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Direct calculation of Stark resonances in hydrogen

Francisco M. Ferna´ndez
CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, Casilla de Correo 962,

1900 La Plata, Argentina
~Received 28 September 1995!

We propose an alternative way of calculating the resonances of the Stark effect in hydrogen. The method is
based on a rational approximation of the logarithmic derivative of the eigenfunction, and leads to a quantiza-
tion condition for the complex energies of the metastable states. We present accurate results for the ground and
some excited states for several field intensities.@S1050-2947~96!07007-2#

PACS number~s!: 32.60.1i, 03.65.Ge
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I. INTRODUCTION

The dc Stark effect in hydrogen is an old problem
quantum mechanics. Because of the external electric fi
the Hamiltonian operator is unbounded and the discrete s
trum of the isolated hydrogen atom is completely destroy
However, there are metastable or resonance states embe
in the continuum characterized by complex energy eigen
ues. Their real and imaginary parts determine the positi
and widths of the resonances, respectively. The real pa
any such eigenvalue is interpreted as the energy of a m
stable state with a lifetime related to the inverse of the c
responding imaginary part.

The Rayleigh-Schro¨dinger perturbation series is known
be divergent but asymptotic to the resonance position. H
ever, one can still obtain the resonance position and width
means of Borel-Pade´ approximants@1#, Hermite-Pade´ ap-
proximants@2#, or analytic continuation of the perturbatio
series into the complex plane@3,4#. Alternative perturbation
approaches applied to the Stark effect in hydrogen are
1/n expansion@2# based on a WKB method@5# and the sum-
mation of a large-D expansion by means of Hermite-Pa´
approximants@6#. Heren is the principal quantum number o
hydrogen, andD is the spatial dimension.

Among the nonperturbative approaches we mention c
plex scaling~or complex coordinate rotation! @5–10#, nu-
merical integration of the second-order differential equatio
@11,12#, power series expansions@13#, an expansion in a ba
sis set of harmonic-oscillator eigenfunctions@14#, minimiza-
tion of the variance@15,16#, and Weyl’s theory@17#.

There is a vast literature on the Stark effect in hydrog
here we only mention articles related in some way or ano
to the present one. The reader may find additional referen
in those already quoted, and particularly in a short review
the mathematical and computational aspects of the atomi
Stark effect in an appendix in one of them@9#.

In this paper we obtain the Stark resonances for hydro
by means of the Riccati-Pade´ method, which has been dem
onstrated to be useful for the calculation of bound-state
genvalues@18–23# and resonances@24,25# for simpler mod-
els. In Sec. II we show how to apply the Riccati-Pa´
method to the Stark effect in hydrogen, and in Sec. III
present and discuss results for the ground and some ex
states.
541050-2947/96/54~2!/1206~4!/$10.00
d,
c-
d.
ded
l-
s
of
ta-
r-

-
y

e

-

s

;
er
es
f
dc

n

i-

ted

II. RICCATI-PADE´ METHOD FOR THE STARK EFFECT
IN HYDROGEN

In atomic units the Schro¨dinger equation for a hydroge
atom in a dc electronic field of intensityF reads

S ¹21
2

r
22Fz12EDC~x,y,z!50. ~1!

It is separable in parabolic or squared parabolic coordina
@17#. Here we arbitrarily choose the former given b
x5Ajhcosf, y5Ajhsinf, and z5(j2h)/2, wherej>0,
h>0, and 0<f,2p. Writing the solution to ~1! as
C(x,y,z)5(jh)21/2u(j)v(h)eimf, m50,61,62, . . . , we
obtain

S j
d2

dj2
1
12m2

4j
1
E

2
j2

F

4
j21A1Du~j!50, ~2a!

S h
d2

dh2 1
12m2

4h
1
E

2
h1

F

4
h21A2D v~h!50, ~2b!

whereA1 and A2512A1 are separation constants. The
equations are of the form

S x d2

dx2
1
12m2

4x
1
E

2
x2s

F

4
x21ADF~x!50, ~3!

whereA stands for eitherA1 or A2 whens51 or s521,
respectively.

In the Riccati-Pade´ method we consider the regularize
logarithmic derivative of the eigenfunction

f ~x!5
s

x
2

F8~x!

F~x!
, ~4!

wheres is chosen to be (umu11)/2 in order to remove the
pole ofF8(x)/F(x) at x50. The functionf (x) is a solution
of the Riccati equation

x f812s f2x f22
E

2
x1s

F

4
x22A50. ~5!

Since f (x) is analytic atx50 we can expand it in a Taylo
series about that point,
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f ~x!5(
j50

`

f j~E,A,F !xj . ~6!

One readily obtains the coefficientsf j from the recurrence
relation

f n5
1

n12s S (
j50

n21

f j f n2 j211Adn01
E

2
dn12s

F

4
dn2D ,

~7!

which follows from the Riccati equation~5!.
Except for the ground state, the functionf (x) will have

simple poles at the zeros ofF(x) for x.0. Therefore, a
rational function seems to be a natural representation
f (x). In the Riccati-Pade´ approach we require that the Pa´
approximant satisfies

(
j50

N1d

ajx
j

(
j50

N

bjx
j

5 (
j50

2N1d11

f jx
j , N51,2 . . . ,d50,1, . . . . ~8!

The system of equations for the coefficientsbj exhibits non-
trivial solutions provided thatE andA satisfy the quantiza-
tion condition@18–25#

HD
d ~E,A,F !5U f d11 f d12 ••• f D1d

f d12 f d13 ••• f D1d11

�

f D1d f D1d11 ••• f 2D1d21

U50,

~9!

TABLE I. Convergence of the Riccati-Pade´ method for the
ground state whenF50.1.

D E
A

2 20.530
0.555

3 20.5273 20.0071i
0.533 87 10.0030i

4 20.527 413 20.007 269 5i
0.553 913 10.003 089 5i

5 20.527 418 13 20.007 269 2i
0.553 914 96 10.003 089 32i

6 20.527 418 176 20.007 269 059i
0.553 914 983 10.003 089 283 2i

7 20.527 418 175 1 20.007 269 056 78i
0.553 914 983 0 10.003 089 282 48i

E @14# 20.527 418 175 09 20.007 269 056 76i
of

whereD5N11 is the dimension of the matrix.
Equation ~3! is invariant under the substitution of2x,

2A, and2F for x, A, andF, respectively. For this reason
if ~9! is the Hankel determinant for~2a! (s51,A15A), then
HD
d (E,A21,F) is the Hankel determinant for~2b!

(s521, A2512A), and the pair of equations

HD
d ~E,A,F !50,HD

d ~E,A21,F !50 ~10!

completely determineE andA. The main assumption of the
Riccati-Pade´ method is that the common roots of the Hank
determinants~10! converge toward the physical values ofE
andA coming from~2a! and~2b!, for a given value ofF, as
D increases.

Although, to our knowledge, no general rigorous proof
the convergence of the Riccati-Pade´ method has ever bee
given, there are reasons to believe the assumption abov
be true, at least in some cases. First, the Riccati-Pade´ method
gives exact results for solvable models such as the harm
oscillator, the hydrogen atom, etc.@19#. Second, it has been
proved that the method yields upper and lower bounds
some nontrivial examples@19#. Third, the quantization con
dition ~9! appears to be compatible with the physical asym
totic behavior off (x) @22,23#. Fourth, the method yields th
exact weak-coupling expansion~Rayleigh-Schro¨dinger per-
turbation series! for some simple quantum-mechanical mo
els @22#.

Here we verify numerically that the quantization cond
tion given by~9! and ~10! applies to the Stark effect in hy
drogen. Notice that the present approach does not take
account the asymptotic form of the eigenfunction explicit
In fact, one treats bound states and resonances in the s
way. The Riccati-Pade´ method shares this appealing featu
with other approaches such as, for example, the comp
scaling method@7–10# and the minimization of the varianc
@15,16#.

III. RESULTS AND DISCUSSION

For a given value of the field intensityF, the coefficients
f j , and, consequently, the Hankel determinantsHD

d , are
polynomial functions ofE and A. In the Riccati-Pade´
method the problem of obtaining the Stark resonances
duces to the calculation of common roots of the two polyn

TABLE II. Values ofE andA for the ground state.

F

0.03 E520.502 074 272 61 21.118 631028i
A50.484 905 008 06 15.29431029i
E520.502 074 272 60 21.118 8031028i @14#

0.5 E520.623 068 025 6 20.279 744 825 0i
A50.693 937 489 58 10.089 015 929 1i

1 E520.624 336 507 1 20.646 820 899 5i
A50.786 338 516 4 10.176 295 975 9i

E520.624 336 507 36 20.646 820 900 08i @14#

10 E50.608 271 705 6 25.578 015 929
A51.324 400 164 7 10.833 391 481i
E50.608 271 705 47 25.578 015 928 2i @14#
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mials ~10!. Here we apply the Newton-Raphson algorith
for increasing values ofD, and examine the convergence
the method.

For sufficiently small field intensities the resonance po
tions are close to the energies of the isolated hydrogen a
and the widths are exponentially small@26#. In such cases the
Riccati-Pade´ method, which gives exact results atF50,
yields the resonances positions with great accuracy e
with determinants of small dimension. Conversely, to obt
the corresponding widths one has to resort to large dete
nants. If, on the other hand,F is not too small, then Hanke
determinants of moderate dimension yield both positions
widths with acceptable accuracy. This feature makes
Riccati-Pade´ method complementary to the semiclassical

TABLE III. Values of E andA for two resonance states wit
m.0.

m51
F

0.004 E520.126 316 885 21 24.0531027i
A50.475 642 877 45 27.4431027i
E520.126 316 885 24.0531027i @12#

0.008 E520.131 261 459 9 20.001 036 240 5i
A50.551 629 821 5 10.001 769 937 7i
E520.131 188 59 20.001 012 2i @12#

0.012 E520.137 578 109 2 20.006 098 481 7i
A50.578 268 435 1 10.009 792 030 8i
E520.135 971 6 20.005 843 5i @12#

0.016 E520.142 721 569 4 20.013 474 643 5i
A50.600 925 393 1 10.020 590 590 3i
E520.136 437 20.013 776i @12#

0.02 E520.146 729 380 6 20.021 853 640 4i
A50.620 417 948 9 10.032 056 127 7i
E520.131 50 20.025 940 5i @12#

m59
F

0.0001 E520.006 425 985 2 20.003 369 409 7i
A50.712 889 313 00 10.103 509 316 8i
E520.006 425 5 20.003 369 5i @2#

E520.006 426 20.003 369 4i @2#
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proximations, which produce accurate lifetimes when th
is little electron leakage through the potential barrier.

For simplicity we concentrate on those resonance st
with functionsu(j) andv(h) which do not have zeros fo
j,h.0. The greater the number of such nodes, the gre
the dimension of the Hankel determinants required fo
given accuracy. Here we restrict ourselvesD<7 and arbi-
trarily choosed50 ~values ofd.0 yield results of compa-
rable accuracy!. Table I shows that the roots of the Hank
determinants forF50.1 converge rapidly toward the com
plex eigenvalues calculated by other accurate methods,
as, for example, the expansion in a basis set of harmo
oscillator eigenfunctions@14#. The converged results for th
ground state at some other values ofF given in Table II also
agree with the calculation based on an expansion in a b
set of harmonic-oscillator eigenfunctions, which appears
be the most accurate method applied to this problem@14#.

In Table III we show results for excited states wi
m51 and 9. In the former case our results agree with th
obtained by numerical integration and power-series repre
tation only for small field strengths@12#. Our result for
m59 is found to be in agreement with the result obtain
using the summation of the perturbation series by Herm
Padéapproximants and also with the result obtained by
1/n expansion@2#.

Present numerical investigation suggests that the Ricc
Padémethod converges rapidly toward the resonances of
Stark effect in hydrogen for all values of the field streng
The simplicity of the theory, and the fact that the asympto
form of the eigenfunction does not appear explicitly in t
calculation, are two appealing features of the approach. W
respect to the latter, it is worth stressing that the same qu
tization condition applies to bound states and resonance
appears as if the Riccati-Pade´ method provided the poles o
the scattering matrix@27#. We are presently investigating thi
fact by means of simple mathematical models@28#.

A disadvantage of the Riccati-Pade´ method is that it may
not be practical for highly excited states with strongly osc
lating eigenfunctions. Such states require Pade´ approximants
with denominators of large order and, consequently, Han
determinants of great dimension. Another limitation of t
present form of the Riccati-Pade´ method is that it only ap-
plies to separable problems. We expect to develop a m
fied approach free from such a deficiency.
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