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Direct calculation of Stark resonances in hydrogen
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We propose an alternative way of calculating the resonances of the Stark effect in hydrogen. The method is
based on a rational approximation of the logarithmic derivative of the eigenfunction, and leads to a quantiza-
tion condition for the complex energies of the metastable states. We present accurate results for the ground and
some excited states for several field intensitj&.050-29476)07007-3

PACS numbg(s): 32.60+i, 03.65.Ge

I. INTRODUCTION IIl. RICCATI-PADE  METHOD FOR THE STARK EFFECT
IN HYDROGEN

The dc Stark gffect in_hydrogen is an old probI(.am'm In atomic units the Schrdinger equation for a hydrogen
guantum mechanics. Because of the external electric f'eldatom in a dc electronic field of intensify reads

the Hamiltonian operator is unbounded and the discrete spec-
trum of the isolated hydrogen atom is completely destroyed. 2
However, there are metastable or resonance states embedded VZ+ T 2Fz+2E|¥(xy,2)=0. (1)
in the continuum characterized by complex energy eigenval-
ues. Their real and imaginary parts determine the positiong is separable in parabolic or squared parabolic coordinates
and widths of the resonances, respectively. The real part gfi7]. Here we arbitrarily choose the former given by
any such eigenvalue is interpreted as the energy of a metg—= \/ﬁcogﬁ, y= \/ﬁsimﬁ, andz=(&— 5)/2, where¢=0,
stable state with a lifetime related to the inverse of the cor-=0, and G<¢<2w. Writing the solution to (1) as
responding imaginary part. V(x,y,2)=(£n) YU(&)v(n)e™?, m=0,+1,+2,..., we

The Rayleigh-Schidinger perturbation series is known to obtain
be divergent but asymptotic to the resonance position. How-
ever, one can still obtain the resonance position and width by > 1-m* E_F , A
means of Borel-Padapproximants[1], Hermite-Padeap- g@-’_ 4¢ T gE A
proximants[2], or analytic continuation of the perturbation
series into the complex plarj8,4]. Alternative perturbation d>2 1-m
approaches applied to the Stark effect in hydrogen are the (”d_nZ“L 4y
1/n expansiori2] based on a WKB methdd] and the sum-
mation of a large® expansion by means of Hermite-Pade where A; and A,=1—A,; are separation constants. These
approximant$6]. Heren is the principal quantum number of equations are of the form
hydrogen, and is the spatial dimension.

Among the nonperturbative approaches we mention com- ( > 1-m* E _ F,

‘ . : —+ ———+ X—0—=X*+A

plex scaling(or complex coordinate rotatipr{5-10], nu- dx 4x 2 4
merical integration of the second-order differential equations
[11,12, power series expansiofi3], an expansion in a ba- WhereA stands for eitheA; or A, wheno=1 or o= -1,
sis set of harmonic-oscillator eigenfunctidrsl], minimiza- ~ respectively. )
tion of the variancd15,16], and Weyl's theory{17]. In the Riccati-Padenethod we consider the regularized

There is a vast literature on the Stark effect in hydrogenlogarithmic derivative of the eigenfunction
here we only mention articles related in some way or another

u$)=0, (2a

2
v(n)=0, (2b)

+E +F 2+A
577 Z’] 2

e(x)=0, (3

to the present one. The reader may find additional references F(x)= S ®’(x) @
in those already quoted, and particularly in a short review of X D(x)’

the mathematical and computational aspects of the atomic dc

Stark effect in an appendix in one of thg®. wheres is chosen to be|n|+1)/2 in order to remove the

In this paper we obtain the Stark resonances for hydrogepole of @’ (x)/®(x) atx=0. The functionf(x) is a solution
by means of the Riccati-Padeethod, which has been dem- of the Riccati equation
onstrated to be useful for the calculation of bound-state ei- £ .
genvalue§18-23 and resonancg®4,25 for simpler mod- , 2 o A
els. In Sec. Il we show how to apply the Riccati-Pade Xfrr2st—xf=ox+ o x*~A=0. ®)
method to the Stark effect in hydrogen, and in Sec. Il we
present and discuss results for the ground and some excit&incef(x) is analytic ax=0 we can expand it in a Taylor
states. series about that point,
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TABLE I. Convergence of the Riccati-Padeethod for the
ground state whefr=0.1.

D E
A
2 —0.530
0.555
3 —0.5273 —0.0071
0.533 87 +0.0030
4 —0.527 413 —0.007 269 b
0.553 913 +0.003 089 b
5 —0.527 418 13 —0.007 269 2
0.553 914 96 +0.003 089 32
6 —0.527 418 176 —0.007 269 05D

0.553 914 983 +0.003 089 28312

7 —0.5274181751
0.553914 9830

—0.007 269 056 78
+0.003 089 282 48
E [14]

—0.527 418 175 09 —0.007 269 056 76

o0

f(x)=20 fi(E,AF)x. (6)
=

One readily obtains the coefficients from the recurrence
relation

i E F
fn:n+25 JZO fjfn—j—1+A5n0+§5n1_0'25n2 y

()

which follows from the Riccati equatio(®).
Except for the ground state, the functid(x) will have
simple poles at the zeros @b(x) for x>0. Therefore, a
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TABLE Il. Values of E andA for the ground state.

F
0.03 E=-0.502 074 272 61 —1.118 61078
=0.484 905 008 06 +5.294x 1079
E=-0.502 074 272 60 —1.118 80< 10" & [14]
0.5 E=-0.623 068 025 6 —0.279744 8250
A=0.693 937 489 58 +0.089 015 92911
1 E=-0.624 336 507 1 —0.646 820 899b
A=0.786 338516 4 +0.176 29597510
E=—-0.624 336 507 36 —0.646 820 900 08[14]
10 E=0.608 271 705 6 —5.578 015 929

A=1.324 400 164 7
E=0.608 271 705 47

+0.833 391 481
—5.578 015 928 2[14]

whereD=N+1 is the dimension of the matrix.

Equation (3) is invariant under the substitution of X,
—A, and—F for x, A, andF, respectively. For this reason,
if (9) is the Hankel determinant f¢2a) (oc=1,A;=A), then
H%(E,A— 1F) is the Hankel determinant for(2b)
(c=-1,A,=1-A), and the pair of equations

HY(E,A,F)=0HY(E,A-1F)=0 (10)
completely determin& andA. The main assumption of the
Riccati-Pademethod is that the common roots of the Hankel
determinantg10) converge toward the physical valuestf
andA coming from(2a) and(2h), for a given value of, as

D increases.

Although, to our knowledge, no general rigorous proof of
the convergence of the Riccati-Padeethod has ever been
given, there are reasons to believe the assumption above to
be true, at least in some cases. First, the Riccati-Raethod
gives exact results for solvable models such as the harmonic
oscillator, the hydrogen atom, e{d.9]. Second, it has been
proved that the method yields upper and lower bounds for
some nontrivial examplelsl9]. Third, the guantization con-
dition (9) appears to be compatible with the physical asymp-

rational function seems to be a natural representation ofotic behavior off (x) [22,23. Fourth, the method yields the
f(x). In the Riccati-Pad@approach we require that the Pade exact weak-coupling expansidiRayleigh-Schrdinger per-

approximant satisfies
N+d

J

N =
j=0

< aiX!  an+d+1

j=0

N=1,2...d=01,.... (8

The system of equations for the coefficiebfsexhibits non-
trivial solutions provided thaE and A satisfy the quantiza-
tion condition[18—25

fars  faso ford
g farz  favs -+ fpiasa
HD(EyAiF): ., :Oa
fora fordra footra-1

©)

turbation seriesfor some simple quantum-mechanical mod-
els[22].

Here we verify numerically that the quantization condi-
tion given by(9) and (10) applies to the Stark effect in hy-
drogen. Notice that the present approach does not take into
account the asymptotic form of the eigenfunction explicitly.
In fact, one treats bound states and resonances in the same
way. The Riccati-Padenethod shares this appealing feature
with other approaches such as, for example, the complex
scaling method7—10Q and the minimization of the variance
[15,16.

IIl. RESULTS AND DISCUSSION

For a given value of the field intensify, the coefficients
f;, and, consequently, the Hankel determinaHt%, are
polynomial functions ofE and A. In the Riccati-Pade
method the problem of obtaining the Stark resonances re-
duces to the calculation of common roots of the two polyno-
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TABLE Ill. Values of E and A for two
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resonance states with proximations, which produce accurate lifetimes when there

m>0. is little electron leakage through the potential barrier.
For simplicity we concentrate on those resonance states
m=1 with functionsu(¢) andv (%) which do not have zeros for
F &,7>0. The greater the number of such nodes, the greater
0.004 E— _0.126 316 885 21 —4.05¢ 10" i the dimension of the Hankel _determinants required f_or a

A—0.475 642 877 45 —7.44¢10°] given accuracy. Here we restrict oyrsel®§7 and arbi-

E— —0.126 316 885 —4.05¢10°7i [12] trarily choosed=0 (values ofd>0 vyield results of compa-
rable accuracy Table | shows that the roots of the Hankel
determinants folF=0.1 converge rapidly toward the com-

0.008 E=-01312614599 —0.001 0362406 plex eigenvalues calculated by other accurate methods, such

A=0.5516298215 +0.001 769 9371 as, for example, the expansion in a basis set of harmonic-

E=-013118859 —0.001 012 2[12] oscillator eigenfunction§l4]. The converged results for the
ground state at some other valuedofjiven in Table Il also

0.012 E=-0.1375781092  —0.006 098 4811 agree with the calculation based on an expansion in a basis

A=0.5782684351 +0.009 792 0308 set of harmonic-oscillator eigenfunctions, which appears to

E=-0.1359716 —0.005843 5[12] be the most accurate method applied to this prodl&a.
In Table Ill we show results for excited states with
0.016 E=-0.142 721569 4 —0.013 474 6436 m=1 and 9. In the former case our results agree with those
A=0.600925393 1 +0.020 590 5908 obtained by numerical integration and power-series represen-
E=-0.136 437 —0.013 776 [12] tation only for small field strength§12]. Our result for
m=29 is found to be in agreement with the result obtained
0.02 E=-0.146 729 380 6 —0.021 853 64014 using the summation of the perturbation series by Hermite-
A=0.620 417 948 9 +0.032 056 12717 Padeapproximants and also with the result obtained by the
E=-0.13150 —0.025 940 5[12] 1/n expansior2].
Present numerical investigation suggests that the Riccati-
m=9 Pademethod converges rapidly toward the resonances of the
= Stark effect in hydrogen for all values of the field strength.
The simplicity of the theory, and the fact that the asymptotic
0.0001 E=—0.006 4259852 —0.003 369 409 7 form of the eigenfunction does not appear explicitly in the
A=0.712889 313 00 +0.103 509 316 B calculation, are two appealing features of the approach. With
E=-0.006 4255 —0.003 369 5 [2] respect to the latter, it is worth stressing that the same quan-
E=—0.006 426 —0.003 369 4[2] tization condition applies to bound states and resonances. It

appears as if the Riccati-Padeethod provided the poles of
the scattering matrif27]. We are presently investigating this

mials (10). Here we apply the Newton-Raphson algorithmfact by means of simple mathematical modeis].

for increasing values dD, and examine the convergence of

the method.

A disadvantage of the Riccati-Padeethod is that it may
not be practical for highly excited states with strongly oscil-

For sufficiently small field intensities the resonance posiJating eigenfunctions. Such states require Pajferoximants

tions are close to the energies of the isolated hydrogen atoriith denominators of large order and, consequently, Hankel
and the widths are exponentially smidb]. In such cases the determinants of great dimengion. Another limitation of the
Riccati-Pademethod, which gives exact results Bt=0,  Present form of the Riccati-Padeethod is that it only ap-
yields the resonances positions with great accuracy eveplies to separable problems. We expect to develop a modi-
with determinants of small dimension. Conversely, to obtairfied approach free from such a deficiency.

the corresponding widths one has to resort to large determi-
nants. If, on the other hané#, is not too small, then Hankel
determinants of moderate dimension yield both positions and
widths with acceptable accuracy. This feature makes the We thank the Quantum Theory Project at the University
Riccati-Pademethod complementary to the semiclassical ap-of Florida for computational facilities.
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