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The stationary variant of direct perturbation theory of relativistic effects is presented. In this variant neither
the unperturbednonrelativistig equation nor the equations for the relativistic corrections are solved exactly,
but each of them is replaced by the condition that a certain functional becomes stationagy=Le4,xo) be
the four-component spinor with modified metric in the nonrelativistic limit @3e(¢5,x,) the leading rela-
tivistic correction ofO(c™?), then one can define functiondis(¢g.xo) andF 4(¢,,x,) called respectively the
Lévy-Leblond and the Rutkowski-Hylleraas functional, such that stationarigafith respect to variation of
¢g and y, determinespy and yg, and stationarity oF 4, with respect to variation ap, and y, determinesp, and
x2- The unperturbedi.e., nonrelativistit energyE, as well as the leading relativistic correction °E, are
expressible througlp, and y, while for the next higher corrections *E, andc™°Eg, ¢, and x, are also
needed. Either of the two functiondfs andF, can be decomposed into two contributions, the error of one of
which is =0 while that of the other is<O. An upper-bound property is obtained if the error of the second part
vanishes. A strict variation perturbation theory requires that the approximatad’y, reproduce the behavior
of the exacte, and x, near a nucleus, which implies terms inrinIf one regularizesp, one must also
regularizey,; otherwiseEg diverges. If one regularizes botty and x, in the sense of a kinetic balance, one
gets regular results fdE, andEg, but one loses the strict upper-bound property. The Breit-Pauli expression for
E, is shown to be correct only if the nonrelativistic wave equation has been solved exactly. Otherwise there is
an extra term. Finally the question as to which extent some of the singularities in the perturbation theory of
relativistic effects might be artifacts due to the unphysical assumption of a point nucleus is discussed. It is
shown, however, that these singularities are not removed if one uses realistic extended nuclei. For all atoms,
the critical radiug . inside of which the nuclear attraction energy is larger than the rest energy of the electron
is larger than the extension of the nuclel81050-294®6)03907-§

PACS numbds): 31.30.Jv, 03.65.Ca

I. INTRODUCTION method proposed by Moorgs] that looks similar at first
glance must be regarded as a side track. Recently the DPT
A few years agd1,2] the perturbation theory of relativ- was combined by Sadlegt al. [10] with the regularization
istic effects was analyzed. A main message was thtitegt ~ method of Changet al. [9].
perturbation theory(DPT) can be formulated, in which the ~ In the formulation of the DPT as preferred by the present
spurious singularitiegin the presence of a Coulomb poten- author[1] the essential step is a change of the metric in
tial) that arise in the more traditional perturbation treatmentdour-component spinor spa¢é]. One replaces the bispinor
are avoided, e.g., in the one based on the Foldy-Wouthuyse#=(¢.x) by a modified bispinor
transformatior 3].
DPT has essentially three roots: Wz(ﬂz
(a) Sewell [4] proposed the change in the metric that X
makes a ! expansion of the Dirac equation possible. How-
ever, this work was forgotten for decades. wherec is the VelOCity of ||ght in atomic units, in which it is
(b) Gesztesyet al. [5] have shown that the resolvent of equal to the inverse of the fine-structure constarn terms
the Dirac operator in the presence of a Coulomb potential i§f # the Dirac equationd —mc?) yy=Ey becomes
holomorphic inc™%, which implies that the bound-state ei-
genvalues are analytic iri * and the eigenfunctions are also, Dy ( V. op ) 1 (0 0) (g
not necessarily pointwise in space, but in the sense of a Hil- op —2m| ¢2(0 V/[|x

¢
Cx

: 1.9

bert space norm. Inspection of the eigenfunctions of H-like

ions, which are known exactly, reveals that these are analytic -E 10 n i (0 0) (Q _ ESI 1.2
) -1 . 2 .

in ¢! everywhere except at the position of the nucleus, 0 0/ ¢c*\0 1/)\x

where they have a well-known weak singularity as functions

of r [1,6] (see Appendix R (whereV is the potentialp the momentum, and the vector

(c) Rutkowski[6,7] has, in an unconventional but inge- consisting of the three Pauli matrices,o,0,). It has the
neous way, found a scheme which has led to the same worlkatural nonrelativistic limit
ing equations as those of Sewfll] or Gesztesyet al. [5],
and he was the first to perform nontrivial calculations. Do dy— \ op\feo| (1 Po| _g

An analysis of these approaches and their close relation- 0%0=| 4. p —2m/ixo/ %0 0/\xo 0Sotho,
ships can be found in Reffl] and[2]. Another interesting (1.3
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which is nothing but the Ley-Leblond equatiofi11], which _ 1 _

had originally been proposed as the Galilei-invariant field Ok= Xk~ 5 O Pok, k=02 (1.5
equation for a spinor field. The natural perturbation param-

eter in(1.2) isc~% i.e., a direct expansion in powers of? . : ~ —~

of (1.2) is possible(whence the name “direct perturbation one can fiform“'ate t_hese fun<_:t|onal_s In t_ermsoghnd “o
theory” [1]). or ¢, andw,, respectively, as is outlined in Sec. Ill. These

In previous paper§l,2,19 we have used the notatio% new functionals decompose into independent functionals of

and’y for what is now symbolized ag andy. We make this P2k andwyy,

change of notation, because we want to reserve here the tilde

for approximatewave functions and energies. Fo(0,@0) =Fo1(®0) + Fox @), (1.6a
The expansions o, ¢, ¢, andy in powers ofc™ ! are

” Fa(@2, @) =F41(@2) + F 4l @) + F g3, (1.6b
E=>, ¢ *Ey, (1.49
k=0 such thatFg(po) or F41(¢2) has a minimum wheip,= ¢,
- or ¢,=¢,, While Fox(®@p) or Fs(w,) has a maximum for
T=3 ¢y, (1.4b _Z‘uozwo or w,=w, (F,3is a constant The maximum of~,
&0 ’ ) is reached fowy,=0 and it is trivial to construct a functional
of g that is an upper bound for the exdgg, such thatn the
o o nonrelativistic limitthe theory becomes variational, provided
o= ¢ Koy, x=> ¢ Fyy. (1.40  one choose®,=wy=0.
k=0 k=0 If a functional to be made stationary is an upper bound to

Previousivi1 21 th " lati ; bation th the corresponding exact value, one refers tgasiational
reviously[1,2] the exactformulation of perturbation theory - ;o50ach A variational perturbation theory of relativistic ef-
was considered, i.e., it was assumed that both the unpey,

L . : ects, not only in the nonrelativistic limit, would be desir-
t_urbed Schrdln_ger equation and the |.nhomogeneous equasple. This could, e.g., be achieved if one could find condi-
tions of thg various orders_of pgrturbatllon theory were solveg;; s under WhictE ,(¢,,@,) is an upper bound to the exact
exactly This is hardly realized in practice, where one ratherg ‘g ,ch, 5 sufficient condition has been found by Rutkowski
solves both types of equations only approximately. The mosltg] namely
common approximations are those based on replacing a™
Schralinger (or related equation by the equivalestation-
arity principle, but to achieve stationarity only for a limited
set of possible variations of the wave function. This station-
ary approach to DPT is the topic of the present paper.

A compact formulation of stationary perturbation theory Rutkowski was also able to show that this very condition
in the nonrelativistictheory has recently been giveh3]ina  (1.7) leads todivergenceof Eg for the H atom ground state,
Lie-algebraic language. One of the essential messages of starovided that ap, regular at the position of the nucleus has
tionary perturbation theory is that under a certain conditionbeen used.
the essential theorems of “exact” perturbation theéeyg., The clarification of this dilemma is one of the topics of
that the first-order energy correction is equal to the expectahe present study and is treated in Sec. IV. We shall, in fact,
tion value of the perturbation with the unperturbed waveshow that the problem lies in theombinationof the Rut-
function) remain valid. The condition is that all perturbation kowski condition (1.7) with the choice of aregular trial
corrections are formulated in terms of a “variational group,” functiong,, in the presence of a Coulomb singularity. If the
with respect to which the unperturbed energy expectatiottrial functiong, has the correct behavior at-0, condition
value is stationary. Unfortunately, this Lie-algebraic formu-(1.7) leads to well-behaved, and Eg, with E, an upper
lation is not trivially applicable to the perturbation theory of bound toE,. If, on the other handp, is regular ar =0, (1.7)
relativistic corrections, because it is based on a unitary trangnust not be applied, because it malgstoo singular one
formation between the unperturbed and the perturbed equanust rather regularizg, as well. Then one loses the strict
tion. Such a unitary transformation does exist in the Foldy-upper-bound property foE,, but the error ofg, is smaller
Wouthuysen transformation, but this introduces spurioughan if one had applied the Rutkowski condition, &fglis
singularities and is therefore not recommen§2p well behaved. Details are found in Sec. IV.

We must hence formulate stationary perturbation theory The well-known kinetic balancgl4—-17 is one way of
of relativistic effects in a more pedestrian way, in the spiritsuch a regularization of for a regularg. Contrary to a
of the direct-perturbation theory, thus being led to “station-common belief, it does not guarantee that the expectation
ary direct perturbation theory(SDPT). This will be done in  value of the Dirac operator is an upper bound to its exact
Sec. Il. counterpart. This only holds up t®(c™%), as originally

The key quantities of SDPT are two functionals pointed out by Stanton and Havrilgk4].

Fo(®0,x0) andF4(¢,,X2), which are made stationary with  Although upper-bound properties in reon-perturbative
respect to variations 6y, X0, 92, X2, Wherepy,xo,02,x2  context are not the topic of this paper, its results have some
are trial functions that approximate their counterpartsrelevance for this topic, with respect to which, in the existing
©0.X0:¢02,x2 as defined in(1.4). In defining auxiliary two- literature, claimgsee, e.g., Ref18]) are more common than
component spinors, rigorous proofs. One of the few examples of a

1 - ~
Xzzﬁ{ﬂ"p%‘F(V_Eo)Xo}- (1.7
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strict variational approach is that of Hill and Krauthauser 2 Rg ¢q|@g)+2 RE @|@4)+ (X2l x2)+2 RE xo|x4)=0.
(2.4

[19], which will, however, hardly be applicable beyond one-

electron systems.

The problems studied in this paper are related to the sin

ote that we take ! (which in atomic units is equal to the

gularity of the potential created by a point nucleus. Neverfine-structure constant) as the formal perturbation param-

theless, little changes if one replaces the point nucleus by
realistic finite nucleus. This is the subject of Sec. V.

Il. STATIONARY DIRECT PERTURBATION THEORY

gter; one might as well have taken? as perturbation pa-
rameter, then what we calt,,E,,Eg, respectively, would
becomeE, ,E,,E; Rutkowski[6,7] makes, e.g., the latter
choice. One advantage of our counting is that terms of odd
order inc™?, which arise, e.g., for QED corrections, are eas-

We want to make the energy expectation value of thely symbolized.

Dirac operator(1.2) with modified metric

E=(yID|¢)=(¢|Vl¢)+2 Re¢|o-p|x) —2m(x[x)
+e 2 (xIVIx) (2.)

stationary, subject to thenitary normalization conditiorifor
an alternative derivation, in which unitary normalization is
not assumed, see Appendix,A

(W) =(ele)+c 2(xx)=1

for all ™2 in the neighborhood o =0. To this end, we
expandE, ¢, and y in powers ofc 2 as in(1.4). Ordering
powers ofc™? leads to

Eo= (0| Dol o) =( 0| V| ®0) + 2 R& @o| o | x0)

(2.2

—2m(xo| xo) (2.33
E>=2 Reio|Do| ) +(tho| D 2| o)
=2 R ¢o| V| ¢2) +2 R ¢g| 0 | x2)
+2 Re(cp2|0'-p|)(o>—4m Re<X0|X2>
+{xolVlxo) (2.3b

E4=2 Re(ho| Dol #a) + (2| Dol #h2) + 2 RE(tho| Do| 42)
=2 Re(¢o|V]@a)+ (2| V|@2) + 2 RE ¢o| - p| X4)
+2 Re(@y| 0 plx2) +2 Re(@a| 0 p| x0)
—4m Re(xo| xa) —2M(x2| x2) =2 R xol V| x2),
(2.30
Es=2 Re(40| Dol ¢hs) + 2 RE 2| Do| tha) + (12| Dof )
=2 Re(¢q| V| @6) +2 RE ¢5| V| ¢4) +2 RE ¢g| o p| x6)
+2 Re(@y| 0 plxa) +2 Re(@s| o plx2)
+2 Re(¢g| 0 p| xo) —4m R&(xo| x6) —4M R&(x2|x4)
+2 Re(xo| V|xa) +{x2|V|x2), (2.39

etc. Theg, and y, have to satisfy the unitary normalization
conditions

(@olpo)=1, (2.49
2 Re(¢o| 2) + (X0l x0) =0, (2.4b
2 R @o| 94) + (@2 #2) + 2 RE X0 x2)=0, (2.40

All functions and energies in Eqg2.1)—(2.4) should
carry a tilde to indicate that we consider approximate trial
rather than exact functions. In order not to overcharge the
notation we have omitted the tilde. Of course E(&1)—
(2.4) are also valid for the exact wave functions and energies.
From now on we will put the tilde whenever we refer to trial
functions(which include the exact ones as a special pase

Condition for stationarity 0of2.339 subject to the normal-
ization condition(2.49 is

(8e0l(V=N)po+ o pxo)=0,

(SXol o Poo—2my)=0.

In (2.53 \ enters as a Lagrange multiplier, which is easily
identified with the energy expectation valbg as defined by
(2.39.

The functional made stationary by the conditid@s5) is

Fo(©0.X0) = (@0l V—\|@o) + 2 Rggo| o p[x0)
—2m(xolX0)- (2.6

We shall callFy(pg,xo) the “Lévy-Leblond functional”
since it is stationary for all possible variationsgf andy if
@0 and’y, satisfy the Ley-Leblond equatior(1.3).

It is easily seen thé, is not bounded from belovunlike
the functionak'¢o|Ho—\|¢o) corresponding to the nonrela-
tivistic Schralinger equation Consider, e.g., a one-electron
atom and expand both trial functiors, andy, in an s,
basis. Then the matrix elements @fp vanish and we get

Fo(®0.x0) =(®@olV—\|®0) — 2m(Xo|X0)- (2.7

This functional can become arbitrarily negative. We see that
the Levy-Leblond functional(2.6) suffers from the possibil-

ity of a variational collaps¢17,2Q to the same extent as
does the expectation value of the Dirac operator. That the
variational collapseof the Dirac equation persists in the non-
relativistic limit has probably first been observed by Schwarz
and Wechsel-TrakowskR1] and by Mark and Schwai22].

We shall study the extremal properties of the functional
(2.6) in more detail in Sec. lll. At the moment we use a
simple argument to avoid the variational collapse without
making additional assumptions. We argue that it is trivial to
satisfy (2.5b) for all possible variationssy, (not just those
expressible in the given bagisiamely by choosing

(2.53
(2.5b

~ 1 -
Xo= 5= 0 PPo. 2.9
Inserting this into(2.59 changes this to
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This must at least hold fof, proportional tog,; hence Fa($2,%2) = (92| V—Eo|®,) + 2 RES,| o X2
= o~ o~ —2m(X2|X2) + 2 ReXolV—EqlX
N=Eo=(@o|Ho|@0). (2.9 - (Xalx2) &Xol olX2)
~ —E2{2 Rg@2| @0) + (XolX0)}

Now E, is the expectation value of the nonrelativistic Hamil- ~ - o~ - -
tonian and is therefore bounded from below 48 is the =(2|Do—EoSo|#h2) + 2 Rg 1| D2~ EoS;
corresponding stationarity condition. B, 7)— B0/ Sal Fo). (2.12

By eliminating the variational collapse of the \ye

Leblond functional in this way we have avoided the varia-This may be regarded as the Hylleraas functional of a sta-
tional collapse of the Dirac equation, since variational col-jonary direct relativistic perturbation theory. We propose to
lapse of a relativistic calculation means by definition that ong.5; it the Rutkowski-Hylleraas functional since it has first

misses the correct nonrelativistic linfit7,20Q. This proce-
dure is often referred to as kinetic balarjd&d—17. Devia-
tions from an upper bound can now only arise to highe
orders inc ™2 [14].

It looks somewhat unbalanced to satig®y5h) for all pos-
sible 8, but(2.53 only for a limited set of variationg,,.
Fortunately this unbalance does not affect the behavigr,of
and’, at the position of a nucleus, where bathpand x, are

been studied by Rutkowskb], though in a somewhat differ-
ent notation (a precursor to that of direct perturbation

'theory).

Conditions for the stationarity aR.12 are
(635/(V=Ep) @2+ 0 PX2—E»00)=0, (2.133

(6X2l o p@a—2my,+ (V_Eo);o> =0. (2.13b

regular. This will no longer be the case for the next-higher-

order functionsp, and y, (see Sec. IV.

We shall always require that variation 9§ (or y,) includes

We now make the assumption, which is an essential inyariation of a factor by whicfp, (or y,) is multiplied, which

gredient of stationary perturbation thedd/3], namely that
the higher-order wave functions,, g,, etc., are expandable
in the basis with respect to which, is stationary[6,13],
which means, e.g., th&2.93 holds with 5¢, replaced byp,
or ¢,, etc, e.g.,

<¢2|H0_Eo|¢0>=0- (2.10

Then (2.3b to (2.39 will be replaced by

E,=2 Re(go|Ho|2) + (X0l V[X0)

= 2Eo Re(0ol@2) + (Xol VIX0) = <;0|V_Eo|;o>-
(2.113

E4=2 ReGo|Ho|4) +(%2|V[$2) +2 RE G, o p)[X2)
—2m(x2[x2)+2 Rexo|V[x2)

= ('252|V—E0|"¢2> +2 Regy| 0 plx2) —2m{x2lx2)

+2 ReXo|V—EolX2)- (2.11b
E¢=2 Rd52|V_E0|54>+ 2 Rep,| o plxa)
+2 Re 4|0 plx2) —4m Re(x,|x2)
+2 Rd%0|V_E0|}4>+<’5('2|V_Eo|}2>- (2.119

ObviouslyEz is expressible in terms of, only, as in the
exact theory. Fof2.113 to be valid it is not necessary to
assume thap, is an exact solution of the Schiimger equa-
tion.

E, is expressed in terms f, (which we know already
andy, as well asp,, with respect to variations of which we
have to maké, stationary, subject to the normalization con-
dition (2.4b); i.e., the functional to be made stationary is

is the most trivial case of a linear variation parameter. Sta-
tionarity with respect to such a parameter implies {2at3
holds with 8¢, (or y,) replaced by, (or y,).

This allows us to rewrite the stationafy,(¢,) alterna-
tively as

E4=Re(Xo|V—Eo|X2) — $E2(XolXo) (2.14
or as
Ea= — (9| V—Eg|3,) — 2 Re P, o plX2)
+2m<3('2|}2>+’|§2<}0|3('0>
= — (42| Do~ EoSol ¥2) + Ex{ 1ol 2l o). (2.19

The result(2.14) is formally identical to that which one gets
in the exact perturbation theory, for the safoaitary) nor-
malization[1,2,6], just with the exacjy, and x, replaced by
the approximative ones.

We can_now use the stationarity conditiof2s13 for F,
to simplify Eg as given by(2.119. Requiring thaip, and’y,
be expandable in the bases used for the expansign ahd
Y, respectively, we get

Eo=(X2|V—Eo[X2) —E2{(%2/$2) + 2 ReXo[X2)}. (216

Again, we reproduce the result for the exact perturbation
theory[1,2,6] in unitary normalization. _ _

The critical step prior to the construction Bf, andEg is
the determination of, andy, from (2.13. In analogy to the
solution of (2.5 one can think of two possibilities.

(a) One solveg2.13h exactly, i.e., chooses the condition
1.7).

(b) One expandy, in a basis(usually of functions regu-
lar atr=0) and solves2.139 and (2.13b via their matrix
representations.

Rutkowski[6] has realized thafl.7) guarantees that the
approximateE, is an upper bound to the exagf, and has
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therefore favored choic@). However, he has also found that 1ll. EXTREMAL PROPERTIES OF THE LEVY-LEBLOND

for this very choice(1.7) E4 diverges, provided thap, was

chosen regular at the origin. This observation disqualifies
choice (8) and lets choiceb) appear to be_preferable, in

particular, since thekg does not diverge anH, comes out

closer to the exacE, (although it is no longer a rigorous
upper bound t&E,). We have done our numerical calcula-
tions[12,23 entirely in terms of this variant. We shall ana-

lyze this problem in more detail in Secs. Il and V.

To conclude this section let us wonder whether th

second-order correctiok, given by (2.119 can be trans-
formed to the well-known Pauli form. If we inse(2.8) and
apply the turnover rule foor-p—which must be done in the
distribution sens¢24]—we can rewrite(2.113 as

- 1 -
Ez= 72 (¢l p(V—Eo) o p|o)
1 ~
:8_m2<€0o|0"p[v,0"p]|900>
1 ~
+ gz (Pollo-p.V]e-pleo)
1 _ _
+ 2 (@l T(V—Eo) +(V—Eq) T|eg)
1 -
=8 (eollo-p,(o-p, V)] ¢0)

1 -~ —~
+m<¢’o|[TaV_Eo]+|<Po>- (2.1

The first term on the last right-hand si¢ids) of (2.17) can

easily be reformulated to the sum of Darwin and spin-orbi

terms(for V spherically symmetric

ol —
r or

R - V|-

82 (@0l VoV[@o) —( o ¢o). (2.18
The second term on the last rhs (&.17) is equal to the
velocity-mass term plus a correction

1 . 1 _
_ﬁ<¢o|T2|¢o>+m<¢o|[TaHo— Eol+ o). (2.19

The correction vanishes ifHy—Eg) ¢,=0, i.e., if o=y,
but is not negligible otherwise. In other words,df, is not
the exact nonrelativistic wave function, the expressiorEgpr

FUNCTIONAL AND OF THE
HYLLERAAS-RUTKOWSKI FUNCTIONAL

The Levy-Leblond equatior{1.3) is the condition for sta-
tionarity of the functional(2.6) with respect to arbitrary
variations ofg, and x,. Taking the variations 0f2.6) with
respect top, and y, and equating them to zero lead imme-
diately to(2.5). The\ in (2.53 plays the role of a Lagrange

Jharameter, taking care of the normalizationggf

In order to study the extremal properties of this functional
it is recommended to repladg, by another two-component
spinor

1

Bo=Xo— 5= 0 PPy

om (3.9

and to formulateF, given by (2.6) in terms of g, and @,
Fo(®0.X0) =Eo(?ﬁo /@0) =(@o|Ho—\[@o) —2m(@o| @)
=Foi®o)+Fod@o). (32

The tilde onE0 (and analogously later oﬁ4) shall indicate
that it is taken as a functional @f, and@, rather than ofp,
andy,. It has hence a different meaning than a tildegry,
or E.

We see thaF, decomposes into a sum of two indepen-

dent functionals, one of,, the other ofw,. One realizes
immediately that
Foi(%0) =(@olHo— N [@0)=0, (3.39
Foa(@o) = — 2m(@,|@o)<0. (3.3b

tThe stationarity conditions fdi%l andEoz are respectively

(6@0lHo—\|@0)=0,

(6@o|@g)=0.

(3.39
(3.30

Stationarity with respect to arbitrary variationsgf and @,
is achieved if

(Ho—Ep)¢o=0,

For go=¢o and’xo=Xxo, Fo1 has its minimumF o, its maxi-
mum. Assume now that we approximate bathby ¢, and
Xo bY X0, With g, and’y, completely independent, which
implies that the exactwy=0 is approximated by
@o=Xo— T-Pey/2, which is generally not identically zero,
then the error oE, consists of two partéfor @, normalized

in terms of the Pauli Hamiltonian is a poorer approximationy unity)

than(2.113. This has been confirmed numericalliZ].

One may argue that the correction term even vanishes if
(Ho—Eg) gy is not exactly zero, but that the stationarity con-
dition (2.99 should be sufficient. However, this is usually

not the case. Conditiof2.99 would be sufficient to guaran-
tee that the second term {8.19 vanishes, if the variations

S¢q considered i(2.9a would include those proportional to

Teg. In other words, wave functions of the tyfiep, ought
to be included in the basis into which one expaggsThis

AEOZEO_ EOZAE01+AE02, (353
AEq1=(¢o|Hol o) —Eo=0, (3.5b

We see that althoughAE, is not positive semidefinite, it
is easy to enforce that it becomes so, simply by choosing

is usually not done, and not even recommended in view ofsy=0 i.e., by enforcing the kinetic balance conditit8)

the singularity of these functions.

betweeng, and’y,.
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We have thus gotten a simple expression for the error in

functional (2.12 in a similar way. We define in analogy to E,, namely,

(3.1,
.1
W= X2 5 O PP, (3.6
such that(2.12 can be reformulated to
Fu(@2,32) =F4(92.X2) =F41(@2) T F4d @) +Fuz, (3.7
E41(’952):<’952|H0_E0|252>
1
2m2 Re(po| o p(V— Eo)o- ple2)
— 2B, Re(%,|%0), (3.89
Fud@2)= —2m(@,| @) + 2 ReXo|V—Eol@,), (3.8
Fus= _E2<’)?0|’)zo>- (3.89
Stationarity conditions fof3.8) are
- _ 1 ~ - =
5, —Eo)¢2+m20"p(V—E0)0"p<Po—E2 ®o
=0, (3.99
(6@,| — 2m@,+ (V—Eo) [Xo) = 0. (3.9

Choosingdy, in (3.9 proportional tog, implies that

<¢2| HO_EO|52> :Ez Re<52|50>

1
— Re(py| o p(V— E)o- pleo).

~ 4m
(3.109
and hence
Fa1($2) = —(@2/Ho— Eo|#2)<0. (3.10n
Similarly we get foréw, proportional tow,
2m(@| @) = (@,|V — EqlXo), (3.113
F 4 @) =2m(@,|@,)=0. (3.11b

The stationaryF,, is negative, the_stationaify,, is positive,
while F 45 is positive as well, sinc&, is negative.

Let us now assume that, andw, are exact, i.e., makk?:‘4
stationary for all variations, and let, and @, be some ap-
proximations. Then

F1(®2) —Fa1(@2) = (@2~ @2|Ho— Eol @~ ¢2) =0,
(3.1239

Fua(@2) — F a4 02) = — 2M(@— 0, @y — 0,) <0,
(3.12h

AE,=E,— E4:<52_ <P2| Ho— E0|52_ €02>

_2m<62_w2|’6)2_w2>. (313

We _can, of course, achieve an gverall upper bound,
i.e.,E,—E4>0if @, is chosen such th#t,, attains its maxi-
mum, which is the case fab,=w,. We see from(3.9b that
this means

1
wWo= m (V- Eo)Xo,

(3.19

which is equivalent to relating, and'g, via (1.7). We have
thus given an alternative proof to that of RutkowB] that
(1.7) guarantees tha&, is an upper bound t&,. We remem-
ber, of course, that for this very choiég diverges, provided
that g, is chosen regular at the position of a point nucleus.
We come back to this problem in Sec. IV.

The decomposition of, according to(3.6) into two parts
has allowed us to understand the stationarity properties of the
Hylleraas functionaF, better. However, this decomposition
requires some care, since it is, in some sense, contradictory
to our philosophy in previous papef$,2]. There we have
insisted that in order to avoid singularities, the two contribu-
tions to they,, should never be separated. We see, in fact,
that the separation &g along the same lines becomes prob-
lematic. Formally we can write, of course

Es=Esg1(¢2) + Egx w2) + Ega(¢2,05) + Ega, (3.153
1
Eei(¢2) = am? (0 pea|V—Eg|lopes) — Ex o] @2)
1
m EoRe&(xol o plo2) — 2E4Re( 02| @),
(3.15H
Eeo @2) =(w,|V—Ep|wy) — 2E,RE xo| 02), (3.150
1
Ees( @2, 02) = ﬁRe(szV— Eolo pey), (3.150
Esa= — E4( X0l Xx0)- (3.15¢

Unlike for the analogous decompositionef there is also a
mixed term, both depending ar, and w,. The main differ-
ence from the decomposition &f, is, however, that now all
contributions diverge in the presence of a point nucleus, even
for the exactyp,. The decompositior3.15 can hence only

be legitimate if all integrals are first taken from to « and

if the limit r.—0 in the sum(3.153 is taken after all contri-

i.e.,F41(>) is an upper bound to its exact counterpart, whilebutions that diverge in this limit have been cancelled. A gen-

F 4, is a lower bound.

eralization of the decoupling of, and of F, and the
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related minimax property is, unfortunately, not possible for Z2
the higher-order functionalBg, etc. 92=—a — Inr+0(r), (4.1b
IV. ROLE OF THE REGION NEAR A POINT NUCLEUS z4
g4:_a0§(lnr—ln2r)+0(r), (4.10

The choice of the trial function in a stationary approach is
not fully arbitrary. This function must at least be square in-
tegrable to all orders in the expansion parametér and the f—a E+O(r) (4.23

. . . 0— Ao y .
expectation value of the Dirac operator must also exist to all 2
orders. It is usually not necessary that the trial function sat-
isfy the same boundary conditions as the exact wave func-
tion. The classical example is a Gaussian trial function for
the nonrelativistic ground state of the H atom, which neither
satisfies the correct boundary conditionratO nor atr —o )
and is nevertheless acceptable. In the context of the pertur- fa=ao 75 (1=2Inr+In“r)+0O(r) (4.29
bation theory of relativistic effects, the behavior near the
positon of a nucleus matters, because it affects the squaveith a; a common numerical fact@not to be confused with
integrability and the existence of expectation values of thehe atomic unit of length
Dirac operator. A careful study of this behavior is hence If we expandw in analogy to(B1) and(B2) as
necessary. ) "

Since deviations from square integrability or divergences w=i h(r) 7. (9 e,s), (4.39
of matrix elements only arise in a small neighborhood 1
arognd a point nucleus, |t'|s s_uf_f|C|ent to have a'look at this h(r)== r”[co+clr+0(r2)]=2 ¢~ 2K 1h, (1),
region. For the sake of simplicity we now consider a one- c K
electron atom, but the generalization to arbitrary one- (4.3b
electron molecules or even to many-electron systems in th
Hartree-Fock approximation is straightforward, because th
behavior of the exact wave function near any nucleus is of ho=0, (4.49
the same type, simply as a consequence of the Coulomb
singularity [25]. Without explicitly stating this, we consider agZ?
in this section always point nuclei. hy=—7— r~14+0(r9%, (4.4b

In Appendix B the behavior of the exact wave function in
ac ! expansion near the nucleus is outlined. We repeat the a.z4
result here for the case=—1, |=0. (The casex<0 and h,= °
| >0 are less critical, since in view of factorsin the com- 16
ponents of the wave functions no singularitie_s of the contri\ye also note that, for a hydrogenlike ion, as a consequence
butions to the energy arise to the orders considered here. Thg the normalization oo,
casex=1, | =1 is somewhat analogous to the case—1,

Z3
f2=a0§(1—2Inr)+O(r), (4.2b

5

e exacth,, become

{r=t=2r"Unr}+0O(r9). (4.49

| =0 discussed hereThe large and small components can be ag=225%2 (4.5
expanded according t@®1) and(B2) and we get, as special o _
cases 0fB13) and (B14) for k=—1, Let us now study the contributions of a regior<0<r,
around a point nucleus at=0to Ey,E,,E,,Eg for the exact
go=ao(1—2Zr)+0(r?), (4.19 functions(so far we do not specify,).
|
re re 1 4
Eo: fo gOHogorzdronaéfo {r2=2Zr3+0(r%)}dr=Eqa3 3 ri- > re+0(rd)t, (4.63
fo z 2 2 Z3 (v 2 A 2 3
E,: f fol — T Eo|forodr=—ag T f r[1+0O(r)]dr=—ag 3 re+0O(re), (4.6b
0 0

re z Z° (e z°
E,: f fo| =+ Eo f2r2dr—%E2f(fo)zrzdr=—a01—6f {r—2r Inr}dr+O(r§)=—aOl—6r§(1—lnrc)+0(r§),
0 0
(4.60

6

e z Z8 [re z
Esg: fo fz(—F)fzrzdrﬂLO(rg):aSG—‘lJO (r—4r Inr+4r In2r)dr+O(rg)=agarg(g—ZInrc)JrO(rg). (4.60



1190 WERNER KUTZELNIGG

All these contributions are regular, in spite of the weak sin-
gularities ing, andf,. The contribution tdE, of the region
r<r. is proportional to the volume of this region, the con-
tributions toE, andEg are relatively larger than the volume
of the region[noting thatr . is regarded as small and hence

O(r?) is larger tharO(rc)]
Let us have a look at the two contrlbutloﬁg1 and F42 to
E,, which are given by3.10h and(3.11h. It is convenient

to replacef¢Tedr by 3[(Ve)?dr to avoid spurious bound-

ary terms atr=r..

—_~ rC
Fai: _fo {2(Vg2)*—Eq(gp)?}r?dr

=—aj — g f {r=2+0(r%r2dr

4

2 z 2
= —a§ g retolrd), (4.7

e Z4
2f0 (hy)?r?dr=a3 5 "t O(r?). (4.7b

Either contribution is now much larger in absolute valbe-
ing of O(r.)] than their sumE, [of O(r )], in which the
O(r.) terms cancel.

54
- , Z* 5
F42 _ao E rc+O(I’C), (410[)
- ,Z*
E,: —aO 8 r +O(rc) (4.100
~ 2 Z5 e 1
Eg: aoﬁjo r-dr=c (4.109

The leading contributions of the terr@r ) to E, no longer
cancel, and the total contribution ®, is of O(r.) rather
than of O(r 2) as for the correct wave function, while the
contribution toEG now diverges. The origin of both deterio-
rations is thaf , as 1glven by(4.0) is now too singulafit goes

for smallr as~r~* instead of~Inr). Choosingg, regular
and imposing(1.7) makesf too singular.

To avoid this spurious singularity there are two possible

remedies. The best is to insist on the correct behavidr

of g2 Then all contributions of the reg|0n<r are regu-

lar, E,4 is an upper bound to the exaEg and EG exists. (It

has previously been pointed out in the nonpertubative con-
text [26,27] that satisfaction of the correct boundary condi-
tions by the trial function is essential for getting variational
results) The second best remedy is to regularizeas well,

if g, is regular. In fact, in not insisting ofL.7) in the region

of smallr and choosing

We now consider approximate wave functions. As long as

g, behaves a$4.1b and as'fvz is constructed frong, via
(1.7), which means

~ 1( 0 _
fzz_z ﬁgz“l‘ F"FEO fo
22 2
—— T § — 1 0
a02r +a02r +0(r®)

=0(r9), (4.89
~ z agZ®
ho=| ———Eo|fo=——r 1+0(r%. (4.8p

(4.60 and(4.6d as well as(4.73 and(4.7b remain essen-
tially unchanged. BotlE, andEg are regular.
Let us next choosg, regular atr =0, i.e., of the form

go,=Ag+Asr +0(r?) (4.9a

and?2 related tog, by the Rutkowski conditior{1.7)

= 1(a. (Z . 22 . 0
2=5 | oy 92+ |7 TEo|foj =0 1 " +O(r),
(4.9b
_ 4
h,= 7 r—14+0(r9. (4.90
Instead 0f(4.7), (4.60, and(4.60 we get
Fa: O(r?), (4.103

T,=Bo+Byr+0(r?), (4.113
h,=By— 1A, +O(r), (4.110
we get

Fa: O(r?), (4.123
Fa: O(rd), (4.12h

_~ a,
E,: —BozozzrngO(rg), (4.120
Es: —B2zr2+0(rd) (4.129

and we have both avoided spurious contributidDér )
to E, and the divergence d&g. Of course E, is no longer a
rigorous upper bound t&,.

How large deviations from an upper-bound property does
one then e,_pect’> If one regularizes only in a regietfr .,
the error ofE, is of O(r 2). If one chooses . as the critical
radius(see Sec. Ywhere the Coulomb attractlon becomes
equal to the rest mass, we conclude that the error is of order

4 while without regularization the error is of order?.

Let us consider a simple example of a brute-force regu-
larization for the ground state of a H-like ion. It consists in
cutting off (the exack ¢, at some cut-off radius; . Of course
¢o and xo, which are regular anyway, are not cut off, such
that E; and E, are not affected. The cutoff af, must be
done smoothly enough, such that boundary terme-ipg,
(which is part ofy,) are negligible. In expressing, exactly
in terms ofp, in the sense of1.7), there will be no cutoff in
wy,=1/12m(V—Eg) xo. The error ofE, is then entirely given
by the first term in(3.13 with

for r>r
for r<rg,

~ P2

2= 0 (4.13
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Es—Es=(@2— ¢s|Ho— Eql 02— @2)

e
:f rzdrfdeS@;(Ho_Eo)@z
0

=—f ‘erdr— ——r 24 17%3+0(rd),

(4.19

r.—oe. For this regularization procedutfr both ¢, and x,)
one still gets an upper bound to the exkgt

In practice one will not regularize by means of a cut-off
radius, but rather by expanding bao#y and’y, (or @,) in a
basis of functions that are regularrat0. The contributions
of the regionr <r . will then essentially be the same as for
the brute-force regularization, since they are determined by
the weak singularities of the exact wave function, which one
does not duplicate. However, there will be, in addition, a

whered() is the solid angle element. This is in agreementcontribution of the regiorr>r. to the error, since in this

with (4.73 or (4.109 and(4.5). For the evaluation of4.14)
the following useful auxiliary relatiof28] has been used:

af\ 2
ar

which holds whenld,—Ey)®=0. The erron4.14) is posi-
tive (i.e., we get an upper bound f&,) and it is linear inr

for smallr.. A reasonable value far, is the critical radius
given by (5.1b). For this choice we get frortd.14)

ZB ZlO

E4= 2mé 2mc

<q’|f(f)(Ho—Eo)f(r)|q’>=%<‘D‘ <D>, (4.19

E,— —>—+0(c7"). (4.16
The error ofc ™ *E, is then of the order of “°Eg. Even ifEg
did not diverge(which it actually does for this choigeit
would not make sense to go beyoRd since its error is of
the order ofEg.

Let us now regularizéoth ¢, and y, in the same brute-
force way. This means we also cut off, atr, i.e., in
addition to(4.13 we choose

(4.17

- wy, for r>r.
“2710 for r<r,.

Now the error of'lg4 consists of both terms i8.13), i.e., in
addition to(4.14 we have

e
2(52—w2|52—w2>=j0 I’Zer dQ dS|w2|2

zZ" (e z?
- —27Zr _ —
2 )y e (1 Zr+ 7 r)
Z7
=?rc—%zsr§+%zgrg’+0(r§).
(4.18
From (4.14) and(4.18 we get
E,—E,=21Z%2-37%3+0(r?). (4.19

The terms linear i, have cancelled, such that the leading

term is nowO(r 2) or for the choice(5.1b) of r,

- 1z 3 72
E,~Ei=7 = 8m3C6+0(c 8.  (4.20

The error inc™“E, is now of the order ot " %Eg, i.e., it does
make sense to consider al&g (but not terms beyonéy).

Moreover, by plotting the erra@.19 as a function of . one
finds that it increases monotonically to the valug?32 for

region neitherg, nor y, will be exact. Since there are no
singularities left, these error contributions will diminish with
increasing basis size in the usual way. There is, however, no
reason why the error ifr,, should always be larger in ab-
solute value than that df,,. Hence there is no guarantee
that one has an upper bound to the exagt only conver-
gence to the exadE, can be expected if the basis is chosen
appropriately.

The strategy to follow in this regularized SDPT is obvi-
ous. One must not try to satisfy the Rutkowski condition
(1.7) pointwise, in particular not at=0, in order not to make
X too singular. On the other hand, one must try to make the
second term of the errahE, given by (3.13 as small as
possible in order to be as close as possible to an upper bound
for E,. This means that the basis into whigh, and hence
,, is expanded must be such that14) is well satisfiedin
the meanlf the basis forg, is well suited for approximating
In r ¢q in the mean, and is kinetically balanced, then the basis
for X, and @, should well represent 'y,, as required by
(3.14).

One may refer to such a regularized stationary perturba-
tion theory forE, as quasivariational Although an upper-
bound property is not guaranteed, deviations from an upper
bound forE, are not serious. In order to avoid deviations
from an upper bound, the basis for the expansionyef
should not be poorer than that for the expansionppbe-
cause then the second term($113 would become dominat-
ing.

Our numerical experience with the regularized SDPT has
been the following.

(a) For standard Gaussian basis sets we have for the one-
electron system H-like ions, A and HeH", never found
any deviations from an upper bound fiy [12].

(b) For Stater-type orbitalSTO) basis sets for H-like
ions, upper bounds were obtinaed or not obtained, depending
on the choice of the basis and on the type of statg., x>0
or k<0), but the results are consistent with the conjecture
that approaching basis completeness there is convergence to
the exactE,. Details are planned to be published in the fu-
ture.

(c) In relativistic Hartree-Fock calculations both with
Gaussian-type orbital&iSTO9 or STOs there was no indica-
tion of deviations from an upper bound, although, admit-
tedly, no exact reference values are available.

The quasivariational regularized SDPT has one disadvan-
tage with respect to a rigorous variation perturbation theory.
The vanishing of the error oE, does not imply thafp,
and’y, are exact.

The errorE,—E, is not a direct criterion of the quality
of g, and’y,. A better criterion is given by the two error
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contributions in(3.13 independently or by the sum of their For all Z the critical radius, inside which the Coulomb at-

absolute values. To minimize this sum might be an interesttraction is larger in absolute value than the rest energy of the

ing starting point for an alternative to SDPT. electron, is larger than the nuclear radius, in particular so for
With the regularized SDPT it may happen that the twoheavy nuclei(see, e.g., Fig. 1 of Ref20]).

error contributions in(3.13 cancel each other more or less  (4) The Compton wavelength of the electron,

by chance, such thaE,—E,| becomes very small or van-

ishes, althoughy, and®, are far from their exact counter- h

parts. It can even occur that for a particular ansatz with a )\C=m—C=a Ao, (5.3

small number of parameterg,—E, is non-negative in the

entire pargme_ter space and'has its. minimum equal to 0 fQfhich happens to be the geometrical meanr gfand r..
one point in this space. One is then in the frame pbaudo- g0 that\ is linear in and is usually quite larger thap,

Va“atioﬂf%' method. L ... which is quadratic imnx.

A striking example of such a pseudovariational situation  \ye have to consider three independent issuéa) the
will be given in a separate papf29]. Of course in such @  5ccyracy of the point nucleus as an approximation to the
situation Eq.(3.14) will be very poorly satisfied in the mean, v sical extended nucleud) the rate of convergence of the
as is seen in a largén absolute valugsecond part oAE, @S peryyrhation expansion of relativistic correction®) the
given by(3.13. . . . . guestion whether for finite nuclei the singularity problems
. Let us repeat ‘T’lt this pomt_ that a strict variation pe.rturbalypical for point nuclei disappear. For iss@® the ratio
tion theory forE, is possible if one chooses, andx, with -/ “should be small, which is related to the probability of

the correct Ir singularities near =0. If one prefers a regu- ¢ glectron being inside the nucleus. This ratio is very small
lar ¢, one must also choosg, regular ar =0. In trying 10 ¢4 jight nuclei and not so small for heavy ones, such that for
impose a strict upper-bound condition fgh, one would  yhase it is more important to use a finite nucldirglepen-
make x too singular and lose more than one would gain. gent of the fact that a finite nucleus extends the existence of
solutions of the Dirac equation beyo@d=137). The rate
V. EXTENDED NUCLEI of convergence of perturbation theotp) depends on the

Since most problems with the perturbation theory of rela_magnytude Oz.a’."e" indirectly on the r"?‘t'mcer' For light
nuclei this ratio is small and perturbation theory converges

tivistic effects are related to the singularity of the Coulomb

. . . fast[1,2].
potential, one may wonder whether on worrying about this Wheth finit | h bl th th
singularity one is not studying a purely academic problem, ether a finité nucieus removes the problems wi €

since real nuclei are extended rather than point charges. Th%oulomb S'”gu.'af'ty depends on the raIprN. As I_ong as
objection needs some comments. r.>ry—and this is the case for all—there is a region near

Let us first observe that for a relativistic one-electront€ Nucleus witir<re, Wh‘?fe the Coulomp attraction of the
atom in its ground state there are four characteristic Iengthse’flectron by the nl_JcIeus IS Ia_rger than Its rest energy and
(1) The Bohr radius vv_here the expansion of certain operators in powers of
diverges. The ratig /r\ even increases witd, and hence
re=Z"lta, (5.1  the problems related to the almost-point-nuclear behavior of
the nuclear potential become more serious with increaging
with a, the atomic unit of lengttil bohy, not to be confused (although in a different context the finite-size effects of the
with the parametea, used in Sec. IV and Appendix B. nucleus also become more important with increagingiVe
(2) The critical radius, for which the Coulomb attraction conclude that the problems related to the strong Coulomb
becomes equal to the rest mass, whicl ismes theclassi-  force at small distance between nucleus and electron are not
cal radius of the electron, and is sometimes called theremoved if one accounts for the finite size of the nucleus.
Thomson radius

I’CZZaZaO. (5.1b VI. CONCLUSIONS

) ) In exact perturbation theory one assumes that the unper-
(3) The nuclear radiusy . According to a popular model tyrhed equation is solved exactly and that the same holds for
[30] this is related to the nuclear malk as the inhomogeneous differential equations for the perturbative
corrections to the wave function. In stationary perturbation
- —5p1 /3
rN=2.27xX10°M™a,. (5.19 theory the exact equations are replaced by stationarity con-
ditions for some functionals. Even if stationarity is achieved

If we choose roughiM~2.5Z (for Z>1), this becomes only for a limited class of variations, some important results

Fy=3.1X 10‘521’3a0 (5.10 of the gxact theory can be tgker) over, e.g., that thg first-order
correction to the energy is simply an expectation value
and we get the following ratios: evaluated with the unperturbed wave function.
Although the Dirac operator is not bounded from below,
ro/rg=22a?~5x10 522, (5.29 stationary direct perturbation theory combined with the ki-
netic balance condition lead to an upper bound of the energy
rn/rg~3x105243 (5.2  expectation value in the nonrelativistic limit, i.e., the varia-

tional collapse is avoided. In order to get un upper bound for
re/ry=1.6x2%" (5.29  the functionalF,(¢,,X,) that determines the lowest-order
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relativistic corrections to the wave function, a condition hasWe can expand this condition in powers ©f? using the
to be satisfied that leads to regular results onfgjfand’y,  expansion(1.4b for
have the correct logarithmic behavior at the position of a

point nucleus. If one decides to choose a regular trial func- (81ho|Do—EoSy| o) =0, (A3a)
tion ¢,, one must also regularizg,, in order to avoid diver-

gence ofEg, i.e., the energy contribution t®(c™°). The (S84l Do— EoSo| #h2) +(Stpo| D2 — E2Sp— E oSy o)
price to pay is thakE, is then no longer a rigorous upper

bound to the exadk,. +( 05| Do—EoSol#h0) =0. (A3b)

It is interesting that the energy as functional of the wave_. . . :
function can up tdO(c~ %) be divided into two independent Since we expandg, and iy in the same basis, the last term in

: A3b) vanishes if(A3a) is satisfied. Noting thatA3a) also
parts, one depending on the large compongnhe other on ( X )
@w=x—o-pe/(2m), with 'y the small component, such that holds with 6y, replaced byy,, we can putéijy=+o in (A3b)

the first part gives an upper bound to its exact counterparnd g€t

the second one a lower bound. Such a minimax property of - _

the relativistic energy functional, as, e.g., discussed by TaI-E2<¢°|S°|l/’°>_E2_<¢°|D2_E°SZ|¢°>_<XO|V_EO|)§X>4)
man[31] does not hold to higher orders.

We have here explicitly only considered the lower ordersyn g gh we keep the normalization arbitrary, it is really no

. 72 .
of S,I%PT’ .., 100(c™) for the wave function and 10 oss of generality to chooseg, normalized to unity i.e., to
O(c™°) for the energy, but the essential results persist tc}equire

higher orders, especially as far as the validity of exact ex-
pressions and the regularization at the position of a point (ol Sol o) = (@l 00} = 1. (A5)
nucleus are concerned. We have finally seen that although

most problems that arise with the perturbation theory of relaThe next equation in the series @%3) is, omitting already

tivistic effects are related to the Coulomb singularity, the uspgse terms that vanish {23a) and (A3b) are satisfied,
of realistic extended nuclei does not make a substantial

change since the critical radius, inside of which the Coulomb (840l (Do—EoSp) s+ (Dp— EoS,— E»So) 1,
attraction is larger than the rest energy of the electron, is
always larger than the nuclear radius. — (E4Sp+E»Sy) thg) =0. (AB)

Although we were concerned with stationary and varia-
tional approaches, in the framework of direct perturbationBy an analogous argument as before we get
theory, the present results are also relevant for nonperturba-

tive approximative solutions of the Dirac equation. In PaIE (40| Sol tho) = Ea= { th| D s — EoSy— E2So| 12)
ticular, one understands better under which conditions a qua-

sivariational theory of the Dirac equation is possible, and the —Ex(10l S2| ¢o)

meaning of the use okinetically balancedbasis sets be-

comes more transparent. Stationary direct perturbation ={x0lV—Eo|x2) = Eal{¢o| #2) +{xol xo) -
theory can be directly applied to relativistic Hartree-Fock (

theory[12,21,25.
We can consider the two special cases of intermediate nor-
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APPENDIX A: ALTERNATIVE DERIVATION OF 1
STATIONARY DIRECT PERTURBATION THEORY FOR —3E2{x0l x0)- (A8b)

ARBITRARY NORMALIZATION L . .
Continuing in the hierarchy ofA3) we get

We omit the tilde here, although we refer to trial wave

functions. The bar ory indicates the change of the metric (81ho|(Do—EoSp) e+ (Do—EpS,— E2Sp) 4
[see Eqgs(1.1) and(1.2)].
We start from the energy expectation value —(E4So+ExS) ¢h2+ (EoSot EsSp) 1h0) =0,
E=(y|D|w)/{y|S|¥). (A1) Ee=(%0|D>—EoS,— E»So| #h4) — (0l EaSo+ E2Sy| 2)
—(¥olE4Sa| o) (A9)

The_condition for its stationarity with respect to variations
of ¢ is Using (A3b) (omitting, of course, the last tepnfor Syy= i,
_ _ and then(A6), or rather its complex conjugate witiy= i,
(5y|D—ES y¢)=0. (A2)  the following reformulation ofEg is possible:
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Ee= <X2|V— E0|X2> - E2<<Pz| <Pz>_ 2E, R9<902| @o)
—2E; Re(x2| xo) — E4{ X0l x0)- (A10)

For the two normalizations analogous(#8a) and(A8b) we
get

Ee=(x2lV—Eolx2) — Eo{{®2| 2) + 2 R& x2| x0)}

— E4(xolx0) (Alla)

Ee=(x2lV—Eolx2) — Ex{(®2l ¥2) + 2 RE& x2| x0)}.
(Al1b)

The Hylleraas functional corresponding to the stationarity

condition (A6) is

Fa(2) =(2|Do— SoEo| #92) + 2 Rg 45| D, — EoS,
— E»So| ¢ho) — Ex 0| Sol o) - (A12)

The last term in(A12) is independent of},, but in order to
identify F 4(i,) with E, for the i, that maked-,(i») station-
ary, this term has to be kept.

APPENDIX B: BEHAVIOR OF THE EXACT WAVE
FUNCTION FOR ARBITRARY BOUND STATES OF
H-LIKE IONS FOR SMALL r

We make the ansatz
(Bla

(B1b)

e=9(r)7(%,¢,),

x=if (7" (9,¢,5),

g<r>=r“[ao+a1r+azr2+0<r3>]=§ ¢ g (1),
(B2a)

1
f(r)= < r'[bo+byr +bor+ O(r3)]=zk c 2K (1),
(B2b)
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by(2—k+v)—a,E—a;Z=0, (B5b)
b2(3_K+ V)—alE—aZZ=0, (BSC)
ag(1+k+v)+byZc ?=0, (B6a)

a;(2+ k+v)+[bo(E+2¢?)+byZ]c %2=0, (B6b)
ay(3+ k+v)+[by(E+2c?) +b,Z]c?=0. (B60)

The condition for the existence of a solution @5a) and
(B64) is that[32]

v=k?—Z%c"%-1. (B7)
We expancE and v in powers ofc ™2
E=EoZ?+E,Z% 2+E,Z% *+---,  (B8a
v=|k|—1-2Z2%/(2c?|k|)— Z*(8c* k|?)+ - .
(B8b)
The expansion of” is
R Y Z2Inr . Z* [Inr  Inr o z®
rer 2c?«]  8c* [« [«[® ct/[
(B9)

This expansion is analytic in~2 for all r>0. Solving (B5)
and (B6) one getshy/a,, a,/a,, etc., in powers ot~ and
inserting this into(B1) and (B2) the asymptotic expansion
(in powers ofr and Inr) of the coefficients of the ! ex-
pansion ofe,,, xo, for r—0 is obtained.

This asymptotic expansion is defined at least forr atin
the positive real axis. An asymptotic expansion of a function
y(x) aroundx=0 means that coefficients, exist such that

n

where thenT are normalized functions of spin- and angular where(B10b) is a shorthand notation for

variables, with—« the eigenvalue of the operatKr defined
by

K=pB(o:1+1) (B3)

(note that in this contexa, has not the meaning of the Bohr

radius, but is just a coefficient
Insertion of (B.1) into the Dirac equation leads t@or
e=1,A=1, m=1)

—+
or r

g-c (B4a)

z
Z+E
r

0 1+«

—+ =0.
Ao r=0

g+ (B4b)

Z
F+2C2+E

Forg andf given by(B.2) one gets after ordering in powers

of r

bo(l_K+ V)_a.ozzo, (856)

y(x)= kE ChY(X)+O(x"H 1), (B103
Yi(X)=0(x"), (B10b)
limx* Xy, (x)=0. (B10¢)
X—0
Note that
x'=0(x% if —1<p=<0, (B10d)
Inx=0(xY). (B10e

The normalization ofp is not determined by the condition
(B4). We fix the normalization by choosiray, independent
of ¢ (for k>0, a, instead ofagy). One can, e.g., add an arbi-
trary multiple ofg, to g, and the same multiple df; to g5,
which only affects the normalization af.

One must distinguish the two cases0 and x>0. We
start with
k=—1-1, (B11)

k<0, j=1+1/2

for which



54 STATIONARY DIRECT PERTURBATION THEORY @ . ..

bo=ao[Z/(2|k|)+Z3(8¢?| k|?)+ O(Z%/cH],

(B12a
B Z  (2Eq|k|?+1)Z3(1+4|«]) z°
A A [T T 4w (L 2]a]) &)
(B12b
b= (1-Eql«|)Z? z* B12
S AR P e T
and finally
| Z 2
Jo=apr 1—mr+0(r) , (B13a
R Z[(41+5)[2Eq(1+1)%2+1]
92= 72T Sy M 421+3)(1+1)°

Z
RPTEE Inr+O(r2)], (B13b

= z4 ! I ! In%r+0
9e= 202 g3 M gz MO
(B13¢)
1 [Eo(l+1)—1]Z
| 2
fo=a" 2| 50y T rmyaies) O
(Bl4a
f,=ayr'z® t ! Inr+0
2=l 2 g3 agenz MO
(B14b)
fa=agr'z® ! ! |
4= 151+ 1)5 B+t
! In’r+0 B14
+m ncr-+ (r) . ( C)
We now come to the case
k>0, k=, j=1—3. (B15)
The counterpart ofB123 is
bo= 2%, Z 0 2 B16
0=38g| — 7 +Z+ 3| (B16)

This means thaa, is smaller byO(c?) thanb,. If we want
to express all coefficients in terms af, we get ac™* ex-
pansion with a leading terr®(c?). We can avoid this by
expressing everything in terms b§, or of a;, which are of
the same order. Then

a,=a + =
S VTR 163 c? c®

(B.173

2141 Z 412+ 1—Eq(21%+413) Za+ (25)

2141 72 ) z*
bo=—a, T—m[l—szo(Hzl )]+0O a0
(B.17b

1195

z_3 2+Eq(21+1)

blzal Z+ C2 4|

ZS
+O(F”, (B.179

Z (I1+3)+Eq(1+6l+5I?) Z3 (25)]

A=Ayt A(1+1)° 2Ol

C
(B.170
1-Eo(l+1) z4
b2:— l[WZZ+O(EZ ] (Bl?e

For the same order in as before we now also need and
b,. The final result is

Z
R | I 2
go=ayr|1l |+1r+o(r )}, (B.183
21+1 . 72
go=ayr'|—— Zr 1= —Inr+0(r)|, (B.18b
4] 2l
412+ 14+ 2E,1%(21-1) . (21+1) _
g4=a1r'23{ 152 ri- kAl !
VA Z
—WlnrJrWInzerO(r)], (B.189
21+1
fo=—ayr 3 r-1-z+0(r)|, (B.193
1-21+Eq(21%+1
f,=ayr ol ) Zr !
41
20+1 _,
2 Inr+0(r%}, (B.19H
f4=alr|Z4

— 4124+ 1—EqI?— 2E213(21 + 1) + 4E,I3(21 + 1)
x 16°

412+ 1-2E,1%(21+1)

1§67 “Lnr

xr i+

r

21+1
1612

r=lin’r+0(r%;. (B.190

All those expressions iB13) or (B18) that involveE, or E,
are specific to a particular state, while those wHeger E,
do not enter are universal and hold for all stategh either
k<0 or k>0) and are even valid+utandis mutatis-for
molecules.

APPENDIX C: KINETIC BALANCE AS CHANGE
OF THE METRIC

As first proposed by the present authai”] and worked
out in detail by Dyall[33] the kinetic balance condition can

be formulated by defining an auxilary large-component-type

wave function ¢’, related to the small component of
=(e.x),
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1

X=5me @ P (Cy

In terms ofp and ¢’ the Dirac equation can be written as

\% T

1 7l=elo wme)
T Tt o apVe-p ¢’ 0 T/(2mc*))
(C2

This is another Dirac equation with modified metric, and an

alternative to(1.2). We define

0 0
D_=<V T) D,= 1
0 T —-T) 2 0 WO-pVU-p
(C33
TS
=0 o/ %=7lo Ti2m) (C3h
?=(;°,) (C39

Note the changed meaningEThen(CZ) can be written as

1 —\— [— 1 —\—
Do+gD2)¢=E(so+;sz b cH
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1 1
= e (@2lo-p(V—Eq) o pl¢) - Ez[ — (@0l Tles)

1
(@2l e2) | —Eaf 5= (@0l Tleg) +2 Re @o| ©2)
2m

(C.60
The unperturbed equatidi€59 is in component form,

Vot Tes=Eqeo, (C.7a

Teo—Tey=0. (C.7b

From(C7hb) we conclude thai, and ¢}, can only differ by a
function for which

T(¢o— ¢p)=0, (C.83

i.e., which is essentially the solution of a Laplace equation.

No nontrivial solution of (C89 is square integrable; we
hence conclude that

®0= 0, (C8b)

Ho@o=(V+T)@o=Eqeo, (C9

and we can take over the entire formalism of direct per-

turbation theory{1], just replacingD,, S;, etc., byDg, Sy,
etc. In particular, fory|Sy|¢py=1

(Do~ EoSo) $0=0, (C53

(D2~ EoS,— E»So) tho+ (Do~ EoSo) #1,=0. (C5b)
Eo=(to| Dol o) =( 0| V| @) + 2 RE 0| T| ¢4

— (ol Tl @o), (C69

1
E>=(40o|D2—EoSy| o) = am? (@olo-p(V—Eg) o p|eg),

m2
(Céb)
E4={to|D2— EoS,— E»So| th2) — Ex{ thol Sol )
1
= 2z (¢olo-p(V—Eo) o p)|¢3) — Ez{ < 0| 5 <P6>
+{¢ole2) | (C60

Es=(0lD 2~ EoS,— ESol ) — Ex( | Sol )
— Eo{(ol Sal o) + (ol Sol )}
= (2|D2— EoSol v2) — E{2 Re( | S5l )
+ (W2l Sol 2)} — Exf (ol So| o) + 2 Rel ol Sol )}

i.e., (C59 is equivalent to the Schdinger equation, in the
same senséi.e., with the same reservationsn which the
Léevy-Leblond equation is equivalent to the Satiimger
equation[1,2,13. Equation(C5b) is in component form

—Ezpot(V—Eg) @+ Tey=0, (C109

1
a2 @ PV=Eg)o-peo+ T~ Te,=0. (C10D

Substitution of(C10b into (C109 leads to(noting thate
=¢0)

1
(HO_EO)%ZW o-p(V—Ep) o peo+Ezep, (C1y

which can be solved fap,. One can obtaip,— ¢, from the
Poisson-like equatiofC10h. ¢, is required for the con-
struction ofE, according to(C69. Actually only o-pe, is
needed and one can repla@&l0b by

1
om (V= Eo)o-peot o-p(eo— ¢;)=0, (C12

such that
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1
E4:W (@olo-p(V—Ep)o-ples)

2<€00—

—E

€00> +{@ol ¢2)

2m
1
= 2 (ol o P(V—Eo) o ple2) + g3 (@ol o p(V
—Eg)?0 pleg) + Ez{ < ®ol 5m €00> +<<Po|€02>}
(C13
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! ! 1 ! !
—2 Re{ | T|@3) + am? (@olo-pVo-pleg)

=2 Rd‘P0|H0|<P2>+ <<Po|¢T pVo-pleo),
(C15b
(D)4=2 Re{@o|V|@a) +2 RE(@o| T| @)+ (@4l Tl 00)}

—2 Re@| Tl@s)+ (@2 V]@2) +2 Re(@,| T|3)

1
_<<P2|T|€02>+ 22 Re ¢glo-pVo-ples)

which is, of course, the same result as from classical direct

perturbation theory.

Let us now consider the stationary variant of this ap-

proach. Forg normalized to unity, i.e.,

1
(ele)+ 5= (¢'|Tl¢")=1, (C14
the energy expectation value is
(D)=(¢|V]e)+2 Re¢|Tle")—(¢'|Tle")
1
——5(¢'|o-pVo-ple’). (C1H

4mc

Expanding this in powers af 2 we get

(D)o={(¢olHoeo) — (@0l Tl®o) +2 R& ¢o| T| @)
—(¢o|Tleo)

=(@olHo|©0) — (00— €0l Tlwo— @q)- (C1539

Evidently this expection value is not bounded from below,
since the first term is negative and the second non-negative.

For arbitrary ¢, the maximum of(C15a with respect to
variation of ¢y—¢y is reached forgy=¢y. Imposing ¢q
= ¢, the minimum is reached fag, an eigenfunction oH,.
We further get(using ¢o= ¢g)

(D)2=2 Re[{@o|V|@2) +{ ol TI®2) + (2| TI#g)}

=2 Re{@o|Ho| )+ (@2|Hol ©2) — (02— 03| Tl 02— @3)

1
tomz Re(polo-pVor-ples). (C150

The stationary condition fofC15a (taking ¢o= ¢() subject
to the normalization conditiokip|@p)=1 is

<5<P|Ho— Eo|<Po>:O-

This together with the next normalization conditions

(C163

1
2 Re(900|902>+ <<Po|T|<Po> 0, (C179

1
2 Re(@o| @a) + (@2l 02) + m Re&(@2| T|¢o) =0,
(C17b

allows us to rewritC15bH and(C153 as

(C183

(D >2 (‘Po|0' p(V—Eo)o-pleo),

<D>4:<¢’2|H0—E0|902>_<902— ¢é|T|€Dz— <Pé>

1
5—2 Re(¢o|o-p(V—Ep)o-pley). (C18b

2m

The stationarity of{C18b for arbitrary variations subject to
the normalization condition leads {€10.
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