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Formation of metastabledtµ molecules intµ„2s…-D2 collisions

J. Wallenius and P. Froelich
Department of Quantum Chemistry, Box 518, S-751 20 Uppsala, Sweden

~Received 4 December 1995!

The formation process of metastabledtm molecules inD2-T2 mixtures is investigated. Thedtm molecule
exhibits a series of three-body resonances embedded in thetm1d scattering continuum just below the
tm(2s)1d threshold. These states can be formed in collisions ofexcited tm(2s) atoms withD2 molecules,
whereby the excess of binding energy is absorbed by the rovibrational degrees of freedom ofD2 . We present
a scattering-theoretic model for this process, and perform a numerical calculation of its cross section. The
essential transition amplitudes are obtained from three-body wave functions for thedtm subcluster, and
adiabatic wave functions for the entire hybrid system in the final channel. It is found that the effective
formation rate is limited by the Auger-transition rates of the molecular complex formed. The calculated cross
sections exhibit broad ‘‘peaks,’’ with magnitudes large enough for the formation process to favorably compete
with deexcitation oftm(n52) atoms via radiative and collisional processes. The formation of metastable
dtm can therefore be one of the fastest processes depleting then52 levels of thetm atom in hydrogen
mixtures, of importance for low-energy muon science, electroweak physics, and muon catalyzed fusion.
@S1050-2947~96!03107-1#

PACS number~s!: 36.10.2k, 03.80.1r, 33.15.2e
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I. INTRODUCTION

Muon catalyzed fusion (mCF! as we know it today is
supposed to proceed mainly via the bound states of
dtm molecule with angular momentumJ50 @1#. There are
several reasons for this, notably~i! although the muons ente
the mCF cycle in highly excited states of the muonic atom
dm and tm with main quantum numbern.11 @2#, within
t510211 s they will cascade down to thetm(1s) ground
state via various deexcitation and transfer processes.~ii ! The
so-called Vesman mechanism@3# facilitates a very effective
formation of dtm molecules in collisions oftm(1s) with
D2 or DT molecules.~iii ! Even though the loosely boun
state formed by Vesman’s mechanism is of angular mom
tum J51, subsequent Auger transitions promptsdtm in fast
fusing (l f51.231012 s21) bound states of angular mome
tum J50.

However, recent investigations have demonstrated
the bound ~or de facto semibound! spectral structure o
dtm is richer than expected. A series of metastable sta
below thetm(2s)1d threshold that may be associated w
the adiabatic 3s potential has been discovered@4–7#. If
these states, from now on labeleddtm* , are formed during
the cascade of thedtm cycle they will decay into highly
energeticdm(1s) or tm(1s) atoms @8#. The decay into
dm(1s) is expected to increase the fractionP1s

dm of muons
reaching the ground state ofdm atoms and holds the poten
tial for removal of the persisting disagreements between
experiment and theory regarding the precise values ofP1s

dm

@9#.
In order to be definite about the influence of the side p

thus appearing in the muon catalyzed fusion cycle, it is n
essary to evaluate excited-state scattering cross sections
higher degree of precision. In what follows we will presen
detailed scattering-theoretic model for the process of form
tion of metastable muonic molecules in collisions betwe
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excited muonic atoms and hydrogen molecules.
In Sec. II the theoretical framework is given, leading to

Breit-Wigner cross section featuring two essential com
nents, the entrance width and the reactive width. In Sec
relevant energy levels and wave functions ofdtm* are cal-
culated, while Sec. IV is concerned with the evaluation
the reactive width. In Sec. V effective formation cross se
tions are calculated, leading to estimations ofldtm*

eff . The
credibility of our model is tested by evaluation of wel
known entrance widths for the formation ofboundstates of
ddm anddtm.

II. THE FORMATION PROCESS

The interesting feature of muonic molecule formation
that it may occur as a virtual~i.e., intermediate! process in
the tm(2s) collision, without participation of a third body
Indeed, the formation event may be related to the ‘‘fi
step’’ of the higher-order scattering process proceeding
intermediate molecular states, including resonances.
transition matrix element fortm(2s)1d scattering is given,
in the ‘‘prior’’ form, by

Tf i~E!5^c f
~2 !uVi uf i&

5 K f fUVi1Vf

1

E2H1 i e
ViUf i L

5^f f uVi uf i&1E (
^f f uVf uf r&^f r uVi uf i&

E2Er1 i e
,

~1!

whereVi ,Vf specify the initial and final channel interaction
f i ,f f are the initial and final free waves describing t
channel motion with relative collision energiesEi , Ef , re-
spectively, andc f

(2) ,c i
(1) are the scattering solutions to th

full Hamiltonian H. The summation is over the discre
1171 © 1996 The American Physical Society
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1172 54J. WALLENIUS AND P. FROELICH
spectrum ofH, which in our approach includes also the reso
nant states. The transition amplitude consists of a direct a
a resonant term of which only the latter is relevant for th
formation process considered here. The quanti
z^f r uVi uf i& z2 is called the partial width forenteringthe reso-
nance from channeli , while z^f f uVf uf r& z2 is the partial
width for leavingthe resonance and going to channelf @10#.
The first step of the nondirect scattering process dictates t
size of the ‘‘entrance width’’ for the formation of the reso-
nant statef r .

We notice that the resonance formation may occur n
only during the elastic scattering (Ei5Ef ,Vi5Vf),

tm~2s!1d→tm~2s!1d, ~2!

but also during the direct deexcitation process (Ei
ÞEf ,Vi5Vf)

tm~2s!1d→tm~1s!1d, ~3!

which may also occur with muon transfer (EiÞEf ,ViÞVf)

tm~2s!1d→dm~1s!1t. ~4!

This is because the resonances below thetm(2s) threshold
connect the entrance channel with two energetically ope
arrangement channels with lower thresholds, name
tm(1s)1d and dm(1s)1t. Hence the formation can be
viewed as the first step of the above-mentioned process
with the entrance width in all cases given by

G52p z^f r uVi uf i& z2. ~5!

The matrix element in Eq.~5! is ‘‘off the energy shell’’ in
that it connects the initial state in the entrance chann
@ tm(2s)1d# of the molecular continuum with the~under-
threshold! metastable state with total energyEr<E. Here we
assume that, in analogy with the ground-state case, the f
mation is facilitated by a third body, which absorbs the ex
cess of the binding energy. Since several of the resonanc
are located within the dissociation energy ofD2 (. 4.5 eV!
below the tm(2s) threshold, we will consider the Vesman
mechanism@3# as a third body interaction, whereby the ex
cess of binding energy is transferred to the rovibrational d
grees of freedom of the hybrid@(dtm* )dee# molecule in the
process

tm~2s!1D2→@~dtm* !dee#nK ~6!

FIG. 1. Coordinates of thêtm2D2& system.
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with n being the vibrational andK the rotational quantum
number of the hybrid molecule. The cross section for t
above reaction is given by the Breit-Wigner relation

s~Ecoll!5
p

k2

GentG r

~Ecoll2Eres!
21 1

4 ~Gent1G r !
2

~7!

with the Vesman resonant energyEres satisfying the energy
conservation condition

Eres1Eb
vJ5DErovib1DE hf , ~8!

whereEb
vJ is the binding energy with respect to thetm(2s)

threshold of the metastable molecular state labeled by vib
tional and rotational quantum numbersv and J. DErovib is
the difference between the rovibrational levels of the hyb
molecule@(dtm* )dee#nK and theD2 molecule ground state,
while DEhf is the difference in hyperfine splitting betwee
tm anddtm levels.

G r is the reactive scattering width, given by

G r5GA1G f1Gc1Gg . ~9!

Here,GA is given by the rate of Auger deexcitations of th
metastable molecule,G f is the fusion width, whileGc and
Gg are the widths for Coulombic and radiative decay in
eitherdm(1s)1t or tm(1s)1d.

The entrance widthGent is discussed in Appendix A.
There we derive the following formulas, equivalent to th
ones obtained fromR-matrix theory by Lane@11#:

Gent5
4mk

~4p!2(
M

E dk̂uN~k!u2 ~10!

N~k![^C̄nK~R312r2!FJMJ
~r31,rtm!

3uV31uC0Ki
~r12!h2s~rtm!eik•~r32R12!&. ~11!

In the above expression, the final wave function of the ent
system is written in a product approximation. In the initi
channel (f i), C0Ki

is a wave function describing the nuclea

motion of D2 in the electronic Born-Oppenheimer~BO! po-
tential,h2s is the atomic wave function oftm, and the rela-
tive motion ofD2 with respect totm is described by a plane
wave of momentumk. In the reaction channel (f r), C̄nK is
a BO wave function describing the motion ofd with respect
to dtm treated as a point charge, andFJMJ

(r31,rtm) is the

complete three-body wave function of quasibounddtm of
angular momentumJ. The sum overM is to be taken over
the magnetic quantum numbersMJ andMK . Coordinate la-

FIG. 2. The three rearrangement channels of thedtm system and
their Jacobian coordinates.
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54 1173FORMATION OF METASTABLE dtm MOLECULES IN tm(2s)- . . .
beling is explained in Fig. 1.V31 is the three-body potentia
acting between thetm atom and the target nucleus, while th
interaction V32 between thetm atom and the spectato
nucleus has been neglected.

Atomic units me5\5e51 are used throughout this pa
per if not otherwise explicitely stated. It is convenient
express the other coordinates in terms ofr31 and
R[R312r2 .

Defining the projection coefficients

f 5
m1~m11m21m3!

~m11m2!~m11m3!
, g5

m2

m11m2
, h5

m3

m11m3
~12!
e-
we have

C0Ki
~r12!e

ik•~r32R12![C0Ki
~R2hr31!e

ik•~ f r311gR!.

If one assumes that the range ofr31 integration, determined
by the factorV31FJMJ

(r31,rtm), is much less than the rang

of R, then an approximation forC0Ki
comes from the first

terms of its Taylor expansion:

C0Ki
~R2hr31!.C0Ki

~R!2hr31•¹C0Ki
~R! ~13!

andN(k) becomes
N~k!.^FJMJ
~r31,rtm!uV31uh2s~rtm!ei f k•r31&^C̄nK~R!uC0Ki

~R!eigk•R&

2h^FJMJ
~r31,rtm!uV31ur31h2s~rtm!ei f k•r31&•^C̄nK~R!u¹C0Ki

~R!eigk•R&. ~14!

In order to reduce the complexity of expression~14! we choose to investigate it forKi 5 0. We then have

N~k!.^FJMJ
~r31,rtm!uV31uh2s~rtm!ei f k•r31&^c̄n~R!YKMK

~R̂!uc0~R!Y00~R̂!eigk•R&

2h^FJMJ
~r31,rtm!uV31ur31h2s~rtm!ei f k•r31&• K c̄n~R!YKMK

~R̂!UR̂]c0

]R
Y00~R̂!eigk•RL , ~15!
wherecn is the vibrational part of the~BO! D2 wave func-
tions

C00~R!5c0~R!Y00~R̂!, C̄nK~R!5c̄n~R!YKMK
~R̂!.

~16!

The muonic matrix elements~in the r31 space! are calculated
using the property~see Appendix B!

^FJMJ
~r31,rtm!uV31uh2s~rtm!ei f k•r31&

.b^xvJ~r 31!YJMJ
~ r̂31!uEb

vJuei f k•r31& ~17!

with

b5^FJMJ
~r31,rtm!uh2s~rtm!& rtm

~18!

and xvJ(r31) is the pseudo wave function obtained by int
gratingFJMJ

over the muon coordinate.

Details of the integration over anglesr̂31 andR̂ in ~15! are
given Appendix C, resulting in formula~C6!. Defining the
radial matrix elements

TvJ
mL[b^xvJ~r 31!uEb

vJur L j uJ2Lu~ f kr31!&,

TnK6

eL [ K c̄n~R!U j uK6Lu~gkR!S d

dRD L

c0~R!L ~19!

Gent
JK(k) is evaluated by squaring expression~C6!, integrating

over anglesk̂ and taking the sum overMJ and MK . Four
combinations ofJ andK appear:
Gent
0054mkF ~Tv0

m0Tn0
e0!21

2h

3
Tv0

m0Tn0
e0Tv0

m1Tn02

e1

1
7

15
~hTv0

m1Tn02

e1 !2G ,
Gent

0154mkF3~Tv0
m0Tn1

e0!22
2h

3
Tv0

m0Tn1
e0Tv0

m1Tn12

e1

1
1

3
~hTv0

m1Tn12

e1 !22
8h

15
Tv0

m0Tn1
e0Tv0

m1Tn11

e1

1
8h2

45
Tv0

m1Tn12

e1 Tv0
m1Tn11

e1 1
556

105
~hTv0

m1Tn11

e1 !2G ,
Gent

1054mkF3~Tv1
m0Tn0

e0!22
2h

3
Tv1

m0Tn0
e0Tv1

m1Tn02

e1

1
1

3
~hTv1

m1Tn02

e1 !2G ,
Gent

1154mkF9~Tv1
m0Tn1

e0!21
2h

3
Tv1

m0Tn1
e0Tv1

m1Tn12

e1

1
1

3
~hTv1

m1Tn12

e1 !22
4h

3
Tv0

m0Tn12

e0 Tv1
m1Tn11

e1

1
2

3
~hTv1

m1Tn11

e1 !2G . ~20!
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1174 54J. WALLENIUS AND P. FROELICH
Having five metastable states of each angular momen
J situated within the Vesman formation region@12# we
should investigate the magnitude of the matrix eleme
TvJ

mL and TnK6

eL for each possible formation path. For th

purpose, we need accurate energy levels and wave func
for the metastabledtm* molecule, as well as for the hybri
molecule@(dtm* )dee#nK .

III. WAVE FUNCTIONS

The three-body wave functionsFJM(r,R) were obtained
variationally by use of the coupled rearrangement chan
method deviced by Kamimura@13#. FJM is expanded in
terms of Gaussian basis functions spanned over the t
rearrangement channels shown in Fig. 2.

FJM5(
m

cmgm

gm5r lRLe2~r /r i !
2
e2~R/RI !

2
@Yl~ r̂! ^ YL~R̂!#JM . ~21!

The nonlinear variational parametersr i andRI are chosen as

r i5r 1S r n

r 1
D ~ i 21!/~n21!

, RI5R1S RN

R1
D ~ I 21!/~N21!

. ~22!

The geometrical progression allows for an accurate
scription of both short- and long-range behavior.

Since the resonances sought for are embedded in
double scattering continuum of freetm(1s) anddm(1s) at-
oms, the Rayleigh-Ritz procedure will not yield absolu

FIG. 3. Eigenvalues~eV! below thetm(2s) threshold as a func-
tion of the scaling parametera. Nbas52700,J50.
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bounds of the resonance energies. Instead we apply the
bilization technique@7#, where one introduces a real scalin
parametera through the transformations

r→ra, T→T/a2, V→V/a, ~23!

whereT and V are the kinetic and potential energy matr
elements, respectively. Varyinga one obtains a stabilization
graph as shown in Fig. 3.

Horizontal lines approximate the real part of resonan
eigenvalues, while continuum eigenvalues will traver
E-space from above. Using up to 3000 basis functions
obtained stabilized eigenvalues forJ50 andJ51 as shown
in Table I. Also given are the energies obtained with a dir
inclusion of the first-order vacuum polarization potential@9#.

The probability densities corresponding to pseudo wa
functions xvJ(r dt) were obtained fromFJM by integrating
over the muon coordinate in channelc;

uxvJ~r dt!u25E uFJM~rdt ,rm!u2drmdr̂mdr̂dt . ~24!

Some examples are shown in Fig. 4. Note the irregular sh
for binding energies less than 20 eV, arising from a stro
mixing of the adiabatic 3s and 4s potentials. The Born-
Oppenheimer classification used to enumerate the serie
metastable states below then52 threshold in Refs.@4,5# as
well as in Tables I and II thus will be adequate only f
estimations of energy levels, not for wave-functio
dependent properties such as lifetimes and transition ma
elements.

The matrix elementsTvJ
mL were evaluated by approxima

ing xvJ(r 31).xvJ(r dt), calculating the probability density in
channelc according to~24! and manually putting signs on
consecutive lobes. Results in the limitk→0 are given in
Table II.

TABLE I. EnergiesEb
vJ of dtm* resonances below thetm(2s)

threshold, given in eV. First column gives values obtained by
suming a pure Coulombic interactionVC . The second is obtained
when including the vacuum polarization potentialVpol in the three-
body Hamiltonian (Veff5VC1Vpol).

v Eb
v0(VC) Eb

v0(Veff) Eb
v1(VC) Eb

v1(Veff)

0 2217.889 2217.829 2212.543 2212.480
1 2139.728 2139.642 2135.362 2135.271
2 279.119 279.013 275.673 275.565
3 236.619 236.501 234.237 234.117
4 217.463 217.341 216.336 216.213
5 27.251 27.138 26.482 26.360
6 23.578 23.458 23.187 23.068
7 21.732 21.614 21.514 21.397
8 20.832 20.718 20.713 20.601
9 20.396 20.288 20.324 20.219
10 20.181 20.087 20.146 20.060
11 20.070 20.050

4s 211.421 211.296 210.490 210.366

2p 219.157 218.922
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FIG. 4. uxvJ(r dt)u2 superimposed on the 3s
and 4s potentials.Nbas52700,J50.
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Notice that even though the matrix eleme
^xvJ(r 31)ur 31& grows with increasingv, the potentialV31

present inTvJ
mL introduces a ‘‘cutoff’’ that is manifested in

the factorEb
vJ multiplying ^xvJ(r 31)ur 31&. Further, the inclu-

sion of the vacuum polarization potential causes a shif
Eb

vJ , which suppresses the magnitude ofTvJ
mL for high values

of v. bvJ was estimated by observing that the shiftDE ob-
tained when evaluating the binding energiesEb

vJ including
the vacuum polarization potential, is related to the 2p orbital
admixture in the dtm* wave function. We write
b2.12DE/DE2s , whereDE2s50.236 eV is the vacuum
polarization shift of the freetm(2s) atom andDE is derived
from Table I. Comparing with the exact calculation ofb for
J50 made in@14#, our estimation is in error by less tha
2%.

The wave functionscnK were calculated in the Born
Oppenheimer approximation solving the one-dimensio
Schrödinger equation for the nuclear motion

TABLE II. The matrix elementsTvJ
mL for dtm* resonances asso

ciated with the first ten vibrational states of the adiabatic 3s poten-
tial, calculated in the limitk→0. Also given areTvJ

mJ for the single
vibrational states associated with the 4s and 2p potentials. Atomic
units are assumed.

v bv0 Tv0
m0 bv1 Tv1

m1

0 0.864 0.0769 0.856 0.0042
1 0.797 0.0362 0.783 0.0032
2 0.742 0.0330 0.736 0.0030
3 0.707 0.0206 0.701 0.0027
4 0.695 0.0225 0.692 0.0033
5 0.722 0.0175 0.695 0.0054
6 0.701 0.0095 0.704 0.0050
7 0.707 0.0079 0.710 0.0044
8 0.719 0.0074 0.725 0.0053
9 0.736 0.0048 0.745 0.0046

4s 0.686 0.0176 0.689 0.0032

2p 0.065 0.0001
n

l

F d2

dR2 2
K~K11!

R2 12M @EnK2V~R!#GunK~R!50,

cnK~R!5
unK~R!

R
, ~25!

using the nuclear potential calculated by Kolos and
workers@15#, the reduced massM being that ofD2 for the
initial state, and that of@(dtm)dee# for the final. The bound-
state energies found agreed within 0.2 meV with values
tained by taking nonadiabatic effects into account@16#. Re-
sulting TnK

eL in the limit k→0 are displayed in Table IV.

IV. THE REACTIVE WIDTH G r

The first attempts to estimate Vesman formation rates
muonic molecules were not concerned with the nescessit
having a stabilizing process transferring the loosely bou
state formed into a more tightly bound before the event
backdecay of the hybrid molecule@3#. Later it turned out that
the reactive widthG r appearing in the cross section~7! is
essential for both qualitative and quantitative descriptions
the formation process.

In the present case, where a metastable state ofdtm is to
be formed,G r has four components: the widthGA for Auger
transitions between metastable states, the fusion widthG f for
direct fusion of the particular state,Gc representing the Cou
lombic lifetime of dtm* , andGg giving the rate of radiative
decay.

A formalism for calculatingG f for metastable states wa
developed in@7#. Preliminary extensions of those calcul
tions indicate thatG f for any of the states here concerned
less than 1010 s21.

The width for the radiative decay can be estimated
realizing that the muon of thedtm* molecule is strongly
clustered ont, the deuteron only weakly interacting with th
tm atom.Gg is thus well approximated by the radiative dec
rates oftm(2s) and tm(2p). For thedtm* states within the
Vesman region, we have
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Gg5~12b2!Gg
2p→1s~ tm!.531010 s21. ~26!

The width for Coulombic decay was recently calculat
by Kino and Kamimura to be.1011 s21 @14#, implying that
the main contribution to the reactive widthG r comes from
the Auger transition

@~dtm* !v i Ji
dee#→@~dtm* !v f Jf

de#11e2. ~27!

The width for ~27! can be found from Fermi’s golden rule

GA52pr~E!(
f

z^ f uHI u i & z2, ~28!

whereu f & andu i & are final and initial states of the system a
r(E) is density of final states for a given energy. The int
action operatorHI can be approximated by@17#

HI52
re–d

r e
3 , ~29!

where the dipole moment operator is

d5rt1rd2rm ~30!

andre,rt,rd,rm are the particle coordinates with respect to t
center of mass ofdtm* .

Writing the initial and final states as a product of t
electronic and muonic wave functions and assuming that
density of final states is the same as for plane wav
r(E)52k/p, ~28! becomes

GA5
4k

2Ji11(
M

Z^F f~r,R!uduF i~r,R!&

3K C f~re!U re

r e
3 UC i~re!L Z2. ~31!

HereF(r,R) is the three-body wave function ofdtm* , in its
initial and final state, andC(re) is the wave function of the

FIG. 5. The electronic matrix element^C f ure /re
3uC i& as func-

tion of the kinetic energyEA of the ejected Auger electron.
-

e
s,

Auger electron being ejected from the hybrid molecule. T
sum is to be taken over the magnetic quantum numb
MJi

andMJf
.

Rewriting the dipole operator as

d5rtm1
mtm

mtm1md
r31, ~32!

we may use the fact that the muon of thedtm* molecule is
strongly clustered ont @14# to make the approximation
@r tm,r dt ,a5mtm /(mtm1md),b2.0.5 for both initial and
final states#

^F f~r,R!uduF i~r,R!&

.^xv f Jf
~r dt!YJf MJf

~ r̂dt!uardtuxv i Ji
~r dt!YJi MJi

~ r̂dt!&.

~33!

The electronic matrix element is calculated by taking t
atomic wave functions

C i~ r̂e!52e2r eY00~ r̂e!C f~ r̂e!5
F1~1/k;kre!

kre
Y1M~ r̂e!

~34!

as approximations for the actual two-center wave functio
FL being the regular Coulomb function. The wave numb
k of the ejected electron is

k5A2~DEb2EI !, ~35!

whereEI515.426 eV is taken as the ionization threshold

H 2 @18# andDEb5Eb
vJ2Eb

v8J8.
The electronic matrix element as function of the kine

energyEA5k2/2 of the Auger electron is displayed in Fig. 5
The radial part of the muonic matrix element for each tra
sition of interest is given in Table III, with entries ordere
with respect to increasingEA . Note that the magnitude of th
resulting widthGA decreases asEA increases. It is found tha
the transition from the initial state (v,J)5(8,0) has the larg-
est width. This is partly due to the statistical fact
1/(2Ji11), partly due to the spatial behavior of the wa
functionsxvJ , featuring a pronounced 4s component.

V. EFFECTIVE FORMATION

Since the magnitude of cross section~7! is limited by the
smallest of the widthsGent and G r , the effective formation
rate can be quite different fromGent.

TABLE III. Radial muonic matrix elementŝx f uardtux i& and
widths GA for Auger transitions relevant to thedtm* formation
process. Entries are ordered with respect to increasingEA .

EA ~eV! v i Ji v f Jf ^x f uardtux i& GA ~s21)

0.069 8 0 4 1 0.024 7.631013

0.518 7 1 4 0 0.031 4.231013

0.549 9 0 4 1 0.010 4.231013

1.314 8 1 4 0 0.020 1.831013

1.518 9 1 4 0 0.021 2.031013
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FIG. 6. The matrix elementsT8J
mL andT3K

eL as a
function of the center-of-mass collission energ
Ecoll ~eV!.
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When comparing Tables I, II, IV, and III taking the en
ergy conservation condition~8! into account, one finds tha
even thoughGent is largest for the formation configuratio
v59,n51 of angular momentumJ51 the most favorable
configuration is forv58,n53 and J50, with Eb

8050.718
eV, which has the largest reactive widthG r.GA . Thus we
evaluate the relevant matrix elementsT80

mL andT3K
eL as func-

tion of the initial collision energyEcoll , and display them in
Fig. 6.

The concomitant entrance widthsGent
0K are displayed in

Fig. 7. We find that the entrance width is of the same or
of magnitude as the width of the stabilizing Auger proces

We can now write the Breit-Wigner formula~7! for the
cross section as

sJK~Ecoll!5
p

k2

Gent
JKGA

~Ecoll2Eres
JK!21 1

4 ~Gent
JK1GA!2

~36!

where Eres
JK is the center-of-mass collision energy fulfillin

the energy conservation condition for the particular form
tion path. Neglecting the difference of hyperfine levels at
n52 level, we haveEres

0150.159 eV andEres
0050.154 eV for

TABLE IV. Rovibrational energy levelsĒn1 of the hybrid mol-
ecule@(dtm)dee# assuming a pointlikedtm, which give transition
energiesDErovib

n1 5Ēn12E00 with respect to the ground state o
D2 , with E00524.556 eV. The matrix elementsTnK

eL are calculated
in the limit k→0.

n Ēn1 DErovib
n1 Tn0

e0 Tn1
e1

0 24.5825 20.0265 0.998 0.041
1 24.2709 0.2851 0.023 3.501
2 23.9698 0.5862 0.059 0.527
3 23.6787 0.8773 0.015 0.472
4 23.3976 1.1584 0.009 0.227
5 23.1265 1.4295 0.005 0.157
6 22.8651 1.6909 0.003 0.079
r
.

-
e

the entrance widths given in Fig. 7. One must also cons
the same resonances fortm(2s)1DT collisions, whereGent
will be more or less identical, whileEres is shifted to
Eres

0150.079 eV andEres
0050.074 eV.

The cross sections for the four formation configuratio
thus appearing are displayed in Fig. 8. The collision ene
dependence is quite different from what the Breit-Wign
formula usually provides, Fig. 8 not showing any sharp re
nance peaks. This is beacause bothGent and GA are of the
same order of magnitude asEres, i.e., 0.1 eV. Thus the ther
mal distribution of D2 energies that should be taken in
account when transformings0K into the laboratory frame
will not diminish the magnitude of the cross section as mu
as in the case of sharper peaks. It is important to realize
even though the cross sections have their maxima appea
at nonthermal energies, they will be accessible totm(2s)
atoms with high kinetic energies. Measurements on the
netic energy distribution ofpp atoms in excited states@19#
have shown that a substantial fraction carried nonther
energies, due ton→n8 deexcitations in higher levels. It wa

FIG. 7. Gent
0K as a function of center-of-mass collision ener

~eV!, evaluated forv58,n53.
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1178 54J. WALLENIUS AND P. FROELICH
argued that as much as 50% of the exotic atoms would h
kinetic energies above 1 eV when arriving to the grou
state. This will most probably be the case also in themCF
cycle, meaning that the effective formation rate ofdtm* will
depend on the competition between thermalization and re
nance formation. The effective formation rateldtm*

eff thus be-
comes time dependent:

ldtm*
JK

5(
X

NDXrv~Ecoll!P~Ecoll ,t !sDX
JK ~Ecoll!, ~37!

whereNDX is the fraction ofDX molecules, andP(E,t) is
the time-dependent distribution of collision energies. A
P(E,t) so far is not well known, apart from surely bein
different from the Maxwell distribution, we may not in th
present paper give more than a rough estimation ofldtm*

eff

integrated over time. In order to find its order of magnitu
we plotldtm*

JK /P(E,t) In Fig. 9, which is seen to be approxi
mately 0.531011 s21 for tm(2s)1DT collisions and
slightly lower for tm(2s)1D2 collisions. Keeping in mind
that sDX

JK is additive with respect toJ andK, and that there
are a series of formation configurations that we have
treated explicitly, we estimate the resulting effective form
tion rate ofdtm* to ldtm*

eff .1011 s21.

VI. ENTRANCE WIDTHS FOR BOUND dtµ

In order to assess the credibility of our results regardi
Gent we have used the present formalism to evaluateGent for
the formation of the well-known bound states ofddm and
dtm.

FIG. 8. The cross sections0K(Ecoll) for formation of dtm* in
tm(2s)1D2 and tm(2s)1DT collisions, given as a function of
center-of-mass collision energy~eV! and evaluated for
v58,n53,GA5831013 s21.

FIG. 9. The rateldtm*
JK /P(Ec ,t) for formation of dtm* in

tm(2s)1D2 and tm(2s)1DT collisions, given as a function of
center-of-mass collision energy~eV! and evaluated forv58,n53.
ve
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The loosely bound state of theddm molecule with
(v,J)5(1,1) has a binding energy of 1.966 eV, includin
relativistic corrections. It is formed indm(1s)2D2 colli-
sions with the energy offset being absorbed by an excita
of the hybrid molecule@(ddm)dee#nK to its eight vibrational
level (n57). As the vibrational wave function of the hybri
molecule has seven nodes, the overlap integral with the
brational ground state ofD2 becomes small. One has

^c̄7K f
uc0Ki

~R!&,0.01K c̄7K f
U dc0Ki

dR L . ~38!

Thus the approximation

¹C0Ki
~R!YKi MKi

~R̂!.R̂
dc0Ki

dR
YKi MKi

~R̂! ~39!

becomes valid for allKi . The matrix elementN(k) in Eq.
~15! is now completely dominated by the second term.

Writing Gddm
LKi→JKf for the partialL-wave contribution the

following widths results fori 50,1 (m being the reduced
mass ofdm andD2):

Gddm
10→10~k!5

4mk

3
~hT11

m1T70
e1!2,

Gddm
00→11~k!5

4mk

3
~hT11

m1T71
e1!2,

Gddm
01→10~k!5

4mk

3

1

3
~hT11

m0T70
eL!2,

Gddm
11→11~k!5

4mk

3

6

5
~hT11

m0T71
eL!2,

Gddm
01→12~k!5

4mk

3

2

3
~hT11

m0T72
eL!2. ~40!

In the limit k→0 transitions withuKi2K f uÞ1 are prohib-
ited. TheKi50→K f51 transition is resonant atEres54.0
meV @20# and is expected to dominate the primary formati
of ddm at low temperatures. In order to compare o
Gddm

00→11(k) with the results of Refs.@21,22# we plot the entity

p

mk
Gddm

0i→1 f[uVi f u2, ~41!

with uVi f u2 defined by the equality. In Refs.@21–23# it was
claimed thatVi f , referred to as a ‘‘transition matrix ele
ment,’’ could be derived from perturbation theory. Howeve
the resonance formation of a muonic moleculeleading to
fusion is a rearrangement process, for which pertubat
treatments are not formally valid. The transition matrix e
ment~1! for the full collision may indeed be rewritten in th
‘‘post’’ formulation asTf i5^f f uVf uc i

(2)&, but thenVf must
be taken as the channel potential between the ejected A
electron and the ionized complex, not as the interaction
tential DV12[V12(r12)2V12(R312r2). As a matter of fact
Lane has shown@11# that the channel potentialV31 by help
of Green’s theorem can be substituted byDV12, but then it is
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54 1179FORMATION OF METASTABLE dtm MOLECULES IN tm(2s)- . . .
still within the ‘‘prior’’ form of Tf i . This is also seen from
the formal derivation of the Breit-Wigner formula~7! made
by Armour @24#.

Thus the formalism used by Faifman and Petrov is eff
tively equivalent to the one of Lane, although Faifman a
Petrov start from an inconsistent scattering theoretic form
lation. Actually, they use the alternative formDV12 of the
channel potentialVi5V31, which they incorrectly call the
final interaction.

In conclusion, any difference in the resulting widths
due to different approximations off i ,f r and the operator
Vi . In the present paper, the Taylor expansion~13! of the
initial wave function of theD2 molecule is the major ap
proximation, while the works of Faifmanet al. @20,21# rely
on a multipole expansion of the operatorD12, using exact
wave functions. As argued below, it turns out that the m
nitude of the width is less sensitive to the quality of theD2
wave function than to the interaction operatorDV12.

To avoid the small incompatibility made by us in approx
mating x(r dt).x(r 31) when comparing to results of othe
authors,T11

m1 is evaluated by taking Menshikov’s asymptot
formula @25# for the wave functionx11:

x115C
11kr 31

A2kr 31
2

e2kr 31 ~42!

with the constantC51.063 calculated most recently in@26#,
andk5A2mEb. The integration inT11

m1 is made as suggeste
by Lane @11#, with the part of the three-body integral th
cannot be approximated by two-body functions (r 31,0.05)
estimated to be 6% of the part where the asymptotic exp
sion ~42! is valid (r 31.0.05). The resulting energy depe
dence ofuVi f u2 for i 50,1,2 anduKi2K f u51 is displayed in
Fig. 10.

At Ecoll54 meV we finduV01u253.7310211. Adjusting
for the different values ofC used,uV01u2 given in @20,21# is
larger by 58%. The discrepancy can be understood in

FIG. 10. The transition matrix elementuVi f u2 for formation of
ddm in dm(1s)1D2 collisions. uVi f u2 is given as function of the
center-of-mass collision energyEcoll ~eV! for i 50,1,2 and
u i 2 f u51.
-
d
-

-

s-

e

light of Ref. @22#, where it was shown that the dipole ap
proximation used in@20,21# overestimatesuVi f u2 by 55%.

Repeating the above evaluation for formation ofdtm mol-
ecules intm(1s)1D2 andtm(1s)1DH collisions one finds
that approximation~39! is not necessarily valid. The full ex-
pression~15! limited to Ki50 must thus be used. If the
spectator nucleus is a proton~DH!, then the transitions
Ki50, K f50,1 have positive values ofEres for n52. For
D2 the excitation of the hybrid molecule ton52 can take
place even for slightly negative values ofEres, due to three-
body collisions broadening a subthreshold resonance. T
phenomenon is, however, beyond the scope of the pre
paper and we evaluate the entrance width relevant for p
tive resonances associated with excitation of the hybrid m
ecule ton53. Using formulas~20! for the entrance width
and the asymptotic formula~42! with Eb5634.0 meV~in-
cluding relativistic corrections!, andC 5 0.874@26#, for the
dtm wave function, the resulting matrix elementuVi f u2 is
plotted in Fig. 11.

Comparing with the recent calculations@27#, after adjust-
ing for the different values ofC used, shows that the trun
cated Taylor expansion utilized by us gives decent results
formation configurations withn53 @tm(1s)1D2#. The dis-
crepancy with Ref.@27# is 10% in this case, while for con
figurations withn52 @tm(1s)1DH# the terms left out by us
yield an error of.50%. Note that the matrix elementuVu2

given in @27# differs in definition fromuVi f u2 by a factor of
2.

We conclude that the Taylor expansion~14! has better
convergence properties than the multipole expansion
@20,21#, and can be used with some confidence for calcu
ing formation rates of metastabledtm* accompanied by ex-
citation of the hybrid molecule ton53. We note that Men-
shikov’s asymptotic formula is not well suited t
approximate wave functions ofdtm* , making Petrov’s
method@22,27# difficult to apply to the present problem.

VII. CONCLUSIONS

The cross section for the formation ofdtm* resonances in
tm(2s)-D2 scattering was found to be limited by the rate
Auger deexcitations of the hybrid molecule@(dtm* )dee#.
The latter rate was found to be maximal for initial formatio

FIG. 11. The transition matrix elementuV0 f u2 for formation of
dtm in tm(1s)1DH collisions ~a! and tm(1s)1D2 collisions ~b!.
uV0 f u2 is given as function of the center-of-mass collision ener
Ecoll ~eV! for f 50,1.
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1180 54J. WALLENIUS AND P. FROELICH
of a state with angular momentumJ50 and a binding en-
ergy of 0.718 eV, having the valueGA.831013 s21. For
this particular formation path, the cross sectionsJK was in a
wide range of collisions energies found to be approximat
0.02310220 m2 in tm(2s)1D2 scattering and 0.05310220

m2 in tm(2s)1DT scattering.
Among the approximations made, the Taylor expans

~14! of the initial D2 wave function and the atomic wav
functions taken for the ejected Auger electron are the m
likely candidates to limit the accuracy of our results. For
nately, the errors tend to cancel each other, as the former
yield slightly to large entrance widths, while the latter
expected to give too small rates for the Auger deexcitati
The series of formation configurations omitted by us will
course also contribute to the full cross section. In order
calculate the remaining terms one must take into accoun
correction todtm* binding energies caused by interactio
with the electrons of the hybrid molecule. Further, the eff
tive formation rate will depend on the kinetic energy dist
bution of tm(2s) atoms, which to large extent is unknow
Still we make the rough estimation that the effective form
tion rate ofdtm* is of the order of 1011 s21.
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APPENDIX A: DISCUSSION
OF THE ENTRANCE WIDTH FORMULA

The entrance width can be obtained by considering
formation cross section expressed in terms of the transi
amplitude. We start from the general expression

G5\w ~A1!

connecting the entrance width with the transition ratew. The
latter can be written as

w5Js, ~A2!

wheres is the ~partial! cross section for the particular rea
tion, andJ is the flux of particles in the entrance chann
J5(\/m)Im(f* ¹f). The latter is dependent on the no
malization of the free waves describing the asymtotic mot
of the reaction fragments. We set

f[uk&5
exp~ ik–r!

~2p!3/2 , ~A3!

which results inJ5@1/(2p)3#v5rv, with v being the rela-
tive velocity of particles in the entrance channel, andr their
density.

The cross section for a given reaction, expressed in te
of the scattering amplitude, is@28#

sba5E dVu f bau25E dV
~2p!4

\v i

kfmf

\2 uTbau2, ~A4!
ly

n

st
-
ill

.
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-

-

.
-
-
-
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s
-
rt

e
n

,

n

s

wherea,b denote the reaction channels,mi ,ki , mf ,kf are
the reduced masses and momenta of the relative motio
the initial and final states, respectively, andT stands for the
transition matrix element. The entrance width can now
obtained as

Gba5\rv isba5\r
\ki

mi
~2p!4

mimf

\4

kf

ki
E uTbau2dV

5r~2p!4
mfkf

\2 E z^c f
~2 !uVi uki& z2dV

5
4mfkf

\2~4p!2E z^c f
~2 !uVi ueiki r& z2dV,

~A5!

which is the entrance width formula used in Sec. II.

APPENDIX B: REDUCTION
OF THE MATRIX ELEMENT INVOLVING V13

We will now discuss the evaluation of the transition m
trix elements involving the potentialV13. The integral to be
calculated is in ther13 space and its calculation is facilitate
by the following relations valid for thed,tm subsystem:

HF~ra ,Ra!5EF~ra ,Ra!, ~B1!

H8heik–Ra5E8heik–Ra, ~B2!

where H is the complete Hamiltonian for dtm,
H85H2Vdm2Vdt is the channel Hamiltonian defined b
the interactionsVdm ,Vdt between the deuteron and thetm
atom.F(ra ,Ra) is an eigenfunction to the total Hamiltonia
H expressed in the rearrangement channela of the Jacobi
coordinates~see Fig. 2!, whereash is an eigenfunction to the
atomic Hamiltonian, satisfyingHtmh5Etmh.

Noting that H2H85Vdm1Vdt5V13, and remembering
that Ra[r13, ra[rtm one gets

^F~r13,rtm!uV13uheik–r13&5^F~ra ,Ra!uH2H8uheik•Ra&

5^F~ra ,Ra!uE2E8uheik•Ra&

5~E2E8!^F~r13,rtm!uheik–r13&,

~B3!

where E2E85E2Etm2k2/2m̄. For small collision ener-
gies, one hasE2E8.E2Etm[Eb

vJ . An approximation of
the above matrix element, written in terms of the pseu
wave functions corresponding toF(r13,rtm) and heik–r31 is
given by

^F~r13,rtm!uV13uheik•r13&5Eb
vJ^F~r13,rtm!uh& r tm

^xv~r 13!

3YJMJ
~ r̂ 13!ueik•r13& , ~B4!

which is the relation~17! used in the main text.
We notice that the introduction of pseudo wave functio

@for definition see Eq.~24!# leads to a significant simplifica
tion allowing practical evaluation of the transition matr
element defining the entrance width. It reduces the desc
tion of D2 colliding with a composite particle (tm) to one
involving only the mass center oftm implicitly interacting
with the target via the correct potentialV315Vdt1Vdm .
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APPENDIX C: THE TRANSITION MATRIX ELEMENT N„k…

In the present paper, the entrance width for formation ofdtm* resonances at low temperatures is approximated by

Gent5
4miki

~4p!2(
M

E dk̂i uN~ki !u2, ~C1!

whereN(ki) is the matrix element

N~k!.^xv~r !YJMJ
~ r̂!uV31uei f k–r&^c̄n~R!YKMK

~R̂!uc0~R!Y00~R̂!eigk–R&

2h^xv~r !YJMJ
~ r̂!uV31urei f k–r&• K c̄n~R!YKMK

~R̂!UR̂]c0

]R
Y00~R̂!eigk–RL . ~C2!

The evaluation of~53! is simplified by use of the spherical vector components:

R̂5A4p

3
@Y11~R̂!,Y10~R̂!,Y121~R̂!#,

r̂5A4p

3
@Y11~ r̂!,Y10~ r̂!,Y121~ r̂!#. ~C3!

The plane-wave expansions

ei f k–r54p(
L

(
ML

i L j L~ f kr !YLML
~ r̂!YLML

* ~ k̂!,eigk–R54p(
L

(
ML

iLj L~gkR!YLML
~R̂!YLML

* ~ k̂! ~C4!

then facilitate separation of radial and angular parts:

N~k!5~4p!2F(
L

(
ML

^xv~r !uV31u j L~ f kr !& i LYLML
* ~ k̂!^YJMJ

~ r̂!uYLML
~ r̂!&G

3F(
L

(
ML

^c̄n~R!uc0~R! j L~gkR!& iLYLML
* ~ k̂!^YKMK

~R̂!uY00~R̂!YLML
~R̂!&G

2
~4p!3

3
hF(

L
(
ML

^xv~r !uV31ur j L~ f kr !& i LYLML
* ~ k̂!^YJMJ

~ r̂!u@Y11~ r̂!,Y10~ r̂!,Y121~ r̂!#YLML
~ r̂!&G

•F(
L

(
ML

K c̄n~R!U j L~gkR!
]c0

]R L iLYLML
* ~ k̂!^YKMK

~R̂!u@Y11~R̂!,Y10~R̂!,Y121~R̂!#Y00~R̂!YLML
~R̂!&G . ~C5!

Composition relations for the spherical harmonics yield the general formula

N~k!5~4p!3/2@^xv~r !uV31u j J~ f kr !& i JYJMJ
* ~ k̂!^c̄n~R!uc0~R! j K~gkR!& i KYKMK

* ~ k̂!#

2~4p!3/2hX(
L

(
ML

^xv~r !uV31ur j L~ f kr !& i LYLML
* ~ k̂!F S J 1 L

2MJ 21 ML
D ,S J 1 L

2MJ 0 ML
D ,S J 1 L

2MJ 1 ML
D GC

•X(
L

(
ML

K c̄n~R!U j L~gkR!
]c0

]R L iLYLML
* ~ k̂!F S J 1 L

2MK 21 ML
D ,S K 1 L

2MK 0 ML
D ,S K 1 L

2MK 1 ML
D GC . ~C6!
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