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Scalar curvature factor in the Schrodinger equation and scattering on a curved surface
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The scattering of free particles constrained to move on a cylindrically symmetric curved surface is studied.
The nontrivial geometry of the space contributes to the scattering cross section through the kinetic as well as
a possible scalar curvature term in the quantum Hamiltonian. The coefficient of the latter term is known to be
related to the factor-ordering problem in curved-space quantization. Hence, in principle, the scattering data
may be used to provide an experimental resolution of the theoretical factor-ordering ambiguity. To demonstrate
the sensitivity required of such an experimental setup, the effect of a localized magnetic field in the scattering
process is also analyzefd1050-2947®6)09108-]

PACS numbds): 03.65—w, 04.60—m

I. INTRODUCTION In view of the form-invariance requirement, different

One of the oldest and, in some cases, most severe proghome_s of fact20r ordering for the system of &) Q|ff(_er by
a multiple of2°R, whereR denotes the scalar Ricci curva-

lems of quantization of classical systems is the factor- N
. - ; o ture of M. That is, in general, one has

ordering ambiguity. The ordinary operator quantization of
nonrelativistic classical systems involves promotion of the -1 B NA2 .
coordinate ¥') and momentum g;) variables to linear op- H= ﬁ“”“ pi 9" g*%p; V4 —R 3
eratorsx' andp; acting on a Hilbert spacg and satisfying
the Weyl-Heisenberg algebra. The dynamics is then dictatefjnere g: = det(g;;) and\ is a real parameter reflecting the
by the Schrdinger equation, which involves the Hamil- t5ci0r-ordering ambiguity in quantizing). One can express
tonian operatorH. The quantum Hamiltoniard is con-  (3) in a local coordinate representation:
structed from the classical Hamiltoniah according to the
following requirements(1) H is a self-adjoint linear opera-
tor acting on; (2) in the classical limiti—0, H—H.

In general, these two conditions do not determide i .
uniquely. Thus, a classical system may lead to different’€'®: A:=0"ViV; denotes the Laplace-Beltrami operator

quantum systems. For instance, consider the motion of a freg'd Vi stands for the covariant derivative corresponding to
particle of massm moving on a Riemannian manifolkf. the Levi-Civita connection along/ x'. Choosing the Hilbert

2 .
The classical Hamiltonian is given by space to bd (M), e, the state vectorlsy) to be scalar
square integrable functions dvi, one has

2 2

~ [~ A
<X|H— WA_F WR(X) <X| (4

1 .
H=5—g"(X)pip;, 1)
2m ! Y(x). (5

- h? 1
(XH[)= 5| = —=ag" Vg3, +2\R
' 2m| -y
whereg" are components of the inverse of the metric tensor:

: J. Note that in general the momentum operators are represented
g=g;j(x)dx®dx. ) in the coordinate representation according to

Since ¢g" depend explicity on the coordinates A P
x:=(x!, ... x"), requirementg1) and(2) do not determine <X|pi=ﬁ( —iogto
H uniquely. In this case, even the additional requirement of
form invariance under coordinate transformations does nalvherew; are components of a closed one-foaon M. For
lead to a unique choice fdd [1]. convenience, we assuni to be simply connected, so that
To quantize a classical Hamiltonian, therefore, one mayw is exact. In this case it may be gauged away.
need to make a choice of factor ordering. One way of achiev- In the long history of the problem of curved-space quan-
ing this is to appeal to alternative quantization schemes thatization [1], there have been different arguments offered in
make the choice of factor ordering implicitly. The best support of the choices:=0 [2,3], A= 3 [4,5] (see alsqd1]),
known example of this is the path-integral quantization\ =3 [6]. To the author’'s best knowledge, none of these ar-
schemes. guments is based on solid factual grounds for the case of
general Riemannian manifolds.
For Lie group manifolds and homogeneous spaces, there
*Present address. Electronic address: alimos@phys.ualberta.caexist group-theoretical quantization methddse[1] for ref-
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erences But for these caseR is constant and the ambiguity Il. SCATTERING IN TWO DIMENSIONS

in \ is physically irrelevant. The situation is probably best Consi : Lo .
) . L onsider the ordinary time-independent potential scatter-
described by Marinoy1], who says: “l wonder, whether it is \ inary ime-indep P \

i i . ing problem in two dimensions. The Lippmann-Schwinger
possible to decide at present between the two variants’, gp PP g

A - R equation for the Hamiltonian
[N=0,73] “of quantizing the Hamiltonian as long as no non-
trivial (i.e., R# cons} solvable examples are known.” H=Hy+V (6)
The same problem may be addressed for the supersym-
metric extensions ofl). Referencd 7] provides a thorough is given by
analysis of a supersymmetric quantum-mechanical system
based on an arbitrary spin manifold. In this case, the quan- S p 1 \“/|¢<1>> @
tum Hamiltonian is given as the square of the generator of E—Hg*ie '
the supersymmetr8]. The quantization of the latter is free
of factor-ordering ambiguity. Therefore, the Hamiltonian op-where we follow the notation of Sakurgd]. In Egs.(6) and
erator is unambiguous. Indeed, it is given by B).with the  (7),
choice\ = ;. Furthermore, this choice fox is shown to be
consistent with the path-integral quantization schermie 0 :igij".". ®
Note, however, that one may not conclude from the knowl- 0= 5m @ PiP;
edge of a supersymmetric extension(df that\ = for the .
original purely bosonic theory. Although the form of the is the free Hamiltonian an¥ is the interaction potential.
Hamiltonian is analogous, the Hilbert spaces are different. In the coordinate representation, the second terr(i7jn
For example, for the system considered[#} and[8] the  can be written in the form
Hilbert space is the space of spinors ehand thep;’s in-
volve components of the spin connection. <x 1 v (+)>
o : = V¢
The purpose of the present article is to seek physical con- E—Hgp*ie
sequences of the possible existence of the scalar curvature
factor in the Hamiltonian. The only known physical effect _ 2001 (= , (=
that causes curvature in three-dimensional space is gravity. B szﬁzf X0 KX VIE), (@)
Thus one might be tempted to address the question by study-
ing the effect of gravity on nonrelativistic quantum systems where
It is clear that for the experimentally available quantum sys- .
tems, the effect of the scalar curvature factor due to gravity |5, _j o2 gld (x=x7) o= [k = V2mE 10
must be extremely weak. This is because in addition to being T qkz—qzi e’ g
a two-loop (%) order effect, the scalar curvature factor is
proportional to the Ricci scalar curvature. For such systemdAs in the three-dimensional case, one may switch to the po-
the latter is caused by gravity and therefore it is extremelyar coordinates to evaluate the integréle). Performing the
small. An alternative approach to the problem is to studyangular integration and consultir0], one has
effectively two-dimensional systems that are constrained to

have dynamics in a curved surface. The curvature may, in (£)_o °°d qJo(alx—x"])

principle, be maintained mechanically and thus made consid- I=2m 0 q kK>—qg°*ie

erably large. In particular, we shall study a simple scattering

problem in two dimensions. The idea is to pave the way for =—im?HP (+k|x—x'|+i€),

a potential experimental resolution of this sort of factor-

ordering ambiguity. whereJ, andH{? are Bessel and Hankel functions aads
Consider a free particle moving on a two-dimensional sur-another infinitesimal positive parameter.

face M embedded ifR®. For simplicity, suppose tha¥l is For the scattering problem, one considers the large

asymptotically flat and has a cylindrically symmetric geom-: —|5| jimit. Using the asymptotic properties of the Hankel
etry and trivial (R“) topology. Then the scattering problem 1:3unction[10], for r>|>2’| one finds

1 ~
E_H0i|6

may be formulated as in the case of potential scattering. Th
scattering data, however, reflect the nontrivial geometry of
M. In particular, this involves the contribution of the scalar <x ¢(+)>
curvature factor.

In Sec. Il, we review the basic formalism used in the iy ke
study of the scattering problem in two dimensions. Section —ime e_J 42’ *”z";'<x’|\A/| (+)
[l exhibits the treatment of the specific problem of scattering 2mh? | Jkr € v,
due to geometry. Section IV treats the effect of a localized
ma%?etic fielg in t][]e sca;tt_e:ing ?{f ir;]arged Iif[a_rtidesdn:OVi”gNhereIZ’:: kX. The iterative solution of6) is then carried
on the curved surface of interest. The result is used to pro- . _ kX .
vide an order-of-magnitude estimate for the sensitivity re-OUt by setting(x| ¢)=(x|k)=e"*/2m. One then obtains
quired for observing the contribution of the scalar curvature 1 ke
factor to the scattering cross section. Section V includes the (x| )= _( ek Xy _f(k)’,lz)> ) (11)
concluding remarks. 2m Jr
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In the first Born approximation,
f(k',K)~fDK k)

—iJ2mame ™4

e @ o,
12

where

(x'|V|ky= EJ d2x"e'* X (x"|V|x"). (13

The scattering cross section is related to its amplitfidby
the relation

14

In the ordinary potential scattering;’, is a local operator:
(x’|\7|x”)=V(x’)5(>Z’ —x").

Consider expressing the Hamiltonigh) in the form (6).
In view of Eq.(8), this leads to

R #h2
(XX =5

(31 —gh)adf

d! (Nagh)
Vo

- g +2\R|S(X'—x"), (15
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where d; means partial derivation with respect 10 The
curved space scattering is seen to correspond to an ultralocal
potential.

We conclude this section by noting that the correspon-
dence with the potential scattering 8A is justified, forM is
assumed to be asymptotically flat and topologically trivial.
The latter allows one to use a single coordinate patch in
performing the computations.

lIl. SCATTERING DUE TO A CYLINDRICALLY
SYMMETRIC GEOMETRY

Consider a surfac C R® defined by the equation

z=1(r), (16
where ¢,6,z) are cylindrical coordinates ori® and
f:[0,0) =R is a smooth function with vanishing first deriva-
tive at the origin, i.e.f(0)=0. This is the condition which
makesM a differentiable manifold. Furthermore, assume
thatf has a(physically compact support. Thud is asymp-
totically flat.

The implicit geometry oM is described by thénduced
metric (from R3),

whereF2: =1+ f2. Given the metric, one can easily compute
the terms in Eq(15). In view of Eq.(13), one then has

F2 0

0 r (7

(gij):(

1 Flo aF) ..
=t =1 levrieiery= S L
F Felor" r'F

The latter formula, together with E¢12), leads to the expression fof(k’,K):

e*37‘ri/4 oL
e B =
\V8mk

11 1
r’ F2

(18

To perform the integral on the right-hand-side(@8), we choose a coordinate system in whikk: =k—K’ is along thex’
axis. Then switching to polar coordinates (0’), one can evaluate the angular integration. This results in

o e ANF
fO(k’ k)= kit =5

S

[«

1
F?

_e737ri/4f dr’
0

Jo(r'|AK

1 r'F R
—Q—F”JNWAH)J,
(19
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whereJy and J; are Bessel functions. This expression may g 27 k2
be further simplified by noting that': =k, i.e.,k=k’. De- (k)= e e (;)
noting the angle betweeh and k'’ by ®, one has

WIN 1 1 . kzsin2(®/2)}
3 0 T
|Ak|=2ksin(§):2kx, kf,—kf:kzcosﬁ. 4  8sit(0/2) dp
0 eSiFOR))
In view of these relations, Eq19), and making extensive L n+0(7%) .

use of the properties of the Bessel functiph8] and the fact
that F(r=0)=F(r=«)=1, one finally arrives at the fol-
lowing expression for the scattering amplitude:

(29)

As seen from Eq(24), the scalar curvature and the kinetic-
f(”(IZ’,IZ):\/me*?’””“f dr( _iz) energy-term contributions to the scattering amplituc_ie are
F comparable unless one specializes to forward scattering.

X

_ .0
—ksin| = |rdg| 2kr sinz-

2 2 IV. EFFECT OF A LOCALIZED MAGNETIC FIELD

1 0 Consider the system of the preceding section subject to a
+2( A= W)Jl( 2kr S'”E”' localized cylindrically symmetric magnetic fie®. The lat-
(20) ter may be defined by the vector potentfal (connection
one-formA=A,dr+A,d 6+ A,dz) with
Here the term proportional te signifies the contribution of
the scalar curvature factor, whereas the other terms reflect
the effect of the kinetic-energy term.
For the forward scattering®=0), this expression sim-
plifies to yield Br2

Ap:=—G(r), (25)
Lo T o 1 2
f(l)(k’k): §e*l3‘n’/4k3/2J dr’l =r’ _F )
0
tion andB is a constant parameter with the dimension of

As seen from Eq(21), the scalar curvature factor does not L
- . magnetic field.
contribute to the forward scattering. It does, however, con- o ~ .
The Hamiltonian operatoHy for the constrainedtwo-

tribute to the nonforward @ #0) scattering. For example, . ional . h i field i
consider the backscattering, where dlmensmna sysFerp §ubject to such a magnetic field is ob-
tained by replacing; in Eq. (4) by p;+(e/c)A;, wheree is

A :=0=:A,,

(21) whereG:[0,2)—R is a smooth, compactly supported func-

s . I 1 the charge of the particle ardis the speed of light. For the
fH(k"=—k,k)=v2mke =" fo dril-= particular cylindrically symmetric system of interest, one
finds
X[ —krdg(2kr)+2(A—3)J1(2kn)].
To see in more detail how the effects due to the kinetic N~ € ~ o €ny
energy and the scalar curvature terms compare, consider the He=H+ o ( 2AoPot CA")’ (26)
Gaussian shape for the functidni.e., let
f(r)=5 e #2 (22 whereH is the free Hamiltoniari4).

For convenience, let us denote the sum of the potential
where § and n are real parameters. For convenience, let Userms on the right-hand side @6) by AV. Expressing

also introduce the dimensionless parameter-16”> and AV in the coordinate representation, wheré|p,
evaluate the integral in E¢20) by first expanding the inte- _ —i#d/96(x|, one has

grand in powers ofp. This involves integrals of the form

* o ar? ~ e . e o
fo rle” " Jn(vr)dr, (XAVIK) = 5| 21 A 4(k,COSH—k,sind) + EAg ek,
(27)
(m=0,1, neZ*, aeR"), (23
which may be obtained using RéfL0]. It is this term that enters the expression for the scattering

Carrying out the computations to the first nonvanishingamplitude, i.e., is added to the terms dueHoIn view of
order in 7, one has Egs.(12), (25 and(26), one needs to compute the integral:
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J @' e K (x| AV = e f “dr f " d0[r26(r) (k,cos— k,sing) el KK 7
4mmc)o  Jo y X

e’B? (= 2m 352/ ai (K—K')-%
+Wfo drf0 do[r=g(r)e 1. (28

Choosing thex axis in theAK direction as in Eqgs(19) and(20), one can perform the angular integral. In terms of the angle
betweerk andk’, one has

fdz’*‘ﬁ"i 'A\“/k—GZBzfxd 3G2(1) 34| 2Kr sin iethCOS{@/Z)Fd 2G(r)3,] 2Kr sing 29
x'e (x| |)—8mc20rrg(r)0 rsm§+To rr2G(r)d; rsin.|. (29

The scattering amplitude is then obtained by addi2®) to the integral in Eq(12).
Now, consider a Gaussian shape for the function

G(ry=e 2%, (30

In this case the integrals appearing in [E2P) are again of the forn23) and easily evaluated. In view of E(L2), one then
has the following expression for the contribution of magnetic field to the scattering amplitude:

L [7 . [ €d? C]
WL By — 37i/4 L2 2ai
ATD (K’ k) T [—8772%1202(1 k2o 2sin? 5

ied .
+ — (kZO'ZSin@) e 0-2k23|n2(®/2), (31)

where edsin®
7hC

(34)
&:=70’B
Here use is made of the choige= 1/02. To simplify further,
is a characteristic magnetic fliandi=/—1. consider the case of electrons wir=10"1, k</u, and
Considering the Gaussian shape for bétland G, one  ©=7/2. Then a comparable magnetic effect has the follow-
obtains the total scattering amplitude by adding the contribuing characteristic flux:
tions of the geometry and magnetic field:
mhCcy \ 1 \ 1
e 2\t 2

WL By e Thus an experimental setup capable of detection of the effect
Here f'*(k’,k) is given by Eq.(24). of the scalar curvature factor in scattering of free particles
Equation(32) may be used to give an order-of-magnitude moying on a curved Gaussian shape surf2@ must have a
estimate of the size of the contribution of the scalar curvaturgensitivity to detect scattering of electrons due to a localized

factor. This may be achieved by comparing the magnitudeg,agnetic field (25), (30) of characteristic flux~10"°
of the two terms on the right-hand side of this equation. Firstg ¢m2 in the flatR2 space.

note that for small magnetic fluxeand for the case of non-
forward scattering which is of interest here, the term propor-
tional to ®2 may be neglected. Next, for simplicity, choose

X108 (Gecnd).

fO(k k) =fD (K k) +AfDK’ K). (32

V. DISCUSSION AND CONCLUSION

u=1/0? so that the exponentially decaying factors(i#) The physical consequences of the existence of a scalar
and (31) are the same. This reduces the comparison of theurvature factor in the scattering of free particles moving on
two effects to that of the following terms: a nonflat surface have been analyzed. Although there

have recently been some attempts to study nonflat two-

1 k?sirt(0/2) .0 dimensional quantum systems, particularly in the context of
) 2 =g geo " ax |7 sirf = the quantum Hall effedl1], the curved spaces considered in
the literature are either spaces of constant scalar curvature
+0(%?), (33)  [12,13 or spaces with exotic topologies and geometriels.

On the other hand, in all these attempts, the possibility of the
existence of a scalar curvature factor in the Sdhnger
INote that the total magnetic flux is zero as the topology of theequation has been ignored.
space isR? and there are no singularities in the fields. The particular system investigated in this article is physi-
2Consideration of small magnetic fluxes is reasonable becauseally more interesting, since there are indeed two-
here one tries to find a magnetic effect comparable to the effect oflimensional nonflat systems witk? topology in nature. An
geometry. The latter is ah? order effect. example of this is the two-dimensional electron system
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formed on the surface of liquid heliufii4,15. Particularly — might not need such precisidrin fact, one may look at the
remarkable is the Gaussian shaf®?) of the surface of collective effects such as those of a locally cylindrically
“He in a dimple electron crystal in the vicinity of the symmetric curved surface, i.e., a surface curved at an array
dimples[14]. To arrive at an experimental resolution of the of points forming the vertices of a lattice. This is precisely
factor-ordering ambiguity, i.e., experimental determinationthe case in a dimple electron system. The main purpose of
of the value ofA, a more thorough investigation of the avail- this comparison is to demonstrate that the corresponding ef-
able (effectively) two-dimensional systems is needed. fect is not several orders of magnitude beyond the experi-
In the comparison of the effect of the curvature with the mentally accessible values. This is usually the case where the

;cattering effgcts of_ a cylindrically symmetric magnetig flux problems with the quantization on curved spaces are con-
in a flat two-dimensional system, such a small magnetic flux.oneq.

corresponds to energy densities of the order~ef0 !’

erg/cnt whose effect would likely be swamped by thermal

effects in a*He system. Here the analogy is used to give &

very rough order-of-magnitude estimate for the maximum 3For example, in the above analysis the paramstisrtaken to be
precision required for such an experiment. In practice, onamall only to simplify the calculations.
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