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Stationary direct perturbation theory of relativistic corrections
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The stationary variant of direct perturbation theory of relativistic effects is presented. In this variant neither
the unperturbed~nonrelativistic! equation nor the equations for the relativistic corrections are solved exactly,
but each of them is replaced by the condition that a certain functional becomes stationary. Letc05~w0,x0! be
the four-component spinor with modified metric in the nonrelativistic limit andc̄25~w2,x2! the leading rela-
tivistic correction ofO(c22), then one can define functionalsF0~w0,x0! andF4~w2,x2! called respectively the
Lévy-Leblond and the Rutkowski-Hylleraas functional, such that stationarity ofF0 with respect to variation of
w0 andx0 determinesw0 andx0, and stationarity ofF4 with respect to variation ofw2 andx2 determinesw2 and
x2. The unperturbed~i.e., nonrelativistic! energyE0 as well as the leading relativistic correctionc22E2 are
expressible throughw0 and x0 while for the next higher correctionsc24E4 and c26E6 , w2 and x2 are also
needed. Either of the two functionalsF0 andF4 can be decomposed into two contributions, the error of one of
which is>0 while that of the other is<0. An upper-bound property is obtained if the error of the second part
vanishes. A strict variation perturbation theory requires that the approximatew̃2 andx̃2 reproduce the behavior
of the exactw2 and x2 near a nucleus, which implies terms in lnr . If one regularizesw̃2 one must also
regularizex̃2; otherwiseE6 diverges. If one regularizes bothw2 andx2 in the sense of a kinetic balance, one
gets regular results forE4 andE6, but one loses the strict upper-bound property. The Breit-Pauli expression for
E2 is shown to be correct only if the nonrelativistic wave equation has been solved exactly. Otherwise there is
an extra term. Finally the question as to which extent some of the singularities in the perturbation theory of
relativistic effects might be artifacts due to the unphysical assumption of a point nucleus is discussed. It is
shown, however, that these singularities are not removed if one uses realistic extended nuclei. For all atoms,
the critical radiusr c inside of which the nuclear attraction energy is larger than the rest energy of the electron
is larger than the extension of the nucleus.@S1050-2947~96!03907-8#

PACS number~s!: 31.30.Jv, 03.65.Ca
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I. INTRODUCTION

A few years ago@1,2# the perturbation theory of relativ
istic effects was analyzed. A main message was that adirect
perturbation theory~DPT! can be formulated, in which the
spurious singularities~in the presence of a Coulomb pote
tial! that arise in the more traditional perturbation treatme
are avoided, e.g., in the one based on the Foldy-Wouthuy
transformation@3#.

DPT has essentially three roots:
~a! Sewell @4# proposed the change in the metric th

makes ac21 expansion of the Dirac equation possible. Ho
ever, this work was forgotten for decades.

~b! Gesztesyet al. @5# have shown that the resolvent o
the Dirac operator in the presence of a Coulomb potentia
holomorphic inc21, which implies that the bound-state e
genvalues are analytic inc21 and the eigenfunctions are als
not necessarily pointwise in space, but in the sense of a
bert space norm. Inspection of the eigenfunctions of H-l
ions, which are known exactly, reveals that these are ana
in c21 everywhere except at the position of the nucle
where they have a well-known weak singularity as functio
of r @1,6# ~see Appendix B!.

~c! Rutkowski @6,7# has, in an unconventional but inge
neous way, found a scheme which has led to the same w
ing equations as those of Sewell@4# or Gesztesyet al. @5#,
and he was the first to perform nontrivial calculations.

An analysis of these approaches and their close relat
ships can be found in Refs.@1# and @2#. Another interesting
541050-2947/96/54~2!/1183~16!/$10.00
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method proposed by Moore@8# that looks similar at first
glance must be regarded as a side track. Recently the
was combined by Sadlejet al. @10# with the regularization
method of Changet al. @9#.

In the formulation of the DPT as preferred by the pres
author @1# the essential step is a change of the metric
four-component spinor space@4#. One replaces the bispino
c5~w,x! by a modified bispinor

c̄5S w̄
x̄ D5S w

cx D , ~1.1!

wherec is the velocity of light in atomic units, in which it is
equal to the inverse of the fine-structure constanta. In terms
of c̄ the Dirac equation (D2mc2)c5Ec becomes

D̄c̄5H S V
s•p

s•p
22mD1

1

c2 S 0
0

0
VD J S w̄

x̄ D
5EH S 1

0
0
0D1

1

c2 S 0
0

0
1D J S w̄

x̄ D5ESc̄ ~1.2!

~whereV is the potential,p the momentum, ands the vector
consisting of the three Pauli matricessx,sy,sx!. It has the
natural nonrelativistic limit

D0c05S V
s•p

s•p
22mD S w0

x0
D5E0S 1

0
0
0D S w0

x0
D5E0S0c0 ,

~1.3!
1183 © 1996 The American Physical Society
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1184 54WERNER KUTZELNIGG
which is nothing but the Le´vy-Leblond equation@11#, which
had originally been proposed as the Galilei-invariant fi
equation for a spinor field. The natural perturbation para
eter in~1.2! is c22; i.e., a direct expansion in powers ofc22

of ~1.2! is possible~whence the name ‘‘direct perturbatio
theory’’ @1#!.

In previous papers@1,2,12# we have used the notationsc̃
andx̃ for what is now symbolized asc̄ andx̄. We make this
change of notation, because we want to reserve here the
for approximatewave functions and energies.

The expansions ofE, c̄, w, andx̄ in powers ofc21 are

E5 (
k50

`

c22kE2k , ~1.4a!

c̄5 (
k50

`

c22kc2k , ~1.4b!

w5 (
k50

`

c22kw2k , x̄5 (
k50

`

c22kx2k . ~1.4c!

Previously@1,2# theexactformulation of perturbation theory
was considered, i.e., it was assumed that both the un
turbed Schro¨dinger equation and the inhomogeneous eq
tions of the various orders of perturbation theory were sol
exactly. This is hardly realized in practice, where one rath
solves both types of equations only approximately. The m
common approximations are those based on replacin
Schrödinger ~or related! equation by the equivalentstation-
arity principle, but to achieve stationarity only for a limite
set of possible variations of the wave function. This statio
ary approach to DPT is the topic of the present paper.

A compact formulation of stationary perturbation theo
in thenonrelativistictheory has recently been given@13# in a
Lie-algebraic language. One of the essential messages o
tionary perturbation theory is that under a certain condit
the essential theorems of ‘‘exact’’ perturbation theory~e.g.,
that the first-order energy correction is equal to the expe
tion value of the perturbation with the unperturbed wa
function! remain valid. The condition is that all perturbatio
corrections are formulated in terms of a ‘‘variational group
with respect to which the unperturbed energy expecta
value is stationary. Unfortunately, this Lie-algebraic form
lation is not trivially applicable to the perturbation theory
relativistic corrections, because it is based on a unitary tra
formation between the unperturbed and the perturbed e
tion. Such a unitary transformation does exist in the Fol
Wouthuysen transformation, but this introduces spurio
singularities and is therefore not recommended@2#.

We must hence formulate stationary perturbation the
of relativistic effects in a more pedestrian way, in the sp
of the direct-perturbation theory, thus being led to ‘‘statio
ary direct perturbation theory’’~SDPT!. This will be done in
Sec. II.

The key quantities of SDPT are two functiona
F0(w̃0 ,x̃0) andF4(w̃2 ,x̃2), which are made stationary wit
respect to variations ofw̃0 ,x̃0 ,w̃2 ,x̃2 , wherew̃0 ,x̃0 ,w̃2 ,x̃2
are trial functions that approximate their counterpa
w0,x0,w2,x2 as defined in~1.4!. In defining auxiliary two-
component spinors,
-
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ṽk5x̃k2
1

2m
s•pw̃k , k50,2 ~1.5!

one can reformulate these functionals in terms ofw̃0 andṽ0
or w̃2 and ṽ2, respectively, as is outlined in Sec. III. Thes
new functionals decompose into independent functionals
w̃2k and ṽ2k,

F̃0~ w̃0 ,ṽ0!5F01~ w̃0!1F02~ṽ0!, ~1.6a!

F̃4~ w̃2 ,ṽ2!5F41~ w̃2!1F42~ṽ2!1F43, ~1.6b!

such thatF01(w̃0) or F41(w̃2) has a minimum whenw̃05w0
or w̃25w2, while F02(ṽ0) or F42(ṽ2) has a maximum for
ṽ05v0 or ṽ25v2 ~F43 is a constant!. The maximum ofF02
is reached forv050 and it is trivial to construct a functiona
of w̃0 that is an upper bound for the exactE0, such thatin the
nonrelativistic limitthe theory becomes variational, provide
one choosesṽ05v050.

If a functional to be made stationary is an upper bound
the corresponding exact value, one refers to avariational
approach. A variational perturbation theory of relativistic e
fects, not only in the nonrelativistic limit, would be desi
able. This could, e.g., be achieved if one could find con
tions under whichF̃4(w̃2 ,ṽ2) is an upper bound to the exac
E4. Such a sufficient condition has been found by Rutkow
@6#, namely

x̃25
1

2m
$s•pw̃21~V2E0!x̃0%. ~1.7!

Rutkowski was also able to show that this very conditi
~1.7! leads todivergenceof Ẽ6 for the H atom ground state
provided that aw̃2 regular at the position of the nucleus h
been used.

The clarification of this dilemma is one of the topics
the present study and is treated in Sec. IV. We shall, in f
show that the problem lies in thecombinationof the Rut-
kowski condition ~1.7! with the choice of aregular trial
function w̃2, in the presence of a Coulomb singularity. If th
trial function w̃2 has the correct behavior atr→0, condition
~1.7! leads to well-behavedẼ4 and Ẽ6, with Ẽ4 an upper
bound toE4. If, on the other hand,w̃2 is regular atr 50, ~1.7!
must not be applied, because it makesx̃2 too singular; one
must rather regularizex̃2 as well. Then one loses the stric
upper-bound property forẼ4, but the error ofẼ4 is smaller
than if one had applied the Rutkowski condition, andẼ6 is
well behaved. Details are found in Sec. IV.

The well-known kinetic balance@14–17# is one way of
such a regularization ofx̃ for a regularw̃. Contrary to a
common belief, it does not guarantee that the expecta
value of the Dirac operator is an upper bound to its ex
counterpart. This only holds up toO(c24), as originally
pointed out by Stanton and Havrilak@14#.

Although upper-bound properties in anon-perturbative
context are not the topic of this paper, its results have so
relevance for this topic, with respect to which, in the existi
literature, claims~see, e.g., Ref.@18#! are more common than
rigorous proofs. One of the few examples of
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54 1185STATIONARY DIRECT PERTURBATION THEORY OF . . .
strict variational approach is that of Hill and Krauthaus
@19#, which will, however, hardly be applicable beyond on
electron systems.

The problems studied in this paper are related to the
gularity of the potential created by a point nucleus. Nev
theless, little changes if one replaces the point nucleus b
realistic finite nucleus. This is the subject of Sec. V.

II. STATIONARY DIRECT PERTURBATION THEORY

We want to make the energy expectation value of
Dirac operator~1.2! with modified metric

E5^c̄uD̄uc̄&5^wuVuw&12 Rê wus•pux̄&22m^x̄ux̄&

1c22^x̄uVux̄& ~2.1!

stationary, subject to theunitary normalization condition~for
an alternative derivation, in which unitary normalization
not assumed, see Appendix A!,

^c̄uc̄&5^wuw&1c22^x̄ux̄&51 ~2.2!

for all c22 in the neighborhood ofc2250. To this end, we
expandE, w, and x̄ in powers ofc22 as in ~1.4!. Ordering
powers ofc22 leads to

E05^c0uD0uc0&5^w0uVuw0&12 Rê w0us•pux0&

22m^x0ux0&, ~2.3a!

E252 Rê c0uD0uc2&1^c0uD2uc0&

52 Rê w0uVuw2&12 Rê w0us•pux2&

12 Rê w2us•pux0&24m Rê x0ux2&

1^x0uVux0&, ~2.3b!

E452 Rê c0uD0uc4&1^c2uD0uc2&12 Rê c0uD2uc2&

52 Rê w0uVuw4&1^w2uVuw2&12 Rê w0us•pux4&

12 Rê w2us•pux2&12 Rê w4us•pux0&

24m Rê x0ux4&22m^x2ux2&22 Rê x0uVux2&,

~2.3c!

E652 Rê c0uD0uc6&12 Rê c2uD0uc4&1^c2uD2uc2&

52 Rê w0uVuw6&12 Rê w2uVuw4&12 Rê w0us•pux6&

12 Rê w2us•pux4&12 Rê w4us•pux2&

12 Rê w6us•pux0&24m Rê x0ux6&24m Rê x2ux4&

12 Rê x0uVux4&1^x2uVux2&, ~2.3d!

etc. Thewk andxk have to satisfy the unitary normalizatio
conditions

^w0uw0&51, ~2.4a!

2 Rê w0uw2&1^x0ux0&50, ~2.4b!

2 Rê w0uw4&1^w2uw2&12 Rê x0ux2&50, ~2.4c!
r
-

n-
-
a

e

2 Rê w0uw6&12 Rê w2uw4&1^x2ux2&12 Rê x0ux4&50.
~2.4d!

Note that we takec21 ~which in atomic units is equal to the
fine-structure constanta! as the formal perturbation param
eter; one might as well have takenc22 as perturbation pa-
rameter, then what we callE2 ,E4 ,E6 , respectively, would
becomeE1 ,E2 ,E3 Rutkowski @6,7# makes, e.g., the latte
choice. One advantage of our counting is that terms of o
order inc21, which arise, e.g., for QED corrections, are ea
ily symbolized.

All functions and energies in Eqs.~2.1!–~2.4! should
carry a tilde to indicate that we consider approximate tr
rather than exact functions. In order not to overcharge
notation we have omitted the tilde. Of course Eqs.~2.1!–
~2.4! are also valid for the exact wave functions and energ
From now on we will put the tilde whenever we refer to tri
functions~which include the exact ones as a special case!.

Condition for stationarity of~2.3a! subject to the normal-
ization condition~2.4a! is

^dw̃0u~V2l!w̃01s•px̃0&50, ~2.5a!

^dx̃0us•pw̃022mx̃0&50. ~2.5b!

In ~2.5a! l enters as a Lagrange multiplier, which is eas
identified with the energy expectation valueẼ0 as defined by
~2.3a!.

The functional made stationary by the conditions~2.5! is

F0~ w̃0 ,x̃0!5^w̃0uV2luw̃0&12 Rê w̃0us•pux̃0&

22m^x̃0ux̃0&. ~2.6!

We shall call F0(w̃0 ,x̃0) the ‘‘Lévy-Leblond functional’’
since it is stationary for all possible variations ofw̃0 andx̃0 if
w̃0 and x̃0 satisfy the Le´vy-Leblond equation~1.3!.

It is easily seen thatF0 is not bounded from below~unlike
the functional̂ w̃0uH02luw̃0& corresponding to the nonrela
tivistic Schrödinger equation!. Consider, e.g., a one-electro
atom and expand both trial functionsw̃0 and x̃0 in an s1/2
basis. Then the matrix elements ofs•p vanish and we get

F0~ w̃0 ,x̃0!5^w̃0uV2luw̃0&22m^x̃0ux̃0&. ~2.7!

This functional can become arbitrarily negative. We see t
the Lévy-Leblond functional~2.6! suffers from the possibil-
ity of a variational collapse@17,20# to the same extent a
does the expectation value of the Dirac operator. That
variational collapseof the Dirac equation persists in the no
relativistic limit has probably first been observed by Schw
and Wechsel-Trakowski@21# and by Mark and Schwarz@22#.

We shall study the extremal properties of the function
~2.6! in more detail in Sec. III. At the moment we use
simple argument to avoid the variational collapse witho
making additional assumptions. We argue that it is trivial
satisfy ~2.5b! for all possible variationsdx̃0 ~not just those
expressible in the given basis!, namely by choosing

x̃05
1

2m
s•pw̃0 . ~2.8!

Inserting this into~2.5a! changes this to

^dw̃0uH02luw̃0&50, H05T1V. ~2.9a!
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1186 54WERNER KUTZELNIGG
This must at least hold fordw̃0 proportional tow̃0; hence

l5Ẽ05^w̃0uH0uw̃0&. ~2.9b!

Now Ẽ0 is the expectation value of the nonrelativistic Ham
tonian and is therefore bounded from below and~2.8! is the
corresponding stationarity condition.

By eliminating the variational collapse of the Le´vy-
Leblond functional in this way we have avoided the var
tional collapse of the Dirac equation, since variational c
lapse of a relativistic calculation means by definition that o
misses the correct nonrelativistic limit@17,20#. This proce-
dure is often referred to as kinetic balance@14–17#. Devia-
tions from an upper bound can now only arise to high
orders inc22 @14#.

It looks somewhat unbalanced to satisfy~2.5b! for all pos-
sibledx̃0, but ~2.5a! only for a limited set of variationsdw̃0.
Fortunately this unbalance does not affect the behavior ow̃0
andx̃0 at the position of a nucleus, where bothw0 andx0 are
regular. This will no longer be the case for the next-high
order functionsw2 andx2 ~see Sec. IV!.

We now make the assumption, which is an essential
gredient of stationary perturbation theory@13#, namely that
the higher-order wave functionsw̃2, w̃4, etc., are expandabl
in the basis with respect to whichẼ0 is stationary@6,13#,
which means, e.g., that~2.9a! holds withdw̃0 replaced byw̃2
or w̃4, etc, e.g.,

^w̃2uH02Ẽ0uw̃0&50. ~2.10!

Then ~2.3b! to ~2.3d! will be replaced by

Ẽ252 Rê w̃0uH0uw̃2&1^x̃0uVux̃0&

52Ẽ0 Rê w̃0uw̃2&1^x̃0uVux̃0&5^x̃0uV2Ẽ0ux̃0&.

~2.11a!

Ẽ452 Rê w̃0uH0uw̃4&1^w̃2uVuw̃2&12 Rê w̃2us•p&ux̃2&

22m^x̃2ux̃2&12 Rê x̃0uVux̃2&

5^w̃2uV2Ẽ0uw̃2&12 Rê w̃2us•pux̃2&22m^x̃2ux̃2&

12 Rê x̃0uV2Ẽ0ux̃2&. ~2.11b!

Ẽ652 Rê w̃2uV2Ẽ0uw̃4&12 Rê w̃2us•pux̃4&

12 Rê w̃4us•pux̃2&24m Rê x̃2ux̃2&

12 Rê x̃0uV2Ẽ0ux̃4&1^x̃2uV2Ẽ0ux̃2&. ~2.11c!

Obviously Ẽ2 is expressible in terms ofx̃0 only, as in the
exact theory. For~2.11a! to be valid it is not necessary t
assume thatw̃0 is an exact solution of the Schro¨dinger equa-
tion.

Ẽ4 is expressed in terms ofx̃0 ~which we know already!
andx̃2 as well asw̃2, with respect to variations of which w
have to makeẼ4 stationary, subject to the normalization co
dition ~2.4b!; i.e., the functional to be made stationary is
-
-
e

r

-

-

F4~ w̃2 ,x̃2!5^w̃2uV2Ẽ0uw̃2&12 Rê w̃2us•pux̃2&

22m^x̃2ux̃2&12 Rê x̃0uV2Ẽ0ux̃2&

2Ẽ2$2 Rê w̃2uw̃0&1^x̃0ux̃0&%

5^c̃2uD02Ẽ0S0uc̃2&12 Rê c̃0uD22Ẽ0S2

2Ẽ2S0uc̃2&2Ẽ2^c̃0uS2uc̃0&. ~2.12!

This may be regarded as the Hylleraas functional of a
tionary direct relativistic perturbation theory. We propose
call it the Rutkowski-Hylleraas functional since it has fir
been studied by Rutkowski@6#, though in a somewhat differ
ent notation ~a precursor to that of direct perturbatio
theory!.

Conditions for the stationarity of~2.12! are

^dw̃2u~V2Ẽ0!w̃21s•px̃22Ẽ2w̃0&50, ~2.13a!

^dx̃2us•pw̃222mx̃21~V2Ẽ0!x̃0&50. ~2.13b!

We shall always require that variation ofw̃2 ~or x̃2! includes
variation of a factor by whichw̃2 ~or x̃2! is multiplied, which
is the most trivial case of a linear variation parameter. S
tionarity with respect to such a parameter implies that~2.13!
holds withdw̃2 ~or dx̃2! replaced byw̃2 ~or x̃2!.

This allows us to rewrite the stationaryF4(w̃2) alterna-
tively as

Ẽ45Rê x̃0uV2Ẽ0ux̃2&2 1
2 Ẽ2^x̃0ux̃0& ~2.14!

or as

Ẽ452^w̃2uV2Ẽ0uw̃2&22 Rê w̃2us•pux̃2&

12m^x̃2ux̃2&1Ẽ2^x̃0ux̃0&

52^c̃2uD02Ẽ0S0uc̃2&1Ẽ2^c̃0uS2uc̃0&. ~2.15!

The result~2.14! is formally identical to that which one get
in the exact perturbation theory, for the same~unitary! nor-
malization@1,2,6#, just with the exactx0 andx2 replaced by
the approximative ones.

We can now use the stationarity conditions~2.13! for F4
to simplify Ẽ6 as given by~2.11c!. Requiring thatw̃4 andx̃4
be expandable in the bases used for the expansion ofw̃2 and
x̃2 respectively, we get

Ẽ65^x̃2uV2Ẽ0ux̃2&2Ẽ2$^w̃2uw̃2&12 Rê x̃0ux̃2&%. ~2.16!

Again, we reproduce the result for the exact perturbat
theory @1,2,6# in unitary normalization.

The critical step prior to the construction ofẼ4 andẼ6 is
the determination ofw̃2 andx̃2 from ~2.13!. In analogy to the
solution of ~2.5! one can think of two possibilities.

~a! One solves~2.13b! exactly, i.e., chooses the conditio
~1.7!.

~b! One expandsx̃2 in a basis~usually of functions regu-
lar at r 50! and solves~2.13a! and ~2.13b! via their matrix
representations.

Rutkowski @6# has realized that~1.7! guarantees that the
approximateẼ4 is an upper bound to the exactE4 and has
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therefore favored choice~a!. However, he has also found th
for this very choice~1.7! Ẽ6 diverges, provided thatw̃2 was
chosen regular at the origin. This observation disquali
choice ~a! and lets choice~b! appear to be preferable, i
particular, since thenẼ6 does not diverge andẼ4 comes out
closer to the exactE4 ~although it is no longer a rigorou
upper bound toE4!. We have done our numerical calcul
tions @12,23# entirely in terms of this variant. We shall ana
lyze this problem in more detail in Secs. III and IV.

To conclude this section let us wonder whether
second-order correctionẼ2 given by ~2.11a! can be trans-
formed to the well-known Pauli form. If we insert~2.8! and
apply the turnover rule fors•p—which must be done in the
distribution sense@24#—we can rewrite~2.11a! as

Ẽ25
1

4m2 ^w̃0us•p~V2E0!s•puw̃0&

5
1

8m2 ^w̃0us•p@V,s•p#uw̃0&

1
1

8m2 ^w̃0u@s•p,V#s•puw̃0&

1
1

4m
^w̃0uT~V2E0!1~V2E0!Tuw̃0&

52
1

8m2 ^w̃0u†s•p,~s•p,V!‡uw̃0&

1
1

4m
^w̃0u@T,V2E0#1uw̃0&. ~2.17!

The first term on the last right-hand side~rhs! of ~2.17! can
easily be reformulated to the sum of Darwin and spin-or
terms~for V spherically symmetric!

\2

8m2 ^w̃0u¹2Vuw̃0&2\ K w̃0Us• l
1

r

]V

]r Uw̃0L . ~2.18!

The second term on the last rhs of~2.17! is equal to the
velocity-mass term plus a correction

2
1

2m
^w̃0uT2uw̃0&1

1

4m
^w̃0u@T,H02E0#1uw̃0&. ~2.19!

The correction vanishes if (H02E0)w050, i.e., if w̃05w0,
but is not negligible otherwise. In other words, ifw̃0 is not
the exact nonrelativistic wave function, the expression forẼ2
in terms of the Pauli Hamiltonian is a poorer approximati
than ~2.11a!. This has been confirmed numerically@12#.

One may argue that the correction term even vanishe
(H02E0)w̃0 is not exactly zero, but that the stationarity co
dition ~2.9a! should be sufficient. However, this is usual
not the case. Condition~2.9a! would be sufficient to guaran
tee that the second term in~2.19! vanishes, if the variations
dw0 considered in~2.9a! would include those proportional t
Tw0. In other words, wave functions of the typeTw0 ought
to be included in the basis into which one expandsw0. This
is usually not done, and not even recommended in view
the singularity of these functions.
s

e

it

if

f

III. EXTREMAL PROPERTIES OF THE LEVY-LEBLOND
FUNCTIONAL AND OF THE

HYLLERAAS-RUTKOWSKI FUNCTIONAL

The Lévy-Leblond equation~1.3! is the condition for sta-
tionarity of the functional~2.6! with respect to arbitrary
variations ofw0 andx0. Taking the variations of~2.6! with
respect tow0 and x0 and equating them to zero lead imm
diately to~2.5!. Thel in ~2.5a! plays the role of a Lagrange
parameter, taking care of the normalization ofw0.

In order to study the extremal properties of this function
it is recommended to replacex̃0 by another two-componen
spinor

ṽ05x̃02
1

2m
s•pw̃0 ~3.1!

and to formulateF0 given by ~2.6! in terms ofw̃0 and ṽ0,

F0~ w̃0 ,x̃0!5F̃0~ w̃0 ,ṽ0!5^w̃0uH02luw̃0&22m^ṽ0uṽ0&

5F̃01~ w̃0!1F̃02~ṽ0!. ~3.2!

The tilde onF̃0 ~and analogously later onF̃4! shall indicate
that it is taken as a functional ofw̃0 andṽ0 rather than ofw̃0
andx̃0. It has hence a different meaning than a tilde onw̃, x̃,
or Ẽ.

We see thatF̃0 decomposes into a sum of two indepe
dent functionals, one ofw̃0, the other ofṽ0. One realizes
immediately that

F̃01~ w̃0!5^w̃0uH02luw̃0&>0, ~3.3a!

F̃02~ṽ0!522m^ṽ0uṽ0&<0. ~3.3b!

The stationarity conditions forF̃01 and F̃02 are respectively

^dw̃0uH02luw̃0&50, ~3.3c!

^dṽ0uṽ0&50. ~3.3d!

Stationarity with respect to arbitrary variations ofw̃0 andṽ0
is achieved if

~H02E0!w050, v050. ~3.4!

For w̃05w0 and x̃05x0, F̃01 has its minimum,F̃02 its maxi-
mum. Assume now that we approximate bothw0 by w̃0 and
x0 by x̃0, with w̃0 and x̃0 completely independent, which
implies that the exact v0[0 is approximated by
ṽ05x̃02s•pw̃0/2, which is generally not identically zero
then the error ofẼ0 consists of two parts~for w̃0 normalized
to unity!

DE05Ẽ02E05DE011DE02, ~3.5a!

DE015^w̃0uH0uw̃0&2E0>0, ~3.5b!

DE02522m^ṽ0uṽ0&<0. ~3.5c!

We see that althoughDE0 is not positive semidefinite, it
is easy to enforce that it becomes so, simply by choos
ṽ050 i.e., by enforcing the kinetic balance condition~2.8!
betweenw̃0 and x̃0.
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Let us now try to decompose the Rutkowski-Hyllera
functional ~2.12! in a similar way. We define in analogy t
~3.1!,

ṽ25x̃22
1

2m
s•pw̃2 , ~3.6!

such that~2.12! can be reformulated to

F̃4~ w̃2 ,ṽ2!5F4~ w̃2 ,x̃2!5F̃41~ w̃2!1F̃42~ṽ2!1F̃43, ~3.7!

F̃41~ w̃2!5^w̃2uH02Ẽ0uw̃2&

1
1

2m2 Rê w̃0us•p~V2Ẽ0!s•puw̃2&

22Ẽ2 Rê w̃2uw̃0&, ~3.8a!

F̃42~ṽ2!522m^ṽ2uṽ2&12 Rê x̃0uV2Ẽ0uṽ2&, ~3.8b!

F̃4352Ẽ2^x̃0ux̃0&. ~3.8c!

Stationarity conditions for~3.8! are

K dw̃2U~H02Ẽ0!w̃21
1

4m2 s•p~V2Ẽ0!s•pw̃02Ẽ2Uw̃0L
50, ~3.9a!

^dṽ2u22mṽ21~V2Ẽ0!ux̃0&50. ~3.9b!

Choosingdw̃2 in ~3.9a! proportional tow̃2 implies that

^w̃2uH02Ẽ0uw̃2&5Ẽ2 Rê w̃2uw̃0&

2
1

4m2 Rê w̃2us•p~V2Ẽ!s•puw̃0&.

~3.10a!

and hence

F̃41~ w̃2!52^w̃2uH02Ẽ0uw̃2&<0. ~3.10b!

Similarly we get fordṽ2 proportional toṽ2

2m^ṽ2uv2&5^ṽ2uV2Ẽ0ux̃0&, ~3.11a!

F̃42~ṽ2!52m^ṽ2uṽ2&>0. ~3.11b!

The stationaryF̃41 is negative, the stationaryF̃42 is positive,
while F̃43 is positive as well, sinceẼ2 is negative.

Let us now assume thatw2 andv2 are exact, i.e., makeF̃4
stationary for all variations, and letw̃2 and ṽ2 be some ap-
proximations. Then

F̃41~ w̃2!2F̃41~w2!5^w̃22w2uH02Ẽ0uw̃22w2&>0,
~3.12a!

F̃42~ṽ2!2F̃42~v2!522m^ṽ22v2uṽ22v2&<0,
~3.12b!

i.e., F̃41(w̃2) is an upper bound to its exact counterpart, wh
F̃42 is a lower bound.
We have thus gotten a simple expression for the erro
Ẽ4 , namely,

DE45Ẽ42E45^w̃22w2uH02Ẽ0uw̃22w2&

22m^ṽ22v2uṽ22v2&. ~3.13!

We can, of course, achieve an overall upper bou
i.e., Ẽ42E4.0 if ṽ2 is chosen such thatF̃42 attains its maxi-
mum, which is the case forṽ25v2. We see from~3.9b! that
this means

ṽ25
1

2m
~V2Ẽ0!x̃0 , ~3.14!

which is equivalent to relatingx̃2 andw̃2 via ~1.7!. We have
thus given an alternative proof to that of Rutkowski@6# that
~1.7! guarantees thatẼ4 is an upper bound toE4. We remem-
ber, of course, that for this very choiceẼ6 diverges, provided
that w̃2 is chosen regular at the position of a point nucle
We come back to this problem in Sec. IV.

The decomposition ofx̃2 according to~3.6! into two parts
has allowed us to understand the stationarity properties of
Hylleraas functionalF4 better. However, this decompositio
requires some care, since it is, in some sense, contradic
to our philosophy in previous papers@1,2#. There we have
insisted that in order to avoid singularities, the two contrib
tions to thex2n should never be separated. We see, in fa
that the separation ofE6 along the same lines becomes pro
lematic. Formally we can write, of course

E65E61~w2!1E62~v2!1E63~w2 ,v2!1E64, ~3.15a!

E61~w2!5
1

4m2 ^s•pw2uV2E0us•pw2&2E2^w2uw2&

2
1

m
E2Rê x0us•puw2&22E4Rê w2uw0&,

~3.15b!

E62~v2!5^v2uV2E0uv2&22E2Rê x0uv2&, ~3.15c!

E63~w2 ,v2!5
1

2m
Rê v2uV2E0us•pw2&, ~3.15d!

E6452E4^x0ux0&. ~3.15e!

Unlike for the analogous decomposition ofE4 there is also a
mixed term, both depending onw2 andv2. The main differ-
ence from the decomposition ofE4 is, however, that now all
contributions diverge in the presence of a point nucleus, e
for the exactw2. The decomposition~3.15! can hence only
be legitimate if all integrals are first taken fromr c to ` and
if the limit r c→0 in the sum~3.15a! is taken after all contri-
butions that diverge in this limit have been cancelled. A ge
eralization of the decoupling ofF0 and of F4 and the
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related minimax property is, unfortunately, not possible
the higher-order functionalsF6, etc.

IV. ROLE OF THE REGION NEAR A POINT NUCLEUS

The choice of the trial function in a stationary approach
not fully arbitrary. This function must at least be square
tegrable to all orders in the expansion parameterc21, and the
expectation value of the Dirac operator must also exist to
orders. It is usually not necessary that the trial function s
isfy the same boundary conditions as the exact wave fu
tion. The classical example is a Gaussian trial function
the nonrelativistic ground state of the H atom, which neith
satisfies the correct boundary condition atr→0 nor atr→`
and is nevertheless acceptable. In the context of the pe
bation theory of relativistic effects, the behavior near t
positon of a nucleus matters, because it affects the sq
integrability and the existence of expectation values of
Dirac operator. A careful study of this behavior is hen
necessary.

Since deviations from square integrability or divergenc
of matrix elements only arise in a small neighborho
around a point nucleus, it is sufficient to have a look at t
region. For the sake of simplicity we now consider a on
electron atom, but the generalization to arbitrary on
electron molecules or even to many-electron systems in
Hartree-Fock approximation is straightforward, because
behavior of the exact wave function near any nucleus is
the same type, simply as a consequence of the Coul
singularity @25#. Without explicitly stating this, we conside
in this section always point nuclei.

In Appendix B the behavior of the exact wave function
a c21 expansion near the nucleus is outlined. We repeat
result here for the casek521, l 50. ~The casesk,0 and
l .0 are less critical, since in view of factorsr l in the com-
ponents of the wave functions no singularities of the con
butions to the energy arise to the orders considered here.
casek51, l 51 is somewhat analogous to the casek521,
l 50 discussed here.! The large and small components can
expanded according to~B1! and~B2! and we get, as specia
cases of~B13! and ~B14! for k521,

g05a0~12Zr !1O~r 2!, ~4.1a!
r

s
-

ll
t-
c-
r
r

r-
e
re
e

s

s
-
-
e
e
f
b

e

i-
he

g252a0

Z2

2
lnr 1O~r !, ~4.1b!

g452a0

Z4

8
~ lnr 2 ln2r !1O~r !, ~4.1c!

f 05a0

Z

2
1O~r !, ~4.2a!

f 25a0

Z3

8
~122 lnr !1O~r !, ~4.2b!

f 45a0

Z5

16
~122 lnr 1 ln2r !1O~r ! ~4.2c!

with a0 a common numerical factor~not to be confused with
the atomic unit of length!.

If we expandv in analogy to~B1! and ~B2! as

v5 i h~r !hk
m~q,w,s!, ~4.3a!

h~r !5
1

c
r n@c01c1r 1O~r 2!#5(

k
c22k21h2k~r !,

~4.3b!

the exacth2k become

h050, ~4.4a!

h25
a0Z2

4
r 211O~r 0!, ~4.4b!

h45
a0Z4

16
$r 2122r 21lnr %1O~r 0!. ~4.4c!

We also note that, for a hydrogenlike ion, as a conseque
of the normalization ofg0,

a052Z3/2. ~4.5!

Let us now study the contributions of a region 0,r ,r c
around a point nucleus atr50 to E0 ,E2 ,E4 ,E6 for the exact
functions~so far we do not specifyr c!.
E0 : E
0

r c
g0H0g0r 2dr5E0a0

2E
0

r c

$r 222Zr31O~r 4!%dr5E0a0
2H 1

3
r c

32
Z

2
r c

41O~r c
5!J , ~4.6a!

E2 : E
0

r c
f 0S 2

Z

r
2E0D f 0r 2dr52a0

2 Z3

4 E
0

r c
r @11O~r !#dr52a0

2 Z3

8
r c

21O~r c
3!, ~4.6b!

E4 : E
0

r c
f 0S 2

Z

r
2E0D f 2r 2dr2 1

2 E2E ~ f 0!2r 2dr52a0

Z5

16 E
0

r c

$r 22r lnr %dr1O~r c
3!52a0

Z5

16
r c

2~12 lnr c!1O~r c
3!,

~4.6c!

E6 : E
0

r c
f 2S 2

Z

r D f 2r 2dr1O~r c
3!5a0

2 Z6

64 E
0

r c
~r 24r lnr 14r ln2r !dr1O~r c

3!5a0
2 Z6

64
r c

2~ 3
2 22 lnr c!1O~r c

3!. ~4.6d!
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All these contributions are regular, in spite of the weak s
gularities ing2 and f 2. The contribution toE2 of the region
r ,r c is proportional to the volume of this region, the co
tributions toE4 andE6 are relatively larger than the volum
of the region@noting thatr c is regarded as small and hen
O(r c

2) is larger thanO(r c
3)#.

Let us have a look at the two contributionsF̃41 andF̃42 to
E4, which are given by~3.10b! and~3.11b!. It is convenient
to replace*wTwdt by 1

2*~¹w!2dt to avoid spurious bound
ary terms atr 5r c .

F̃41: 2E
0

r c

$ 1
2 ~¹g2!22E0~g2!2%r 2dr

52a0
2 Z4

8 E
0

r c

$r 221O~r 0!%r 2dr

52a0
2 Z4

8
r c1O~r c

2!, ~4.7a!

F̃42: 2E
0

r c
~h2!2r 2dr5a6

2 Z4

8
r c1O~r c

2!. ~4.7b!

Either contribution is now much larger in absolute value@be-
ing of O(r c)# than their sumE4 @of O(r c

2)#, in which the
O(r c) terms cancel.

We now consider approximate wave functions. As long
g̃2 behaves as~4.1b! and asf̃ 2 is constructed fromg̃2 via
~1.7!, which means

f̃ 252
1

2 H ]

]r
g̃21S Z

r
1E0D f 0J

52a0

Z2

2
r 211a0

Z2

2
r 211O~r 0!

5O~r 0!, ~4.8a!

h̃25S 2
Z

r
2E0D f 05

a0Z4

4
r 211O~r 0!. ~4.8b!

~4.6c! and ~4.6d! as well as~4.7a! and ~4.7b! remain essen-
tially unchanged. BothẼ4 and Ẽ6 are regular.

Let us next chooseg̃2 regular atr 50, i.e., of the form

g̃25A01A1r 1O~r 2! ~4.9a!

and f̃ 2 related tog̃2 by the Rutkowski condition~1.7!

f̃ 25
1

2 H ]

]r
g̃21S Z

r
1E0D f 0J 5a0

Z2

4
r 211O~r 0!,

~4.9b!

h̃25
a0Z4

4
r 211O~r 0!. ~4.9c!

Instead of~4.7!, ~4.6c!, and~4.6d! we get

F̃41: O~r c
2!, ~4.10a!
-

s

F̃42: 2a0
2 Z4

8
r c1O~r c

2!, ~4.10b!

Ẽ4 : 2a0
2 Z4

8
r c1O~r c

2!, ~4.10c!

Ẽ6 : a0
2 Z5

16 E
0

r c
r 21dr5`. ~4.10d!

The leading contributions of the termsO(r c) to Ẽ4 no longer
cancel, and the total contribution toẼ4 is of O(r c) rather
than of O(r c

2) as for the correct wave function, while th
contribution toẼ6 now diverges. The origin of both deterio
rations is thatf̃ 2 as given by~4.0! is now too singular~it goes
for small r as;r 21 instead of;ln r !. Choosingg̃2 regular
and imposing~1.7! makesf̃ 2 too singular.

To avoid this spurious singularity there are two possi
remedies. The best is to insist on the correct behavior~4.1b!
of g̃2. Then all contributions of the regionr ,r c are regu-
lar, Ẽ4 is an upper bound to the exactẼ4, andẼ6 exists.~It
has previously been pointed out in the nonpertubative c
text @26,27# that satisfaction of the correct boundary cond
tions by the trial function is essential for getting variation
results.! The second best remedy is to regularizef̃ 2 as well,
if g̃2 is regular. In fact, in not insisting on~1.7! in the region
of small r and choosing

f̃ 25B01B1r 1O~r 2!, ~4.11a!

h̃25B02 1
2 A11O~r !, ~4.11b!

we get

F̃41: O~r c
2!, ~4.12a!

F̃42: O~r c
3!, ~4.12b!

Ẽ4 : 2B0

a0

4
Z2r c

21O~r c
3!, ~4.12c!

Ẽ6 : 2B0
2Zrc

21O~r c
3! ~4.12d!

and we have both avoided spurious contributionsO(r c)
to Ẽ4 and the divergence ofẼ6. Of course,Ẽ4 is no longer a
rigorous upper bound toE4.

How large deviations from an upper-bound property do
one then expect? If one regularizes only in a regionr ,r c ,
the error ofẼ4 is of O(r c

2). If one choosesr c as the critical
radius ~see Sec. V! where the Coulomb attraction becom
equal to the rest mass, we conclude that the error is of o
c24, while without regularization the error is of orderc22.

Let us consider a simple example of a brute-force re
larization for the ground state of a H-like ion. It consists
cutting off ~the exact! w2 at some cut-off radiusr c . Of course
w0 and x0, which are regular anyway, are not cut off, su
that E0 and E2 are not affected. The cutoff ofw2 must be
done smoothly enough, such that boundary terms ins•pw2
~which is part ofx2! are negligible. In expressingx2 exactly
in terms ofw2 in the sense of~1.7!, there will be no cutoff in
v251/2m(V2E0)x0. The error ofE4 is then entirely given
by the first term in~3.13! with

w̃25 Hw2

0
for r .r c

for r ,r c , ~4.13!
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Ẽ42E45^w̃22w2uH02E0uw̃22w2&

5E
0

r c
r 2drE dV dsw2* ~H02E0!w2

5
Z7

2 E
0

r c
e22Zrdr5

Z7

2
r c2

Z8

2
r c

21 1
3 Z9r c

31O~r c
4!,

~4.14!

wheredV is the solid angle element. This is in agreeme
with ~4.7a! or ~4.10c! and~4.5!. For the evaluation of~4.14!
the following useful auxiliary relation@28# has been used:

^Fu f ~r !~H02E0! f ~r !uF&5 1
2 K FUS ] f

]r D
2UF L , ~4.15!

which holds when (H02E0)F50. The error~4.14! is posi-
tive ~i.e., we get an upper bound forE4! and it is linear inr c
for small r c . A reasonable value forr c is the critical radius
given by ~5.1b!. For this choice we get from~4.14!

Ẽ42E45
Z8

2mc22
Z10

2m2c4 1O~c26!. ~4.16!

The error ofc24Ẽ4 is then of the order ofc26E6 . Even if Ẽ6
did not diverge~which it actually does for this choice!, it
would not make sense to go beyondẼ4 since its error is of
the order ofE6.

Let us now regularizeboth w2 andx2 in the same brute-
force way. This means we also cut offv2 at r c , i.e., in
addition to~4.13! we choose

ṽ25 Hv2 for r .r c

0 for r ,r c . ~4.17!

Now the error ofẼ4 consists of both terms in~3.13!, i.e., in
addition to~4.14! we have

2^ṽ22v2uṽ22v2&5E
0

r c
r 2drE dV dsuv2u2

5
Z7

2 E
0

r c
e22ZrS 12Zr1

Z2

4
r 2D

5
Z7

2
r c2 3

4 Z8r c
21 17

24Z9r c
31O~r c

4!.

~4.18!

From ~4.14! and ~4.18! we get

Ẽ42E45 1
4 Z8r c

22 3
8 Z9r c

31O~r c
4!. ~4.19!

The terms linear inr c have cancelled, such that the leadi
term is nowO(r c

2) or for the choice~5.1b! of r c ,

Ẽ42E45
1

4

Z10

m2c42
3

8

Z12

m3c6 1O~c28!. ~4.20!

The error inc24Ẽ4 is now of the order ofc28E8 , i.e., it does
make sense to consider alsoE6 ~but not terms beyondE6!.
Moreover, by plotting the error~4.19! as a function ofr c one
finds that it increases monotonically to the value 3Z2/32 for
t

r c→`. For this regularization procedure~for bothw2 andx2!
one still gets an upper bound to the exactE4.

In practice one will not regularize by means of a cut-o
radius, but rather by expanding bothw̃2 and x̃2 ~or ṽ2! in a
basis of functions that are regular atr 50. The contributions
of the regionr ,r c will then essentially be the same as f
the brute-force regularization, since they are determined
the weak singularities of the exact wave function, which o
does not duplicate. However, there will be, in addition,
contribution of the regionr .r c to the error, since in this
region neitherw̃2 nor x̃2 will be exact. Since there are n
singularities left, these error contributions will diminish wit
increasing basis size in the usual way. There is, however
reason why the error inF41 should always be larger in ab
solute value than that ofF42. Hence there is no guarante
that one has an upper bound to the exactE4; only conver-
gence to the exactE4 can be expected if the basis is chos
appropriately.

The strategy to follow in this regularized SDPT is obv
ous. One must not try to satisfy the Rutkowski conditi
~1.7! pointwise, in particular not atr 50, in order not to make
x2 too singular. On the other hand, one must try to make
second term of the errorDE4 given by ~3.13! as small as
possible in order to be as close as possible to an upper bo
for E4. This means that the basis into whichx̃2, and hence
ṽ2, is expanded must be such that~3.14! is well satisfiedin
the mean. If the basis forw̃2 is well suited for approximating
ln rw0 in the mean, and is kinetically balanced, then the ba
for x̃2 and ṽ2 should well representr 21x0, as required by
~3.14!.

One may refer to such a regularized stationary pertur
tion theory forE4 as quasivariational. Although an upper-
bound property is not guaranteed, deviations from an up
bound for E4 are not serious. In order to avoid deviation
from an upper bound, the basis for the expansion ofx2
should not be poorer than that for the expansion ofw2 be-
cause then the second term in~3.13! would become dominat-
ing.

Our numerical experience with the regularized SDPT h
been the following.

~a! For standard Gaussian basis sets we have for the
electron system H-like ions, H2

1 and HeH21, never found
any deviations from an upper bound forE4 @12#.

~b! For Stater-type orbital~STO! basis sets for H-like
ions, upper bounds were obtinaed or not obtained, depen
on the choice of the basis and on the type of state~e.g.,k.0
or k,0!, but the results are consistent with the conjectu
that approaching basis completeness there is convergen
the exactE4. Details are planned to be published in the f
ture.

~c! In relativistic Hartree-Fock calculations both wit
Gaussian-type orbitals~GTOs! or STOs there was no indica
tion of deviations from an upper bound, although, adm
tedly, no exact reference values are available.

The quasivariational regularized SDPT has one disadv
tage with respect to a rigorous variation perturbation theo
The vanishing of the error ofẼ4 does not imply thatw̃2
and x̃2 are exact.

The errorẼ42E4 is not a direct criterion of the quality
of w̃2 and x̃2. A better criterion is given by the two erro
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contributions in~3.13! independently or by the sum of the
absolute values. To minimize this sum might be an intere
ing starting point for an alternative to SDPT.

With the regularized SDPT it may happen that the t
error contributions in~3.13! cancel each other more or les
by chance, such thatuẼ42E4u becomes very small or van
ishes, althoughw̃2 and ṽ2 are far from their exact counter
parts. It can even occur that for a particular ansatz wit
small number of parameters,Ẽ42E4 is non-negative in the
entire parameter space and has its minimum equal to 0
one point in this space. One is then in the frame of apseudo-
variational method.

A striking example of such a pseudovariational situat
will be given in a separate paper@29#. Of course in such a
situation Eq.~3.14! will be very poorly satisfied in the mean
as is seen in a large~in absolute value! second part ofDẼ4 as
given by ~3.13!.

Let us repeat at this point that a strict variation pertur
tion theory forẼ4 is possible if one choosesw̃2 and x̃2 with
the correct lnr singularities nearr 50. If one prefers a regu
lar w̃2, one must also choosex̃2 regular atr 50. In trying to
impose a strict upper-bound condition forx̃2, one would
makex̃2 too singular and lose more than one would gain

V. EXTENDED NUCLEI

Since most problems with the perturbation theory of re
tivistic effects are related to the singularity of the Coulom
potential, one may wonder whether on worrying about t
singularity one is not studying a purely academic proble
since real nuclei are extended rather than point charges.
objection needs some comments.

Let us first observe that for a relativistic one-electr
atom in its ground state there are four characteristic leng

~1! The Bohr radius

r B5Z21a0 ~5.1a!

with a0 the atomic unit of length~1 bohr!, not to be confused
with the parametera0 used in Sec. IV and Appendix B.

~2! The critical radius, for which the Coulomb attractio
becomes equal to the rest mass, which isZ times theclassi-
cal radius of the electron, and is sometimes called t
Thomson radius

r c5Za2a0 . ~5.1b!

~3! The nuclear radiusr N . According to a popular mode
@30# this is related to the nuclear massM as

r N52.2731025M1/3a0 . ~5.1c!

If we choose roughlyM'2.5 Z ~for Z@1!, this becomes

r N'3.131025Z1/3a0 ~5.1d!

and we get the following ratios:

r c /r B5Z2a2'531025Z2, ~5.2a!

r N /r B'331025Z4/3, ~5.2b!

r c /r N'1.63Z2/3. ~5.2c!
t-

a

or

-

-

s
,

his

s.

For all Z the critical radius, inside which the Coulomb a
traction is larger in absolute value than the rest energy of
electron, is larger than the nuclear radius, in particular so
heavy nuclei~see, e.g., Fig. 1 of Ref.@20#!.

~4! The Compton wavelength of the electron,

lc5
\

mc
5a a0 , ~5.3!

which happens to be the geometrical mean ofr B and r c .
Note thatlc is linear ina and is usually quite larger thanr c ,
which is quadratic ina.

We have to consider three independent issues.~a! the
accuracy of the point nucleus as an approximation to
physical extended nucleus;~b! the rate of convergence of th
perturbation expansion of relativistic corrections;~c! the
question whether for finite nuclei the singularity problem
typical for point nuclei disappear. For issue~a! the ratio
r N/r B should be small, which is related to the probability
the electron being inside the nucleus. This ratio is very sm
for light nuclei and not so small for heavy ones, such that
these it is more important to use a finite nucleus~indepen-
dent of the fact that a finite nucleus extends the existenc
solutions of the Dirac equation beyondZ5137!. The rate
of convergence of perturbation theory~b! depends on the
magnitude ofZa, i.e., indirectly on the ratior c/r B . For light
nuclei this ratio is small and perturbation theory converg
fast @1,2#.

Whether a finite nucleus removes the problems with
Coulomb singularity depends on the ratior c/r N . As long as
r c.r N—and this is the case for allZ—there is a region nea
the nucleus withr ,r c , where the Coulomb attraction of th
electron by the nucleus is larger than its rest energy
where the expansion of certain operators in powers ofc21

diverges. The ratior c/r N even increases withZ, and hence
the problems related to the almost-point-nuclear behavio
the nuclear potential become more serious with increasinZ
~although in a different context the finite-size effects of t
nucleus also become more important with increasingZ!. We
conclude that the problems related to the strong Coulo
force at small distance between nucleus and electron are
removed if one accounts for the finite size of the nucleus

VI. CONCLUSIONS

In exact perturbation theory one assumes that the un
turbed equation is solved exactly and that the same holds
the inhomogeneous differential equations for the perturba
corrections to the wave function. In stationary perturbat
theory the exact equations are replaced by stationarity c
ditions for some functionals. Even if stationarity is achiev
only for a limited class of variations, some important resu
of the exact theory can be taken over, e.g., that the first-o
correction to the energy is simply an expectation va
evaluated with the unperturbed wave function.

Although the Dirac operator is not bounded from belo
stationary direct perturbation theory combined with the
netic balance condition lead to an upper bound of the ene
expectation value in the nonrelativistic limit, i.e., the vari
tional collapse is avoided. In order to get un upper bound
the functionalF4(w̃2 ,x̃2) that determines the lowest-orde
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relativistic corrections to the wave function, a condition h
to be satisfied that leads to regular results only ifw̃2 and x̃2
have the correct logarithmic behavior at the position o
point nucleus. If one decides to choose a regular trial fu
tion w̃2, one must also regularizex̃2, in order to avoid diver-
gence ofẼ6, i.e., the energy contribution toO(c26). The
price to pay is thatẼ4 is then no longer a rigorous uppe
bound to the exactE4.

It is interesting that the energy as functional of the wa
function can up toO(c24) be divided into two independen
parts, one depending on the large componentw, the other on
ṽ5x̃2s•pw̃/~2m!, with x̃ the small component, such tha
the first part gives an upper bound to its exact counterp
the second one a lower bound. Such a minimax propert
the relativistic energy functional, as, e.g., discussed by T
man @31# does not hold to higher orders.

We have here explicitly only considered the lower ord
of SDPT, i.e., toO(c22) for the wave function and to
O(c26) for the energy, but the essential results persist
higher orders, especially as far as the validity of exact
pressions and the regularization at the position of a p
nucleus are concerned. We have finally seen that altho
most problems that arise with the perturbation theory of re
tivistic effects are related to the Coulomb singularity, the u
of realistic extended nuclei does not make a substan
change since the critical radius, inside of which the Coulo
attraction is larger than the rest energy of the electron
always larger than the nuclear radius.

Although we were concerned with stationary and var
tional approaches, in the framework of direct perturbat
theory, the present results are also relevant for nonpertu
tive approximative solutions of the Dirac equation. In pa
ticular, one understands better under which conditions a q
sivariational theory of the Dirac equation is possible, and
meaning of the use ofkinetically balancedbasis sets be
comes more transparent. Stationary direct perturba
theory can be directly applied to relativistic Hartree-Fo
theory @12,21,25#.
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APPENDIX A: ALTERNATIVE DERIVATION OF
STATIONARY DIRECT PERTURBATION THEORY FOR

ARBITRARY NORMALIZATION

We omit the tilde here, although we refer to trial wa
functions. The bar onc̄ indicates the change of the metr
@see Eqs.~1.1! and ~1.2!#.

We start from the energy expectation value

E5^c̄uDuc̄&/^c̄uSuc̄&. ~A1!

The condition for its stationarity with respect to variatio
of c̄ is

^dc̄uD2ESuc̄&50. ~A2!
s
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We can expand this condition in powers ofc22 using the
expansion~1.4b! for c:

^dc0uD02E0S0uc0&50, ~A3a!

^dc0uD02E0s0uc2&1^dc0uD22E2S02E0S2uc0&

1^dc2uD02E0S0uc0&50. ~A3b!

Since we expandc2 andc0 in the same basis, the last term
~A3b! vanishes if~A3a! is satisfied. Noting that~A3a! also
holds withdc0 replaced byc2, we can putdc05c0 in ~A3b!
and get

E2^c0uS0uc0&5E25^c0uD22E0S2uc0&5^x0uV2E0ux0&.
~A4!

Although we keep the normalization arbitrary, it is really n
loss of generality to choosew0 normalized to unity i.e., to
require

^c0uS0uc0&5^w0uw0&51. ~A5!

The next equation in the series of~A3! is, omitting already
those terms that vanish if~A3a! and ~A3b! are satisfied,

^dc0u~D02E0S0!c41~D22E0S22E2S0!c2

2~E4S01E2S2!c0&50. ~A6!

By an analogous argument as before we get

E4^c0uS0uc0&5E45^c0uD22E0S22E2S0uc2&

2E2^c0uS2uc0&

5^x0uV2E0ux2&2E2@^w0uw2&1^x0ux0&#.
~A7!

We can consider the two special cases of intermediate
malization for the large component

^w0uw2&50⇒E45^x0uV2E0ux2&2E2^x0ux0& ~A8a!

and unitary normalization

2 Rê w0uw2&1^x0ux0&50⇒E45^x0uV2E0ux2&

2 1
2 E2^x0ux0&. ~A8b!

Continuing in the hierarchy of~A3! we get

^dc0u~D02E0S0!c61~D02E0S22E2S0!c4

2~E4S01E2S2!c21~E0S01E4S2!c0&50,

E65^c0uD22E0S22E2S0uc4&2^c0uE4S01E2S2uc2&

2^c0uE4S2uc0&. ~A9!

Using ~A3b! ~omitting, of course, the last term! for dc05c4
and then~A6!, or rather its complex conjugate withdc05c2,
the following reformulation ofE6 is possible:
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E65^x2uV2E0ux2&2E2^w2uw2&22E4 Rê w2uw0&

22E2 Rê x2ux0&2E4^x0ux0&. ~A10!

For the two normalizations analogous to~A8a! and~A8b! we
get

E65^x2uV2E0ux2&2E2$^w2uw2&12 Rê x2ux0&%

2E4^x0ux0&, ~A11a!

E65^x2uV2E0ux2&2E2$^w2uw2&12 Rê x2ux0&%.
~A11b!

The Hylleraas functional corresponding to the stationa
condition ~A6! is

F4~c2!5^c2uD02S0E0uc2&12 Rê c2uD22E0S2

2E2S0uc0&2E2^c0uS2uc0&. ~A12!

The last term in~A12! is independent ofc2, but in order to
identify F4~c2! with E4 for thec2 that makesF4~c2! station-
ary, this term has to be kept.

APPENDIX B: BEHAVIOR OF THE EXACT WAVE
FUNCTION FOR ARBITRARY BOUND STATES OF

H-LIKE IONS FOR SMALL r

We make the ansatz

w5g~r !hk
m~q,w,s!, ~B1a!

x5 i f ~r !h2k
m ~q,w,s!, ~B1b!

g~r !5r n@a01a1r 1a2r 21O~r 3!#5(
k

c22kg2k~r !,

~B2a!

f ~r !5
1

c
r n@b01b1r 1b2r 21O~r 3!#5(

k
c22k21f 2k~r !,

~B2b!

where theh k
m are normalized functions of spin- and angu

variables, with2k the eigenvalue of the operatorK defined
by

K5b~s• l11! ~B3!

~note that in this contexta0 has not the meaning of the Boh
radius, but is just a coefficient!.

Insertion of ~B.1! into the Dirac equation leads to~for
e51, \51, m51!

S Z

r
1EDg2cS ]

]r
1

12k

r D f 50, ~B4a!

cS ]

]r
1

11k

r Dg1S Z

r
12c21ED f 50. ~B4b!

For g and f given by~B.2! one gets after ordering in power
of r

b0~12k1n!2a0Z50, ~B5a!
y

b1~22k1n!2a0E2a1Z50, ~B5b!

b2~32k1n!2a1E2a2Z50, ~B5c!

a0~11k1n!1b0Zc2250, ~B6a!

a1~21k1n!1@b0~E12c2!1b1Z#c2250, ~B6b!

a2~31k1n!1@b1~E12c2!1b2Z#c2250. ~B6c!

The condition for the existence of a solution of~B5a! and
~B6a! is that @32#

n5Ak22Z2c2221. ~B7!

We expandE andn in powers ofc22

E5E0Z21E2Z4c221E4Z6c241••• , ~B8a!

n5uku212Z2/~2c2uku!2Z4/~8c4uku3!1••• .
~B8b!

The expansion ofr n is

r n5r uku21H 12
Z2lnr

2c2uku
1

Z4

8c4 F ln2r

uku22
lnr

uku3G1OS Z6

c6 D J .

~B9!

This expansion is analytic inc22 for all r .0. Solving ~B5!
and ~B6! one getsb0/a0 , a1/a0 , etc., in powers ofc21 and
inserting this into~B1! and ~B2! the asymptotic expansion
~in powers ofr and lnr ! of the coefficients of thec21 ex-
pansion ofw2k,x2k for r→0 is obtained.

This asymptotic expansion is defined at least for allr on
the positive real axis. An asymptotic expansion of a funct
y(x) aroundx50 means that coefficientsck exist such that

y~x!5 (
k5n

n

ckyk~x!1O~xn11!, ~B10a!

yk~x!5O~xk!, ~B10b!

where~B10b! is a shorthand notation for

lim
x→0

x12kyk~x!50. ~B10c!

Note that

xn5O~x0! if 21,n<0, ~B10d!

lnx5O~x0!. ~B10e!

The normalization ofw is not determined by the conditio
~B4!. We fix the normalization by choosinga0 independent
of c ~for k.0, a1 instead ofa0!. One can, e.g., add an arb
trary multiple ofg0 to g2 and the same multiple off 0 to g2,
which only affects the normalization ofw.

One must distinguish the two casesk,0 andk.0. We
start with

k,0, k52 l 21, j 5 l 11/2 ~B11!

for which
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b05a0@Z/~2uku!1Z3/~8c2uku3!1O~Z5/c4!#,
~B12a!

a152a0F Z

uku
1

~2E0uku211!Z3~114uku!
4c2uku3~112uku!

1OS Z5

c4 D G ,
~B12b!

b152a0F ~12E0uku!Z2

uku~112uku!
1OS Z4

c2 D G , ~B12c!

and finally

g05a0r l H 12
Z

l 11
r 1O~r 2!J , ~B13a!

g252a0Z2r l H 1

2~ l 11!
lnr 1

Z@~4l 15!@2E0~ l 11!211#

4~2l 13!~ l 11!3 r

2
Z

2~ l 11!2 r lnr 1O~r 2!J , ~B13b!

g452a0Z4H 1

8~ l 11!3 lnr 2
1

8~ l 11!2 ln2r 1O~r !J ,

~B13c!

f 05a0r lZH 1

2~ l 11!
1

@E0~ l 11!21#Z

~ l 11!~2l 13!
r 1O~r 2!J ,

~B14a!

f 25a0r lZ3H 1

8~ l 11!32
1

4~ l 11!2 lnr 1O~r !J ,

~B14b!

f 45a0r lZ5H 1

16~ l 11!52
1

8~ l 11!4 ln r

1
1

16~ l 11!8 ln2 r 1O~r !J . ~B14c!

We now come to the case

k.0, k5 l , j 5 l 2 1
2 . ~B15!

The counterpart of~B12a! is

b05a0F2
2c2k

Z
1

Z

2k
1OS Z3

c3 D G . ~B16!

This means thata0 is smaller byO(c2) thanb0. If we want
to express all coefficients in terms ofa0, we get ac21 ex-
pansion with a leading termO(c2). We can avoid this by
expressing everything in terms ofb0, or of a1, which are of
the same order. Then

a05a1F2l 11

4l

Z

c2 1
4l 2112E0~2l 214l 3!

16l 3

Z3

c4 1OS Z5

c6 D G ,
~B.17a!

b052a1H 2l 11

2
2

Z2

4c2l
@122l 1E0~ l 12l 2!#1OS Z4

c4 D J ,

~B.17b!
b15a1FZ1
Z3

c2

21E0~2l 11!

4l
1OS Z5

c4 D G , ~B.17c!

a252a1H Z

l 11
1

~ l 13!1E0~116l 15l 2!

4l ~ l 11!2

Z3

c2 1OS Z5

c4 D J ,

~B.17d!

b252a1H 12E0~ l 11!

2~ l 11!
Z21OS Z4

c2 D J . ~B.17e!

For the same order inr as before we now also needa2 and
b2. The final result is

g05a1r lF12
Z

l 11
r 1O~r 2!G , ~B.18a!

g25a1r lF2l 11

4l
Zr212

Z2

2l
lnr 1O~r !G , ~B.18b!

g45a1r lZ3H 4l 21112E0l 2~2l 21!

16l 2 r 212
~2l 11!

8l 2 r 21lnr

2
Z

8l 3 lnr 1
Z

8l 2 ln2r 1O~r !J , ~B.18c!

f 052a1r lF2l 11

2
r 212Z1O~r !G , ~B.19a!

f 25a1r lF122l 1E0~2l 211!

4l
Z2r 21

1
2l 11

4l
Z2r 21lnr 1O~r 0!G , ~B.19b!

f 45a1r lZ4

3H 24l 2112E0l 222E0
2l 3~2l 11!14E2l 3~2l 11!

16l 3

3r 211
4l 21122E0l 2~2l 11!

16l 3 r 21lnr

2
2l 11

16l 2 r 21ln2r 1O~r 0!J . ~B.19c!

All those expressions in~B13! or ~B18! that involveE0 or E2
are specific to a particular state, while those whereE0 or E2
do not enter are universal and hold for all states~with either
k,0 or k.0! and are even valid—mutandis mutatis—for
molecules.

APPENDIX C: KINETIC BALANCE AS CHANGE
OF THE METRIC

As first proposed by the present author@17# and worked
out in detail by Dyall@33# the kinetic balance condition ca
be formulated by defining an auxilary large-component-ty
wave function w8, related to the small componentx of
c5~w,x!,
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x5
1

2mc
s•pw8. ~C1!

In terms ofw andw8 the Dirac equation can be written as

S V T

T 2T1
1

4m2c2 s•pVs•pD S w
w8 D5ES 1

0
0

T/~2mc2! D .

~C2!

This is another Dirac equation with modified metric, and
alternative to~1.2!. We define

D̄05S V
T

T
2TD , D̄25S 0 0

0
1

4m2 s•pVs•pD ,

~C3a!

S̄05S 1
0

0
0D , S̄25S 0 0

0 T/2mD , ~C3b!

c̄5S w
w8 D . ~C3c!

Note the changed meaning ofc̄. Then~C2! can be written as

S D̄01
1

c2 D̄2D c̄5ES S̄01
1

c2 S̄2D c̄ ~C4!

and we can take over the entire formalism of direct p
turbation theory@1#, just replacingD0, S0, etc., byD̄0, S̄0,
etc. In particular, for̂ c0uS0uc0&51

~D̄02E0S̄0!c̄050, ~C5a!

~D̄22E0S̄22E2S̄0!c̄01~D̄02E0S̄0!c̄250. ~C5b!

E05^c̄0uD̄0uc̄0&5^w0uVuw0&12 Rê w0uTuw08&

2^w08uTuw08&, ~C6a!

E25^c̄0uD̄22E0S̄2uc̄0&5
1

4m2 ^w08us•p~V2E0!s•puw08&,

~C6b!

E45^c̄0uD̄22E0S̄22E2S̄0uc̄2&2E2^c̄0uS̄0uc̄2&

5
1

4m2 ^w08us•p~V2E0!s•p&uw28&2E2H K w08U T

2mUw08L
1^w0uw2&J , ~C6c!

E65^c0uD̄22E0S̄22E2S̄0uc4&2E2^c0uS̄2uc2&

2E4$^c0uS̄2uc0&1^c0uS̄0uc2&%

5^c2uD̄22E0S̄2uc2&2E2$2 Rê c0uS̄2uc2&

1^c2uS̄0uc2&%2E4$^c0uS̄2uc0&12 Rê c0uS̄0uc2&%
n

-

5
1

4m2 ^w28us•p~V2E0!s•puw28&2E2H 1

m
^w08uTuw28&

1^w2uw28&J 2E4H 1

2m
^w08uTuw08&12 Rê w0uw2&J .

~C.6d!

The unperturbed equation~C5a! is in component form,

Vw01Tw085E0w0 , ~C.7a!

Tw02Tw0850. ~C.7b!

From ~C7b! we conclude thatw0 andw08 can only differ by a
function for which

T~w02w08!50, ~C.8a!

i.e., which is essentially the solution of a Laplace equati
No nontrivial solution of ~C8a! is square integrable; we
hence conclude that

w085w0 , ~C8b!

H0w05~V1T!w05E0w0 , ~C9!

i.e., ~C5a! is equivalent to the Schro¨dinger equation, in the
same sense~i.e., with the same reservations! in which the
Lévy-Leblond equation is equivalent to the Schro¨dinger
equation@1,2,13#. Equation~C5b! is in component form

2E2w01~V2E0!w21Tw2850, ~C10a!

1

4m2 s•p~V2E0!s•pw081Tw22Tw2850. ~C10b!

Substitution of~C10b! into ~C10a! leads to~noting thatw0

5w08!

~H02E0!w25
1

4m2 s•p~V2E0!s•pw01E2w0 , ~C11!

which can be solved forw2. One can obtainw282w2 from the
Poisson-like equation~C10b!. w28 is required for the con-
struction ofE4 according to~C6c!. Actually only s•pw28 is
needed and one can replace~C10b! by

1

2m
~V2E0!s•pw01s•p~w22w28!50, ~C12!

such that
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E45
1

4m2 ^w0us•p~V2E0!s•puw28&

2E2H K w0U T

2m Uw0L 1^w0uw2&J
5

1

4m2 ^w0us•p~V2E0!s•puw2&1
1

8m3 ^w0us•p~V

2E0!2s•puw0&1E2H K w0U T

2m Uw0L 1^w0uw2&J
~C13!

which is, of course, the same result as from classical di
perturbation theory.

Let us now consider the stationary variant of this a
proach. Forc̄ normalized to unity, i.e.,

^wuw&1
1

2mc2 ^w8uTuw8&51, ~C14!

the energy expectation value is

^D&5^wuVuw&12 Rê wuTuw8&2^w8uTuw8&

1
1

4m2c2 ^w8us•pVs•puw8&. ~C15!

Expanding this in powers ofc22 we get

^D&05^w0uH0w0&2^w0uTuw0&12 Rê w0uTuw08&

2^w08uTuw08&

5^w0uH0uw0&2^w02w08uTuw02w08&. ~C15a!

Evidently this expection value is not bounded from belo
since the first term is negative and the second non-nega
For arbitrary w0 the maximum of~C15a! with respect to
variation of w02w0 is reached forw05w0. Imposing w0

5w08 the minimum is reached forw0 an eigenfunction ofH0.
We further get~usingw05w08!

^D&252 Re$^w0uVuw2&1^w0uTuw28&1^w2uTuw08&%
ct

-

,
e.

22 Rê w08uTuw28&1
1

4m2 ^w08us•pVs•puw08&

52 Rê w0uH0uw2&1
1

4m2 ^w0us•pVs•puw0&,

~C15b!

^D&452 Rê w0uVuw4&12 Re$^w0uTuw48&1^w4uTuw0&%

22 Rê w08uTuw48&1^w2uVuw2&12 Rê w2uTuw28&

2^w28uTuw2&1
1

4m2 2 Rê w08us•pVs•puw28&

52 Rê w0uH0uw4&1^w2uH0uw2&2^w22w28uTuw22w28&

1
1

2m2 Rê w08us•pVs•puw28&. ~C15c!

The stationary condition for~C15a! ~taking w05w08! subject
to the normalization condition̂w0uw0&51 is

^dwuH02E0uw0&50. ~C16a!

This together with the next normalization conditions

2 Rê w0uw2&1
1

2m
^w08uTuw08&50, ~C17a!

2 Rê w0uw4&1^w2uw2&1
1

m
Rê w2uTuw0&50,

~C17b!

allows us to rewrite~C15b! and ~C15a! as

^D&25
1

4m2 ^w0us•p~V2E0!s•puw0&, ~C18a!

^D&45^w2uH02E0uw2&2^w22w28uTuw22w28&

1
1

2m2 Rê w0us•p~V2E0!s•puw28&. ~C18b!

The stationarity of~C18b! for arbitrary variations subject to
the normalization condition leads to~C10!.
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