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An extension of Feynman’s rule, relating probability amplitudes and probabilities in two-photon interfer-
ometry, has been proposed recently@G. Jaegeret al., Phys. Rev. A48, 1023~1993!#. It would be interesting to
analyze the validity of this rule in other physical situations not considered by these authors. In particular, we
show in this paper that the extended rule cannot be applied to the gedanken two-slit experiment. This result
suggests the existence of two quantum regimes, differentiated by the validity of the generalized rule. The
distinguishability of one particle and the visibilities of one-particle and two-particle interferences are calcu-
lated.@S1050-2947~96!02507-3#

PACS number~s!: 03.65.Bz

I. INTRODUCTION

Feynman’s rule is a general statement that provides a
simple and concise description of the behavior of probability
amplitudes and probabilities in quantum mechanics@1#. In
the past the techniques of one-particle interferometry have
been extended by employing correlated two-particle systems.
The experimental verifications of the theoretical analyses
carried out in this new field have always been performed
with photons pairs. Two-photon interferometry has already
exhibited new nonclassical optical phenomena and confirma-
tions of quantum mechanics@2–7#. The most striking feature
of two-photon interferometry is the possibility of simulta-
neously studying the variation of both, single- and joint-
detection probabilities as functions of arbitrary phase shifts
of the beams. In general, the rules for the sum of probability
amplitudes and probabilities will be different in one- and
two-particle interferometry. A two-particle generalization of
Feynman’s rule was proposed by Jaegeret al. @3#:

‘‘When an event can occur in several alternative ways, the
probability amplitude for the event is the sum of the prob-
ability amplitudes for each way considered separately. There
is interference. If an experiment could be performed without
disturbing the system, which is capable of determining
whether one or another alternative is actually taken, the
probability of the event is the sum of the probabilities for
each alternative. The interference is lost.’’

This is the extended Feynman rule~EFR! that generalizes
in a natural way the usual Feynman rule from one- to two-
particle systems.

As remarked earlier, the analyses and experiments that
have suggested this generalization are restricted to the field
of two-photon interferometry. The source of the photons
emits the particles into a number of well-defined beams that
are recombined after phase shifting. These experimental ar-
rangements yield two-photon fringes, in the sense that there
is a trigonometric dependence of the probabilities of joint
detections upon the variable phase angles.

This type of analysis does not cover some interesting situ-
ations, for instance, the interference patterns generated by
diffraction gratings. The mathematical analysis of this prob-
lem is very difficult. Then, in order to simplify the math-

ematical tools and present the physical ideas in a simple way,
we restrict our considerations to the gedanken two-slit ex-
periment, in which two correlated particles are incident on
two spatially separated screens with two slits. This experi-
ment is the generalization to two-particle systems of the
gedanken one-particle two-slit experiment that has played a
central role in the discussions about the meaning of probabil-
ity in quantum theory. This conceptual experiment is ad-
equate for the study of the EFR because, in principle, we
could perform an observation on a particle without disturb-
ing the correlated particle and determine whether one or an-
other alternative is actually taken~we can determine the slit
through which the particle passes!. The situation is similar to
the experiment considered by Jaegeret al.

The plan of the paper is as follows. In Sec. II we calculate
the single- and joint-detection probabilities in the two-slit
experiment. In order to obtain an analytical expression, we
restrict the study to the semiclassical approximation. In Sec.
III, the distinguishability of the one-particle interference and
the visibilities of one-particle and two-particle interferences
are calculated. In Sec. IV, we discuss the main physical ideas
involved in the former results. We shall suggest the conve-
nience of distinguishing between two quantum regimes.

II. THE TWO-SLIT EXPERIMENT

We initiate this section by presenting a brief description
of the experimental arrangement. The arrangement that we
propose is shown in Fig. 1. A source emits pairs of correlated
particles that impinge on two screens~S1 andS2! that are
parallel and placed at the same distanceL from the source.
Every screen has two slits,A andB in S1 andC andD in
S2. We suppose a symmetric arrangement withA andB in
front ofC andD, respectively. The distance between the slits
is 2a. Finally, behindS1 andS2 we place, at a distanced,
two screensD1 andD2 that serve to detect the arrival of the
particles. If the intensity of the source is very low, the detec-
tors will record pulses representing the arrival of individual
pairs of particles.

Let us suppose that the particles are emitted by the source
in the following entangled state:

c05c1A
0 c2D

0 1c1B
0 c2C

0 . ~1!
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That is, if we determine that particle 1 passes through holeA
(B), then particle 2 passes through holeD (C). The en-
tangled state of Eq.~1! can be prepared using particles that,
after their interaction, have opposite momenta

pW 11pW 250. ~2!

It is understood that the state represented by Eq.~1! should
be symmetrized or antisymmetrized since the particles are
bosons or fermions, but the results that we obtain without
explicit symmetrization or antisymmetrization would not be
changed, provided that the subspace spanned byc 1A

0 ,c 1B
0 is

orthogonal to that spanned byc 2C
0 ,c 2D

0 .
From now on, we suppose that the particles are massive

and obey Schro¨dinger’s equation. To obtain the single- and
joint-detection probabilities we must evaluate the wave func-
tion as a function of the spatial coordinates. This is done by
using Feynman’s approach of path integrals@8#. Let the vec-
tor xW represent the coordinates of particle 1 and the vectoryW
represent the coordinates of particle 2. Because the two par-
ticles do not interact after the preparation of the state, the
action can be separated into two parts,
S(xW ,yW )5S1(xW )1S2(yW ), and the kernel becomes the product
of two factors,

K~xW0 ,yW 0 ,t0 ;xW f ,yW f ,t f !5K1~xW0 ,t0 ;xW f ,t f !K2~yW 0 ,t0 ;yW f ,t f !.
~3!

The subscripts 0 andf refer to the initial and final points.
The two kernels are given by well-known expressions; for
instance,

K1~xW0 ,t0 ;xW f ,t f !5E
xW 0

xW f
expS i\ S1~xW ! DD3xW~ t !, ~4!

with the usual notation in path integration, indicating the
sum over all the paths.

If Eq. ~1! represents the initial wave function, the final
wave function, that is, that evaluated in the detectors will be

c~xW f ,yW f !5E E K~xW0 ,yW 0 ,t0 ;xW f ,yW f ,t f !c
0~xW0 ,yW 0 ,t0!

3d3xW0d
3yW 0

5E K1c1A
0 d3xW0E K2c2D

0 d3yW 0

1E K1c1B
0 d3xW0E K2c2C

0 d3yW 0 . ~5!

The resulting two-particle wave function can be evaluated
using one-particle wave functions.

The evaluation of the four integrals in Eq.~5! is very
difficult. In order to obtain closed analytical expressions we
use an approximate method of evaluation, the semiclassical
approximation. If the potential is a sufficiently slowly vary-
ing function of time and space, the semiclassical approxima-
tion is adequate. In the particular case considered here, we
cannot approach the problem by a single application of the
free-particle law of motion, since the particles are con-
strained by the slits. So we break the problem up into two
successive free-particle motions. The exact overall amplitude
is an integral of the product of these two free-particle ker-
nels. If we use the semiclassical approximation in each one
of these free-particle kernels, we will have a very good ap-
proximation of the exact problem. The semiclassical method
gives, for the first integral in Eq.~5!,

E K1~xW0 ,t0 ;xW f ,t f !c1A
0 ~xW0 ,t0!d

3xW0

'C expS i\ Scl~xW s ,t0 ;xW f ,t f ! D . ~6!

Scl is the classical action between the points (xW s ,t0) and
(xW f ,t f), with xW s the position vector of the source andC a
constant. Similar expressions hold for the other integrals and,
because of the symmetry of the problem, all the constants are
equal.

We now must calculateScl in the four trajectories. For
instance, when particle 1 goes through slitA,

Scl~xW s ,t0 ;xW f ,t f !5 1
2 E

xWs

xWA
dxW•pW cl1

1
2 E

xWA

xW f
dxW•pW cl . ~7!

The classical momentum is given fromxW s to xWA by
(p/2)(xWA2xW s)/uxWA2xW su, and from xWA to xW f by

FIG. 1. Schematic two-particle, two-slit arrangement. The
source emits two particles. In the semiclassical approximation, the
action must be calculated along the classical trajectories that pass
through the slitsA, B, C, andD.
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(p/2)(xW f2xWA)/uxW f2xWAu, wherep is the initial magnitude of
the momentum vector. Note that we have used the same
value of the magnitude of the momentum vector after pass-
ing the slit. This choice can be justified by the fact that the
deflection of a particle in passing through a slit is actually a
change in momentum. This change amounts to the addition
of a small component of momentum in a direction approxi-
mately perpendicular to the original momentum vector.
However, the change in energy, and then in the magnitude of
the momentum vector, is completely negligible. The classical
action becomesScl5(p/2)(uxWA2xW su1uxW f2xWAu). If we denote
by x the component ofxW f parallel to the screen in the direc-
tion of the line that joins both slits~with x50 the mean point
between the slits and the positive axis in the direction ofA!,
the classical action is Scl5(p/2)$(L21a2)1/2

1[d21(x2a)2] 1/2%. Note that considering infinitely large
screens and slits in the direction perpendicular tox inside the
detectors, we can disregard these coordinates.

Following the same steps, we can calculate the classical
action of the other paths. Finally, the wave function is

c~x,y!;expS ip2\
$@d21~x2a!2#1/21@d21~y1a!2#1/2% D

1expS ip2\
$@d21~x1a!2#1/2

1@d21~y2a!2#1/2% D , ~8!

where two overall phase factors, one time-dependent and the
other a function of (L21a2)1/2, and the constantC2 have
been suppressed. We have introduced fory the same defini-
tion of x. The use of the semiclassical approximation can be
justified because the two-particle wave function is evaluated
using only one-particle wave functions. The semiclassical
approximation describes correctly the one-particle wave
function in the two-slit experiment because the problem can
be broken up into two successive free-particle motions. As a
matter of fact, since the free-particle Lagrangian is a qua-
dratic form, the approximate expression for the kernel
K;exp~1Scl/\! is exact. Therefore, the semiclassical ap-
proximation is adequate for this problem. In the Appendix
we present an explicit mathematical discussion of the semi-
classical approximation dealing directly with two-particle
wave functions.

Now we are in a position to evaluate the joint detection
probability,n(x,y). A simple calculation gives

n~x,y!5c* ~x,y!c~x,y!5const@11cos~Zx1Zy!#, ~9!

with

Zx5
p

2\
$@d21~x2a!2#1/22@d21~x1a!2#1/2% ~10!

and

Zy5
p

2\
$@d21~y1a!2#1/22@d21~y2a!2#1/2%. ~11!

The coincidence count rate given by Eq.~9! shows that the
predicted fringe pattern describes simultaneously two- and
one-particle interference phenomena. First, we shall establish
the existence of one-particle interference phenomena. The
count rates of the individual particles can be determined by
adding up all the contributions of the other particles; that is,
by integrating over the spatial variables of the correlated par-
ticles. For instance, the count rate of particle 1 is

n1~x!5N21E
2`

`

n~x,y!dy. ~12!

The normalization factorN is

N5E
2`

`

dy. ~13!

After straightforward manipulations, the count rate becomes

n1~x!5const3S 11N21 cosZxE
2`

`

cosZydyD . ~14!

To obtain this result, we have taken into account that the
integral of sinZy vanishes becauseZy is an odd function of
y. The integration of cosZy is also simple. First, we note that
for y@d, [d21(y1a)2] 1/2'y1a and [d21(y2a)2] 1/2

'y2a. Then, the functionZy tends to the limita/l, with l
the wavelength of the particle and cosZy'cos~a/l!. If we
denote by (2y* ,y* ) a finite interval of the real axis where
y'd, the integral of cosZy can be approximated by

E
2`

`

cosZydy'E
2y*

y*
cosZydy1aE

2`

`

dy2aE
2y*

y*
dy,

~15!

with a5cos~a/l!.
Clearly, the first and third integrals of the above expres-

sion are finite. Thus, when the normalization factorN is
taken into account, the count rate for particle 1 becomes

n1~x!5const3~11a cosZx!. ~16!

Note that this result, because of the presence of the normal-
ization factorN, is exact. A similar result holds for particle
2.

Finally we shall demonstrate that, simultaneously, there is
a two-particle interference phenomenon. We say that there is
a two-particle interference phenomenon when the coinci-
dence count rate differs from the product of the count rates
for one-particle interference, that is,n(x,y)Þn1(x)n2(y).
The individual count rates aren1(x);~11a cosZx! and
n2(y);~11a cosZy!. Comparing with Eq.~9! we see that
n(x,y)Þn1(x)n2(y) and, therefore, we deduce that there is a
genuine two-particle interference phenomenon. We have es-
tablished the simultaneous existence of one- and two-particle
interference phenomena in the gedanken two-particle, two-
slit experiment. This result shows that the EFR cannot be
applied to this experiment.

There are also two alternatives for every particle, to pass
by one or the other of the slits. However, the observation
made about the correlated particle, which could be used to
determine the alternative taken by the other member of the
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pair, is simultaneous to the interaction of the particle with the
diffraction grating. This interaction is the physical mecha-
nism that combines the amplitudes of the two alternatives.
To destroy the interference, the determination of the alterna-
tive actually taken must be prior to the physical combination
of the alternatives. Moreover, any measurement made upon
the correlated particle in the interval between the emission of
the particles and the arrival to the screens does not determine
the slit through which a particle passes. In effect, the deter-
mination of the position of a particle, measuring the position
of the correlated particle, is compatible with the two alterna-
tives, because the wavelength of the particle is comparable to
the separation between the slits.

The physical interpretation of the examples presented by
Horne et al. @2# and Jaegeret al. @3# is very different. A
source emits pairs of particles, which propagate in narrow
beams, that is, beams whose extent in the two axes perpen-
dicular to the direction of propagation is small. The typical
longitude characterizing this extent is always much smaller
than the typical separation of the different beams~with the
exception of the region where beams intersect!. We can
speak about well-defined paths that remember closely classi-
cal trajectories. In the interval between the emission of the
particles and the interaction with the macroscopic beam
splitter or the intersection of the beams, it is possible to
determine, using the correlated member of the pair, if a par-
ticle enters a particular beam. One can distinguish between
the different paths, and use this information to determine the
path of the other particle.

These differences can be seen more clearly by comparing
the experiment presented here to those proposed by Ghosh
and Mandel@7#. This experiment bears a strong resemblance
to the two-slit experiment, presenting also a continuum of
outcomes for each particle. Horneet al. @2# have discussed a
more general class of similar experiments: several beams as-
sociated with two photons intersect in one or two small re-
gions, where miniature detectors are placed at variable posi-
tions. An essential difference exists between these
arrangements and the two-slit experiment. In the experiments
of Refs.@2# and@7# the beams are described to good approxi-
mation by correlated plane waves. The possibility of using a
description based on plane waves is related as much to the
beams’ propagation as narrow beams as to the form in which
the beams are combined. As is well known, if the particles
are described by plane waves at times previous to the over-
lap, the particles have well-defined directions and their paths
can be defined. Moreover, except in the overlap regions, the
beams are well separated. According to our former discus-
sion, the EFR can be applied. At times subsequent to the
overlap, as shown in Ref.@2#, the one-particle count rate
derived from a correlated plane-wave function is constant;
according to the EFR there is no one-particle interference~as
has been experimentally shown in Ref.@7#!. On the other
hand, in the two-slit experiment~in the semiclassical ap-
proximation used here! the wave functions, at times previous
to the combination of amplitudes, are plane waves along the
classical trajectories~Scl5px/2!; you can define a path.
However, according to our previous discussion, the classical
trajectories are not well separated and the EFR cannot be
applied. Now, the superposition of amplitudes is done in a
way that is completely different from that of the former ex-

periment. A macroscopic instrument, the diffraction grating,
is used to combine the probability amplitudes, instead of the
simple overlap of beams~without the aid of any macroscopic
device! presented in Refs.@2# and@7#. After the combination,
the wave function is no longer the superposition of two-
particle plane wave functions. For instance, the first expo-
nential in Eq.~8! can only be considered as locally plane
whenx@d andy@d, which gives exp[ip(x1y)/2\]. In the
points where this local two-particle plane-wave function can
be used, the one-particle count rates are constant. In the rest
of the points, we have one-particle fringes.

This analysis shows that when the problem is considered
in the Schro¨dinger form, the possibility of describing the
beams by well-separated plane waves is essential in order for
the EFR to be applicable. We shall return to this point in the
Discussion.

III. VISIBILITY AND DISTINGUISHABILITY

The simultaneous appearance of one-particle and two-
particle interferences was already described by Jaegeret al.
@3#. However, the results obtained by these authors relative
to the complementarity between the two types of interference
do not hold in the two-slit experiment. In order to justify this
point, we shall calculate the visibilities in our example.
Moreover, to properly compare the results of both studies,
we shall also analyze the relationship between the distin-
guishability of one particle and the visibility of one-particle
interference.

To carry out this analysis we use an initial entangled state
that is more general than those given by Eq.~1!. Let the
initial state be

c05Ac1A
0 c2D

0 1Bc1B
0 c2C

0 . ~17!

In order to simplify the mathematical analysis, we suppose
that A andB are real and positive. Then,A21B251. Fol-
lowing the steps of the previous section we can easily obtain
the joint-detection probability,

n~x,y!5const3@112AB cos~Zx1Zy!#. ~18!

On the other hand, the count rate for particle 1 is

n1~x!5const3~112ABa cosZx!. ~19!

The definition for the one-particle visibility is

Vi5
ni
max2ni

min

ni
max1ni

min . ~20!

To evaluate Eq.~20! we need an explicit expression for
ni
max and ni

min. We restrict the study to the interval 0<a/
l<p. We must consider separately two cases,a>0 and
a,0.

~i! a>0, 0<a/l<p/2:

ni
max5const3~112ABa!. ~21a!

and

ni
min5const3~112ABa2!. ~21b!
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~ii ! a,0, p/2,a/l<p :

ni
max5const3~112ABa2! ~21c!

and

ni
min5const3~112ABa!. ~21d!

To obtain these results we have taken into account that
uZxu<a/l. Combining Eqs.~20! and~21! we obtain the vis-
ibilities in the two intervals:

Vi5
AB~a2a2!

11AB~a1a2!
~22a!

for a>0, and

Vi5
AB~a22a!

11AB~a1a2!
~22b!

for a,0.
Using these results we can show that in some cases the

complementarity relation between visibilities derived by Jae-
geret al.does not hold. For instance, if we takeA5B51/&
anda/l5p, we obtainVi51. Any realistic definition for the
visibility of two-particle fringes must give a positive value
~V12.0! for the nonconstant pattern represented by Eq.~18!.
Therefore, V i

21V 12
2 .1. That is incompatible with the

complementarity relation of Jaegeret al.
The above example is not the only case where the

complementarity relation does not hold. To continue the
analysis we must define the two-particle visibility. First, we
must define a corrected joint-detection probabilityn* . As
discussed in Ref.@3#, the mathematical expression ofn*
must be of the formn2n1n21cte @see Eq.~33! of Ref. @3##.
If we take const50.475 in Eqs.~18! and~19! ~this is equiva-
lent to a normalization of the fringe pattern!, n* reads

n*51.41@112AB cos~Zx1Zy!#

2~112ABa cosZx!~112ABa cosZy!. ~23!

A rationale for the termcte51.4 in the above equation is
the fact that this value is the least real number, such thatn*
is non-negative for all wave functions of the form of Eq.
~17!. Analogously to Eq.~20!, visibility V12 can be defined in
terms ofn* . We have studied numerically the relation be-
tween both visibilities. For instance, forA50.57 anda/l
53.1, V 1

21V 12
2 51.58; for A50.53 and a/l52.5,

V 1
21V 12

2 51.01; and for A50.5 and a/l53.1,
V 1

21V 12
2 51.49. There is a large interval of values ofA and

a/l in which V 1
21V 12

2 >1. For instance, fora/l5p, this
inequality holds for anyA in the interval@0.36, 0.77#.

The above analysis shows that, in general, the comple-
mentarity relation of Jaegeret al. is not valid in the two-
particle two-slit experiment. This result indicates that the
physical arrangement considered in this paper is not included
in the analysis of these authors. However, the numerical
study shows that a new complementarity relation holds,
namely,

V12
2 1Vi

2,1.59. ~24!

The value of the upper bound is only valid for const51. For
other values of this constant we would have obtained differ-
ent values of the bound. However, for any choice of the
constant the bound is always larger than 1.

To understand the difference between the two comple-
mentarities, we must describe the relationship between en-
tanglement and one-particle visibility. This relationship is
based on two processes of interaction of the particle:~i! the
interaction of the particle and the interferometer~passive
lossless transducers, two-slit diffraction gratings, etc!; ~ii ! the
observation of the interference pattern by the interaction of
particle and detector.

First, we describe process~i!: the interaction of the par-
ticle and the interferometer is an event that can occur in
several alternatives ways. The interference is generated be-
cause the probability amplitude is the sum of the probability
amplitudes for each alternative. If the wave function of the
particle is entangled and the EFR can be applied, some~or
all! of these alternatives do not contribute to the probability
amplitude. The interference is partially~or completely! lost.

Now, we describe process~ii !: the phase information be-
tween the basis wave functions of every particle in an en-
tangled state is carried by correlated wave functions of the
companion particle. Therefore, observations made only upon
the first particle cannot fully extract the phase information.

Processes~i! and~ii ! explain the limitations on the values
of the one-particle visibility. The more entangled the two-
particle wave function is, the stricter is the bound on the
one-particle visibility. On the other hand, a high degree of
entanglement entails high two-particle fringe visibility.

The difference between the two complementarities now
becomes clear. The EFR cannot be applied to the two-slit
experiment, process~ii ! is the only restriction entailed by
entanglement. On the other hand, in the family of states con-
sidered by Jaegeret al. the EFR is valid, and processes~i!
and ~ii ! restrict the visibility. The bound is more stringent
and the complementarity relation is stricter than in the two-
slit experiment.

Jaegeret al. @4# have also formulated and demonstrated
another interferometric complementarity. This new comple-
mentarity relates the distinguishabilityD of the path of
propagation of a particle to the fringe visibilityV1 when
amplitudes from two paths are combined. According to the
terminology of Jaegeret al. the state represented by Eq.~17!
is a pure entangled state. Using Eqs.~17a! and ~28! of Ref.
@4# we obtain the distinguishability of these statesD~C!51.
This result is valid for any value ofA anda/l. Therefore, as
V1>0 we have

D~C!21V1
2>1. ~25!

This result indicates that if the definition of distinguishability
proposed by Jaegeret al. is used, the relation between dis-
tinguishability and visibility obtained in the two-particle
two-slit arrangement is in marked contrast with the comple-
mentarity relation obtained by these authors.

The definition of distinguishability proposed by Jaeger
et al. is not adequate for problems in which the EFR cannot
be applied. For the state represented by Eq.~17!, D~C!51. A
value of unity represents a situation in which the path of a
particle can be predicted with certainty after observing the
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path of the companion particle. In the two-slit experiment,
we cannot predict the alternative taken by a particle observ-
ing the companion particle. We must use a definition of dis-
tinguishabilityD

*
such thatD

*
~C!,1. Distinguishability is

defined by a function for which the probability of a correct
prediction of the alternative taken by the particle has the
maximum value. We are considering systems in which no
observations on the companion particle yield information for
predicting the alternative of the particle of interest. There-
fore, the strategy of prediction must be based entirely on the
preparation. These are simple preparations in the terminol-
ogy of Jaegeret al. Moreover, Eq.~17! represents a pure
state of the two-particle system, with all the pairs of particles
in the same quantum state. The optimum strategy to predict
the alternatives of one of the particles must be the same as
that used with pure simple states~to predict that particle 1
goes through slitA is equivalent to predicting that the two
particles of the composed system go through slitsA andD!.
Therefore, in this case the adequate definition of distinguish-
ability is

D* ~C!5uA22B2u. ~26!

Using this definition of distinguishability, we recover a
complementarity relation with the one-particle visibility. We
write D

*
2 1V i

25(A22B2)21(2AB1Vi22AB)2511V i
2

2(2AB)2. For a>0, we have the relationa2a2

,11AB~a1a2! that impliesVi,AB andV i
2,(2AB)2. On

the other hand, fora,0 we havea22a<2, which implies
Vi<2AB andV i

2<(2AB)2. Combining all these expressions
we obtain

D* ~C!21Vi
2<1, ~27!

that is, the mathematical expression for the complementarity
between distinguishability and one-particle visibility for the
state represented by Eq.~17!.

Note that Eq.~27! is not equivalent to the complementa-
rity relation for the pure simple case,D21V i

251, obtained
by Greenberger and YaSin@9#. This difference is a new con-
sequence of entanglement. As remarked earlier in the discus-
sion of the complementarity between visibilities, process~ii !
imposes bounds on the one-particle visibility, bounds that do
not act on non-entangled systems.

IV. DISCUSSION

The most important result of this paper is the analysis of a
gedanken experiment in which the EFR cannot be applied. In
addition to the intrinsic interest of this result, we show that it
influences the bounds imposed on the one-particle visibility;
the complementarity relation between the visibilities is modi-
fied. The algorithm to compute the distinguishability of a
particle in an entangled state must also be modified.

The formulation of the EFR makes it clear that the limi-
tation upon the visibility of one-particle interference patterns
is not imposed by the information that the observer has ex-
tracted concerning the particles of interest, but lies in the
information that could in principle be extracted~compatible
with the constraints given by the preparation!. Following this
interpretation, the state or wave function reflects not only
what is known, but also what could be known about the

particle @5#. The two-slit experiment imposes some restric-
tions on this interpretation; the one-particle interference pat-
tern does not disappear, although one can distinguish, in
principle, between the two possible alternatives. The disap-
pearance of the one-particle interference pattern can only be
the result of a measurement made of the particle of interest
and not from the information extracted on the companion
particle. The interpretation based on the possible information
is only valid when one can, in principle, distinguish between
the different alternatives at a time prior to the combination of
the probability amplitudes.

By no means does the possibility of applying the EFR or
the interpretation of the possible information depend on the
fact that the particles are massive or massless. Neutron inter-
ferometry provides an example of interferometry with mas-
sive particles in which the EFR holds. On the other hand, the
interpretation of photon scattering by diffraction gratings is
similar to the analysis of the gedanken two-slit experiment.

The former considerations suggest the convenience of in-
troducing two quantum regimes in the study of interference
patterns in two-particle systems; the dispersive and nondis-
persive regimes. The nondispersive regime is characterized
by the fact that the alternatives of the particles are paths and,
moreover, one can distinguish between these alternative
paths. As remarked earlier, this is equivalent to describing
the different paths by narrow, well-separated beams. There
are interference phenomena, but without dispersion of par-
ticles. In this regime, the particles fulfill the conditions that
assure the validity of the EFR. On the other hand, in the
dispersive regime one can also distinguish between the dif-
ferent alternatives. However, this determination of the alter-
native is simultaneous with the combination of the ampli-
tudes of the different alternatives by the macroscopic
instrument. The information obtained in position measure-
ments prior to this interaction is compatible with both alter-
natives and does not destroy the interference. The EFR can-
not be applied. There is dispersion of particles and the
description based on paths is not adequate.

The above considerations suggest an analogy between
these regimes and the geometric approximation in classical
optics. As is well known, see Ref.@10#, geometric optics
assumes that light travels in rays, that is, narrow beams of
radiation with well-defined directions of propagation. This
approximation partially disregards the wave nature of light,
and is equivalent to describing the electromagnetic waves by
plane waves~if this description is adequate it is possible to
define, at least locally, the direction of propagation!. The
resemblance to the nondispersive regime, in which the beams
are described by narrow beams that recall rays, is clear. The
resemblance is even more compelling in the experiment of
Ghosh and Mandel@7#. As remarked earlier, in this case the
wave functions can be approximated by plane waves. The
results obtained using this approximation~no one-particle
interference, validity of the complementarity between vis-
ibilities! are completely different from those of the two-slit
experiment.

The analogy between some experiments in quantum me-
chanics and the geometric approximation in classical optics
can be viewed as an example of the convenience of using
classical concepts to obtain a conceptual comprehension of
microphysical phenomena~beyond the symbolic description
provided by the mathematical formalism!. This point has
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been frequently emphasized by Bohr@11#.
Another analogy between quantum mechanics and optics

has been frequently presented in the literature. The analogy
can be summarized briefly by saying that classical mechanics
~Hamilton-Jacobi equation! represents the geometrical limit
of quantum mechanics~Schrödinger equation! as\→0. As a
matter of fact, this is the basis of the semiclassical approxi-
mation. However, this analogy is less stringent than those
presented in this paper. In effect, in the semiclassical limit
we obtain wave functions that, in general, are not plane
waves~even locally!, a necessary condition in geometric op-
tics to define directions of propagation and rays. In order to
avoid any misunderstanding between the two analogies, we
shall not designate the nondispersive regime as the geometric
regime, and shall maintain the names of dispersive and non-
dispersive regimes.

A final comment is in order. The method used in this
work can suggest a relationship between the proposal of two
quantum regimes and the use of the semiclassical approxi-
mation. However, such a relationship does not exist. This
can be seen by showing that the results obtained using the
semiclassical approximation and the exact Schro¨dinger equa-
tion are equivalent in relation to the definition of the two
regimes. At any time previous to the combination of the
probabilities of the alternatives, the semiclassical approxima-
tion gives plane waves along the classical trajectories, but
these classical trajectories are not separated enough. In the
case of the exact Schro¨dinger equation, as the separation
between slits is of the same order of magnitude of wave-
length of the particle, the probability distribution of the par-
ticle at points placed between the two slits and between the
source and the slit is clearly different from zero. In any of the
two cases, an observation of the companion particle does not
give useful information about the alternative taken by the
particle. In none of the two approaches can the EFR be ap-
plied. The introduction of the two regimes does not depend
on the use of the semiclassical approximation.

We want to also emphasize the remarkable inequality of
n(x,y)Þn1(x)n2(y). Because the two screensS1 andS2 op-
erate independently, the correlated behavior of particles 1
and 2 manifested in these inequalities is an example of quan-
tum nonlocality.

The mathematical analysis of the two-slit experiment has
been based on the semiclassical approximation. The analysis
presented in the Appendix shows that for particles that do
not interact after the preparation, the two-particle semiclas-
sical method can be easily applied and gives a good approxi-
mation. Then, the two-particle semiclassical method can be a
useful mathematical tool for the class of problems consid-
ered in this paper, which can be decomposed into a set of
free one-particle trajectories.
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APPENDIX

We present in this appendix an explicit discussion of the
semiclassical approximation in the context of two-particle

interferometry. We follow closely the analysis of one-
particle systems that is presented in many textbooks~see, for
instance, Ref.@12#!. For the sake of mathematical simplicity
we shall only discuss the case of one-dimensional systems.
The Schro¨dinger equation for two particles of massesm1 and
m2 that do not interact after the preparation is

i\
]C

]t
52

\2

2m1

]2C

]x1
2 2

\2

2m2

]2C

]x2
2 1V1~x1!C1V2~x2!C.

~A1!

Let us now consider the case where the potentials are slowly
varying and try a solution of the formC5N exp~iS/\!, with
N a constant. As\→0 represents the classical limit, we must
expandS in terms of Planck’s constant:

S5S01\S11\2S21••• . ~A2!

Substituting this expression into Eq.~A1! we obtain the
equations that determine theS1’s. The equations forS0 and
S1 are

]S0
]t

1
1

2m1
S ]S0

]x1
D 21 1

2m2
S ]S0

]x2
D 21V1~x1!1V2~x2!50

~A3!

and

]S1
]t

1
1

2m1

]2S0
]x1

2 1
1

2m2

]2S0
]x2

2 1
1

m1

]S1
]x1

]S0
]x1

1
1

m2

]S1
]x2

]S0
]x2

50. ~A4!

Equation ~A3! is the Hamilton-Jacobi equation for a two-
particle system. Therefore,S0 is the classical action. In the
stationary case this action becomes

S05E p1
cl~x1!dx11E p2

cl~x2!dx22Eclt. ~A5!

We can also obtain Eq.~A5! by direct calculation. In a sta-
tionary system the action isS052Eclt1S0* . The energy is
the sum of the energy of the two particles,Ecl5E1

cl1E2
cl .

Then, using Eq.~A3!, we have

1

2mi
S ]S0*

]xi
D 21Vi~xi !5Ei

cl ~ i51,2!. ~A6!

The two equations~A6! are equivalent to Eq.~A5!. The
semiclassical approximation is acceptable as long as the
terms in Eq.~A3! are smaller than the terms in Eq.~A4!
~and, of course, the terms in the equations forS2, . . .!. We
compare, for instance, (]S0/]x1)

2/2m15~p1
cl!2/2m1 and

\(]2S0/]x 1
2)/2m15\~dp1

cl/dx1!/2m1. This condition is the
usual one in one-particle systems

Udl i*

dxi
U!1, ~A7!

wherel*5l/2p. The two equations~A7! indicate that the
wavelengths of the two particles must vary slowly in lengths
of the same order of magnitude of the wavelength.
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Now, however, we must also compare the crossed terms
~]S0/]x1 and ]2S0/]x 2

2 . . .!. Two new conditions emerge
from this analysis,

Udl i*

dxi
U! Ej

cl

Ei
cl , ~A8!

where i51,2 and iÞ j . When E1
cl'E2

cl the two conditions
~A8! are automatically fulfilled because of Eq.~A7!. On the

other hand, if one of the two energies is much larger than the
other, for instance,E1

cl@E2
cl , we have a new condition

udl1* /dx1u!E2
cl/E1

cl . This new condition defines a new
length scale for the variation of the wavelength.

In the system studied in this paper all the conditions, Eqs.
~A8! and~A7!, are fulfilled. Equation~A7! holds because the
semiclassical trajectories can be decomposed into free-
particle trajectories. Moreover, the two energies are equal,
E1
cl5E2

cl , and Eq.~A8! is equivalent to Eq.~A7!.
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