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Extended Feynman rule and the two-slit experiment

Pedro Sancho
GPV de Valladolid, Centro Zonal de Castilla y lrgoAvenida Dr. Villacia s/n, 47071 Valladolid, Spain
and Departamento de’Sica, Universidad Autaoma de Barcelona, Barcelona, Spain
(Received 6 October 1995; revised manuscript received 6 February 1996

An extension of Feynman’s rule, relating probability amplitudes and probabilities in two-photon interfer-
ometry, has been proposed recefty Jaegeet al, Phys. Rev. A8, 1023(1993]. It would be interesting to
analyze the validity of this rule in other physical situations not considered by these authors. In particular, we
show in this paper that the extended rule cannot be applied to the gedanken two-slit experiment. This result
suggests the existence of two quantum regimes, differentiated by the validity of the generalized rule. The
distinguishability of one particle and the visibilities of one-particle and two-particle interferences are calcu-
lated.[S1050-294{@6)02507-3

PACS numbd(s): 03.65.Bz

[. INTRODUCTION ematical tools and present the physical ideas in a simple way,
we restrict our considerations to the gedanken two-slit ex-
Feynman’s rule is a genera| statement that provides Qeriment, in which two correlated particles are incident on
simple and concise description of the behavior of probabilityfwo spatially separated screens with two slits. This experi-
amplitudes and probabilities in quantum mecharits In ment is the gener_allzanon to two-p_artlcle systems of the
the past the techniques of one-particle interferometry hav§€danken one-particle two-slit experiment that has played a
been extended by employing correlated two-particle system§.e”_tra| role in the d|scu55|qns about the meaning of prpbabll—
The experimental verifications of the theoretical analysedy in quantum theory. This conceptual experiment is ad-
carried out in this new field have always been performedtduate for the study of the EFR because, in principle, we
with photons pairs. Two-photon interferometry has alreadyeOUld perform an observation on a particle without disturb-
exhibited new nonclassical optical phenomena and confirmdDd the correlated particle and determine whether one or an-
tions of quantum mechani¢2—7]. The most striking feature other altern.at|ve is act_ually takdve can dgtermlng the slit
of two-photon interferometry is the possibility of simulta- through whlch the pa_rtlcle passe¥he situation is similar to
neously studying the variation of both, single- and joint-the experiment considered by Jaegeal.
detection probabilities as functions of arbitrary phase shifts 1he plan of the paper is as follows. In Sec. Il we calculate
of the beams. In general, the rules for the sum of probabilif€ Single- and joint-detection probabilities in the two-slit
amplitudes and probabilities will be different in one- and €XPeriment. In order to obtain an analytical expression, we
two-particle interferometry. A two-particle generalization of restrict the study to the semiclassical approximation. In Sec.
Feynman’s rule was proposed by Jaegeal. [3]: I, thg 'd|'s.t|.ngwshab|llty of the one-partlcle'mterference and
“When an event can occur in several alternative ways, thdhe visibilities of one-particle a_nd two-partlclg mterf_eren_ces
probability amplitude for the event is the sum of the prob-2'€ calcu!ated. In Sec. IV, we discuss the main physical ideas
ability amplitudes for each way considered separately. Therfvolved in the former results. We shall suggest the conve-
is interference. If an experiment could be performed withouthi€nce of distinguishing between two quantum regimes.
disturbing the system, which is capable of determining
whether one or another alternative is actually taken, the

probability of the event is the sum of the probabilities for  We initiate this section by presenting a brief description
each alternative. The interference is lost.” of the experimental arrangement. The arrangement that we

This is the extended Feynman ryFR) that generalizes  propose is shown in Fig. 1. A source emits pairs of correlated
in a natural way the usual Feynman rule from one- to two-articles that impinge on two scree(8l andS2) that are
particle systems. parallel and placed at the same distahc&#om the source.

As remarked earlier, the analyses and experiments thavery screen has two slitéy andB in S1 andC andD in
have suggested this generalization are restricted to the fielg2. We suppose a symmetric arrangement witandB in
of two-photon interferometry. The source of the photonsfront of C andD, respectively. The distance between the slits
emits the particles into a number of well-defined beams thajs 2a. Finally, behindS1 andS2 we place, at a distanak
are recombined after phase shifting. These experimental afwo screen® 1 andD2 that serve to detect the arrival of the
rangements yield two-photon fringes, in the sense that thergarticles. If the intensity of the source is very low, the detec-
is a trigonometric dependence of the probabilities of jointtors will record pulses representing the arrival of individual
detections upon the variable phase angles. pairs of particles.

This type of analysis does not cover some interesting situ- et us suppose that the particles are emitted by the source
ations, for instance, the interference patterns generated ki the following entangled state:
diffraction gratings. The mathematical analysis of this prob-
lem is very difficult. Then, in order to simplify the math- Y= Yiaton T s e @

Il. THE TWO-SLIT EXPERIMENT
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The subscripts 0 anfl refer to the initial and final points.
The two kernels are given by well-known expressions; for
instance,
81

Kl()ZOIO;)_()f-tf):Jj? eXF{;,L— Si(X) | D3x(1), (4)
X0

with the usual notation in path integration, indicating the
sum over all the paths.

If Eq. (1) represents the initial wave function, the final
wave function, that is, that evaluated in the detectors will be

sourez l/f(ifjf):f fK(iojo,toiifa)7fytf)¢fo(>20a)70:to)
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c D
52 The resulting two-particle wave function can be evaluated
using one-particle wave functions.
The evaluation of the four integrals in E¢b) is very
difficult. In order to obtain closed analytical expressions we
b2 use an approximate method of evaluation, the semiclassical
— —— approximation. If the potential is a sufficiently slowly vary-

ing function of time and space, the semiclassical approxima-
tion is adequate. In the particular case considered here, we

source emits two particles. In the semiclassical approximation, thcannot approach the problem by a single application of the

action must be calculated along the classical trajectories that paigee.'pamde law .Of motion, since the particles are con-
through the slitsA, B, C, andD. strained by the slits. So we break the problem up into two

successive free-particle motions. The exact overall amplitude

is an integral of the product of these two free-particle ker-
That is, if we determine that particle 1 passes through Bole nels. If we use the semiclassical approximation in each one
(B), then particle 2 passes through hdde (C). The en- of these free-particle kernels, we will have a very good ap-
tangled state of Eq1) can be prepared using particles that, proximation of the exact problem. The semiclassical method
after their interaction, have opposite momenta gives, for the first integral in Eq5),

FIG. 1. Schematic two-particle, two-slit arrangement. The

p,+pP,=0. 2 . . . .

PPz @ J K1(Xo.to:Xe te) #2a(Xo,t0) d*%g

It is understood that the state represented by (Egshould

be symmetrized or antisymmetrized since the particles are i - -

bosons or fermions, but the results that we obtain without ~C ex%% SeilXs tos X te) |- ®

explicit symmetrization or antisymmetrization would not be

changed, provided that the subspace spannetitayy s is S, is the classical action between the poinig ,(,) and

orthogonal to that spanned hy3¢, ¢ 5p. (X;,t;), with X the position vector of the source a@ a
From now on, we suppose that the particles are massiveonstant. Similar expressions hold for the other integrals and,

and obey Schidinger's equation. To obtain the single- and because of the symmetry of the problem, all the constants are

joint-detection probabilities we must evaluate the wave funcequal.

tion as a function of the spatial coordinates. This is done by We now must calculat&,, in the four trajectories. For

using Feynman’s approach of path integfd@k Let the vec- instance, when particle 1 goes through 8ljt

tor X represent the coordinates of particle 1 and the vegtor ) A

represent the coordinates of particle 2. Because the two par- S R YRS B B

ticles do not interact after the preparation of the state, the Sei(Xs L3 Xs ’tf)_EJ;S dx: p°'+5J;y\dX' Pol - @)

action can be  separated into  two parts,

S(X,¥)=S;(X) +S,(Y), and the kernel becomes the productThe classical momentum is given fromg to X, by

of two factors, (PI2)(Xa—Xg)/|Xa—Xs|, and from X, to X; by
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(p/2) (X;—Xp)/|X;— Xa|, Wherep is the initial magnitude of The coincidence count rate given by E§) shows that the

the momentum vector. Note that we have used the sampredicted fringe pattern describes simultaneously two- and

value of the magnitude of the momentum vector after passene-particle interference phenomena. First, we shall establish

ing the slit. This choice can be justified by the fact that thethe existence of one-particle interference phenomena. The

deflection of a particle in passing through a slit is actually acount rates of the individual particles can be determined by

change in momentum. This change amounts to the additioadding up all the contributions of the other particles; that is,

of a small component of momentum in a direction approxi-by integrating over the spatial variables of the correlated par-

mately perpendicular to the original momentum vector.ticles. For instance, the count rate of particle 1 is

However, the change in energy, and then in the magnitude of

the momentum vector, is completely negligible. The classical ny(x)= N_lj

action becomeS,=(p/2) (|Xs— X¢ + |X;—Xa|). If we denote !

by x the component of; parallel to the screen in the direc-

tion of the line that joins both slitavith x=0 the mean point The normalization factoN is

between the slits and the positive axis in the directiodpf

the , classiczall/ action  is  Sy=(p/2){(L*+a*)" szx dy. (13

+[d?+ (x—a)?]¥2. Note that considering infinitely large —w

screens and slits in the direction perpendicular toside the

detectors, we can disregard these coordinates. After straightforward manipulations, the count rate becomes
Following the same steps, we can calculate the classical

action of the other paths. Finally, the wave function is

©

wn(x,y)dy. (12

ny(x)=constx | 1+N~* coszxf cosZ,dy|. (14)

[
://(x,y)~ex;{% {[d?+(x—a)?]"+[d?+ (y+a)4]"3 To obtain this result, we have taken into account that the
integral of sinZ, vanishes becausg, is an odd function of
ip ) o112 y. The integration of cog, is also simple. First, we note that
+exp o {[d7+ (x+2a)7] for y>d, [d®+(y+a)?]Y2~y+a and [d®+(y—a)?]*?
~y—a. Then, the functiorZ, tends to the limita/\, with A
the wavelength of the particle and cg~coga/\). If we
' ®  denote by £y*,y*) a finite interval of the real axis where
y~d, the integral of coZ, can be approximated by

+[d*+(y—a)*]*

* *

cosZ,dy~ Jyy* cosZ,dy+ adey—afyy*dy,

(15

other a function of [2+a?? and the constan€? have
been suppressed. We have introducedyfdine same defini- -
tion of x. The use of the semiclassical approximation can be
justified because the two-particle wave function is evalur:xte?\/i,[h _

i . . X . a=coqa/\).
using only one-particle wave functions. The semiclassical
approximation describes correctly the one-particle wave
function in the two-slit experiment because the problem ca
be broken up into two successive free-particle motions. As
maitter of fact, since the free-particle Lagrangian is a qua- ny(X)=cons (1+ a CoSZ,). (16)
dratic form, the approximate expression for the kernel
K~exp(1S./f) is exact. Therefore, the semiclassical ap-Note that this result, because of the presence of the normal-
proximation is adequate for this problem. In the Appendixization factorN, is exact. A similar result holds for particle
we present an explicit mathematical discussion of the semi2.
classical approximation dealing directly with two-particle  Finally we shall demonstrate that, simultaneously, there is

where two overall phase factors, one time-dependent and theJ,w

Clearly, the first and third integrals of the above expres-
on are finite. Thus, when the normalization factdris
gaken into account, the count rate for particle 1 becomes

wave functions. a two-patrticle interference phenomenon. We say that there is
Now we are in a position to evaluate the joint detectiona two-particle interference phenomenon when the coinci-
probability, n(x,y). A simple calculation gives dence count rate differs from the product of the count rates

for one-particle interference, that is(x,y)#ny(X)ns(y).
n(x,y)=¥* (X,y)(x,y)=consf1+cog Z,+Z,)], (9) The individual count rates arae;(x)~(1+acosZ,) and
Ny(y)~(1+acosZ,). Comparing with Eq(9) we see that
with n(x,y) #n1(x)n,(y) and, therefore, we deduce that there is a
genuine two-particle interference phenomenon. We have es-
p tablished the simultaneous existence of one- and two-particle
Zy=57 {[d?+(x—a)?]¥>—[d?+(x+a)?]¥3 (10) interference phenomena in the gedanken two-particle, two-
slit experiment. This result shows that the EFR cannot be
applied to this experiment.
and There are also two alternatives for every particle, to pass
by one or the other of the slits. However, the observation
made about the correlated particle, which could be used to

_L 2 2912_1 (2 _ a)\27l
Zy_Zﬁ {[a*+(y+a)7] [d*+(y-a)1"%. 1Y determine the alternative taken by the other member of the
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pair, is simultaneous to the interaction of the particle with theperiment. A macroscopic instrument, the diffraction grating,
diffraction grating. This interaction is the physical mecha-is used to combine the probability amplitudes, instead of the
nism that combines the amplitudes of the two alternativessimple overlap of beamgvithout the aid of any macroscopic
To destroy the interference, the determination of the alternadevice presented in Ref$2] and[7]. After the combination,
tive actually taken must be prior to the physical combinationthe wave function is no longer the superposition of two-
of the alternatives. Moreover, any measurement made updparticle plane wave functions. For instance, the first expo-
the correlated particle in the interval between the emission ofiéntial in Eq.(8) can only be considered as locally plane
the particles and the arrival to the screens does not determifd'€nx>d andy>d, which gives explp(x+y)/24]. In the

the slit through which a particle passes. In effect, the deterPoints where this local two-particle plane-wave function can

mination of the position of a particle, measuring the positionbe used, the one-particle count rates are constant. In the rest

; : - : f the points, we have one-particle fringes.
of the correlated particle, is compatible with the two alterna-° . ' . .
P P This analysis shows that when the problem is considered

:Iﬁfss’e%zﬁﬁiﬁ tl?:t\yvv:gﬁlfhneggig the particle is comparable tl(r)1 the Schrdinger form, the possibility of describing the

The physical interpretation of the examples presented b eams by well-separated plane waves is essential in order for
Horne et al. [2] and Jaegeet al. [3] is very different. A he EFR to be applicable. We shall return to this point in the

source emits pairs of particles, which propagate in narrov\Plscussmn.

beams, that is, beams whose extent in the two axes perpen-

dicular to the direction of propagation is small. The typical 1. VISIBILITY AND DISTINGUISHABILITY
longitude characterizing this extent is always much smaller
than the typical separation of the different beafwith the
exception of the region where beams interset¥e can
speak about well-defined paths that remember closely clas

cal @r?Jectorlgs.hln t.he mte_rval ngNer(]en the emission ct))f o not hold in the two-slit experiment. In order to justify this
particles and the interaction with the macroscopic €aMyoint, we shall calculate the visibilities in our example.

splitter or the intersection of the beams, it is possible tolvloreover, to properly compare the results of both studies,

determine, using the correlated member of the pair, if a pafye sha| also analyze the relationship between the distin-

ticle enters a particular beam. One can distinguish betweep, ishapility of one particle and the visibility of one-particle
the different paths, and use this information to determine th terference

path of the other particle. To carry out this analysis we use an initial entangled state

These differences can be seen more clearly by comparin@]at is more general than those given by Efj. Let the
the experiment presented here to those proposed by Ghoﬁmtial state be

and Mande[7]. This experiment bears a strong resemblance

to the two-slit experiment, presenting also a continuum of 0= Ay + Bulgyc. (17)
outcomes for each particle. Horee al.[2] have discussed a

more general class of similar experiments: several beams agy order to simplify the mathematical analysis, we suppose
sociated with two photons intersect in one or two small rethat A and B are real and positive. The#?+B?=1. Fol-
gions, where miniature detectors are placed at variable posjowing the steps of the previous section we can easily obtain
tions. An essential difference exists between thesghe joint-detection probability,

arrangements and the two-slit experiment. In the experiments

of Refs.[2] and[7] the beams are described to good approxi- n(x,y)=consX[1+2AB cogZ,+Z,)]. (18
mation by correlated plane waves. The possibility of using a

description based on plane waves is related as much to ten the other hand, the count rate for particle 1 is

beams’ propagation as narrow beams as to the form in which

the beams are combined. As is well known, if the particles ny(X)=constx (1+2ABa C0SZ,). (19
are described by plane waves at times previous to the over- _ , .

lap, the particles have well-defined directions and their pathd he definition for the one-particle visibility is

can be defined. Moreover, except in the overlap regions, the max_ ..min

beams are well separated. According to our former discus- V:ni —Ni (20)
sion, the EFR can be applied. At times subsequent to the Lo Mt

overlap, as shown in Ref2], the one-particle count rate

derived from a correlated plane-wave function is constantTo evaluate Eq.(20) we need an explicit expression for
according to the EFR there is no one-particle interferdase n"> and n™". We restrict the study to the intervak@/
has been experimentally shown in RET]). On the other A< We must consider separately two cases0 and
hand, in the two-slit experimeniin the semiclassical ap- «<O0.

proximation used hejghe wave functions, at times previous (i) =0, O<a/A<n/2:

to the combination of amplitudes, are plane waves along the

classical trajectoriegSy=px/2); you can define a path. n"*=cons (1+2ABa). (2139
However, according to our previous discussion, the classical

trajectories are not well separated and the EFR cannot b&nd

applied. Now, the superposition of amplitudes is done in a min )

way that is completely different from that of the former ex- N =consi (1+2ABa”). (21b)

The simultaneous appearance of one-particle and two-
particle interferences was already described by Jaegak.

3]. However, the results obtained by these authors relative
0 the complementarity between the two types of interference
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(i) a<0, w2<a/\<m: The value of the upper bound is only valid for coadt For
other values of this constant we would have obtained differ-
n"¥= consi (1+2ABa?) (219  ent values of the bound. However, for any choice of the
constant the bound is always larger than 1.
and To understand the difference between the two comple-
min mentarities, we must describe the relationship between en-
ni=consi (1+2ABa). (21d  tanglement and one-particle visibility. This relationship is
) ) based on two processes of interaction of the parti¢jethe
To obtain these results we have taken into account thahteraction of the particle and the interferomet@assive
|Z,|<a/\. Combining Eqgs(20) and(21) we obtain the vis-  |ossless transducers, two-slit diffraction gratings);&it) the
ibilities in the two intervals: observation of the interference pattern by the interaction of
particle and detector.

2
V.= ABla—a’) (229 First, we describe process: the interaction of the par-
' 1+AB(a+a?) ticle and the interferometer is an event that can occur in
several alternatives ways. The interference is generated be-
for =0, and cause the probability amplitude is the sum of the probability
2 amplitudes for each alternative. If the wave function of the
__AB(e"~a) (22  Particle is entangled and the EFR can be applied, sme
' 1+AB(a+a?) all) of these alternatives do not contribute to the probability
amplitude. The interference is partiallgr completely lost.
for a<0. Now, we describe process): the phase information be-

Using these results we can show that in some cases thgeen the basis wave functions of every particle in an en-
complementarity relation between visibilities derived by Jaetangled state is carried by correlated wave functions of the
geret al.does not hold. For instance, if we take=B=1#2  companion particle. Therefore, observations made only upon
anda/A=, we obtainV;=1. Any realistic definition for the the first particle cannot fully extract the phase information.
visibility of two-particle fringes must give a positive value  processesi) andi(ii) explain the limitations on the values
(V1,>0) for the nonconstant pattern represented by(8.  of the one-particle visibility. The more entangled the two-
Therefore, Vi+V{,>1. That is incompatible with the particle wave function is, the stricter is the bound on the
complementarity relation of Jaeget al. one-particle visibility. On the other hand, a high degree of

The above example is not the only case where thentanglement entails high two-particle fringe visibility.
complementarity relation does not hold. To continue the The difference between the two complementarities now
anaIySiS we must define the tWO-partiCle V|S|b|||ty First, we becomes clear. The EFR cannot be app“ed to the two-slit
must define a corrected joint-detection probability. As  experiment, proceséi) is the only restriction entailed by
discussed in Ref[3], the mathematical expression af  entanglement. On the other hand, in the family of states con-
must be of the fornn—n,n, +cte[see Eq(33) of Ref.[3]].  sidered by Jaegest al. the EFR is valid, and processéis
If we take const0.475 in Eqs(18) and(19) (this is equiva-  and (ji) restrict the visibility. The bound is more stringent
lent to a normalization of the fringe pattgym* reads and the complementarity relation is stricter than in the two-
. slit experiment.

n*=1.4+[1+2AB cosZ+7)] Jaegeret al. [4] have also formulated and demonstrated
—(1+2ABa c0sZ,)(1+2ABa cosZ,). (23 another interferometric c_omple_mentg_rity. This new comple-
mentarity relates the distinguishabilityy of the path of

A rationale for the terntte=1.4 in the above equation is Propagation of a particle to the fringe visibility, when
the fact that this value is the least real number, suchrtkat amplitudes from two paths are combined. According to the
is non-negative for all wave functions of the form of Eq. terminology of Jaegegt al. the state represented by E47)

(17). Analogously to Eq(20), visibility V,, can be defined in IS @ pure entangled state. Using E(E78 and (28) of Ref.
terms ofn*. We have studied numerically the relation be- [4] we obtain the distinguishability of these stafeV)=1.
tween both visibilities. For instance, fax=0.57 anda/x  This result is valid for any value ok anda/\. Therefore, as
=3.1, V2+V2,=158, for A=0.53 and a/A=25 V1=0we have

v;+v§2=1.01; and for A=05 and a/\=3.1,

V1+V1,=1.49. There is a large interval of values/Afand D(¥)2+Vi=1. (25
a/\ in which V3+V2,=1. For instance, fom/\=1, this
inequality holds for anyA in the interval[0.36, 0.77. This result indicates that if the definition of distinguishability

The above analysis shows that, in general, the compleproposed by Jaeget al. is used, the relation between dis-
mentarity relation of Jaegegt al. is not valid in the two-  tinguishability and visibility obtained in the two-particle
particle two-slit experiment. This result indicates that thetwo-slit arrangement is in marked contrast with the comple-
physical arrangement considered in this paper is not includeghentarity relation obtained by these authors.
in the analysis of these authors. However, the numerical The definition of distinguishability proposed by Jaeger
study shows that a new complementarity relation holdset al.is not adequate for problems in which the EFR cannot
namely, be applied. For the state represented by(E@, D(¥)=1. A

) ) value of unity represents a situation in which the path of a
Vi +Vi<1.59. (24)  particle can be predicted with certainty after observing the
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path of the companion particle. In the two-slit experiment,particle [5]. The two-slit experiment imposes some restric-
we cannot predict the alternative taken by a particle obserwions on this interpretation; the one-particle interference pat-
ing the companion particle. We must use a definition of distern does not disappear, although one can distinguish, in
tinguishability D, such thatD, (¥)<1. Distinguishability is ~ principle, between the two possible alternatives. The disap-
defined by a function for which the probability of a correct pearance of the one-particle interference pattern can only be
prediction of the alternative taken by the particle has thethe result of a measurement made of the particle of interest
maximum value. We are considering systems in which n@nd not from the information extracted on the companion
observations on the companion particle yield information forParticle. The interpretation based on the possible information
predicting the alternative of the particle of interest. ThereS Only valid when one can, in principle, distinguish between

fore, the strategy of prediction must be based entirely on thﬁ:e different alternatives at a time prior to the combination of

. : . . : e probability amplitudes.
grEpi;aB'ZQ' eTerezF ar:res(;r\?ge Ep re(ri%rafleorlzslgnttrsleatertrjrlgo By no means does the possibility of applying the EFR or
9y 9 ’ » B9 P P the interpretation of the possible information depend on the

state of the two-particle system, with all the pairs of particlesr ct that the particles are massive or massless. Neutron inter-

in the same quantum state. The optimum strategy to preduf rometry provides an example of interferometry with mas-
the alternatives of one of the particles must be the same ag

h d with ol dict that particle 1. ve particles in which the EFR holds. On the other hand, the

tgoitsufherouvg\;llrg sﬁ;r?sselrglﬁ)i\?alsetﬁ:% S:: dilg':irtlgathg?rt#:eetwo interpretation of photon scattering by diffraction gratings is
. imi i two-slit i t.

particles of the composed system go through giandD). similar to the analysis of the gedanken two-slit experimen

o - R The former considerations suggest the convenience of in-
Therefore, in this case the adequate definition of d'St'ngu'Shfroducing two quantum regimes in the study of interference
ability is

patterns in two-particle systems; the dispersive and nondis-
D, (¥)=|A2—B?| (26) persive regimes. The nondispersive regime is characterized
* ' by the fact that the alternatives of the particles are paths and,
Using this definition of distinguishability, we recover a moreover, one can distinguish between these alternative
complementarity relation with the one-particle visibility. We Paths. As remarked earlier, this is equivalent to describing
write D2 +V7=(A?—B?)2+ (2AB+V,—~ 2AB)?=1+V? the ghfferent paths by narrow, Well—separated bea_lms. There
—(2AB)2. For =0, we have the relationa—q? are interference phenomena, but without dispersion of par-
<1+AB(a+0d?) that impliesV,<AB andV2<(2AB)2. on ticles. In this regime, the particles fulfill the conditions that
the other hand, for<0 we hlaveaZ_agz: which implies ~ assure the validity of the EFR. On the other hand, in the

V,;<2AB andV < (2AB)2. Combining all these expressions dispersive regime one can also distinguish between the dif-
Wle obtain ' ferent alternatives. However, this determination of the alter-

native is simultaneous with the combination of the ampli-

D, (V)2+V?<1, (270 tudes of the different alternatives by the macroscopic

instrument. The information obtained in position measure-

that is, the mathematical expression for the complementaritynents prior to this interaction is compatible with both alter-
between distinguishability and one-particle visibility for the natives and does not destroy the interference. The EFR can-

state represented by E@.7). not be applied. There is dispersion of particles and the
Note that Eq.(27) is not equivalent to the complementa- description based on paths is not adequate.
rity relation for the pure simple casB?+V2=1, obtained The above considerations suggest an analogy between

by Greenberger and YaSjf]. This difference is a new con- these regimes and the geometric approximation in classical
sequence of entanglement. As remarked earlier in the discusptics. As is well known, see Refl0], geometric optics
sion of the complementarity between visibilities, procéigs assumes that light travels in rays, that is, narrow beams of
imposes bounds on the one-particle visibility, bounds that d¢adiation with well-defined directions of propagation. This

not act on non-entangled systems. approximation partially disregards the wave nature of light,
and is equivalent to describing the electromagnetic waves by
IV. DISCUSSION plane wavegif this description is adequate it is possible to

define, at least locally, the direction of propagatiofhe

The most important result of this paper is the analysis of aesemblance to the nondispersive regime, in which the beams
gedanken experiment in which the EFR cannot be applied. lare described by narrow beams that recall rays, is clear. The
addition to the intrinsic interest of this result, we show that itresemblance is even more compelling in the experiment of
influences the bounds imposed on the one-particle visibilityGhosh and Manddl7]. As remarked earlier, in this case the
the complementarity relation between the visibilities is modi-wave functions can be approximated by plane waves. The
fied. The algorithm to compute the distinguishability of aresults obtained using this approximatiémo one-particle
particle in an entangled state must also be modified. interference, validity of the complementarity between vis-

The formulation of the EFR makes it clear that the limi- ibilities) are completely different from those of the two-slit
tation upon the visibility of one-particle interference patternsexperiment.
is not imposed by the information that the observer has ex- The analogy between some experiments in quantum me-
tracted concerning the particles of interest, but lies in thehanics and the geometric approximation in classical optics
information that could in principle be extractécompatible can be viewed as an example of the convenience of using
with the constraints given by the preparafioRollowing this  classical concepts to obtain a conceptual comprehension of
interpretation, the state or wave function reflects not onlymicrophysical phenomen@eyond the symbolic description
what is known, but also what could be known about theprovided by the mathematical formaligniThis point has
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been frequently emphasized by Bdhd]. interferometry. We follow closely the analysis of one-
Another analogy between quantum mechanics and optiggarticle systems that is presented in many textbdeks, for

has been frequently presented in the literature. The analogpstance, Ref[12]). For the sake of mathematical simplicity

can be summarized briefly by saying that classical mechaniose shall only discuss the case of one-dimensional systems.

(Hamilton-Jacobi equatigrrepresents the geometrical limit The Schrdinger equation for two particles of massagand

of quantum mechanioSchralinger equatiopas#z—0. Asa  m, that do not interact after the preparation is

matter of fact, this is the basis of the semiclassical approxi-

mation. However, this analogy is less stringent than those. A h? (92‘1’_ h? v V0TV ()T
presented in this paper. In effect, in the semiclassical limit gt 2my ax;  2m, x5 1(Xy) 2(%) Y.
we obtain wave functions that, in general, are not plane (A1)

waves(even locally, a necessary condition in geometric op-
tics to define directions of propagation and rays. In order td-et us now consider the case where the potentials are slowly
avoid any misunderstanding between the two analogies, wearying and try a solution of the forn'=N exp(iS/#), with
shall not designate the nondispersive regime as the geometrlit a constant. A4—0 represents the classical limit, we must
regime, and shall maintain the names of dispersive and noréxpandS in terms of Planck’s constant:
dispersive regimes.

A final comment is in order. The method used in this S=Sp+hS+h*S,+ - . (A2)
work can suggest a relationship between the proposal of tw

guantum regimes and the use of the semiclassical appro -_ubst_ltutmgh th'j Expression ,'m?_thAl) we o?tam thde
mation. However, such a relationship does not exist. Thi€duations that determine ttg's. The equations fo, an

can be seen by showing that the results obtained using th& 3'®

semiclassical approximation and the exact Sdmger equa- S, 1 (052 1 [0S\2

tion are equivalent in relation to the definition of the two — 4 _—_ (_) NI (_) +V1(X1) + Va(X2) =0
regimes. At any time previous to the combination of the 9t ~ 2My {dXy) — 2my | dX;

probabilities of the alternatives, the semiclassical approxima- (A3)

tion gives plane waves along the classical trajectories, bu
these classical trajectories are not separated enough. In the
case of thg exact Schiimger equation, as the separation S, 1 %S, 1 #Sy, 1 99,05, 1 9SS,
between slits is of the same order of magnitude of wave + >+ >t —

length of the particle, the probability distribution of the par- 90 2M1 dX1  2Mp Xz~ My 9Xg Xy My Xz 9X;
ticle at points placed between the two slits and between the _ (A4)
source and the slit is clearly different from zero. In any of the

two cases, an observation of the companion particle does ngfquation (A3) is the Hamilton-Jacobi equation for a two-

give useful information about the alternative taken by theparticle system. Thereforé, is the classical action. In the
particle. In none of the two approaches can the EFR be apstationary case this action becomes

plied. The introduction of the two regimes does not depend
on the use of the semiclassical approximation. ol o ol
We want to also emphasize the remarkable inequality of So:f P1(X1)dX1+f P2 (X2)dx— E°t. (AS5)
n(x,y) #n;(x)n,(y). Because the two screeBgandS, op-
erate independently, the correlated behavior of particles We can also obtain EGA5) by direct calculation. In a sta-
and 2 manifested in these inequalities is an example of quanionary system the action i8,= —Et+ S} . The energy is
tum nonlocality. the sum of the energy of the two particldsS=E$+ES.
The mathematical analysis of the two-slit experiment hasthen, using Eq(A3), we have
been based on the semiclassical approximation. The analysis
presented in the Appendix shows that for particles that do 1 [0S 2 q
not interact after the preparation, the two-particle semiclas- m | o] Vi =B (i=1.2). (AB)
sical method can be easily applied and gives a good approxi- ! !

mation. Then, the two-particle semiclassical method can be fne two equationgA6) are equivalent to Eq(A5). The

useful mathematical tool for the class of problems considsemiclassical approximation is acceptable as long as the
ered in this paper, which can be decomposed into a set Qgyms in Eq.(A3) are smaller than the terms in EGA4)

free one-particle trajectories. (and, of course, the terms in the equations $er. . ). We
compare, for instance, 98,/ dx,)%/2m;=(p$)%2m, and
ACKNOWLEDGMENTS h( %Syl 9x 2)12my =fi(dpS/dx,)/2m,. This condition is the

This work has been patrtially supported by the DGICyT ofusual one in one-particle systems

the Spanish Ministry of Education and Science under Con- dn*
I

tract No. CLI-95-1867. <1, (A7)

dx;
APPENDIX . .
where \* =\/27. The two equation§A7) indicate that the
We present in this appendix an explicit discussion of thewavelengths of the two particles must vary slowly in lengths
semiclassical approximation in the context of two-particleof the same order of magnitude of the wavelength.
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Now, however, we must also compare the crossed termsther hand, if one of the two energies is much larger than the
(9Syl 9%, and #°Syldx3...). Two new conditions emerge other, for instance E{>ES, we have a new condition
from this analysis, |[d\*/dx;|<ES/ES'. This new condition defines a new
length scale for the variation of the wavelength.

ﬁ < Ejd (A8) In the system studied in this paper all the conditions, Egs.
dx; E_,c' (A8) and (A7), are fulfilled. Equatior{A7) holds because the

semiclassical trajectories can be decomposed into free-
wherei=1,2 andi#j. When ES~E$ the two conditions particle trajectories. Moreover, the two energies are equal,
(A8) are automatically fulfilled because of E@A7). Onthe E$'=EY, and Eq.(A8) is equivalent to Eq(A7).
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