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Scalar curvature factor in the Schrödinger equation and scattering on a curved surface
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The scattering of free particles constrained to move on a cylindrically symmetric curved surface is studied.
The nontrivial geometry of the space contributes to the scattering cross section through the kinetic as well as
a possible scalar curvature term in the quantum Hamiltonian. The coefficient of the latter term is known to be
related to the factor-ordering problem in curved-space quantization. Hence, in principle, the scattering data
may be used to provide an experimental resolution of the theoretical factor-ordering ambiguity. To demonstrate
the sensitivity required of such an experimental setup, the effect of a localized magnetic field in the scattering
process is also analyzed.@S1050-2947~96!09108-1#

PACS number~s!: 03.65.2w, 04.60.2m
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I. INTRODUCTION

One of the oldest and, in some cases, most severe p
lems of quantization of classical systems is the fact
ordering ambiguity. The ordinary operator quantization
nonrelativistic classical systems involves promotion of
coordinate (xi) and momentum (pi) variables to linear op-
eratorsx̂i and p̂i acting on a Hilbert spaceH and satisfying
the Weyl-Heisenberg algebra. The dynamics is then dicta
by the Schro¨dinger equation, which involves the Hami
tonian operatorĤ. The quantum HamiltonianĤ is con-
structed from the classical HamiltonianH according to the
following requirements:~1! Ĥ is a self-adjoint linear opera
tor acting onH; ~2! in the classical limit\→0, Ĥ→H.

In general, these two conditions do not determineĤ
uniquely. Thus, a classical system may lead to differ
quantum systems. For instance, consider the motion of a
particle of massm moving on a Riemannian manifoldM .
The classical Hamiltonian is given by

H5
1

2m
gi j ~x!pipj , ~1!

wheregi j are components of the inverse of the metric tens

g5gi j ~x!dxi ^dxj . ~2!

Since gi j depend explicitly on the coordinate
x:5(x1, . . . ,xn), requirements~1! and~2! do not determine
Ĥ uniquely. In this case, even the additional requiremen
form invariance under coordinate transformations does
lead to a unique choice forĤ @1#.

To quantize a classical Hamiltonian, therefore, one m
need to make a choice of factor ordering. One way of ach
ing this is to appeal to alternative quantization schemes
make the choice of factor ordering implicitly. The be
known example of this is the path-integral quantizati
schemes.

*Present address. Electronic address: alimos@phys.ualberta.
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In view of the form-invariance requirement, differen
choices of factor ordering for the system of Eq.~1! differ by
a multiple of\2R, whereR denotes the scalar Ricci curva
ture ofM . That is, in general, one has

Ĥ5
1

2m
ĝ21/4 p̂i ĝ

i j ĝ1/2 p̂ j ĝ
21/41

l\2

m
R̂, ~3!

whereg:5det(gi j ) andl is a real parameter reflecting th
factor-ordering ambiguity in quantizing~1!. One can express
~3! in a local coordinate representation:

^xuĤ5S 2\2

2m
D1

l\2

m
R~x! D ^xu. ~4!

Here, D:5gi j¹ i¹ j denotes the Laplace-Beltrami operat
and¹ i stands for the covariant derivative corresponding
the Levi-Civita connection along]/]xi . Choosing the Hilbert
space to beL2(M ), i.e., the state vectorsuc& to be scalar
square integrable functions onM , one has

^xuĤuc&5
\2

2m S 2
1

Ag
] ig

i jAg] j12lRD c~x!. ~5!

Note that in general the momentum operators are represe
in the coordinate representation according to

^xu p̂i5\S 2 i
]

]xi
1v i D ^xu,

wherev i are components of a closed one-formv onM . For
convenience, we assumeM to be simply connected, so tha
v is exact. In this case it may be gauged away.

In the long history of the problem of curved-space qua
tization @1#, there have been different arguments offered
support of the choices:l50 @2,3#, l5 1

12 @4,5# ~see also@1#!,
l5 1

8 @6#. To the author’s best knowledge, none of these
guments is based on solid factual grounds for the case
general Riemannian manifolds.

For Lie group manifolds and homogeneous spaces, th
exist group-theoretical quantization methods~see@1# for ref-
1165 © 1996 The American Physical Society
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1166 54ALI MOSTAFAZADEH
erences!. But for these cases,R is constant and the ambiguit
in l is physically irrelevant. The situation is probably be
described by Marinov@1#, who says: ‘‘I wonder, whether it is
possible to decide at present between the two varian
@l50, 112# ‘‘of quantizing the Hamiltonian as long as no no
trivial ~i.e.,RÞ const! solvable examples are known.’’

The same problem may be addressed for the supers
metric extensions of~1!. Reference@7# provides a thorough
analysis of a supersymmetric quantum-mechanical sys
based on an arbitrary spin manifold. In this case, the qu
tum Hamiltonian is given as the square of the generato
the supersymmetry@8#. The quantization of the latter is fre
of factor-ordering ambiguity. Therefore, the Hamiltonian o
erator is unambiguous. Indeed, it is given by Eq.~3! with the
choicel5 1

8. Furthermore, this choice forl is shown to be
consistent with the path-integral quantization scheme@7#.
Note, however, that one may not conclude from the kno
edge of a supersymmetric extension of~1! thatl5 1

8 for the
original purely bosonic theory. Although the form of th
Hamiltonian is analogous, the Hilbert spaces are differe
For example, for the system considered in@7# and @8# the
Hilbert space is the space of spinors onM and thep̂i ’s in-
volve components of the spin connection.

The purpose of the present article is to seek physical c
sequences of the possible existence of the scalar curva
factor in the Hamiltonian. The only known physical effe
that causes curvature in three-dimensional space is gra
Thus one might be tempted to address the question by st
ing the effect of gravity on nonrelativistic quantum system
It is clear that for the experimentally available quantum s
tems, the effect of the scalar curvature factor due to gra
must be extremely weak. This is because in addition to be
a two-loop (\2) order effect, the scalar curvature factor
proportional to the Ricci scalar curvature. For such syste
the latter is caused by gravity and therefore it is extrem
small. An alternative approach to the problem is to stu
effectively two-dimensional systems that are constrained
have dynamics in a curved surface. The curvature may
principle, be maintained mechanically and thus made con
erably large. In particular, we shall study a simple scatter
problem in two dimensions. The idea is to pave the way
a potential experimental resolution of this sort of facto
ordering ambiguity.

Consider a free particle moving on a two-dimensional s
faceM embedded inR3. For simplicity, suppose thatM is
asymptotically flat and has a cylindrically symmetric geo
etry and trivial ~R2! topology. Then the scattering proble
may be formulated as in the case of potential scattering.
scattering data, however, reflect the nontrivial geometry
M . In particular, this involves the contribution of the sca
curvature factor.

In Sec. II, we review the basic formalism used in t
study of the scattering problem in two dimensions. Sect
III exhibits the treatment of the specific problem of scatter
due to geometry. Section IV treats the effect of a localiz
magnetic field in the scattering of charged particles mov
on the curved surface of interest. The result is used to p
vide an order-of-magnitude estimate for the sensitivity
quired for observing the contribution of the scalar curvat
factor to the scattering cross section. Section V includes
concluding remarks.
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II. SCATTERING IN TWO DIMENSIONS

Consider the ordinary time-independent potential scat
ing problem in two dimensions. The Lippmann-Schwing
equation for the Hamiltonian

Ĥ5Ĥ01V̂ ~6!

is given by

uc~6 !&5uf&1
1

E2Ĥ06 i e
V̂uc~6 !&, ~7!

where we follow the notation of Sakurai@9#. In Eqs.~6! and
~7!,

Ĥ05
1

2m
d i j p̂i p̂ j ~8!

is the free Hamiltonian andV̂ is the interaction potential.
In the coordinate representation, the second term in~7!

can be written in the form

K xU 1

E2Ĥ06 i e
V̂Uc~6 !L

5
m

2p2\2E d2x8I ~6 !~x,x8,k!^x8uV̂uc~6 !&, ~9!

where

I ~6 !:5E d2q
eiq

W
•~xW2xW8!

k22q26 i e
, k:5ukW u5

A2mE

\
. ~10!

As in the three-dimensional case, one may switch to the
lar coordinates to evaluate the integrals~10!. Performing the
angular integration and consulting@10#, one has

I ~6 !52pE
0

`

dq
qJ0~quxW2xW8u!
k22q26 i e

52 ip2H0
~1!~6kuxW2xW8u1 i ẽ !,

whereJ0 andH0
(1) are Bessel and Hankel functions andẽ is

another infinitesimal positive parameter.
For the scattering problem, one considers the la

r :5uxW u limit. Using the asymptotic properties of the Hank
function @10#, for r@uxW8u one finds

K xU 1

E2Ĥ06 i e
V̂Uc~1 !L

5S 2 ime2 ip/4

A2p\2 D eikrAkr
E d2x8e2 ikW8•xW8^x8uV̂uc~1 !&,

wherekW8:5kx̂. The iterative solution of~6! is then carried
out by settinĝ xuf&5^xuk&5eik

W
•xW/2p. One then obtains

^xuc~1 !&5
1

2p S eikW•xW1 eikr

Ar
f ~kW8,kW !D . ~11!
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In the first Born approximation,

f ~kW8,kW !' f ~1!~kW8,kW !

5
2 iA2pme2 ip/4

Ak\2 E dx82e2 ikW8•xW8^x8uV̂uk&,

~12!

where

^x8uV̂uk&5
1

2pE d2x9eik
W
•xW9^x8uV̂ux9&. ~13!

The scattering cross section is related to its amplitudef by
the relation

ds~kW ,kW8!

dV
5u f ~kW ,kW8!u2. ~14!

In the ordinary potential scattering,V̂ is a local operator:

^x8uV̂ux9&5V~x8!d~xW82xW9!.

Consider expressing the Hamiltonian~5! in the form ~6!.
In view of Eq. ~8!, this leads to

^x8uV̂ux9&5
\2

2mF ~d i j2gi j !] i8] j8

2
] i8~Aggi j !

Ag
] j812lRGd~xW82xW9!, ~15!
where ] i8 means partial derivation with respect tox8 i. The
curved space scattering is seen to correspond to an ultra
potential.

We conclude this section by noting that the corresp
dence with the potential scattering onR2 is justified, forM is
assumed to be asymptotically flat and topologically trivi
The latter allows one to use a single coordinate patch
performing the computations.

III. SCATTERING DUE TO A CYLINDRICALLY
SYMMETRIC GEOMETRY

Consider a surfaceM,R3 defined by the equation

z5 f ~r !, ~16!

where (r ,u,z) are cylindrical coordinates onR3 and
f :@0,̀ )→R is a smooth function with vanishing first deriva
tive at the origin, i.e.,ḟ (0)50. This is the condition which
makesM a differentiable manifold. Furthermore, assum
that f has a~physically! compact support. ThusM is asymp-
totically flat.

The implicit geometry ofM is described by the~induced!
metric ~from R3),

~gi j !5S F2 0

0 r 2D , ~17!

whereF2:511 ḟ 2. Given the metric, one can easily compu
the terms in Eq.~15!. In view of Eq. ~13!, one then has
^x8uV̂uk&5
\2

4pm H S 12
1

F2D ]2

]r 82
1F 1r 8 S 12

1

F2D 2
Ḟ

F3G ]

]r 8
1
4lḞ

r 8F3 J eikW•xW8,
5

\2

4pm H 2S 12
1

F2D S kW•xW8

r 82
D 2

1 iF 1r 8 S 12
1

F2D 2
Ḟ

F3G S kW•xW8

r 8 D 1
4lḞ

r 8F3 J eikW•xW8.
The latter formula, together with Eq.~12!, leads to the expression forf (1)(kW8,kW ):

f ~1!~kW8,kW !5
e23p i /4

A8pk
E d2x8ei ~k

W2kW8!•xW8H 2S 12
1

F2D S kW•xW8

r 8
D 21 i F 1

r 8
S 12

1

F2D 2
Ḟ

F3G S kW•xW8

r 8
D 1

4lḞ

r 8F3 J . ~18!

To perform the integral on the right-hand-side of~18!, we choose a coordinate system in whichDkW :5kW2kW8 is along thex8
axis. Then switching to polar coordinates (r 8,u8), one can evaluate the angular integration. This results in

f ~1!~kW8,kW !5Ap

2k
e23p i /4E

0

`

dr8H F2r 8S 12
1

F2D kx21 4lḞ

F3 GJ0~r 8uDkW u!1Fky22kx
2

uDkW u
2kxS 12

1

F2 2
r 8Ḟ

F3 D GJ1~r 8uDkW u!J ,
~19!



ay

fle

-

ot
on
,

ti
r

u

-

ing

c-
are
.

to a

c-
of

b-

e

tial

ing

l:

1168 54ALI MOSTAFAZADEH
whereJ0 andJ1 are Bessel functions. This expression m
be further simplified by noting thatkW8:5kr̂, i.e.,k5k8. De-
noting the angle betweenkW andkW8 by Q, one has

uDkW u52k sinS Q

2 D52kx , ky
22kx

25k2cosQ.

In view of these relations, Eq.~19!, and making extensive
use of the properties of the Bessel functions@10# and the fact
that F(r50)5F(r5`)51, one finally arrives at the fol-
lowing expression for the scattering amplitude:

f ~1!~kW8,kW !5A2pke23p i /4E
0

`

drS 12
1

F2D
3F2ksinS Q

2 D rJ0S 2kr sinQ2 D
12S l2

1

8sin2~Q/2! D J1S 2kr sinQ2 D G .
~20!

Here the term proportional tol signifies the contribution of
the scalar curvature factor, whereas the other terms re
the effect of the kinetic-energy term.

For the forward scattering (Q50), this expression sim
plifies to yield

f ~1!~kW ,kW !5Ap

8
e2 i3p/4k3/2E

0

`

dr8F2r 8S 12
1

F2D G .
~21!

As seen from Eq.~21!, the scalar curvature factor does n
contribute to the forward scattering. It does, however, c
tribute to the nonforward (QÞ0) scattering. For example
consider the backscattering, where

f ~1!~kW852kW ,kW !5A2pke23p i /4E
0

`

drS 12
1

F2D
3@2krJ0~2kr !12~l2 1

8 !J1~2kr !#.

To see in more detail how the effects due to the kine
energy and the scalar curvature terms compare, conside
Gaussian shape for the functionf , i.e., let

f ~r !5d e2mr2/2, ~22!

whered andm are real parameters. For convenience, let
also introduce the dimensionless parameterh:5md2 and
evaluate the integral in Eq.~20! by first expanding the inte
grand in powers ofh. This involves integrals of the form

E
0

`

r ne2ar2Jm~nr !dr,

~m50,1, nPZ1, aPR1!, ~23!

which may be obtained using Ref.@10#.
Carrying out the computations to the first nonvanish

order inh, one has
ct

-

c
the

s

f ~1!~kW ,kW !5A2p

k
e2 i3p/4S k2m D

3H Fl2
1

4
2

1

8sin2~Q/2!
1
k2sin2~Q/2!

4m G
3sin2

Q

2
expS 2

k2sin2~Q/2!

m Dh1O~h2!J .
~24!

As seen from Eq.~24!, the scalar curvature and the kineti
energy-term contributions to the scattering amplitude
comparable unless one specializes to forward scattering

IV. EFFECT OF A LOCALIZED MAGNETIC FIELD

Consider the system of the preceding section subject
localized cylindrically symmetric magnetic fieldBW . The lat-
ter may be defined by the vector potentialAW ~connection
one-formA5Ardr1Audu1Azdz) with

Ar :505:Az ,

Au :5
Br2

2
G~r !, ~25!

whereG:@0,̀ )→R is a smooth, compactly supported fun
tion andB is a constant parameter with the dimension
magnetic field.

The Hamiltonian operatorĤB for the constrained~two-
dimensional! system subject to such a magnetic field is o
tained by replacingp̂i in Eq. ~4! by p̂i1(e/c)Âi , wheree is
the charge of the particle andc is the speed of light. For the
particular cylindrically symmetric system of interest, on
finds

ĤB5Ĥ1
e

2mcr2 S 2Âup̂u1
e

c
Âu
2D , ~26!

whereĤ is the free Hamiltonian~4!.
For convenience, let us denote the sum of the poten

terms on the right-hand side of~26! by DV̂. Expressing
DV̂ in the coordinate representation, wherêxu p̂u
52 i\]/]u^xu, one has

^xuDV̂uk&5
e

4pmcr2 F2\rAu~kycosu2kxsinu!1
e

c
Au
2GeikW•xW.

~27!

It is this term that enters the expression for the scatter
amplitude, i.e., is added to the terms due toĤ. In view of
Eqs.~12!, ~25! and ~26!, one needs to compute the integra
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E d2x8e2 ikW8•xW^x8uDV̂uk&5
e\B

4pmcE0
`

drE
0

2p

du@r 2G~r !~kycosu2kxsinu!ei ~k
W2kW8!•xW#

1
e2B2

16pmc2E0
`

drE
0

2p

du@r 3G2~r !ei ~k
W2kW8!•xW#. ~28!

Choosing thex axis in theDkW direction as in Eqs.~19! and~20!, one can perform the angular integral. In terms of the an
Q betweenkW andkW8, one has

E d2x8e2 ikW8•xW^x8uDV̂uk&5
e2B2

8mc2E0
`

drr 3G2~r !J0S 2kr sinQ2 D1
ie\Bk cos~Q/2!

2mc E
0

`

drr 2G~r !J1S 2kr sinQ2 D . ~29!

The scattering amplitude is then obtained by adding~29! to the integral in Eq.~12!.
Now, consider a Gaussian shape for the functionG:

G~r !5e2r2/2s2. ~30!

In this case the integrals appearing in Eq.~29! are again of the form~23! and easily evaluated. In view of Eq.~12!, one then
has the following expression for the contribution of magnetic field to the scattering amplitude:

D f ~1!~kW8,kW !5Ap

2k
e3p i /4F e2F2

8p2\2c2 S 12k2s2sin2
Q

2 D1
ieF

p\c
~k2s2sinQ!Ge2s2k2sin2~Q/2!, ~31!
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where

F:5ps2B

is a characteristic magnetic flux1 and i5A21.
Considering the Gaussian shape for bothf and G, one

obtains the total scattering amplitude by adding the contri
tions of the geometry and magnetic field:

f B
~1!~kW8,kW !5 f ~1!~kW8,kW !1D f ~1!~kW8,kW !. ~32!

Here f (1)(kW8,kW ) is given by Eq.~24!.
Equation~32! may be used to give an order-of-magnitu

estimate of the size of the contribution of the scalar curvat
factor. This may be achieved by comparing the magnitu
of the two terms on the right-hand side of this equation. Fi
note that for small magnetic fluxes2 and for the case of non
forward scattering which is of interest here, the term prop
tional toF2 may be neglected. Next, for simplicity, choos
m51/s2 so that the exponentially decaying factors in~24!
and ~31! are the same. This reduces the comparison of
two effects to that of the following terms:

~ I! 2S l2
1

4
2

1

8sin2~Q/2!
1
k2sin2~Q/2!

4m Dh sin2
Q

2

1O~h2!, ~33!

1Note that the total magnetic flux is zero as the topology of
space isR2 and there are no singularities in the fields.
2Consideration of small magnetic fluxes is reasonable beca

here one tries to find a magnetic effect comparable to the effec
geometry. The latter is an\2 order effect.
-

e
s
t,

r-

e

~ II !
eFsinQ

p\c
. ~34!

Here use is made of the choicem51/s2. To simplify further,
consider the case of electrons withh'1021, k!Am, and
Q5p/2. Then a comparable magnetic effect has the follo
ing characteristic flux:

F'S p\ch

e D S l2
1

2D'S l2
1

2D31028 ~G cm2!.

Thus an experimental setup capable of detection of the ef
of the scalar curvature factor in scattering of free partic
moving on a curved Gaussian shape surface~22! must have a
sensitivity to detect scattering of electrons due to a locali
magnetic field ~25!, ~30! of characteristic flux'1029

G cm2 in the flatR2 space.

V. DISCUSSION AND CONCLUSION

The physical consequences of the existence of a sc
curvature factor in the scattering of free particles moving
a nonflat surface have been analyzed. Although th
have recently been some attempts to study nonflat t
dimensional quantum systems, particularly in the contex
the quantum Hall effect@11#, the curved spaces considered
the literature are either spaces of constant scalar curva
@12,13# or spaces with exotic topologies and geometries@11#.
On the other hand, in all these attempts, the possibility of
existence of a scalar curvature factor in the Schro¨dinger
equation has been ignored.

The particular system investigated in this article is phy
cally more interesting, since there are indeed tw
dimensional nonflat systems withR2 topology in nature. An
example of this is the two-dimensional electron syst

e
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1170 54ALI MOSTAFAZADEH
formed on the surface of liquid helium@14,15#. Particularly
remarkable is the Gaussian shape~22! of the surface of
4He in a dimple electron crystal in the vicinity of th
dimples@14#. To arrive at an experimental resolution of th
factor-ordering ambiguity, i.e., experimental determinat
of the value ofl, a more thorough investigation of the ava
able ~effectively! two-dimensional systems is needed.

In the comparison of the effect of the curvature with t
scattering effects of a cylindrically symmetric magnetic fl
in a flat two-dimensional system, such a small magnetic fl
corresponds to energy densities of the order of;10217

erg/cm3 whose effect would likely be swamped by therm
effects in a4He system. Here the analogy is used to give
very rough order-of-magnitude estimate for the maxim
precision required for such an experiment. In practice,
.

x

l
a

e

might not need such precision.3 In fact, one may look at the
collective effects such as those of a locally cylindrica
symmetric curved surface, i.e., a surface curved at an a
of points forming the vertices of a lattice. This is precise
the case in a dimple electron system. The main purpos
this comparison is to demonstrate that the corresponding
fect is not several orders of magnitude beyond the exp
mentally accessible values. This is usually the case where
problems with the quantization on curved spaces are c
cerned.

3For example, in the above analysis the parameterh is taken to be
small only to simplify the calculations.
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