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Nonintegral Maslov indices
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The phase loss of a wave reflected by a smooth potential generally varies continuouslyr fiorthe
long-wave limit to#r/2 in the limit of short waves. Incorporating the corresponding nonintegral multiples of
/2 as nonintegral Maslov indices in the formulation of the WKB approximation leads to a substantial
improvement of accuracy when the conditions for applicability of the WKB method are violated only near the
classical turning points. We demonstrate the efficacy of using nonintegral Maslov indices for a Woods-Saxon
potential and a repulsivex? potential. The nonintegral Maslov index for a givenpotential yields far more
accurate wave functions than the conventional Langer modification of the potential in conjunction with phase
loss 7/2. The energy spectrum of the radial harmonic oscilléilmcluding the centrifugal potentiglwhich is
reproduced exactly by the standard WKB method with the Langer modification, is also reproduced exactly
without the Langer modification when the nonintegral Maslov index is used. We suggest a method for ap-
proximately calculating the nonintegral Maslov index near the long-wave limit from the decaying WKB wave
function in the classically forbidden regiof51050-294{©6)06108-2

PACS numbds): 03.65.Sq

I. INTRODUCTION
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In the WKB approximation, the quantum-mechanical VIp(x)| ful Jx

wave function for a particle of mass moving with total
energyE in a potentialV(x) is approximated by1-3]
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1 The phasep/2 appearing in the argument of the cosine on
' @) the right-hand side of5) corresponds to a reflection coeffi-

cient with phasep in front of the wave reflected at the turn-
ing point, relative to the incoming wave traveling towards
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wherep(x) is the local momentum the turning point. Thigphase lossp at reflection is equal to
/2 in the semiclassical limit of short wad,2]. For a
article oscillating in the classically allowed region between
p(x) = V2ME—V(x)]. @ P o Y "

two turning pointsx; andx,, the WKB quantization condi-
tion is obtained by requiring the total phase during one pe-
The wave function(1) is, in general, a good approximate riod of oscillation to be an integral multiple of2
solution of the guantum-mechanical Soflirger equation

1 2 (x2
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where ¢, is the phase loss due to reflection at the turning
point x; and ¢, is the phase loss due to reflection gt
Taking ¢, and ¢, to be equal tor/2 leads to the conven-
tional form of the WKB quantization condition, viz.,

as long as the (loca) de Broglie wavelength
N(X)=27h!|p(x)| varies sufficiently slowly

1
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dx
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where u=2 is the total Maslov index corresponding to the
The condition(4) is always violated at a classical turning two reflections during one period of oscillation.
point x, because(xy) =0. If the potential can be approxi- For reflection by an infinite steep wall the phase loss is
mated linearly around the turning point, the exponentiallys rather thanm/2 and the WKB quantization rul€) repro-
decreasing real wave function on the classically forbidderduces the correct spectrum of quantum-mechanical eigenval-
side of the turning point should be associated with the oscilues for a particle oscillating freely between two such walls if
lating wave functions on the classically allowed side of thewe insert 4 rather than 2 for the total Maslov indexIn this
turning point via the famous connection formiig2] case any wavelength is large at the turning points, where the
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54 NONINTEGRAL MASLOV INDICES 1137

potential changes abruptly, but the conditi@h is fullfilled 1 E
in between the turning points. In the more general case the k= %\/ZmEz k\,0 v
wavelength may be too large for the semiclassical limit to be 0
invoked near the classical turning points, but the WKB ap- 1
proximation may still be useful away from the turning points e - P Wy
if the potential is sufficiently smooth. % 2m(Vo—E)
We demonstrate in the following that this is actually the
case in various physically important and realistic situations. —k /l_ E (10)
The key to obtaining a good approximation of the quantum- Vo Vo'
mechanical wave functions in the classically allowed region
and of energy eigenvalues in the framework of the WKBAt the top of the potential stefE(=V,) the asymptotic wave
method lies in correctly accounting for the phase loss of thevumber in the allowed region is
wave function due to reflection at the classical turning
points. In between the limits of long and short waves this
amounts to allowing nonintegral Maslov indices, because the Kv,= 7 V2mVo (13)
phase losses are in general nonintegral multiples/af
Modified WKB quantization conditions have been inves- . '
tigated from a different perspective by Robbins, Creagh, an<‘jilnd the inverse OkVo defme; a scale fo.r lengths. ]
Littlejohn, who studied contributions due to tunneling orbits ~ The exact wave function is asymptotically proportional to
for the Hecht Hamiltonian describing molecular rotationsCOSkx+4/2). Comparing this to the asymptotic form of the
[4]. In a recent paper, Popov, Karnakov, and Mur discuss ifVKB wave function(5) for x— — yields
some detail how the ratio of the amplitudes appearing on
both sides of the connection formul® should be modified,
when the conditions of the short-wave limit are not fulfilled,
but the phase loss is taken a#2 [5]. In this paper we focus

on how to modify the phase loss, which plays a crucial roletpe phases in (12) is just the phasd9) of the reflection
in improving the WKB approximation in the classically al- coefficientr above, where the point of referencexis 0. The
lowed region. _ _ _ second term on the right-hand side (@2) accounts for the

In Sec. Il we discuss the reflection of a particle by afact that we are taking the point of reference to be the clas-
smooth potential step and use the analytically known phasgic4) turning poini, and that the WKB wave function is not
loss to obtain energies and wave functions for bound eigerbxactly a plane wave away from the turning point.
states in a Woods-Saxon potential. Section Il is devoted t0 ko, small values of the diffuseness parameter the
repulsive 1x? potentials and critically analyzes the role of Gamma functions i9) can be approximated with the help

the Lapger quification. In Sec. IV we discus_s quqdraticof the identity T'(z)=T(1+2)/z and the approximation
potentials and in Sec. V we present a method, with which th‘i“(1+z)w1—Cz+ O(z2) (C is Euler's constantto yield

phase loss might be calculated approximately from the WKB&zZarctan(dk)JrO(az). In the limit a—0 we obtain the
wave functions when it is not known analytically. phase loss due to reflecion by a sharp step,

¢=2arctank/k) [6].

K2

K
1+ 7|~ 2

K . (12

k
¢=6+2kal 2In2—1In -2 arctan;

Il. REFLECTION BY A POTENTIAL STEP For a very diffuse step, assumirkg» 1, xa>1, and us-
ing Stirling’s formula to approximate the Gamma functions
Consider a smooth potential step of the form yields a phase losg— /2. Note, however, that no matter
how large we choose the diffuseness paramatdea is al-
Vo ways small sufficiently close to the long-wave lintit=0
Va(x)= Trexg—xia)’ (8)  and hencep always approaches in this limit.

The right-hand side ofLl2) depends otka and «a and for
) L ) ) a given value of the dimensionles®lative diffuseness
The exact solution of the Schitimger equation(3) for this a=ky a the phase losg is a function ofE/V, alone. Ex-

potential is given n paragraph 25 4g] f<_)r energies amples are illustrated for various values of the relative dif-
E>V, and can easily be extended to energies in the rangg senessy in Fig. 1. For any value of, the phasep is 7 at

OI<E_<V”0' fThsdzolution_ the_‘t decayst te_zxpl?nentiallyi_ in tlhte the bottom of the step and decreases monotonically, passing
ciassically forbiaden region IS asymptotically proportionalto, o 5 1yeq/2 at an energy that is close to half the height of

ikx —ikx ; H H _
er+re T in the cIaSS|_caIIy aIIo_vv_ed regior— = and the step in the case of smailland decreases with increasing
r=exp(-14) is the reflection coefficient with the phase a. The limiting value at the top of the step is zero for

a=0 and approaches/2 for largec.
5=2 I'(—2ika) © Considers waves in a Woods-Saxon potential
Y a—ika) [ (1+ ka—ika) "

Vo

x—R\’
1+exp —
a

. . Viws(X) =Va(X—R) = Vo= — x>0,
The constant& and « in (9) are the asymptotic wave num-
bers in the classically allowed and classically forbidden re-

gions, respectively, (13
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R=30, respectively(Table ). The energie€/V, obtained
with the conventional “simple” WKB quantization condi-
tion, which corresponds to a Maslov indgx= 3 in this case,
deviate from the exact quantum-mechanical values by typi-
cally 0.004 near the bottom of the potential well and by up to
0.01 near the top of the potential welResults of compa-
rable accuracy are obtained in the standard WKB method by
including a centrifugal potential as prescribed by the Langer
modification (see Sec. I).] In contrast, the energy values
derived with the nonintegral Maslov index according 1d)
reproduce the exact quantum-mechanical result within our
numerical accuracy, i.e., better thax 30~ °, except for the
‘ ‘ . 1 weakly bound ninth state near the top of the well, where the
T00 02 04 06 0.8 1o error is roughly 6<10™ 7. Note that the simple first-order
EN, WKB approximation is highly accurate, even close to the
long-wave limit, provided the appropriate nonintegral
Maslov index is used.

For larger values of the diffuseneaghe phase los® is
closer torr/2. The standard WKB becomes a better approxi-
mation in this case, but use of the phasef (12) generally
improves the result further. For smaller values of the diffuse-
nessa the standard WKB approximation becomes progres-
sively worse, whereas the quantization conditi@d) with
the phasd12) becomes better and yields the exact eigenval-
ues in the limit of a sharp step=0.

d/n

FIG. 1. Phase los¢ due to reflection by the potential st&§) as
given by (12) for various values of the relative diffusenass

which is widely used for modeling self-consistent fields in
atomic nuclei and, more recently, atomic clustigtk At the
origin, x=0, the quantum-mechanical wave function van-
ishes and the phase loss due to reflection.i$he phase loss
¢ due to reflecion at the outer turning point
Xo=R+aln(Vy/|E|-1) [Vws(0)<E<O0] is given by (12
and the asymptotic wave numbexsand k are as in(10),
except that the energyE is now replaced by

Vo+ E=V0—|E|. The WKB quantization condition in this ll. REFLECTION BY A REPULSIVE 1/ x? POTENTIAL
case 1S Consider the potential
*o M : ¢ 2
2mE—Vys(X)]dXx=| n+ — |7k with u=2+ —. c h
| VeV )t with =2+ R "
(14) Y X°  2mX

Due to the dependence gfon energy, the right-hand side of How close the solutions of the Scliiager equation with
(14) is an energy-dependent function and the positions of théhis potential are to the long-wave or the short-wave limit
energy levels are obtained by numerically locating the interdepends not on energy but only on the dimensionless param-

sections of both sides @il4). eter

We have calculated the energy eigenvalues in the Woods-
Saxon potential whose depth, is chosen such thad, =1 B 2mc>0 18
and the diffuseness and range parameter @re).5 and YTRT D (16

TABLE |. Energies of the bound states in the Woods-Saxon potefitglwith the parameterk\,O:l,
a=0.5, andR=30. The exact quantum-mechanical results are compared with the present results obtained via
(14) using the nonintegral Maslov index corresponding to the phasg1@st the outer turning point and
with the simple WKB ansatz based on the phase to/&sat the outer turning point. The last column contains
the WKB results obtained with a centrifugal potential corresponding to the Langer modification
I(14+1)—(l+1/2)? for =0 and a phase loss/2 at the inner turning point as well as the outer turning point.

n Eﬁxacyvo Egresen}\/o Ers]impIe/V0 Ehangeyvo

0 —0.98931658 —0.98931658 —0.99252241 —0.99284005
1 —0.95733492 —0.95733492 —0.96165414 —0.96194975
2 —0.90425814 —0.90425814 —0.90830332 —0.90858855
3 —0.83041962 —0.83041962 —0.83332836 —0.83360627
4 —0.73628786 —0.73628786 —0.73744628 —0.73771764
5 —0.62249893 —0.62249893 —0.62140847 —0.62167285
6 —0.48995387 —0.48995387 —0.48615942 —0.48641611
7 —0.34009410 —0.34009410 —0.33314992 —0.33339578
8 —0.17588806 —0.17588806 —0.16540815 —0.16563339
9 —0.01083777 —0.01083835 —0.00095238 —0.00091497
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which is equal td (1 +1) for the three-dimensional centrifu-  TABLE Il. Phase loss(22) due to reflection by the three-

gal potential corresponding to the orbital angular momentungimensional centrifugal potential.

guantum numbet. (In general,y can be any non-negative

real numbey. | ol
The Schrdinger equation with the potentiél5) can be

. . .. 0 1.0
;olved analytically{8] and the solution regular at the origin 1 058578644
IS 2 0.55051026
3 0.53589838
V2mE
P(x)c\kxd,(kx), k= — 17) 4 0.52786405
5 0.52277442
wherelJ, is the Bessel function of order 6 0.51925930
7 0.51668523
1 8 0.51471863
v=y\lrtg (18 9 0.51316702
10 0.51191152
Asymptotically,
(y—2) 1\ o the anticlassicallong-wave limit y—0. Explicit numbers
P(x)oc| 1— 77_2) Cog{ kx—| v+ _) _} are given in Table Il for a few values af corresponding to
8(kx) 2) 2 orbital angular momentuml=0,...,10 in the three-
1\ dimensional centrifugal potentiag,=I(l+1).
_r sin kx—| v+ =| =|+O((kx)~3). (19 WKB wave functions based on the Langer modification
2kx 2)2 (21) and a phase loss/2 or on the true potential and the

. ] o . phase los$22) both have the correct asymptotic behavior to
The classical turning point is at=\'y/k and the integral jeading order, but the latter wave function is a far better

fﬁO\/Zm[E—VY(X’)]dX’ occurring in the WKB wave func- approximation of the true solution of the Sctioger equa-
tion can be calculated analytically. The asymptotic behavio#ion at finite distances because it approaches the exact wave
of the WKB wave function in the classically allowed region function more rapidly by two orders in Kx. This is illus-

is trated in Fig. 2 and, more dramatically in Fig. 3, where we
plot the differences of the respective WKB wave function

y(y—2) ) and the exact solution as functions lat in a doubly loga-
lﬂWKB(X)‘X( 1- 8(k0)? COS{ kx=vy 5~ E} rithmic plot. All wave functions are normalized to unit am-

plitude asymptotically.
Summarizing the situation, we can say that a phase loss
+0((kx)73). /2 at reflection is too small and the Langer modification of
the potential, which reduces the kinetic energy and hence
(20 increases the wavelengths of the WKB wave function, en-
ables the wave to catch up to the correct phase asymptoti-

2kx

™ ¢
xNrp Ty

In the standard WKB method the phagen (20) is taken

to be /2 and the asymptotic phases in the exact wave func- 20
tion (19) and in the WKB wave functiof20) are reconciled
by subjecting the potentidll5) for the WKB calculation to ol
the Langer modificatiorf1-3,9, ol
1
Y=y =r+ 7, (2D L7
00 t
which amounts to replacing(l+1) by (I+1/2)?> when
y=I(l1+1). This gives the right argument of sine and cosine 057 exact
in (20), but the coefficients proportional to kX) and ol present
1/(kx)? are changed, so only the leading term(2®) agrees ' “ Langer modification
with the exact expressiof19). 15 ‘ ‘ ‘ . ‘
However, a comparison of Eq&L9) and (20) shows that Lo 20 30 40 30 60 70

we also obtain the correct asymptotic phase in the WKB o

wave function if we leave the potential intact and interpret FIG. 2. Wave functions in the classically allowed region for the

1 potential with y=2 (corresponding tol=1 in the three-
ial (15) with 2 ( di |=1 in the th
A /7+ —_ \/;) T (22 dimensional centrifugal potentjalThe standard WKB wave func-
4 tion based on a phase losg2 due to reflection and the Langer-

) ] _ modified potential and the present wave function based on the phase
as the phase loss due to reflection at the classical turningss (22) (¢~0.5858r for y=2) and the true potential without

point. The phas€22) is independent of energy; it approaches Langer modification are compared with the exact solution of the
/2 in the semiclassical limiy—o and it approaches in Schralinger equatior(17).

v

b= V+%—\/;)7T:§+
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00 2 o E v s
2ME—Vyg(x)]dx=| n+ —| 7h
X1 4
2.0 1 ¢ + ¢
. 1 2
! with w= .
) M 77/2 (24)
2 -40 + 1
2 The inner and outer turning pointg; andx,, respectively,
g 60 | are close to but not exactly equal to the turning points for the
g centrifugal potential or the Woods-Saxon potential alone.
B The phase losses; and ¢, are both taken to be/2 in the
80+t . Langer modification 1 “simp_le” application of th_e WKB method. _This is also _the_
present case in the “Langer” version, but the centrifugal potential is
100 ‘ ‘ ‘ , ‘ subjected to the Langer modificatiq@1). The “present”
oo 0.5 10 15 20 25 3.0 WKB method we are proposing uses the energy-independent

log,(kx) expression(22) for the phase losg, due to reflection at the
inner turning point, the expressiqi2) for the phase loss

FIG. 3. Absolute value of the difference between the WKB ¢, due to reflection at the outer turning point, and is based
wave functions of Fig. 2 and the exact quantum-mechanical waven the true centrifugal potential: there is no Langer modifi-
function as function okx in a doubly logarithmic plot. The dashed cation.

curve shows the result for the standard WKB wave function based The resulting eigenvalues are given in Table Il for angu-
on a phase losg/2 due to reflection and the Langer-modified po- lar momentum =1 and in Table IV for angular momentum
tential, the solid curve shows the result for the wave function ob{=2. The parameters of the Woods-Saxon potential are
tained with the phase l0$22) and the true potential without Langer kV =1, R=30, anda=0.5 in both cases. Fdr=1 the error

modlflcatl(g’n The straight lines indicate proportionality to kb in the conventional WKB calculation based on the Langer
and 1/kx)”, respectively. modification and a phase losg2 at both turning points is of
the order of 0.002 to 0.012, except for the fourth excited

cally. With the correct phase loss at reflecti@®2), the WKB
wave function based on the true potentiab) approaches

state, where it is only 0.0004. Note that the simple WKB
ansatz without the Langer modification yields qualitatively

the exact quantum-mechanical wave function more rapidi\similar results. The results obtained with nonintegral Maslov

by two orders in Jx.

index based on the phase los$&8 and (22), without the

The results obtained for the Woods-Saxon potential inLanger modification, show a maximum error of 0.0002,
Sec. Il and for the centrifugal potentiél5) can be combined which is two orders of magnitude better than the standard
to investigate the radial Woods-Saxon potential WKB results. The same holds for=2 (Table V), where a
maximum error of 0.0005 with the nonintegral Maslov index
is to be compared with errors up to 0.01 in the standard

2
+
A% 1(1+1) Vo WKB method.

2m X2 x—R\’
1+ex T

sz( )= 5= x>0. (23

IV. QUADRATIC POTENTIAL

For a parabolic potential
We have calculated the exact eigenvalues of the quantum-

mechanical bound states and compared them with the resul\t; (X)= Twzxz

obtained via the WKB quantization condition for x=0, V,(x)=0

for x<0, (25

TABLE IIl. Energies of the bound states in the radial Woods-Saxon potg@@alwith potential param-
eters kV0=1, a=0.5, andR=30 with angular momentum quantum number1l. The exact quantum-
mechanical results are compared with the present results obtain€24yiaith the phase losg, given by
(22) and ¢, given by(12), with the simple WKB result in which both phase losses are taker/2sand with
the standard WKB result obtained with the Langer-modified potential and phaserf@sst both turning

points.

n Eﬁxacyvo Egresenivo E[s]imple/V0 Ehangeyvo

0 —0.97815416 —0.97834291 —0.98383228 —0.98284962
1 —0.93556613 —0.93566866 —0.94235308 —0.94037733
2 —0.87203511 —0.87210568 —0.87893902 —0.87602379
3 —0.78795362 —0.78800723 —0.79425753 —0.79043683
4 —0.68386491 —0.68390852 —0.68900609 —0.68431253
5 —0.56051533 —0.56055291 —0.56399138 —0.55846381
6 —0.41901295 —0.41904703 —0.42031999 —0.41401662
7 —0.26131274 —0.26134508 —0.25989745 —0.25293155
8 —0.09248716 —0.09251698 —0.08776052 —0.08054343
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TABLE IV. Same as Table Il but with angular momentum quantum nunhbe2.

n Ere]xacyvo Egresenivo E[s]implelvO ErI;:;mger/V0

0 —0.96407673 —0.96457292 —0.97046925 —0.96973473
1 —0.91078135 —0.91105425 —0.91698240 —0.91566039
2 —0.83681851 —0.83700949 —0.84225964 —0.84038718
3 —0.74257027 —0.74271811 —0.74669583 —0.74429501
4 —0.62864921 —0.62877193 —0.63097475 —0.62806680
5 —0.49593660 —0.49604452 —0.49599832 —0.49261024
6 —0.34583435 —0.34593422 —0.34314953 —0.33932501
7 —0.18117566 —0.18127168 —0.17523388 —0.17107759
8 —0.01365981 —0.01366466 —0.00518905 —0.00183653

the Schrdinger equation(3) can be solved analytically in An interesting application of the concept of nonintegral
terms of the parabolic cylinder functions and the solutionMaslov indices is the radial harmonic oscillator
decaying in the classically forbidden region—~ is

U(—E/(hw),y), where y=x2mw/fi [8]. Matching the 52 m
logarithmic derivative of this solution to a superposition of VO (x)= — lz — 022, y=I(1+1), (29)
incoming and reflected waves ekp(+rexp(—ikx) at x=0 ¢ 2mx 2
leads to a reflection coefficient=(1—iB)/(1+iB), with
3 for which the standard WKB method in conjunction with the
_ . [2he FG-E/(2hw) ‘ (26)  Langer-modified centrifugal potential is known to reproduce
E T¢ -E/(2hw)) the energy eigenvalues exacfl§]. The integralfiip(x)dx

between the classical turning pointg andx, can be calcu-

Comparing the WKB wave functio(b) in the “asymptotic ‘J‘ated analytically,

regionx<<0 with the exact solution shows that the phase los
¢ due to reflection at the classical turning point
Xo=v2E/m/w amounts to

LXZ\/Zm[E—VEU7)(x)]dx= (% - %J}) mh. (30)

E
¢=—arqr)+%w

3 In the standard WKB method the centrifugal potential is sub-
—2arcta [2he I'G —El(2he)) n EW 27) jected to the Langer modificatid®1), whereby\/y becomes
E I -E/(2hw)] fo ' I+1/2, and the right-hand side of E¢30) is equated to

(n+ w/d)mh with a Maslov indexu=2. This immediately

The phase los€7) is shown in Fig. 4. For half integral gives the correct quantum-mechanical energy eigenvalues
values of the ratioE/Aw we have ¢=m/2, which is not
surprising considering that standard WKB quantization gives
the exact results for the quantum-mechanical energy eigen- E=
values of the harmonic oscillatdg,,= (n+ 1/2)% w. The for-
mula (27) goes further and it also shows how the phase ap-
proaches the long-wave limit for E—0, viz.,

3
2n+1+ =

5 ho. (31

0.55

ra4y [EE 32 0.54 |
(b_ﬂ-_ﬁm %‘f’ %W‘FO(E ) for E—O.

(28) 053 |

If, for example, we study the bound states in a symmetric 052 ¢

potential well consisting of two half parabolé&b) separated o

by a finite stretch where the potential vanishes, then there
will be bound states at energies different from+{1/2)% w

051

0.50 +
and in particular one or more beloww/2. Applying the
WKB quantization condition with a Maslov index 049 |
u=2¢l(ml2) gives, by construction, the exact eigenvalues
for this potential if we insert the phase Ioé_&?). Again we 048 1o 20 30 40 50 6o 70
observe that the first-order WKB approximation can give e

highly accuratgin this case exattesults, even close to the

long-wave limit, provided that the appropriate nonintegral FIG. 4. Phase los€7) due to reflection by the quadratic poten-
Maslov index is used. tial (25) as function ofe =E/(% w).
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In the alternative procedure we are proposing, the cen- 2m (=
trifugal potential remains intact — there is no Langer modi- P(Xo) = ?f (X=Xo)[V(X) = V(Xo) J¢p(x)dx (35
fication — so the integral30) contains the correct expres- X0
sion for 'y, viz., VI(I+1). The right-hand side of30) is
equated to i+ w/4)7h, but we now assume that the phase
loss due to reflection at the centrifugal barrrier is given by om [
(22) rather thanm/2. The phase loss due to reflection at the ' (Xg)=— hTf [V(x)—V(xq) ](x)dx. (36)
outer turning point may be assumed tob& because this is Xg
the correct value for a harmonic potential at the energies N
where we expect the eigenvalues to[bk Eq.(27) and Fig.  1he correct boundary conditiong(x) —0 for x—c are ob-

and its derivative is

4]. Thus the Maslov index. is tained by choosing the solution of the homogeneous equation
to vanish.
1 If the potential were to vanish identically on the classi-
p=1+2\1+5-Vl(+1)]+1 (32)  cally allowed side of the turning point, then the correct wave

function would be proportional to cdgk—Xo|— ¢/2),
k=+2mFE/%, on the allowed side, and the matching condi-

and the energies are again given By). tion would be

V. CALCULATING ¢ 1 ¢'(Xo)
¢=—2arctarEE I(%o)

. (37

In the examples discussed so far, we could make use of
analytic expressions for the phase lagsbased on exact
solutions of the Schidinger equation containing all or a part Inserting the decaying WKB wave function as given on the
of the potential being studied. It would of course be desirabldeft-hand side of5) into Egs.(35) and(36) and matching the
to have a model-independent prescription for calculating théogarithmic derivative according t87) defines one way of
phase loss due to reflection at a classical turning point andbtaining an approximate value for the phase I¢ssn the
the related nonintegral Maslov index in the general casdasis of the WKB wave functions alone. The matching con-
without reference to exact wave functions. In order todition (37) neglects the difference between the exact wave
achieve this, we must use in some way the information orfunction and the free wave on the classically allowed side of
how the wave function decays in the classically forbiddenthe turning point. For a potential barrier that vanishes for
region because this determines its logarithmic derivative at<0 and rises monotonically for>0, this means approxi-
the turning point, where it is matched to the wave function inmating the wave function betweer=0 and the classical
the classically allowed region. turning pointx=x,. In terms of wavelengths, the distance

The WKB wave function igweakly) singular at the clas- over which the wave function is approximated is measured
sical turning point, so its logarithmic derivative cannot beby the dimensionless parametex,, which goes to zero in
used directly. One way of using the WKB wave function to the long-wave limit, because boki-0 andxy—0.
construct an approximate wave function regular at the clas- The method based di87), with the WKB wave functions
sical turning point is to insert it in the right-hand side of thein the integrands in the expressiof85) for (x,) and(36)
Lippmann-Schwinger equation for ¥'(Xg), gives the correct phase lossin the long-wave
limit and should be useful for small values of the dimension-
less parametetx,. In order to obtain a quantitative estimate
of how accurate it may be, we now study the special example
of power-law potentials

H0= 00+ | GOX MV ux)dx, (33

where G(x,x") is a Green’s function for the “homoge-
neous” part of the Schutinger equation, for whichy, is a
solution, andV stands for the “inhomogeneous” potential
not accounted for irG.

Near the classsical turning poirg we haveE~V(x), so  where V,>0 and 8>0. With the lengthb defined by
we may assume the term [V(X)—EJ#(X) b=[#2/(2mV,)]Y#*2), the classical turning point is
=[V(x) = V(X0) 1¢/(x) in the Schrdinger equation(3) to be  x,=(E/V,y)*#=b(kb)?# and the dimensionless parameter
the small inhomogeneity and apply the Lippmann-Schwingekx, is related tokb by kx,= (kb)*?2. The exact phase loss
equation based on the Green’s function due to reflection is defined as the phase Igswith which
the WKB wave function(5) is proportional to the exact so-
lution of the Schrdinger equation in the asymptotic region
x<0; the corresponding nonintegral Maslov index is, of
course,d/(m/2). In terms of the exact solutioth,, of the

VoxP  for x=0

VEX)=10 " for x<0, (38)

2m
G(x,x")= ?(x’ —X)0 (X' —Xx),

52 (2 Schralinger equation, which decays in the classically forbid-
om g2 CXx') = 8(x=x"). (34 den regionx>Xx,, the exact phase loss is
We assume the cIa_ssicaIIy forbidden region toxbex,. The box=— 2arctar6£ "[lex_(o)> + Efxop(x)dx. (39)
wave function ai, is now K #ex0))  filo
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The second term on the right-hand side(88) accounts for 10

the phase accumulated in the WKB wave function between

the classical turning pointy and the poinx=_0, where the 09

WKB wave function is matched to the exact wave function.

It can be evaluated analytically and is proportional to s IV izzztion o

kxo=(kb)1*2#, \

In the long-wave limit the leading deviation of the phase ¢ |
loss fromar is twice the inverse of the argument of the arct-
angent in(39), which can be calculated analytically at zero

06 |
energy from the modified Bessel function representing the
exact wave functiofat zero energy The leading terms for 05
the phase loss in the long-wave limit are thus ’
r 1 %400 05 10 15 2.0
2 B+2 €
Dex=T— BI(B+2) kb
(B+2) B+1 FIG. 5. Phase loss due to reflection by the quartic potential
B+2 V(x)=[#2/(2mb?)](x/b)* as function of e=E/[%%/(mb?)]=

(kb)?/2. The exact result derived from the numerical solution of

r 1 r 3 the Schrdinger equation is compared with the approximate phase
2 \gl \2 loss derived via Eq(37) using the decaying WKB wave function in
+E 1—3(kb)1+2/ﬁ+o((kb)3); (40) the classically forbidden region in the integrands(28) and (36).
F(E+§ ergies, the approximate phase loss becomes increasingly

inaccurate, in particular it does not converge to the correct
this is a generalization a28) where 3=2. If we calculate  short-wave limitz/2. The usefulness of the procedure based
the phase loss approximately via the wave funct@®) with ~ on Eqs.(35)—(37) and the decaying WKB wave function lies
the decaying WKB wave function in the integrand, then theln the fact that it is accurate to within a few percent near the

corresponding expansion fap near the long-wavelength long-wave limit, where the standard WKB breaks down.
The vicinity of the long-wave limit is relevant, e.g., for

limit is : ' |
low-lying bound states in the potential
2\ 2((B+2) 2B+i Vo(x—R)?  forx=R
B+ B+ e
Pmm A 3p+4| <P Ve =1 © for —R<x<R (45

Vo|x+R|#  for x<—R

1 3 describing a particle moving freely over a distanc® 2
r=rs bounded on each side by the power-law potential. We have

+ E '8— (kb)1*2A+ O((kb)3), (41) calculated the energies of the lowest few eigenstates in the
B r Lﬁ potential defined byB=4 andR/b=5 and the results are
B 2 shown in Table V. The exact eigenvalues are compared with

the present results derived via the quantization condiffon
Up to order kb)® the approximate expressiqal) differs  but with the nonintegral Maslov index corresponding to the
from the exact expressiofd0) only in the coefficient of approximate phase logs as shown in Fig. 5, at each turning
kb. The relative error in this coefficient approaches zero botH0int; we also show the results obtained with standard WKB
for B—0 and for B—c; its largest value is near 3% for guantization, i.e., withp= /2, and with the opposite limit
B~1 and it amounts to 2.4% fg8=4. qﬁ: T. The_ .e|genvalues obtained with .the present quantiza-
The behavior of the approximate phase loss derived vi§on condition based on theapproximatg nonintegral

: ; ; Maslov index are quite accurate for the lowest few states and
37) from the wave function35) with the decaying WKB .
\(/v;\)/e function in the integrr(anii is illustrated ¥qﬂi4 in  fheyremain more accurate than the standard WKB results, as

; ) : long as the approximate phase loss is closer to the exact
Fig. 5’. together with the exact phag;e loss denvgd_from th%hagse loss tha[r)1pis the stanFc)JIard chaic¢2. The error relative
nume_rlcally calculafted exact solution of the Sc:l_lrrger_ to the separation of successive levels is uniformly less than
equation. The abscissa is labeled by the energy in units

. . % in the energy range studied. Note that choosing the
32 — — 2
Eo=#2/mb?, ie. e=E/Eo=(kb)*/2. The approximate nace oss to ber at each turning point gives very poor

phase loss is quite close to the exact value near the longeg its even for the ground-state energy. The reason for this
wave limit and it remains within a few percent up4e=2, s that the leading deviation of the phase loss from its long-
beyond which approximatings by its semiclassical limit \yave limit 7~ is proportional to the square root of the energy
/2 yields comparable or better accuracy. Similar results argcf. Fig. 5 and Eqs(40) and(41)] so that small increments in
observed for other powerg [10]: the relative error of the energy lead to large shifts in phase IdSee also Figs. 1 and
approximate phase loss is at most a few percent up to enes-as well as Egs(12) and (28).] For reflection by a steep
gies where the exact phase has approached the showall, which is an essential feature of various two-
wavelength limit7r/2 to within a few percent. At higher en- dimensional billard systems so extensively studied
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TABLE V. Eigenvaluess,=E, /[#%/(mb?)] of the lowest eight bound states in the potent#) for
B=4 andR/b=5. The exact eigenvalues are compared with the present results obtained via first-order WKB
guantization(7) with a nonintegral Maslov index corresponding to the approximate phaselasshown in
Fig. 5 at each turning point. Also shown are the standard WKB results based on phas&lassvell as the
results obtained withp= 7, which would be appropriate for steep wall potentials at the classical turning

points.

n Exact Present d=l2 o=

0 0.0292434 0.0300133 0.0108349 0.0412557
1 0.1167859 0.1197302 0.0895180 0.1544972
2 0.2620643 0.2677489 0.2353420 0.3313643
3 0.4641405 0.4713903 0.4419855 0.5667067
4 0.7217078 0.7286595 0.7050893 0.8567424
5 1.0331110 1.0369163 1.0213137 1.1984827
6 1.3963910 1.3943704 1.3879559 1.5894626
7 1.8093647 1.7992174 1.8027518 2.0275898

nowadayq 11], we may expect that even a slight smoothingcases. For the bound states in a Woods-Saxon poténtthl

of the wall will necessitate substantial modification of theor without centrifugal potentialthe use of the nonintegral

Maslov indices in the quantization formulas. Maslov indices improves the accuracy of the WKB results by
When g is an even integer and the lengthis taken to  orders of magnitude. The energy eigenvalues of the radial

vanish, the potential42) is an analytic function; foB=4  harmonic oscillator, which are given exactly in the standard

we have the quartic oscillator. The semiclassical quantizatiogykB theory, are also reproduced exactly in the present an-
of the quartic oscillator was studied by Bendaral. [12]  satz based on nonintegral Maslov indices.

using the WKB series derived from Dunham’s formulation  pp especially important case is the repulsiy? poten-

of the quantization conditiofil3]. This theory yields an as- g which is treated in the standard WKB method by assum-

ymptotic series for the eigenvalues and gives extremely Gy, 5 phase loss/2 at reflection and subjecting the potential

curate results for highly excited states. For the ground statgj the Langer modification— y’ = y+ 1/4. The WKB wave

of the quartic oscillator the series does not converge well an ; C

) Lo unction constructed in this way approaches the exact solu-
provides a rather poor approximation. The exact ground—stattc?on of the Schidinger equation asvmototicallv. but the dif-
energy iss=0.530181 6 ... andstandard WKB quantiza- 9 d ymp v,

tion, which corresponds to the leading term of the Dunhanjc€nce between WKB wave function and exact wave func-
series, predicts =0.43, which is off by 18%. In the next tion dec_:reases only asky. If we mporporate the correct
order, standard WKB gives=0.49, which is about 8% off, €nerdy-independent phase I0622) in the WKB ansatz
and the error grows again in higher ord§ig]. The first- ~ (Which is no more difficult than assuming a phase loss
order WKB quantization conditiofi7) with the nonintegral 7/2), then there is no need for the Langer modification of the
Maslov index corresponding to the approximate phase lossdotential and the difference between the WKB wave function
& as shown in Fig. 5 gives the ground-state energy of th@nd exact wave function decreases ak3)t, i.e., the WKB
quartic oscillator at =0.560 615, which is within 6% of the Wave function approaches the exact solution of the Schro
exact result. This error is smaller than the error obtained irflinger equation more rapidly by two orders irk&/

standard WKB quantization in any order. We have presented a method by which the phase loss can
be derived approximately from the decaying WKB wave
VI. CONCLUSION functions in the classically forbidden region. For power-law

otentials this method yields approximate phase losses that
The WKB ansatz may be an accurate approximation 0gre within a few percent of the exact phase losses for ener-
the quantum-mechanical Sckifoger equation away from gies ranging from the long-waves limit up to values where
the semiclassical limit of short waves if the potential is suf-the exact phase loss is already within a few percent of the
ficiently smooth so that the condition of applicabili) is short-wave limit7r/2. With the approximate phase loss de-

vmla_te_d only near the classw_al turning points. The key 1o ived in this way, first-order WKB quantization reproduces
obtaining accurate wave functions in the classically allowe . :
he ground-state energy of the quartic oscillator more accu-

region is the correct choice of the phase Igsdue to reflec- o
tion at the classical turning points. Away from the limit of rately than standard WKB quantization in any order.

short waves, this phase loss is in general not equal2cand

it approaches the valug continuously in the limit of long

waves. The fact that the phase losses due to reflection are in ACKNOWLEDGMENTS
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