coefficien
^rsuu1

(s)uas&, where s5a,b designates the spin-up an
spin-down spin functions@see Eq.~58!#. The latter coeffi-
cients can be calculated using the transformation matr
C(s)[uuckl

(s)uuk,l 51
M between the UHF and RHF orbitals,

f l ,s
UHF5 (

k51

M

ckl
~s!fk

RHF. ~128!

Here, M is the number of RHF~UHF with a or b spins!
orbitals or the dimension of the atomic orbital~AO! basis set
used in the corresponding LCAO~linear combination of
atomic orbitals! expansions defining both MO sets,

fk,s
UHF5 (

m51

M

amk
~s!xm , ~129!

fk
RHF5 (

m51

M

bmkxm , ~130!

xm (m51, . . . ,M ) being the AO’s. To find the desired rela
tionship, we must expand the UHF wave function

uF0
UHF&5uf1,a

UHFaf1,b
UHFb•••fn,a

UHFafn,b
UHFbu ~131!

in terms of the RHF configuration

uF0
RHF&5uf1

RHFaf1
RHFb•••fa

RHFafa
RHFb•••fn

RHFafn
RHFbu
~132!

and various excited configurations relative touF0
RHF&, using

Eq. ~128!, and compute the coefficients at

U rs

asL [Uf r
RHFs

fa
RHFsL 5Xrs

† XasuF0
RHF&, ~133!

where we rely on our labeling convention wit
a51,2, . . . ,n designating the occupied orbitals an
r 5n11,n12, . . . ,M the unoccupied orbitals inuF0

RHF&.
Since we used the intermediate normalization in defin

U1
UHF @cf. Eq. ~52!#, the monoexcited coefficien

^rsuu1
(s)uas& is given by the ratio

^rsuu1
~s!uas&5K rs

as
UF0

UHFL Y^F0
RHFuF0

UHF&.

~134!

The denominator is given by the product of two determ
nants: the determinant of a matrix with entries consisting
all possible overlaps between the occupied RHF MO’s a
the occupied UHF MO’s associated witha spins, and a simi-
lar determinant forb spins,
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^F0
RHFuF0

UHF&5deti^fk
RHFuf l ,a

UHF&ik,l 51
n

3deti^fk
RHFuf l ,b

UHF&ik,l 51
n

5detickl
~a!ik,l 51

n detickl
~b!ik,l 51

n . ~135!

An analogous formula can be obtained for the numera
namely,

K rs

as
UF0

UHFL 5deti c̃ kl
~s!~a→r !ik,l 51

n detickl
~ s̄ !ik,l 51

n ,

~136!

whereā5b, b̄5a, andi c̃ kl
(s)(a→r )ik,l 51

n is obtained from
the matrix ickl

(s)ik,l 51
n by replacing theath (a51,2, . . . ,n)

row, containing the expansion coefficientscal
(s) ,

l 51,2, . . . ,n, for all occupied UHF MO’s havings spin, by
the first n elements of the r th row of C(s)

(r 5n11,n12, . . . ,M ) containing the coefficientscrl
(s) that

correspond to the given unoccupied orbitalf r
RHF. The

entries of the matrixi c̃ kl
(s)(a→r )ik,l 51

n are thus defined a
follows:

c̃kl
~s!~a→r !5H crl

~s! if k5a

ckl
~s! otherwise

~k,l 51,2, . . . ,n!.

~137!

Substituting Eqs.~135! and~136! into Eq.~134!, we arrive at
the following result for̂ rsuu1

(s)uas&:

^rsuu1
~s!uas&5deti c̃ kl

~s!~a→r !ik,l 51
n /detickl

~s!ik,l 51
n .

~138!

Thus, the required monoexcited coefficients^rsuu1
(s)uas&

can be easily calculated using then3n submatrices,
i c̃ l

(a)(a→r )ik,l 51
n and i c̃ kl

(b)(a→r )ik,l 51
n , Eq. ~137!, of the

relevant transformation matrices,C(a) and C(b), respec-
tively, between the RHF and UHF orbitals. The latter ma
ces can be conveniently expressed in terms of the LC
coefficients defining both MO sets@cf. Eqs.~129! and~130!#
and the overlap matrixS[i^xmuxn&im,n51

M characterizing the
AO set$xm%m51

M . Indeed, it can be easily verified that

C~s!5B21
•A~s!5B†

•S•A~s!, ~139!

where A(s)[iamk
(s)im,k51

M and B[ibmkim,k51
M are the trans-

formation matrices between the UHF and RHF MO se
$fk,s

UHF%k51
M and $fk

RHF%k51
M , respectively, and the AO se

$xm%m51
M . Equation~139! enables us to determine the tran

formation matricesC(s) (s5a,b), which are in turn ex-
ploited to calculate the coefficientŝrsuu1

(s)uas& via Eq.
~138!. The required OSA amplitudeŝr uua&S , defining the
singlet and triplet components of the monoexcitation ope
tor U1

UHF, are then given by Eq.~58!. Finally, the triplet
amplitudes^r uua&1 are used to calculate the cluster coef
cients ^rsuk2uab& i defining the pair-cluster operatorK2 by
employing the relationship~95!.

The operations just outlined form an essential part o
small program that performs the cluster analysis of
PUHF wave function. The required LCAO coefficients, d
fining the UHF and RHF MO sets as well as the AO over
r,

-
O

,

-

a
e
-

matrix S, are read into the program from the relevant fil
generated byGAMESS @73#. The resulting biexcited cluste
amplitudes^rsuk2uab& i , as well as their monoexcited ana
logs definingK1 , which are clearly identical to the single
coefficients^r uu1ua&0 @see Eq.~88!#,

^r uk1ua&5^r uu1ua&0521/2^r uua&0 , ~140!

are then stored on a disk~the triplet coefficientŝ r uu1ua&1
are not saved as they are only needed to const
^rsuk2uab& i amplitudes!. Both the amplitudeŝ rsuk2uab& i
defining K2 and the singly excited singlet coefficien
^r uk1ua&, Eq. ~140!, are read by the CCSDQ8 program. The
^rsuk2uab& i coefficients are primarily used to compute th
Q4

UHF@Grs
ab( i )# corrections. We employed Eq.~113! for this

purpose, since it allows us to utilize the routines that n
mally calculate the standard CCD diagrammatic contrib
tions L4

(k)@Grs
ab( i )#. The resultingQ4

UHF@Grs
ab( i )# terms are

then used to define the absolute termL0
CCSDQ8 @Grs

ab( i )#, Eq.
~119!. All these operations are carried out before initiati
the actual iterative procedure for solving CC equations~see
the discussion above!. In addition, both ^rsuk2uab& i and
^r uk1ua& are used to evaluate the PUHF-based CCSD ene
expression, in which theT1 andT2 clusters are replaced b
their PUHF analogsK1 andK2 , respectively,

DECCSD~PUHF!5^F0u@HN~K11K21 1
2 K1

2!#CuF0&.
~141!

The analogous CCD energy expression@DECCD(PUHF), Eq.
~141!, with K150# is evaluated as well. These energies a
useful for assessing the quality of the monoexcited and b
cited cluster amplitudes, resulting from the analysis of
PUHF wave function~cf. the discussion below!, and thus of
the performance of the ACCSD8 approach, which assume
that the pair clustersT2 are fairly well represented by th
PUHF solution.

C. Code testing

Both the cluster analysis program and the final CCSD8
code were thoroughly tested. In particular, it was very use
to apply these programs to situations where the UHF
PUHF wave function provides exact values of the mono
cited and biexcited cluster amplitudes. These situations
clude the PPP and Hubbard cyclic polyene models in
strongly correlated (b50) limit ~we usedb50 benzene
model for testing! and the so-called MBS S4 model@34#,
consisting of four hydrogen atoms arranged in a squ
(D4h) configuration, in the dissociation (H4→4H) limit. In
the latter case, we were stretching the nearest-neigh
H2H separation to 10–50 a.u. In these cases, the clu
analysis program gave us the exactT1 and T2 components
(T150 for these models!, which were independently ob
tained by the cluster analysis of the FCI wave function. Al
the CCSDQ8 energy was identical withDECCSD(PUHF), Eq.
~141!, as well as with the UHF and FCI energies. T
CCSDQ8 energy was also identical with the ACCSD8 en-
ergy, in agreement with the fact that diagram cancellat
leading to ACCSD8 @cf. Eqs.~115!–~117!# is exact whenever
~P!UHF gives exactT2 andT4 components.
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In some cases, we were able to retrieve theT4 compo-
nents directly from the UHF wave function and compu
Q4

UHF@Grs
ab( i )# using the standard spin orbital expressi

@14,27–29,62#

Q4@ERS
AB#[^F0uERS

AB~VNT4!CuF0&

5 1
4 (

R8,S8,A8,B8
^A8B8uvuR8S8&A

3^RSR8S8ut4uABA8B8&A , ~142!

where uK&[uks& designate spin orbitals (A,B, . . . occu-
pied; R,S, . . . unoccupied inuF0&), ERS

AB[(EAB
RS)† with

EAB
RS5ERAESB, ERA5XR

†XA , ~143!

^KLuvuK8L8&A the antisymmetrized two-electron integrals

^KLuvuK8L8&A5^KLuvuK8L8&2^KLuvuL8K8&,
~144!

and ^RSR8S8ut4uABA8B8&A the spin-orbital cluster ampli
tudes definingT4 @the subscriptA indicates their antisym-
metric property with respect to interchanges of occupied~un-
occupied! spin-orbital labels#. The OSA corrections
Q4

UHF@Grs
ab( i )# could then be evaluated by forming the spi

free corrections

Q4
UHF~Ers

ab![ (
r,s521/2

1/2

Q4
UHF~Errss

arbs!, ~145!

corresponding to spin-free biexcitation operators

Eab
rs 5EraEsb , ~146!

and by subsequently converting the spin-free compon
~145! into the OSA form using the relationship

Q4
UHF@Grs

ab~ i !#5 1
2 Nrs

ab@ i #21/2Sab~ i !Q4
UHF~Ers

ab!, ~147!

which reflects an alternative formula forGab
rs ( i ), namely

@89#,

Grs
ab~ i !5 1

2 Nab
rs @ i #21/2Sab~ i !Eab

rs . ~148!

We used this procedure to calculateQ4
UHF@Grs

ab( i )# for the
MBS P4 model consisting of four hydrogen atoms~or, better,
two interacting hydrogen molecules! arranged in a rectangu
lar (D2h) nuclear conformation@57# ~cf. Sec. VI!. In this
case, there is only one tetraexcited amplitude definingT4 ,
which could easily be extracted from the CI-like expans
of the UHF wave function. The resulting correction
Q4

UHF@Grs
ab( i )# obtained in this way were invariably identica

to those generated by our CCSDQ8 code, which uses for this
purpose Eq.~113! andK2 cluster amplitudes defined by Eq
~95!. Finally, we used the monoexcited cluster amplitud
^r uua&S or ^r uu1ua&S , generated by our cluster analysis pr
gram, to evaluate the CI-like expansion describing the U
wave functions for small molecular systems, such as
MBS H4 model consisting of two interacting hydrogen mo
ecules arranged in isosceles trapezoidal (C2v) configuration
@57# ~cf. Sec. VI! and the DZ H2 model described in Sec. II
ts

s

F
e

@cf. Eqs.~71!–~75!#. By computing the corresponding expe
tation values@cf. Eq. ~79!#, we were able to reproduce th
UHF energy obtained independently in the standardGAMESS

calculations, which use the UHF energy expression base
density matrices.

As in the case of our other CC programs@24,67,90#, the
current CCSDQ8 and CCSDQ8@T# codes allow for point-
group symmetry adaptation and freezing of core and dr
ping of virtual orbitals. Exploitation of spin and spatial sym
metries substantially increases the efficiency of th
programs and enables us to study realistic cases on relat
small workstations. As pointed out in Sec. III, this is a
important advantage of the PUHF corrected CCSD-R
method, when compared with the CCSD-UHF approach. T
CCSDQ8 approach uses the symmetry-adapted PUHF w
function to calculate Q4

UHF@Grs
ab( i )# and the lowest

symmetry-adapted RHF solution asuF0&, in contrast to the
CCSD-UHF method, which uses the broken-symmetry U
wave function as a reference. On the other hand, the CC
UHF method can be applied to several nonsinglet~doublet,
triplet, etc.! problems of high-spin type, which cannot b
treated at this point by the OSA CCSDQ8 approach dis-
cussed in this study. Examples of the CCSDQ8 and
CCSDQ8@T# calculations are presented in the next section

VI. EXAMPLES

To examine the performance of CCSDQ8 and related
CCDQ8 and CCSDQ8@T# methods, as well as the ACCSD8
and ACCSD8@T# approaches, we performed a number of c
culations for systems in which the configurational dege
eracy can be continuously varied by changing a single
rameter describing their geometries. These include the ab
mentioned H4 and P4 models, using both the MBS and D
basis sets of Refs.@57# and @59#, respectively, and the MBS
H8 model@66#, which is composed of four interacting hydro
gen molecules arranged in a distorted octagonal config
tion havingD2h spatial symmetry. The CCSDQ8 study of the
DZP H4 system should explain the ‘‘ill behavior’’ of th
ACCSD8 approach pointed out by Kucharski, Balkova´, and
Bartlett in Ref.@40#. In all cases, the initial ground-state RH
and UHF orbitals were obtained withGAMESS, which was
also used to perform the integral transformation from AO
MO basis sets and to calculate various limited and full
results.

Geometries of all three models are defined by the t
parametersa anda, but onlya is varied. The parametera is
defined as the nearest-neighbor H-H internuclear separa
and, as in previous studies of these models~cf. Refs.
@24,31,33,34,36,40,50,57,59,66,67,91,92#!, it is fixed at 2.0
a.u.@corresponding to slightly stretched hydrogen molecu
in order to enhance quasidegeneracy effects~cf. Ref. @34#!#.
The second parametera determines~i! the displacement of
the two H2 molecules from the square configuration for t
H4 and P4 models, and~ii ! the displacement of two opposit
H2 molecules from their position in the regular octagon f
the H8 model. For the trapezoidal H4 model,a is the angular
parameter that varies between 0~square configuration! and
0.5 ~linear configuration!. For the rectangular P4 model,a
varies betweena52.0 a.u.~square configuration! and`, the
latter limit corresponding to a dissociation of the H4 system
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TABLE I. A comparison of the FCI, RHF, UHF, and various CC energies~in hartree! for the ground
electronic state of the MBS P4 model witha52.0 a.u. and different values ofa ~in a.u.!. In this case,
CCD5CCSD, CCD~PUHF!5CCSD~PUHF!, ACCD85ACCSD8, and CCDQ85CCSDQ8. The RHF solution
is triplet stable fora.3.0 a.u.

a RHF UHF CCD~PUHF! FCI CCD ACCD8 CCDQ8

2.0 21.858241 21.957155 21.946785 21.975862 21.978696 21.976017 21.977885
2.01 21.862506 21.958413 21.948910 21.977266 21.979877 21.977887 21.979064
2.02 21.866709 21.959682 21.951045 21.978778 21.981176 21.979791 21.980364
2.05 21.878956 21.963553 21.957480 21.983905 21.985742 21.985718 21.984944
2.1 21.898211 21.970183 21.968162 21.994026 21.995178 21.996274 21.994436
2.15 21.916113 21.976985 21.978601 22.005366 22.006086 22.007475 22.005424
2.2 21.932761 21.983905 21.988659 22.017204 22.017658 22.018988 22.017082
2.3 21.962643 21.997916 22.007346 22.040617 22.040802 22.041775 22.040387
2.4 21.988497 22.011891 22.023944 22.062315 22.062386 22.063047 22.062100
2.5 22.010868 22.025579 22.038457 22.081741 22.081760 22.082207 22.081574
3.0 22.084760 22.084766 22.085322 22.147821 22.147794 22.147857 22.147794
4.0 22.136758 22.136758 22.136758 22.194027 22.194017 22.194002 22.194017
5.0 22.147975 22.147975 22.147975 22.203366 22.203363 22.203354 22.203363
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into the two hydrogen molecules. In practice, it is sufficie
to study the range 2.0–5.0 a.u. For the H8 model,a varies
between 0~regular octagonal configuration! and`; increas-
ing a implies the process H8→H412H2, where H4 is the
P4-like system formed by two ‘‘spectator’’ H2 molecules
that remain at all times in their initial position. In practice,
is sufficient to study the range 0–1.0 a.u. The valuesa50
for the H4 and H8 models anda52.0 a.u. for the P4 mode
describe the situation where the ground-state wave func
has a two-configurational character: the ground-state R
configuration has the same weight in the exact ground-s
wave function as the doubly excited configuration involvi
the highest occupied~HOMO! and the lowest unoccupie
~LUMO! MO’s. As a increases, the degree of this config
rational degeneracy decreases, so that the valuesa.0.1 for
the H4 and H8 models, anda.2.5 a.u. for the P4 model
describe situations where the ground state is dominated
the RHF configuration with diminishing role of the HOMO
LUMO biexcitation ~for more details see, e.g., Ref
@31,34,57,66#!.

The results of our calculations are presented in Tab
I–III ~MBS P4 model!, IV–VI ~MBS H4 model!, VII–IX
~DZP H4 model!, and X-XII ~MBS H8 model!. Consider first
the MBS P4 model. In this case, the analysis of vario
cluster contributions to the electronic energy is drastica
simplified by the absence ofT1 and T3 components, which
vanish due to the high symmetry of the model and the p
ence of only four MO’s in the MBS basis set spanning fo
different irreducible representations of theD2h group. Since
C25T2 andC45T41 1

2(T2)2 in this case@cf. Eqs.~5!–~8!#,
we can easily assess the importance of the connectedT4
contribution by forming the energy difference FCI2CCD
~FCI5CCDQ5CIDQ in this case, where CCDQ and CID
designate, respectively, CC and limited CI approaches w
doubles and quadruples!.

The results in Table I indicate that the CCDQ8 method
represents a substantial improvement when compared
the ACCD8[ACPQ approach fora>2.05 a.u. In this re-
gion, the errors in the CCDQ8 results relative to FCI do no
t

n
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te

by

s

s
y

s-
r
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exceed~in absolute value! 0.41 mhartree and are as small
258 mhartree fora52.15 a.u. This should be compared
the22.248-mhartree error obtained with the ACCD8 method
at a52.1 a.u. or21.8 to22.1-mhartree errors obtained wit
this approach fora52.1522.2 a.u. In fact, the region wher
the CCDQ8 approach gives by far the best results, i.e.,
interval @2.1 a.u.,2.2 a.u.# ~we exclude here negligible error
for all methods considered fora.3.0 a.u., where RHF is
triplet stable so that CCD5CCDQ8!, coincides with the
maximum errors in the ACCD8 results. This indicates that in
this interval theT2 cluster components are already relative
poorly described by the UHF approach, while theT4 com-
ponents extracted from the PUHF wave function rem
quite close to their FCI counterparts. This becomes obvi
when we compare individual FCI and PUHF cluster amp
tudes. This can be easily done in this case, since in the M
P4 model there are only six OSA biexcited amplitudes a
one T4 amplitude~see Table II!. We find that the FCIT4

amplitude almost perfectly matchesK4 for a52.122.2 a.u.,
in spite of the fact that the quality ofK2 amplitudes is rela-
tively poor in this region. For example, we observe 17.
26.1% errors for the dominant^33ut2u22&0 PUHF amplitude
relative to FCI fora52.122.2 a.u., which should be com
pared to less than 4% error for the same amplitude
a<2.02 a.u.~here, 1 and 2 are occupied orbitals and 3 an
unoccupied ones in the RHF reference; 2 and 3 are HO
and LUMO, respectively!. The PUHF biexcited amplitude
^44ut2u22&0 and ^33ut2u11&0 , vanish, but are nonzero in th
FCI case and begin to play an increasingly important role
a>2.1 a.u.

We believe that a good measure of the relative quality
the T2 andT4 amplitudes is the ratio

k4
X5^t4

X&C /^t4
X&D , ~149!

where
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TABLE II. Cluster amplitudes characterizing FCI and PUHF wave functions for the MBS P4 model witha52.0 a.u. and different values
of a ~in a.u.!. In this case,T1 andT3 components vanish. 1,2~3,4! designate occupied~unoccupied! orbitals in the RHF reference; 2 and
are HOMO and LUMO, respectively. The quantityk4 designates the ratiôF0uG3344

1122(0,0,0,0,0)T4uF0&/^F0uG3344
1122(0,0,0,0,0)12(T2)2uF0&,

where the operatorG3344
1122(0,0,0,0,0)[@G1122

3344(0,0,0,0,0)#†5G33
11(0)G44

22(0) describes the projection onto the only available quadruply exc
configurationu3a3b4a4bu. For a.3.0 a.u., the cluster components characterizing PUHF wave function vanish, since RHF is triplet
in this region.

a Method ^33ut2u22&0 ^44ut2u22&0 ^33ut2u11&0 ^44ut2u11&0 ^34ut2u12&0 ^34ut2u12&1 ^3344ut4u1122&0,0,0,0,0 k4

2.0 FCI 21.0 0.0 0.0 20.065070 20.265435 20.153249 20.046971 20.419229
PUHF 21.0 0.0 0.0 20.020182 20.142064 20.082021 20.013455 20.4

2.01 FCI 20.949745 20.005313 20.006277 20.064005 20.261019 20.147239 20.042166 20.398820
PUHF 20.968031 0.0 0.0 20.020368 20.140416 20.081069 20.013144 20.4

2.02 FCI 20.902579 20.010342 20.012199 20.062998 20.256857 20.141542 20.037854 20.378566
PUHF 20.937381 0.0 0.0 20.020544 20.138771 20.080120 20.012838 20.4

2.05 FCI 20.778468 20.023775 20.027914 20.060328 20.245827 20.126275 20.027451 20.319887
PUHF 20.852587 0.0 0.0 20.021016 20.133858 20.077283 20.011945 20.4

2.1 FCI 20.621275 20.041230 20.048013 20.056966 20.231696 20.106285 20.016354 20.234101
PUHF 20.731412 0.0 0.0 20.021618 20.125743 20.072598 20.010541 20.4

2.15 FCI 20.510688 20.053830 20.062159 20.054720 20.221653 20.091668 20.010039 20.167165
PUHF 20.630216 0.0 0.0 20.021992 20.117728 20.067970 20.009240 20.4

2.2 FCI 20.431746 20.063002 20.072133 20.053286 20.214435 20.080848 20.006337 20.117772
PUHF 20.544583 0.0 0.0 20.022146 20.109819 20.063404 20.008040 20.4

2.3 FCI 20.330444 20.075012 20.084449 20.051950 20.205116 20.066219 20.002641 20.056507
PUHF 20.408022 0.0 0.0 20.021813 20.094341 20.054468 20.005933 20.4

2.4 FCI 20.270238 20.082279 20.091141 20.051773 20.199539 20.056828 20.001053 20.024471
PUHF 20.304581 0.0 0.0 20.020675 20.079355 20.045815 20.004198 20.4

2.5 FCI 20.231146 20.087031 20.094935 20.052204 20.195888 20.050203 20.000292 20.007168
PUHF 20.224120 0.0 0.0 20.018793 20.064898 20.037469 20.002808 20.4

3.0 FCI 20.148270 20.096691 20.098999 20.057506 20.187813 20.032584 0.000448 0.012342
PUHF 20.003625 0.0 0.0 20.000667 20.001555 20.000898 20.000002 20.4

4.0 FCI 20.108360 20.098634 20.094579 20.069742 20.183127 20.017760 0.000195 0.005775
PUHF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.0 FCI 20.097366 20.096397 20.091773 20.078974 20.181727 20.010576 0.000053 0.001586
PUHF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ly
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D
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a-
^t4
X&C5^F0uG3344

1122~0,0,0,0,0!T4uF0&

[^F0uG33
11~0!G44

22~0!T4uF0&[^3344ut4u1122&0,0,0,0,0

~150!

and

^t4
X&D5^F0uG3344

1122~0,0,0,0,0! 1
2 ~T2!2uF0& ~151!

designate, respectively, the connected (T4) and disconnected
@ 1

2(T2)2# tetraexcited amplitudes obtained with methodX
(X5FCI, PUHF). In the PUHF case, it can be rigorous
proved that this ratio is independent ofa and equals20.4,
since

^t4
PUHF&C52

2

3
^3uu2&2^4uu1&2, ~152!

and

^t4
PUHF&D5

5

3
^3uu2&2^4uu1&2. ~153!
As we can see from Table II, the FCI ratiok4
FCI is far away

from 20.4 for aP@2.1 a.u.,2.2 a.u.#, and the primary reason
for that is a poor quality ofK2 amplitudes in this region. As
a result, the CCDQ8 approach works very well (K4 is very
good!, whereas the ACCD8 approach, which is based on th
assumption of good quality of bothK2 andK4 clusters, gives
maximum errors. The PUHF ratiok4

PUHF520.4 almost per-
fectly matches its FCI valuek4

FCI only for a,2.05 a.u.,
where the degree of configurational quasidegeneracy rea
its maximum level. This explains why the ACCD8 approach
gives extremely good results in the vicinity of the squa
configuration of the MBS P4 model@for a52.0 a.u., the
error in ACCD8 results is only20.155 mhartree, while CCD
and CCDQ8 give more than 2-mhartree errors~in absolute
value! relative to FCI; cf. Table I#. In fact, in the immediate
vicinity of a52.0 a.u. limit, the ACCD8 approach provides
us with a very good estimate of theT4 contribution to the
energy obtained by forming the energy difference ACC8
2CCD ~see Table III! and, as our experiments with the S
model indicate, the superb quality of ACCD8 T4 corrections
is even better when we dissociate the H4 cluster into four
hydrogen atoms~this can be achieved using the parametriz
tion of the P4 model by increasinga5a to `). In this case,
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^t4
PUHF&C approaches the FCI value of2 2

3 describing the dis-
sociated S4 model, sincê3uu2&5^4uu1&51 in this limit.
However, fora>2.1 a.u., the ACCD8 estimates ofT4 cluster
contributions to energy become very poor~they have a
wrong sign; see Table III!, since pair clusters are no longe
adequately represented by the PUHF approximation.

The CCDQ8 method exhibits totally different behavio
The CCDQ8 estimate of theT4 contribution, as obtained by
forming the energy difference CCDQ82CCD, is invariably
positive ~we exclude in this analysis thea.3.0 a.u. region
where UHF5RHF!, in agreement with its FCI analog ob
tained by forming the energy difference FCI2CCD
5CCDQ2CCD. Fora52.122.2 a.u., we obtain amazingl
good agreement between CCDQ2CCD and CCDQ82CCD
energy increments~see Table III!, in perfect agreement with
the results of Table II.

TABLE III. The effect of connected tetraexcited clusters
CCD5CCSD energies~in mhartree!, as obtained by comparing
CCDQ, CCDQ8, and ACCD8 methods, for the ground electroni
state of the MBS P4 model witha52.0 a.u. and different values o
a ~in a.u.!. In this case, CCDQ5FCI and for a.3.0 a.u.
CCDQ85CCD.

CCDQ CCDQ8 ACCD8
a 2CCD 2CCD 2CCD

2.0 2.834 0.811 2.679
2.01 2.611 0.813 1.990
2.02 2.398 0.812 1.385
2.05 1.837 0.798 0.024
2.1 1.152 0.742 21.096
2.15 0.720 0.662 21.389
2.2 0.454 0.576 21.330
2.3 0.185 0.415 20.973
2.4 0.071 0.286 20.661
2.5 0.019 0.186 20.447
3.0 20.027 0.0 20.063
4.0 20.010 0.0 0.015
5.0 20.003 0.0 0.009
Let us next consider the MBS H4 model. This model h
lower (C2v) symmetry and, as a result, theT1 andT3 con-
tributions no longer vanish. We can thus explore the perf
mance of the more complete CCSDQ8 and ACCSD8 ap-
proaches and of their perturbative CCSDQ8@T# and
ACCSD8@T# analogs. TheT3 contributions are small enoug
to justify the use of perturbative estimates, such as CCSD@T#,
ACCSD8@T#, and CCSDQ8@T#, over a wide range ofa val-
ues.

The results of Table IV indicate that fora.0.2, the RHF
solution is triplet stable ~RHF5UHF!, so that
CCSDQ85CCSD and CCSDQ8@T# 5 CCSD@T# in this re-
gion. It is immediately obvious from Table V that in th
strongly degenerate region (a50.0120.1), the CCSDQ8
and CCSDQ8@T# approaches are by far the best. In this r
gion, the errors in CCSDQ8 and CCSDQ8@T# energies rela-
tive to FCI range between20.85 mhartree fora50.01 and
less than 0.1 mhartree~35 mhartree for CCSDQ8@T#! for
a50.1. This should be compared to nearly22-mhartree
errors obtained fora50.01 with the CCSD, ACCSD8,
CCSD@T#, and ACCSD8@T# methods. Fora.0.1, the overall
best results~errors less than 20mhartree! are obtained with
the standard CCSD approach indicating thatT3 andT4 con-
tributions cancel out. Inclusion ofT3 decreases and inclusio
of T4 ~via FCI or CCSDQ8! increases the energy, and fo
a.0.1 both effects are of a similar magnitude but of opp
site sign.

The ACCSD8 and ACCSD8@T# approaches give the bes
result only in the immediate vicinity of thea50 limit ~for
a,0.01) where, as in the P4 model, the PUHFT2 and T4
clusters are of good quality. Fora.0.01, the quality of the
ACCSD8 results substantially deteriorates, whereas the er
in the CCSDQ8 energies monotonically decrease with i
creasinga. This indicates that fora.0.01 we cannot rely on
the PUHF estimates of bothT2 andT4 components, since the
former ones are rather poor. However, theK4 clusters ap-
proximate FCIT4 components rather well and, as a resu
the CCSDQ8 method gives very good results fora.0.01.
This becomes obvious when we compare the energy dif
ences CISDQ2CCSD and CIDQ2CCD @cf. Eqs. ~5!–~8!#
TABLE IV. A comparison of the FCI, RHF, UHF, CCD~PUHF!, and CCSD~PUHF! energies~in hartree!
for the ground electronic state of the MBS H4 model witha52.0 a.u. and different values ofa. The RHF
solution is triplet stable fora.0.2.

a RHF UHF CCD~PUHF! CCSD~PUHF! FCI

0.0 21.858241 21.957155 21.946785 21.946785 21.975862
0.005 21.871397 21.961129 21.953479 21.953480 21.980593
0.01 21.883894 21.965182 21.960187 21.960190 21.986202
0.015 21.895765 21.969308 21.966837 21.966841 21.992476
0.02 21.907040 21.973492 21.973371 21.973378 21.999187
0.05 21.963612 21.998933 22.008542 22.008555 22.040040
0.1 22.025560 22.036852 22.049701 22.049710 22.090882
0.12 22.042361 22.049282 22.061096 22.061103 22.105137
0.15 22.061704 22.064879 22.074305 22.074309 22.121744
0.2 22.083189 22.083904 22.089149 22.089150 22.140449
0.3 22.104642 22.104642 22.104642 22.104642 22.159418
0.4 22.113001 22.113001 22.113001 22.113001 22.166906
0.5 22.115237 22.115237 22.115237 22.115237 22.168926
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TABLE V. A comparison of the FCI and various CC energies~in hartree! for the ground electronic state of the MBS H4 model wi
a52.0 a.u. and different values ofa. For a.0.2, CCDQ85CCD and CCSDQ85CCSD.

a FCI CCD CCSD ACCSD8 CCSD@T# ACCSD8@T# CCDQ8 CCSDQ8 CCSDQ8@T#

0.0 21.975862 21.978696 21.978696 21.976017 21.978696 21.976017 21.977885 21.977885 21.977885
0.005 21.980593 21.982752 21.982760 21.981969 21.982761 21.981970 21.981944 21.981953 21.981954
0.01 21.986202 21.987808 21.987829 21.988198 21.987831 21.988200 21.987027 21.987049 21.987051
0.015 21.992476 21.993665 21.993693 21.994684 21.993695 21.994687 21.992929 21.992959 21.992960
0.02 21.999187 22.000074 22.000103 22.001369 22.000104 22.001370 21.999395 21.999424 21.999425
0.05 22.040040 22.040247 22.040250 22.041174 22.040269 22.041189 22.039897 22.039900 22.039919
0.1 22.090882 22.090878 22.090889 22.091293 22.090942 22.091343 22.090783 22.090793 22.090847
0.12 22.105137 22.105117 22.105125 22.105451 22.105183 22.105506 22.105062 22.105070 22.105128
0.15 22.121744 22.121720 22.121724 22.121983 22.121782 22.122038 22.121696 22.121701 22.121759
0.2 22.140449 22.140422 22.140432 22.140643 22.140485 22.140693 22.140417 22.140427 22.140480
0.3 22.159418 22.159355 22.159412 22.159607 22.159454 22.159648 22.159355 22.159412 22.159454
0.4 22.166906 22.166804 22.166905 22.167110 22.166942 22.167146 22.166804 22.166905 22.166942
0.5 22.168926 22.168808 22.168925 22.169136 22.168961 22.169171 22.168808 22.168925 22.168961
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with analogous CC differences CC~S!DQ82CC~S!D and
ACC~S!D82CC~S!D ~cf. Table VI!. It is apparent from
Table VI that the ACCSD8 estimate of theT4 energy contri-
bution is reasonable only fora'0. In this region both
ACCSD8 and ACCSD8@T# perform remarkably well. How-
ever, for a>0.01, the ACCSD8 T4 energy contributions
have a wrong sign, which is a consequence of the poor q
ity of K2 clusters, even thoughK4 mimics its ‘‘exact’’
CISDQ counterpart remarkably well, particularly fo
0.01,a,0.15. The K4 energy contribution is invariably
positive, in agreement with the CISDQ results.

As in the case of the MBS P4 model, the CCSDQ8 results
are best when the ACCSD8 ones are worst. This clearly in
dicates the need for an accurate treatment ofT1 andT2 clus-
ters prior to an approximate account ofT4 . This is guaran-
teed by the CCSDQ8 approach but not by ACCSD8. A
similar observation applies toT3 . Although it plays a minor
role in the MBS H4 model, its perturbative account worse
l-

s

the CCSD and ACCSD results for alla values, indicating the
need forT4 clusters to balanceT3 contributions. In the case
of the CCSDQ8 approach, the perturbative T~CCSDQ8! cor-
rection improves the CCSDQ8 results for a50.0520.15,
which indicates thatT1 , T2 , andT4 are well represented by
the CCSDQ8 method in this region. Actually, the
CCSDQ8@T# has a clear advantage over ACCSD8@T# since
the former method becomes CCSD@T# when RHF is triplet
stable, which happens in the region in whichT4 plays a
negligible role.

Most of the above remarks also apply to a more realis
~in a sense that larger basis set is employed! DZP H4 model,
in which case RHF is triplet stable fora.0.3 ~see Table
VII !. There are, however, differences as well. Contrary to
MBS H4 model, where the CCSD energies were below
FCI energies fora<0.1 and above the FCI energies fo
a.0.1 ~cf. Table V!, the CCSD energies are invariab
above the FCI ones in the DZP case~see Table VIII!. Thus,
e

TABLE VI. The effect of connected tetraexcited clusters on CCD and CCSD energies~in mhartree!, as

obtained by comparing CCDQ8, CCSDQ8, ACCD8, and ACCSD8 results with CIDQ and CISDQ data, for th
ground electronic state of the MBS H4 model witha52.0 a.u. and different values ofa. For a.0.2,
CCDQ85CCD and CCSDQ85CCSD.

CIDQ CISDQ CCDQ8 CCSDQ8 ACCD8 ACCSD8
a 2CCD 2CCSD 2CCD 2CCSD 2CCD 2CCSD

0.0 2.834 2.834 0.811 0.811 2.679 2.679
0.005 2.167 2.168 0.808 0.807 0.786 0.791
0.01 1.626 1.629 0.781 0.780 20.380 20.369
0.015 1.214 1.217 0.736 0.734 21.006 20.991
0.02 0.911 0.916 0.679 0.679 21.280 21.266
0.05 0.234 0.232 0.350 0.350 20.926 20.924
0.1 0.091 0.085 0.095 0.096 20.406 20.404
0.12 0.080 0.075 0.055 0.055 20.327 20.326
0.15 0.074 0.070 0.024 0.023 20.260 20.259
0.2 0.069 0.071 0.005 0.005 20.212 20.211
0.3 0.066 0.071 0.0 0.0 20.199 20.195
0.4 0.062 0.070 0.0 0.0 20.209 20.205
0.5 0.060 0.070 0.0 0.0 20.215 20.211
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TABLE VII. A comparison of the FCI, RHF, UHF, CCD~PUHF!, and CCSD~PUHF! energies~in hartree!
for the ground electronic state of the DZP H4 model witha52.0 a.u. and different values ofa. The RHF
solution is triplet stable fora.0.3.

a RHF UHF CCD~PUHF! CCSD~PUHF! FCI

0.0 21.931750 22.023191 22.010123 22.010101 22.063112
0.005 21.941796 22.025161 22.014980 22.014961 22.065627
0.01 21.951445 22.027357 22.019953 22.019936 22.069401
0.015 21.960709 22.029757 22.024973 22.024960 22.074121
0.02 21.969599 22.032340 22.029988 22.029978 22.079470
0.05 22.015652 22.050315 22.058212 22.058215 22.114299
0.1 22.069109 22.081256 22.093609 22.093614 22.160115
0.12 22.084181 22.092008 22.103804 22.103808 22.173349
0.15 22.101808 22.105761 22.115763 22.115766 22.188929
0.2 22.121595 22.122762 22.129221 22.129222 22.206548
0.3 22.141080 22.141131 22.142689 22.142689 22.224122
0.4 22.148427 22.148427 22.148427 22.148427 22.230887
0.5 22.150368 22.150368 22.150368 22.150368 22.232700
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since T4 contributions, as estimated by the difference b
tween CCSDQ~CC singles, doubles, and quadruples a
proach, namely, the so-called CCSDQ-1a; see Ref.@40#! and
CCSD energies, remain positive for all values ofa ~see
Table IX!, their inclusion in CCSD theory should increa
the error relative to FCI. Only when simultaneously accou
ing for T3 clusters, which compensate the error in CCSD
results by lowering the CCSDQ energy, can accurate~exact!
results be expected. It is remarkable how well the CCSD8
and CCSDQ8@T# methods follow this pattern. For exampl
for a50.01~strongly degenerate region!, the 3.602 mhartree
error in CCSD energy increases to 4.363 mhartree when
ing CCSDQ8, and drops to only20.192 mhartree for
CCSDQ8@T#. The CCSD@T# method neglectingT4 gives a
21.013-mhartree error. For comparison, the relatively sm
1.747-mhartree error obtained with ACCSD8 ~suggesting
that ACCSD8 improves the CCSD energy although it shou
not! increases to a large ~in absolute value!
23.737-mhartree error in the case of ACCSD8@T#. This
shows that we cannot regard the ACCSD8 method as a reli-
-
-

t-

s-

ll

able source ofT4 clusters per se, although it improves CCS
results for alla values~which is certainly a nice feature o
this method from a practical point of view, considering
simplicity!. Again, the reason for this behavior does not
dicate the inadequacy of the underlying theoretical analy
leading to ACCSD8 theory, as one might wrongly conclud
from the remarks made in Ref.@40#, but from a simple fact
that the PUHFK2 components poorly approximateT2 clus-
ters that are needed to obtainT4 (K4) components by elimi-
nating the disconnected12(T2)2 terms from the CIC4 opera-
tor.

Analysis of the role of individual cluster components f
the DZP H4 model is difficult because of the mutual canc
lation of largeT3 andT4 contributions and their highly non
additive character in the strongly degenerate region.
a50, the errors in the CCSD, ACCSD8, CCSD@T#,
ACCSD8@T#, CCSDQ8, and CCSDQ8@T# energies are rathe
large, namely, 5.508, 4.802,23.968, 25.732, 6.334, and
3.070 mhartree, respectively. At the same time, our sim
CCSDQ8@T# model is still the best among all the metho
ith
TABLE VIII. A comparison of the FCI and various CC energies~in hartree! for the ground electronic state of the DZP H4 model w
a52.0 a.u. and different values ofa. For a.0.3, CCDQ85CCD and CCSDQ85CCSD.

a FCI CCD CCSD ACCSD8 CCSD@T# ACCSD8@T# CCDQ8 CCSDQ8 CCSDQ8@T#

0.0 22.063112 22.054869 22.057604 22.058310 22.067080 22.068844 22.054050 22.056778 22.066182
0.005 22.065627 22.058604 22.061154 22.062709 22.067626 22.070232 22.057806 22.060349 22.066751
0.01 22.069401 22.063415 22.065799 22.067654 22.070414 22.073138 22.062662 22.065038 22.069593
0.015 22.074121 22.068955 22.071192 22.073044 22.074646 22.077162 22.068260 22.070489 22.073893
0.02 22.079470 22.074930 22.077039 22.078752 22.079746 22.081951 22.074296 22.076397 22.079065
0.05 22.114299 22.111409 22.113037 22.113863 22.114259 22.115177 22.111080 22.112704 22.113915
0.1 22.160115 22.157889 22.159204 22.159608 22.160039 22.160461 22.157788 22.159103 22.159935
0.12 22.173349 22.171228 22.172490 22.172844 22.173273 22.173640 22.171167 22.172428 22.173209
0.15 22.188929 22.186897 22.188118 22.188435 22.188856 22.189184 22.186868 22.188088 22.188826
0.2 22.206548 22.204561 22.205778 22.206078 22.206481 22.206791 22.204553 22.205770 22.206473
0.3 22.224122 22.222083 22.223374 22.223685 22.224064 22.224386 22.222082 22.223374 22.224064
0.4 22.230887 22.228775 22.230137 22.230467 22.230831 22.231173 22.228775 22.230137 22.230831
0.5 22.232700 22.230560 22.231948 22.232285 22.232645 22.232994 22.230560 22.231948 22.232645
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TABLE IX. The effect of connected tetraexcited clusters on CCD and CCSD energies~in mhartree!, as
obtained by comparing CCDQ8, CCSDQ8, ACCD8, and ACCSD8 results with CCDQ-1a and CCSDQ-1
data, for the ground electronic state of the DZP H4 model witha52.0 a.u. and different values ofa. For
a.0.3, CCDQ85CCD and CCSDQ85CCSD.

CCDQ-1aa CCSDQ-1aa CCDQ8 CCSDQ8 ACCD8 ACCSD8
a 2CCD 2CCSD 2CCD 2CCSD 2CCD 2CCSD

0.0 1.094 1.155 0.819 0.826 20.743 20.706
0.005 0.706 0.754 0.798 0.805 21.547 21.555
0.01 0.451 0.489 0.753 0.761 21.817 21.855
0.015 0.290 0.317 0.695 0.703 21.797 21.852
0.02 0.188 0.207 0.634 0.642 21.650 21.713
0.05 0.015 0.019 0.329 0.333 20.785 20.826
0.1 0.000 0.002 0.101 0.101 20.385 20.404
0.12 0.003 0.005 0.061 0.062 20.338 20.354
0.15 0.006 0.009 0.029 0.030 20.303 20.317
0.2 0.010 0.013 0.008 0.008 20.285 20.300
0.3 0.011 0.015 0.001 0.000 20.295 20.311
0.4 0.011 0.014 0.0 0.0 20.313 20.330
0.5 0.010 0.013 0.0 0.0 20.319 20.337

aFrom Ref.@40#.
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considered. Actually, the CCSDQ8@T# results remain best fo
a,0.02, while fora>0.02 CCSD@T# is better, giving errors
smaller than 80mhartree fora>0.05 ~CCSDQ8@T# gives 55
2384mhartree errors in the same region!. It is not our goal,
however, to prove the superiority of CCSDQ8-based ap-
proaches, but rather to see if they are capable of represe
T4 clusters better than ACCSD8 methods. For this reason, w
compare in Table IX accurate estimates ofT4 cluster contri-
butions as given by the energy differences CC~S!DQ-1a
2CC~S!D with their CC~S!DQ82CC~S!D and ACC~S!D8
2CC~S!D analogs. We find that ACCSD8 gives a wrong
sign of T4 energy contributions for all values ofa, whereas
CCSDQ8 approximates these contributions quite reasona
(K4 contributions remain positive for alla values!. Particu-
larly impressive are the results fora,0.015. Both the
CCSDQ-1a and CCSDQ8 estimates ofT4 cluster contribu-
tions decrease to zero asa increases, even though for th
CCSDQ-1a method this decrease is more rapid than in
ing

ly

e

CCSDQ8 case. Poor ACCSD8 estimates ofT4 cluster contri-
butions result in rather large20.294 to 24.605-mhartree
errors fora50.520.005 obtained with the ACCSD8@T# ap-
proach, which should be compared to small 55-mhartree to
21.124-mhartree errors in the same region obtained with
CCSDQ8@T# method.

Let us look, finally, at the MBS H8 model. In this cas
the manifold of quadruple excitations is larger than for t
H4 and P4 models and up to eightfold excited configuratio
appear in the FCI wave function. The RHF solution is trip
stable only fora.0.5 a.u. ~see Table X!. The MBS H8
model is very demanding for a variety of methods, includi
MRCC and MRCI investigated in Refs.@31,36,50,66,92#. It
is also challenging for SRCC approaches, particularly in
degeneratea<0.1 a.u. region, where it is difficult to balanc
largeT3 andT4 contributions@24,31,50#. For example, it is
sufficient to add perturbative T~CCSD! correction to CCSD
energies, which fora<0.1 a.u. give large errors relative t
TABLE X. A comparison of the FCI, RHF, UHF, CCD~PUHF!, and CCSD~PUHF! energies~in hartree!
for the ground electronic state of the MBS H8 model witha52.0 a.u. and different values ofa ~in a.u.!. The
RHF solution is triplet stable fora.0.5 a.u.

a RHF UHF CCD~PUHF! CCSD~PUHF! FCI

0.0 24.065533 24.137980 24.140227 24.140278 24.204793
0.0001 24.065563 24.137988 24.140242 24.140293 24.204803
0.001 24.065828 24.138059 24.140385 24.140435 24.204886
0.003 24.066418 24.138217 24.140700 24.140751 24.205075
0.01 24.068474 24.138774 24.141805 24.141854 24.205769
0.03 24.074276 24.140389 24.144951 24.144998 24.208036
0.06 24.082780 24.142885 24.149628 24.149670 24.212169
0.08 24.088316 24.144597 24.152707 24.152746 24.215336
0.1 24.093745 24.146349 24.155747 24.155783 24.218763
0.3 24.142240 24.165876 24.183089 24.183104 24.257729
0.5 24.180812 24.188150 24.203770 24.203775 24.293221
1.0 24.242846 24.242846 24.242846 24.242846 24.352990
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TABLE XI. A comparison of the FCI and various CC energies~in hartree! for the ground electronic state of the MBS H8 model witha52.0 a.u. and
different values ofa ~in a.u.!. For a.0.5, CCDQ85CCD and CCSDQ85CCSD.

a FCI CCD CCSD ACCSD8 CCSD@T# ACCSD8@T# CCSDTa CCDQ8 CCSDQ8 CCSDQ8@T#
CCSDQ8

1T~CCSDT! b

0.0 24.204793 24.198759 24.199754 24.201009 24.205774 24.208932 24.195415 24.196320 24.201529
0.0001 24.204803 24.198773 24.199767 24.201025 24.205780 24.208941 24.213165 24.195430 24.196334 24.201537 24.209732
0.001 24.204886 24.198900 24.199884 24.201176 24.205828 24.209016 24.213168 24.195567 24.196461 24.201603 24.209745
0.003 24.205075 24.199185 24.200147 24.201511 24.205942 24.209188 24.213182 24.195873 24.196746 24.201757 24.209781
0.01 24.205769 24.200211 24.201099 24.202693 24.206408 24.209824 24.213279 24.196978 24.197780 24.202363 24.209960
0.03 24.208036 24.203376 24.204082 24.206143 24.208256 24.211921 24.214008 24.200368 24.201001 24.204598 24.210927
0.06 24.212169 24.208643 24.209147 24.211518 24.212151 24.215762 24.216327 24.205970 24.206418 24.209018 24.213598
0.08 24.215336 24.212410 24.212816 24.215225 24.215284 24.218708 24.218595 24.209950 24.210308 24.212459 24.216087
0.1 24.218763 24.216321 24.216649 24.219016 24.218714 24.221902 24.221328 24.214061 24.214350 24.216165 24.219029
0.3 24.257729 24.256887 24.256929 24.258253 24.257699 24.259119 24.258105 24.255973 24.256010 24.256753 24.257186
0.5 24.293221 24.292531 24.292534 24.293356 24.293092 24.293936 24.293304 24.292249 24.292252 24.292806 24.293022
1.0 24.352990 24.352372 24.352444 24.352785 24.352799 24.353145 24.352965 24.352372 24.352444 24.352799 24.352965

aFrom Ref.@31#.
bT~CCSDT! is defined asECCSDT2ECCSD.
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FCI ~ranging between 2.442 and 6.034 mhartree!, to obtain
surprisingly small 49-mhartree to20.981-mhartree errors
~cf. the CCSD and CCSD@T# results in Table XI!. This indi-
cates that the perturbative T~CCSD!, T~ACCSD8!, and
T~CCSDQ8! corrections grossly underestimate the mag
tude of ‘‘true’’ T3 energy contributions, which are in realit
much larger when we estimate them by forming the ene
difference CCSDT2CCSD ~cf. Table XII and the results in
Ref. @24#!. For a<0.1 a.u., we obtain24.7 to213.4 mhar-
tree for the ‘‘true’’ T3 correction

DET~CCSDT!5ECCSDT2ECCSD, ~154!

whereas the perturbativeDET(CCSD), DET(ACCSD8), and
DET(CCSDQ8) corrections range between22 to 23 and25
to 28 mhartree in the same region. Thus, CCSDQ8@T# over-
estimates the FCI energies by 2.623.3 mhartree fora<0.1
-

y

a.u. due to large positiveT4(PUHF) corrections that are no
compensated by the T~CCSDQ8! term, instead of giving us
small errors found for the H4 model.

The T4 cluster components are reasonably well rep
sented by the PUHF wave function, as the results in Ta
XII indicate. In this case, a comparison of the energy diff
ences CC~S!DQ82CC~S!D and ACC~S!D82CC~S!D is
made with the difference of CCSDTQ and CCSDT energ
computed in Ref.@31#. Although the PUHF wave function
seems to underestimate largeT4 contributions obtained by
comparing more accurate CCSDTQ and CCSDT results,
agreement between CCSDTQ2CCSDT and CCSDQ8
2CCSD energy differences fora50.0620.1 a.u.~particu-
larly, for a50.1 a.u.! is rather good. We must not forget tha
T3 andT4 corrections are highly nonadditive in the MBS H
model, and it is hard to objectively measure their magnitu
Again, ACCSD8 gives wrong~negative! signs for the energy
es

odel
TABLE XII. The effect of connected tetraexcited and triexcited clusters on CCD and CCSD energi~in
mhartree!, as obtained by comparing CCDQ8, CCSDQ8, ACCD8, ACCSD8, CCSD@T#, ACCSD8@T#, and
CCSDQ8@T# results with CCSDT and CCSDTQ data, for the ground electronic state of the MBS H8 m
with a52.0 a.u. and different values ofa ~in a.u.!. For a.0.5, CCDQ85CCD and CCSDQ85CCSD.

CCSDTQa CCDQ8 CCSDQ8 ACCD8 ACCSD8 CCSDTa

a 2CCSDTa 2CCD 2CCSD 2CCD 2CCSD 2CCSD T~CCSD! T~ACCSD8! T~CCSDQ8!

0.0 3.344 3.434 21.488 21.255 26.020 27.923 25.209
0.0001 8.327 3.343 3.433 21.491 21.258 213.398 26.013 27.916 25.203
0.001 8.248 3.333 3.423 21.520 21.292 213.284 25.944 27.840 25.142
0.003 8.073 3.312 3.401 21.581 21.364 213.035 25.795 27.677 25.011
0.01 7.478 3.233 3.319 21.776 21.594 212.180 25.309 27.131 24.583
0.03 5.944 3.008 3.081 22.163 22.061 29.926 24.174 25.778 23.597
0.06 4.137 2.673 2.729 22.404 22.371 27.180 23.004 24.244 22.600
0.08 3.242 2.460 2.508 22.418 22.409 25.779 22.468 23.483 22.151
0.1 2.551 2.260 2.299 22.363 22.367 24.679 22.065 22.886 21.815
0.3 0.374 0.914 0.919 21.319 21.324 21.176 20.770 20.866 20.743
0.5 0.083 0.282 0.282 20.822 20.822 20.770 20.558 20.580 20.554
1.0 20.026 0.0 0.0 20.343 20.341 20.521 20.355 20.360 20.355

aFrom Ref.@31#.
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corrections due toT4 which, as the CCSDTQ2CCSDT and
CCSDQ82CCSD energies indicate, should remain posit
for all values ofa. In consequence, small positive errors~for
a50.0320.08 a.u.! and small negative errors~for a'0.1
a.u.! in the ACCSD8 results change into large negative~23.1
to 23.9-mhartree! errors when ACCSD8 is augmented by the
perturbative T~ACCSD8! correction ~cf., e.g., the
ACCSD8@T# results in Table XI!. In fact, these errors would
be even larger were we to add the ‘‘true’’T3 correction,
DET(CCSDT), Eq.~154!, to ACCSD8 energies~cf. the last four
columns in Table XII!. It is, in fact, instructive to conside
the CCSDQ81T~CCSDT! approach obtained by addin
DET(CCSDT), Eq. ~154!, to CCSDQ8 energies. In this case th
errors reduce to as little as2751 to 27mhartree fora.0.06
a.u., as opposed to 2.877 to 0.191-mhartree errors obta
using the CCSDQ8@T# method in the same region. This ind
cates that the remainingT1 , T2 , and T4 contributions are
rather well represented by the CCSDQ8 approach and we
only need better estimates ofT3 corrections. Unfortunately
the PUHF wave function does not provide us with any inf
mation aboutT3 components.

Before summarizing our results, let us point out that th
seems to be a straightforward correlation between the qu
of CCSDQ8 and CCSDQ8@T# results and the magnitude o
the energy difference

dPUHF[ECCSD~PUHF!2EFCI5DECCSD~PUHF!2DEFCI,
~155!

whereDECCSD(PUHF) is the PUHF-based CCSD energy e
pression defined by Eq.~141! and DEFCI its exact ~FCI!
counterpart. When we analyze the results in Tables I, IV
V, VII and VIII, and X and XI, we immediately recognize
that CCSDQ8 and CCSDQ8@T# methods perform best whe
dPUHF, Eq. ~155!, reaches its minimum value. Indeed, for a
four models considered in this paper,dPUHF is a monotoni-
cally decreasing function ofa in the strongly degenerate re
gion and, after passing through its minimum value, it
creases witha to reach the maximum value of2DEFCI in
the region where the RHF solution is triplet stable, so t
K1 , K2 , andDECCSD(PUHF)vanish. The minimum values o
dPUHF are reached: ata;2.1 a.u. for the MBS P4 model, a
a;0.015 for the MBS and DZP H4 models, and ata;0.06
a.u. for the MBS H8 model. As we have seen before, th
are the regions where CCSDQ8 and CCSDQ8@T# approaches
perform best and provide the best description ofT4 clusters.
Unfortunately, we cannot usedPUHF, Eq.~155!, as a diagnos-
tic tool, since it requires knowledge of the FCI energ
Nonetheless, the correlation between its magnitude and
performance of the CCSDQ8 and CCSDQ8@T# approaches is
worth noting.

VII. SUMMARY

In this paper, we investigated the general cluster struc
of broken-symmetry UHF solutions and the possibility
correcting the standard CCSD equations byT4 contributions
resulting from such an analysis. The aim of this study was
formulate, implement, and test the CCSDQ8 method, which
approximately accounts forT4 clusters by fixing their values
to their PUHF estimates. It was shown that the PUHF wa
ed
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he
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function provides useful information aboutT4 cluster com-
ponents even when the PUHF estimates ofT2 components
are rather poor.

The PUHF-basedT4 cluster components change th
CCSD energy in exactly the same direction as the ‘‘tru
T4 components obtained in more accurate CCSDQ
CISDQ calculations. Thus, the CCSDQ8 approach carries a
great deal of information about the trueT4 corrections. The
same holds for the simpler ACCSD8 method, but only when
the PUHF wave function provides a good estimate of b
T2 andT4 clusters. Otherwise, the ACCSD8 method changes
the CCSD energy in the wrong direction. This does not
minish the usefulness of the ACCSD8 approach, which is
computationally simpler than CCSD and provides very go
results, even in difficultab initio situations involving com-
plete bond breaking, such as those found for HF and2
@48,93#.

We have shown that the monoexcited cluster opera
U1

UHF, defining the UHF wave function, generally posses
both singlet and triplet components. Although only the trip
component is responsible for the energy lowering, both co
ponents are needed to reach the variational energy minim
defining the broken-symmetry UHF solution in the regi
where RHF is triplet unstable. The singlet component
U1

UHF defines the monoexcited clusters of the PUHF wa
function, whereas all clusters excited an even number
times are solely determined by the triplet component. In sp
of the presence of the monoexcited component inU1

UHF, all
clusters excited an odd number of times, except forT1 , are
absent in the PUHF wave function. In particular, noT3 clus-
ters are present in the PUHF solution. We made an atte
to estimate theT3 component perturbatively, while compu
ing T4 using the CCSDQ8 method, but the results are no
conclusive. We think that better estimates ofT3 components
are needed, and may be obtained with CASSCF rather
UHF wave function. Work in this direction is under way an
the results will be presented elsewhere@77#.
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APPENDIX: DIAGRAMMATIC DERIVATION
OF EQS. „95… AND „108…–„110…

In this Appendix, we use the diagrammatic approa
@22,41–44# based on graphical methods of spin algebras@69#
to derive fundamental Eqs.~95! and ~108!–~110! for the
OSA K2 amplitudes and the OSA$Q4;4

X @Grs
ab( i )#%L correc-

tions. These equations were obtained in Ref.@53# using al-
gebraic arguments and the relationship between spin-
~i.e., nonorthogonally spin adapted! and OSA formalisms.

We first introduce basic orbital and spin diagrams nee
to derive Eqs.~95! and~108!–~110!, in particular a graphical
representation of the operatorU1

X(1,0). To facilitate our
analysis, we consider a more general monoexcitation op
tor U1

X(S,0), Eq.~55!, and setS51 in final expressions. The
orbital and spin diagrams definingU1

X(S,0) are shown in Fig.
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3. We also need a graphical representation of the bra bie
tation operatorGrs

ab( i )[@Gab
rs ( i )#† and of the two-body par

of the HamiltonianVN . They are given in Fig. 3 as well.
We begin with Eq.~95!. Clearly,

^rsuk2uab& i5^F0uGrs
ab~ i ! 1

2 @U1
X~1,0!#2uF0&, ~A1!

where we dropped the projectorPS50 , sinceGab
rs ( i ) gener-

ates a singlet configuration. We thus consider a more gen
quantity

J[^F0uGrs
ab~ i ! 1

2 @U1
X~S,0!#2uF0&, ~A2!

which reduces to Eq.~A1! whenS51. Following the genera
rules of the OSA diagrammatic formalism@22,41–44#, we
draw all possible Goldstone-Hugenholtz orbital diagrams~in
Brandow representation! that arise in this case and the co
responding spin diagrams, and find the resulting orbital
spin factors. For the spin factors, we use graphical meth
of spin algebras developed by Jucys and collaborators@69#.
In case of Eq.~A2!, only one Goldstone-Brandow orbita
diagram can be drawn. It is shown together with its s
graph in Fig. 4. Notice the absence of the bra orbital diagr
representingGrs

ab( i ) in Fig. 4~a!. As shown in Ref.@44# ~cf.,
also, Refs.@22,42,43#!, we do not have to draw the vertice
representing projection operators, such asGrs

ab( i ), in orbital
diagrams, as they can always be accounted for by labe
the open paths of the remaining part of the diagram in
nonequivalent ways. In case of the operatorGrs

ab( i ), it is
convenient to use for this purpose the symmetriz
Sab[Sab(0) and/orSrs[Srs(0). ThesymmetrizersSab and
Srs in orbital diagrams yield the~anti!symmetrizersSab( i )
andSrs( i ) in the resulting algebraic expressions@44#.

FIG. 3. Graphical representation ofU1
X(S,0), Eq.~55! @~a! and

~b!#; Grs
ab( i )[@Gab

rs ( i )#†, Eq. ~28! @~c! and ~d!#; and VN , Eq. ~13!
@~e!#. ~a!, ~c!, and~e! are orbital and~b! and ~d! spin diagrams.
ci-

ral

d
ds

n
m

g
ll

s

The orbital factor corresponding to Fig. 4~a! is
^r uu1ua&S^suu1ub&S . The spin diagram of Fig. 4~b! has only
two external lines, which can thus be joined to yield t
6–j symbol

U~ i ,S!5U~S,i !5H 1
2

1
2 i

1
2

1
2 S

J , ~A3!

introduced in Ref.@94#. As a result, we have

J5Nrs
ab~21! i 11@ i #1/2U~ i ,S!Sab~ i !^r uu1ua&S^suu1ub&S .

~A4!

In particular, forS51 we obtain

^rsuk2uab& i5
1
2 Nrs

ab~21! i 11@ i #21/2

3Sab~ i !^r uu1ua&1^suu1ub&1 , ~A5!

since@94#

U~ i ,1!5 1
2 @ i #21. ~A6!

Replacing^r uu1ua&1 and ^suu1ub&1 by ^r uua&1 and ^suub&1 ,
respectively, gives Eq.~95!. Note that forS50, we would
obtain the formula for the1

2(T1)2 contribution to the OSA
CCSD equations projected on double excitations@provided
that we identifyU1

X(0,0) with T1; see Ref.@44##.
We next focus on Eqs.~108!–~110!. Again, instead of

$Q4;4
X @Grs

ab( i )#%L , Eq. ~107!, we consider a more genera
quantity

Y[^F0u$Grs
ab~ i !VN

1
24 @U1

X~S,0!#4%LuF0&. ~A7!

There are three distinct Goldstone-Hugenholtz diagrams
can be drawn in this case@cf. Eq. ~108!#. Their Brandow
representation is given in Figs. 5~a!–5~c!, whereas the corre
sponding spin diagrams are shown in Figs. 6~a!–6~c!. Thus,
we write

Y5Y~a!1Y~b!1Y~c!, ~A8!

where the individual contributionsY(x), x5a,b,c, corre-
spond to diagrams 5~a!, 5~b!, and 5~c!, respectively. Clearly,
three contributionsY(x), x5a2c, reduce to contributions
Q4;4

X (x) of Eq. ~108! whenS51.
The orbital factors associated with diagrams 5~a!–5~c! are

FIG. 4. Orbital ~a! and spin~b! diagrams representingJ, Eq.
~A2!. The operatorSab[Sab(0)511(ab) represents two differen
ways of labeling the open paths in diagram~a!. Lines carrying the
spin 1

2 in diagram~b! are left unlabeled.



e

o

ed
a-

-

over
of

e

el-

of

1238 54PIOTR PIECUCH, ROBERT TOBOL”A, AND JOSEF PALDUS
Yorb~a!5^a8b8uur 8s8&^r uu1ua8&S^r 8uu1ua&S

3^suu1ub8&S^s8uu1ub&S , ~A9!

Yorb~b!5^a8b8uus8r 8&^r uu1ua8&S^r 8uu1ua&S

3^suu1ub&S^s8uu1ub8&S , ~A10!

Yorb~c!52^a8b8uur 8s8&^r uu1ua8&S^r 8uu1ua&S

3^suu1ub&S^s8uu1ub8&S . ~A11!

The corresponding spin factorsYspin(x), x5a2c, can be
easily evaluated by applying general rules described in R
@69# to diagrams 6~a!–6~c!. Diagrams 6~a! and 6~b! have
four external lines. We thus join these lines with the lines
the 42 jm generalized Wigner coefficient@69# depicted in
Fig. 6~d!. This results in the 42jm coefficient

S S S S S

0 0 0 0D
J

~112!13

5~21!JS S S J

0 0 0D S J S S

0 0 0D
5~21!JS S S J

0 0 0D
2

, ~A12!

FIG. 5. Goldstone-Brandow orbital diagrams representingY,
Eq. ~A7!. The operators Sab[Sab(0)511(ab) and
Srs[Srs(0)511(rs) are used to represent different ways of lab
ing the open paths. The indicesa8,b8 (r 8,s8) are free summation
labels of hole~particle! type.
f.

f

where (m1

j 1
m2

j 2
m3

j 3 ) is a standard 3–j ~or 3–jm) symbol, in the

final expressions forYspin(a) and Yspin(b). Here, J is the
intermediate spin coupling number that must be summ
over fromJ50 to J52 ~this summation must be accomp
nied by the factor@J#; cf. Ref. @69#!. It is quite obvious from
Figs. 6~a! and 6~b! that the resulting spin recoupling coeffi
cients @obtained by joining the lines of 6~a! and 6~b! with
6~d!# are represented by diagrams that are separable
three internal lines. Thus, they factorize into products
much simpler 62 j symbolsU(X1 ,X2), Eq. ~A3!, and ~cf.
Ref. @94#!

V~S,S,J!5H S S J

1
2

1
2

1
2
J . ~A13!

In this way, we arrive at the following expressions for th
spin factorsYspin(a) andYspin(b),

FIG. 6. Spin diagrams corresponding to the orbital diagrams
Fig. 5~a!– 5~c! @~a!–~c!, respectively# and the 4-jm generalized
Wigner coefficient~d! used to recouple thejm coefficients ~a!
and ~b!.
o

Yspin~a!5Nrs
ab~21! i 11@ i #1/2@S#2(

J50

2

~21!J@J#U~ i ,J!V~S,S,J!2S S S J

0 0 0D
2

, ~A14!

Yspin~b!5Nrs
ab~21! i 11@ i #1/2@S#2(

J50

2

~21!J@J#U~ i ,S!V~S,S,J!2S S S J

0 0 0D
2

. ~A15!

Two facts simplify these expressions further. The 6–j symbolsV(S,S,J) eliminate theJ52 term from Eqs.~A14! and~A15!,
sinceV(S,S,2)50, whereas the 3–j symbol (0

S
0
S

0
J) eliminates theJ51 term, sinceS1S1J must be even to give a nonzer

value. As a result,J in Eqs.~A14! and ~A15! must equal zero, so that

Yspin~a!5 1
4 Nrs

ab@ i #1/2, ~A16!

Yspin~b!5 1
2 Nrs

ab~21! i 11@ i #1/2U~ i ,S!, ~A17!

since@94#

V~S,S,0!2 S S S 0

0 0 0D
2

5 1
2 @S#22, ~A18!

and
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U~0,i !5 1
2 ~21! i 11. ~A19!

The spin factorYspin(c) is easier to evaluate since a loop diagram contributing to 6~c! introduces the Kronecker delta symb
dS,0 @69#. As a result, the lines carryingS and the associated vertices representing 2–jm symbols~obtained by removing the
S50 line from each 3–jm vertex carryingS) can be eliminated, yielding after a simple manipulation,

Yspin~c!5 1
2 Nrs

abdS,0@ i #1/2. ~A20!

In consequence, the final formulas forY(x), x5a2c, obtained by combining the orbital and spin factors,Yorb(x), Eqs.
~A9!–~A11!, andYspin(x), Eqs.~A16!, ~A17!, and~A20!, respectively, are

Y~a!5 1
4 Nrs

ab@ i #1/2 (
a8,b8,r 8,s8

^a8b8uur 8s8&^r 8uu1ua&S ^s8uu1ub&S Srs~ i !^r uu1ua8&S ^suu1ub8&S , ~A21!

Y~b!5 1
2 Nrs

ab~21! i 11@ i #1/2U~ i ,S! (
a8,b8,r 8,s8

^a8b8uur 8s8&^r 8uu1ub8&S Srs~ i !Sab~ i !^r uu1ua8&S ^s8uu1ua&S ^suu1ub&S , ~A22!

Y~c!52 1
2 Nrs

ab@ i #1/2dS,0 (
a8,b8,r 8,s8

^a8b8uur 8s8&Srs~ i !Sab~ i !^r uu1ua8&0 ^r 8uu1ua&0 ^suu1ub&0 ^s8uu1ub8&0 , ~A23!
o-

s
-
ra

fo

a

s

ult-
e

t of
where we interchanged the summation indicesr 8 and s8 in
Eq. ~A22!. Clearly, for S51, Y(c)5Q4;4

X (c)50. The re-
maining two contributions,Y(a) and Y(b), reduce to Eqs.
~109! and ~110! for Q4;4

X (a) and Q4;4
X (b), respectively,

when we use Eq.~A6! to eliminateU( i ,1) from Eq.~A22!
and replacê r uu1ua&1 by ^r uua&1 .

It is interesting to notice thatY(a), Eq. ~A21!, reduces to
the 1

24(T1)4 contribution to the OSA CCSD equations pr
jected on biexcited configurations@44#, once we setS50
and identifyU1

X(0,0) with T1 . The remaining two diagram
of Fig. 5 @i.e., Y(b) and Y(c)# do not have such an inter
pretation, since they do not represent the connected diag
of the CCSD theory.

As a last remark, let us notice that the general formula
the K2 amplitudeŝ rsuk2uab& i , Eq. ~95!, that we derived in
this Appendix, reduces to the expression for the exact p
cluster amplitudes characterizing theb50 limit of the cyclic
polyene model withN54n1252n sites@56# ~in this case,
PUHF solution represents the exact wave function!, once we
realize that in this special case

^rauu1
~a!uaa&5d r ,a1n , ~A24!

^rbuu1
~b!uab&52d r ,a1n . ~A25!
s

ms

r

ir-

To prove Eqs.~A24! and ~A25!, we must express the UHF
orbitals forb50 in terms of the corresponding RHF MO’
and expand the UHF wave function forb50 in terms of the
RHF configuration and various excited configurations res
ing from uF0

RHF& in order to find the amplitudes defining th
monoexcitationsuaa

ra & anduab
rb &, Eq. ~133! ~see Appendix A in

Ref. @56# for more detail!. From Eqs.~58!, ~A24!, and~A25!
we immediately find

^r uua&050, ~A26!

^r uua&152d r ,a1n , ~A27!

so that^rsuk2uab& i becomes

^rsuk2uab& i52Nab
rs @ i #21/2Sab~ i !d r ,b1nds,a1n

52Nab
rs @ i #21/2d r 1s,a1bSab~ i !d r ,b1n ,

~A28!

whered r 1s,a1b51 when r 1s5a1b(modN) and 0 other-
wise, in perfect agreement with the results of Ref.@56#. Note
that in this case,U1

X(0,0)50 @cf. Eq. ~A26!#, which was one
of the main reasons for neglecting the singlet componen
U1

X in the initial study on CCDQ8 and ACCD85ACPQ ap-
proaches@53#.
of
@1# F. Coester, Nucl. Phys.7, 421 ~1958!; F. Coester and H.
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