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Nonintegral Maslov indices

H. Friedrich and J. Trost
Physik Department, Technische Universita¨t München, 85747 Garching, Germany
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The phase loss of a wave reflected by a smooth potential generally varies continuously fromp in the
long-wave limit top/2 in the limit of short waves. Incorporating the corresponding nonintegral multiples of
p/2 as nonintegral Maslov indices in the formulation of the WKB approximation leads to a substantial
improvement of accuracy when the conditions for applicability of the WKB method are violated only near the
classical turning points. We demonstrate the efficacy of using nonintegral Maslov indices for a Woods-Saxon
potential and a repulsive 1/x2 potential. The nonintegral Maslov index for a given 1/x2 potential yields far more
accurate wave functions than the conventional Langer modification of the potential in conjunction with phase
lossp/2. The energy spectrum of the radial harmonic oscillator~including the centrifugal potential!, which is
reproduced exactly by the standard WKB method with the Langer modification, is also reproduced exactly
without the Langer modification when the nonintegral Maslov index is used. We suggest a method for ap-
proximately calculating the nonintegral Maslov index near the long-wave limit from the decaying WKB wave
function in the classically forbidden region.@S1050-2947~96!06108-2#

PACS number~s!: 03.65.Sq
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I. INTRODUCTION

In the WKB approximation, the quantum-mechanic
wave function for a particle of massm moving with total
energyE in a potentialV(x) is approximated by@1–3#

c~x!5
1

Ap~x!
expF6

i

\Ex0

x

p~x8!dx8G , ~1!

wherep(x) is the local momentum

p~x!5A2m@E2V~x!#. ~2!

The wave function~1! is, in general, a good approxima
solution of the quantum-mechanical Schro¨dinger equation

2
\2

2m

d2c

dx2 1V~x!c5Ec ~3!

as long as the ~local! de Broglie wavelength
l(x)52p\/up(x)u varies sufficiently slowly

1

2p U dl

dx U5\Um

p3

dV

dxU!1. ~4!

The condition~4! is always violated at a classical turnin
point x0 becausep(x0)50. If the potential can be approxi
mated linearly around the turning point, the exponentia
decreasing real wave function on the classically forbidd
side of the turning point should be associated with the os
lating wave functions on the classically allowed side of t
turning point via the famous connection formula@1,2#
541050-2947/96/54~2!/1136~10!/$10.00
l

y
n
l-

1

Aup~x!u
expF2

1

\ U E
x0

x

up~x8!udx8UG
→

2

Ap~x!
cosF 1

\ U E
x0

x

p~x8!dx8U2 f

2 G . ~5!

The phasef/2 appearing in the argument of the cosine
the right-hand side of~5! corresponds to a reflection coeffi
cient with phasef in front of the wave reflected at the turn
ing point, relative to the incoming wave traveling towar
the turning point. Thisphase lossf at reflection is equal to
p/2 in the semiclassical limit of short wave@1,2#. For a
particle oscillating in the classically allowed region betwe
two turning pointsx1 andx2, the WKB quantization condi-
tion is obtained by requiring the total phase during one
riod of oscillation to be an integral multiple of 2p,

1

\ R p~x!dx2f12f25
2

\Ex1

x2
p~x!dx2f12f252pn,

~6!

wheref1 is the phase loss due to reflection at the turn
point x1 and f2 is the phase loss due to reflection atx2.
Taking f1 and f2 to be equal top/2 leads to the conven
tional form of the WKB quantization condition, viz.,

E
x1

x2
p~x!dx5S n1

m

4 Dp\, ~7!

wherem52 is the total Maslov index corresponding to th
two reflections during one period of oscillation.

For reflection by an infinite steep wall the phase loss
p rather thanp/2 and the WKB quantization rule~7! repro-
duces the correct spectrum of quantum-mechanical eigen
ues for a particle oscillating freely between two such walls
we insert 4 rather than 2 for the total Maslov indexm. In this
case any wavelength is large at the turning points, where
1136 © 1996 The American Physical Society
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54 1137NONINTEGRAL MASLOV INDICES
potential changes abruptly, but the condition~4! is fullfilled
in between the turning points. In the more general case
wavelength may be too large for the semiclassical limit to
invoked near the classical turning points, but the WKB a
proximation may still be useful away from the turning poin
if the potential is sufficiently smooth.

We demonstrate in the following that this is actually t
case in various physically important and realistic situatio
The key to obtaining a good approximation of the quantu
mechanical wave functions in the classically allowed reg
and of energy eigenvalues in the framework of the WK
method lies in correctly accounting for the phase loss of
wave function due to reflection at the classical turni
points. In between the limits of long and short waves t
amounts to allowing nonintegral Maslov indices, because
phase losses are in general nonintegral multiples ofp/2.

Modified WKB quantization conditions have been inve
tigated from a different perspective by Robbins, Creagh,
Littlejohn, who studied contributions due to tunneling orb
for the Hecht Hamiltonian describing molecular rotatio
@4#. In a recent paper, Popov, Karnakov, and Mur discus
some detail how the ratio of the amplitudes appearing
both sides of the connection formula~5! should be modified,
when the conditions of the short-wave limit are not fulfille
but the phase loss is taken asp/2 @5#. In this paper we focus
on how to modify the phase loss, which plays a crucial r
in improving the WKB approximation in the classically a
lowed region.

In Sec. II we discuss the reflection of a particle by
smooth potential step and use the analytically known ph
loss to obtain energies and wave functions for bound eig
states in a Woods-Saxon potential. Section III is devoted
repulsive 1/x2 potentials and critically analyzes the role
the Langer modification. In Sec. IV we discuss quadra
potentials and in Sec. V we present a method, with which
phase loss might be calculated approximately from the W
wave functions when it is not known analytically.

II. REFLECTION BY A POTENTIAL STEP

Consider a smooth potential step of the form

Va~x!5
V0

11exp~2x/a!
. ~8!

The exact solution of the Schro¨dinger equation~3! for this
potential is given in paragraph 25 of@2# for energies
E.V0 and can easily be extended to energies in the ra
0,E,V0. The solution that decays exponentially in th
classically forbidden region is asymptotically proportional
eikx1re2 ikx in the classically allowed regionx→2` and
r 5exp(2id) is the reflection coefficient with the phase

d52arg
G~22ika!

G~ka2 ika!G~11ka2 ika!
. ~9!

The constantsk andk in ~9! are the asymptotic wave num
bers in the classically allowed and classically forbidden
gions, respectively,
e
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k5
1

\
A2mE5kV0

A E

V0
,

k5
1

\
A2m~V02E!

5kV0
A12

E

V0
. ~10!

At the top of the potential step (E5V0) the asymptotic wave
number in the allowed region is

kV0
5

1

\
A2mV0 ~11!

and the inverse ofkV0
defines a scale for lengths.

The exact wave function is asymptotically proportional
cos(kx1d/2). Comparing this to the asymptotic form of th
WKB wave function~5! for x→2` yields

f5d12kaF2ln22 lnS 11
k2

k2 D22
k

k
arctan

k

kG . ~12!

The phased in ~12! is just the phase~9! of the reflection
coefficientr above, where the point of reference isx50. The
second term on the right-hand side of~12! accounts for the
fact that we are taking the point of reference to be the c
sical turning pointx0 and that the WKB wave function is no
exactly a plane wave away from the turning point.

For small values of the diffuseness parametera, the
Gamma functions in~9! can be approximated with the hel
of the identity G(z)5G(11z)/z and the approximation
G(11z)'12Cz1O(z2) (C is Euler’s constant! to yield
d52arctan(k/k)1O(a2). In the limit a→0 we obtain the
phase loss due to reflection by a sharp st
f52arctan(k/k) @6#.

For a very diffuse step, assumingka@1, ka@1, and us-
ing Stirling’s formula to approximate the Gamma functio
yields a phase lossf→p/2. Note, however, that no matte
how large we choose the diffuseness parametera, ka is al-
ways small sufficiently close to the long-wave limitE50
and hencef always approachesp in this limit.

The right-hand side of~12! depends onka andka and for
a given value of the dimensionlessrelative diffuseness
a5kV0

a the phase lossf is a function ofE/V0 alone. Ex-
amples are illustrated for various values of the relative d
fusenessa in Fig. 1. For any value ofa, the phasef is p at
the bottom of the step and decreases monotonically, pas
the valuep/2 at an energy that is close to half the height
the step in the case of smalla and decreases with increasin
a. The limiting value at the top of the step is zero f
a50 and approachesp/2 for largea.

Considers waves in a Woods-Saxon potential

VWS~x!5Va~x2R!2V052
V0

11expS x2R

a D , x.0,

~13!
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1138 54H. FRIEDRICH AND J. TROST
which is widely used for modeling self-consistent fields
atomic nuclei and, more recently, atomic clusters@7#. At the
origin, x50, the quantum-mechanical wave function va
ishes and the phase loss due to reflection isp. The phase loss
f due to reflection at the outer turning poi
x05R1aln(V0 /uEu21) @VWS(0),E,0# is given by ~12!
and the asymptotic wave numbersk and k are as in~10!,
except that the energyE is now replaced by
V01E5V02uEu. The WKB quantization condition in this
case is

E
0

x0A2m@E2VWS~x!#dx5S n1
m

4 Dp\ with m521
f

p/2
.

~14!

Due to the dependence off on energy, the right-hand side o
~14! is an energy-dependent function and the positions of
energy levels are obtained by numerically locating the in
sections of both sides of~14!.

We have calculated the energy eigenvalues in the Woo
Saxon potential whose depthV0 is chosen such thatkV0

51

and the diffuseness and range parameter area50.5 and

FIG. 1. Phase lossf due to reflection by the potential step~8! as
given by ~12! for various values of the relative diffusenessa.
-

e
r-

s-

R530, respectively~Table I!. The energiesE/V0 obtained
with the conventional ‘‘simple’’ WKB quantization condi
tion, which corresponds to a Maslov indexm53 in this case,
deviate from the exact quantum-mechanical values by ty
cally 0.004 near the bottom of the potential well and by up
0.01 near the top of the potential well.@Results of compa-
rable accuracy are obtained in the standard WKB method
including a centrifugal potential as prescribed by the Lan
modification ~see Sec. III!.# In contrast, the energy value
derived with the nonintegral Maslov index according to~14!
reproduce the exact quantum-mechanical result within
numerical accuracy, i.e., better than 531029, except for the
weakly bound ninth state near the top of the well, where
error is roughly 631027. Note that the simple first-orde
WKB approximation is highly accurate, even close to t
long-wave limit, provided the appropriate nonintegr
Maslov index is used.

For larger values of the diffusenessa the phase lossf is
closer top/2. The standard WKB becomes a better appro
mation in this case, but use of the phasef of ~12! generally
improves the result further. For smaller values of the diffu
nessa the standard WKB approximation becomes progr
sively worse, whereas the quantization condition~14! with
the phase~12! becomes better and yields the exact eigenv
ues in the limit of a sharp stepa50.

III. REFLECTION BY A REPULSIVE 1/ x2 POTENTIAL

Consider the potential

Vg~x!5
c

x2 5
\2

2m

g

x2 . ~15!

How close the solutions of the Schro¨dinger equation with
this potential are to the long-wave or the short-wave lim
depends not on energy but only on the dimensionless par
eter

g5
2mc

\2 >0, ~16!
ned via

ns
ation
int.
TABLE I. Energies of the bound states in the Woods-Saxon potential~13! with the parameterskV0
51,

a50.5, andR530. The exact quantum-mechanical results are compared with the present results obtai
~14! using the nonintegral Maslov index corresponding to the phase loss~12! at the outer turning point and
with the simple WKB ansatz based on the phase lossp/2 at the outer turning point. The last column contai
the WKB results obtained with a centrifugal potential corresponding to the Langer modific
l ( l 11)→( l 11/2)2 for l 50 and a phase lossp/2 at the inner turning point as well as the outer turning po

n En
exact/V0 En

present/V0 En
simple/V0 En

Langer/V0

0 20.98931658 20.98931658 20.99252241 20.99284005
1 20.95733492 20.95733492 20.96165414 20.96194975
2 20.90425814 20.90425814 20.90830332 20.90858855
3 20.83041962 20.83041962 20.83332836 20.83360627
4 20.73628786 20.73628786 20.73744628 20.73771764
5 20.62249893 20.62249893 20.62140847 20.62167285
6 20.48995387 20.48995387 20.48615942 20.48641611
7 20.34009410 20.34009410 20.33314992 20.33339578
8 20.17588806 20.17588806 20.16540815 20.16563339
9 20.01083777 20.01083835 20.00095238 20.00091497
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54 1139NONINTEGRAL MASLOV INDICES
which is equal tol ( l 11) for the three-dimensional centrifu
gal potential corresponding to the orbital angular moment
quantum numberl . ~In general,g can be any non-negativ
real number.!

The Schro¨dinger equation with the potential~15! can be
solved analytically@8# and the solution regular at the origi
is

c~x!}AkxJn~kx!, k5
A2mE

\
, ~17!

whereJn is the Bessel function of order

n5Ag1
1

4
. ~18!

Asymptotically,

c~x!}S 12
g~g22!

8~kx!2 D cosFkx2S n1
1

2D p

2 G
2

g

2kx
sinFkx2S n1

1

2D p

2 G1O„~kx!23
…. ~19!

The classical turning point is atx05Ag/k and the integral
*x0

x A2m@E2Vg(x8)#dx8 occurring in the WKB wave func-

tion can be calculated analytically. The asymptotic behav
of the WKB wave function in the classically allowed regio
is

cWKB~x!}S 12
g~g22!

8~kx!2 D cosFkx2Ag
p

2
2

f

2 G
2

g

2kx
sinFkx2Ag

p

2
2

f

2 G1O„~kx!23
….

~20!

In the standard WKB method the phasef in ~20! is taken
to bep/2 and the asymptotic phases in the exact wave fu
tion ~19! and in the WKB wave function~20! are reconciled
by subjecting the potential~15! for the WKB calculation to
the Langer modification@1–3,9#,

g→g85g1
1

4
, ~21!

which amounts to replacingl ( l 11) by (l 11/2)2 when
g5 l ( l 11). This gives the right argument of sine and cos
in ~20!, but the coefficients proportional to 1/(kx) and
1/(kx)2 are changed, so only the leading term of~20! agrees
with the exact expression~19!.

However, a comparison of Eqs.~19! and ~20! shows that
we also obtain the correct asymptotic phase in the W
wave function if we leave the potential intact and interpre

f5S n1
1

2
2Ag Dp5

p

2
1SAg1

1

4
2Ag Dp ~22!

as the phase loss due to reflection at the classical tur
point. The phase~22! is independent of energy; it approach
p/2 in the semiclassical limitg→` and it approachesp in
r

c-

e

ng

the anticlassical~long-wave! limit g→0. Explicit numbers
are given in Table II for a few values ofg corresponding to
orbital angular momentuml 50, . . . ,10 in the three-
dimensional centrifugal potential,g5 l ( l 11).

WKB wave functions based on the Langer modificati
~21! and a phase lossp/2 or on the true potential and th
phase loss~22! both have the correct asymptotic behavior
leading order, but the latter wave function is a far bet
approximation of the true solution of the Schro¨dinger equa-
tion at finite distances because it approaches the exact w
function more rapidly by two orders in 1/kx. This is illus-
trated in Fig. 2 and, more dramatically in Fig. 3, where w
plot the differences of the respective WKB wave functi
and the exact solution as functions ofkx in a doubly loga-
rithmic plot. All wave functions are normalized to unit am
plitude asymptotically.

Summarizing the situation, we can say that a phase
p/2 at reflection is too small and the Langer modification
the potential, which reduces the kinetic energy and he
increases the wavelengths of the WKB wave function,
ables the wave to catch up to the correct phase asymp

TABLE II. Phase loss~22! due to reflection by the three
dimensional centrifugal potential.

l f/p

0 1.0
1 0.58578644
2 0.55051026
3 0.53589838
4 0.52786405
5 0.52277442
6 0.51925930
7 0.51668523
8 0.51471863
9 0.51316702
10 0.51191152

FIG. 2. Wave functions in the classically allowed region for t
potential ~15! with g52 ~corresponding tol 51 in the three-
dimensional centrifugal potential!. The standard WKB wave func
tion based on a phase lossp/2 due to reflection and the Lange
modified potential and the present wave function based on the p
loss ~22! (f'0.5858p for g52) and the true potential withou
Langer modification are compared with the exact solution of
Schrödinger equation~17!.
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1140 54H. FRIEDRICH AND J. TROST
cally. With the correct phase loss at reflection~22!, the WKB
wave function based on the true potential~15! approaches
the exact quantum-mechanical wave function more rap
by two orders in 1/kx.

The results obtained for the Woods-Saxon potential
Sec. II and for the centrifugal potential~15! can be combined
to investigate the radial Woods-Saxon potential

VWS
~ l ! ~x!5

\2

2m

l ~ l 11!

x2 2
V0

11expS x2R

a D , x.0. ~23!

We have calculated the exact eigenvalues of the quant
mechanical bound states and compared them with the re
obtained via the WKB quantization condition

FIG. 3. Absolute value of the difference between the WK
wave functions of Fig. 2 and the exact quantum-mechanical w
function as function ofkx in a doubly logarithmic plot. The dashe
curve shows the result for the standard WKB wave function ba
on a phase lossp/2 due to reflection and the Langer-modified p
tential, the solid curve shows the result for the wave function
tained with the phase loss~22! and the true potential without Lange
modification. The straight lines indicate proportionality to 1/(kx)
and 1/(kx)3, respectively.
ly

n

-
lts

E
x1

x2A2m@E2VWS
~ l ! ~x!#dx5S n1

m

4 Dp\

with m5
f11f2

p/2
. ~24!

The inner and outer turning points,x1 and x2, respectively,
are close to but not exactly equal to the turning points for
centrifugal potential or the Woods-Saxon potential alo
The phase lossesf1 andf2 are both taken to bep/2 in the
‘‘simple’’ application of the WKB method. This is also th
case in the ‘‘Langer’’ version, but the centrifugal potential
subjected to the Langer modification~21!. The ‘‘present’’
WKB method we are proposing uses the energy-indepen
expression~22! for the phase lossf1 due to reflection at the
inner turning point, the expression~12! for the phase loss
f2 due to reflection at the outer turning point, and is bas
on the true centrifugal potential: there is no Langer mod
cation.

The resulting eigenvalues are given in Table III for ang
lar momentuml 51 and in Table IV for angular momentum
l 52. The parameters of the Woods-Saxon potential
kV0

51, R530, anda50.5 in both cases. Forl 51 the error
in the conventional WKB calculation based on the Lang
modification and a phase lossp/2 at both turning points is of
the order of 0.002 to 0.012, except for the fourth excit
state, where it is only 0.0004. Note that the simple WK
ansatz without the Langer modification yields qualitative
similar results. The results obtained with nonintegral Mas
index based on the phase losses~12! and ~22!, without the
Langer modification, show a maximum error of 0.000
which is two orders of magnitude better than the stand
WKB results. The same holds forl 52 ~Table IV!, where a
maximum error of 0.0005 with the nonintegral Maslov ind
is to be compared with errors up to 0.01 in the stand
WKB method.

IV. QUADRATIC POTENTIAL

For a parabolic potential

m
2 2

e

d

-

TABLE III. Energies of the bound states in the radial Woods-Saxon potential~23! with potential param-
eters kV0

51, a50.5, andR530 with angular momentum quantum numberl 51. The exact quantum-
mechanical results are compared with the present results obtained via~24! with the phase lossf1 given by
~22! andf2 given by~12!, with the simple WKB result in which both phase losses are taken asp/2, and with
the standard WKB result obtained with the Langer-modified potential and phase lossp/2 at both turning
points.

n En
exact/V0 En

present/V0 En
simple/V0 En

Langer/V0

0 20.97815416 20.97834291 20.98383228 20.98284962
1 20.93556613 20.93566866 20.94235308 20.94037733
2 20.87203511 20.87210568 20.87893902 20.87602379
3 20.78795362 20.78800723 20.79425753 20.79043683
4 20.68386491 20.68390852 20.68900609 20.68431253
5 20.56051533 20.56055291 20.56399138 20.55846381
6 20.41901295 20.41904703 20.42031999 20.41401662
7 20.26131274 20.26134508 20.25989745 20.25293155
8 20.09248716 20.09251698 20.08776052 20.08054343
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TABLE IV. Same as Table III but with angular momentum quantum numberl 52.

n En
exact/V0 En

present/V0 En
simple/V0 En

Langer/V0

0 20.96407673 20.96457292 20.97046925 20.96973473
1 20.91078135 20.91105425 20.91698240 20.91566039
2 20.83681851 20.83700949 20.84225964 20.84038718
3 20.74257027 20.74271811 20.74669583 20.74429501
4 20.62864921 20.62877193 20.63097475 20.62806680
5 20.49593660 20.49604452 20.49599832 20.49261024
6 20.34583435 20.34593422 20.34314953 20.33932501
7 20.18117566 20.18127168 20.17523388 20.17107759
8 20.01365981 20.01366466 20.00518905 20.00183653
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the Schro¨dinger equation~3! can be solved analytically in
terms of the parabolic cylinder functions and the solut
decaying in the classically forbidden regionx→` is
U„2E/(\v),y…, where y5xA2mv/\ @8#. Matching the
logarithmic derivative of this solution to a superposition
incoming and reflected waves exp(ikx)1rexp(2ikx) at x50
leads to a reflection coefficientr 5(12 ib)/(11 ib), with

b5A2\v

E

G„

3
4 2E/~2\v!…

G„

1
4 2E/~2\v!…

. ~26!

Comparing the WKB wave function~5! in the ‘‘asymptotic’’
regionx,0 with the exact solution shows that the phase l
f due to reflection at the classical turning poi
x05A2E/m/v amounts to

f52arg~r !1
E

\v
p

52arctanSA2\v

E

G„

3
4 2E/~2\v!…

G„

1
4 2E/~2\v!…

D 1
E

\v
p. ~27!

The phase loss~27! is shown in Fig. 4. For half integra
values of the ratioE/\v we havef5p/2, which is not
surprising considering that standard WKB quantization gi
the exact results for the quantum-mechanical energy eig
values of the harmonic oscillator,En5(n11/2)\v. The for-
mula ~27! goes further and it also shows how the phase
proaches the long-wave limitp for E→0, viz.,

f5p2A2
G~1/4!

G~3/4!
A E

\v
1

E

\v
p1O~E3/2! for E→0.

~28!

If, for example, we study the bound states in a symme
potential well consisting of two half parabolas~25! separated
by a finite stretch where the potential vanishes, then th
will be bound states at energies different from (n11/2)\v
and in particular one or more below\v/2. Applying the
WKB quantization condition with a Maslov inde
m52f/(p/2) gives, by construction, the exact eigenvalu
for this potential if we insert the phase loss~27!. Again we
observe that the first-order WKB approximation can g
highly accurate~in this case exact! results, even close to th
long-wave limit, provided that the appropriate noninteg
Maslov index is used.
s

s
n-

-

c

re

s

l

An interesting application of the concept of noninteg
Maslov indices is the radial harmonic oscillator

Vv
~g!~x!5

\2

2m

g

x2 1
m

2
v2x2, g5 l ~ l 11!, ~29!

for which the standard WKB method in conjunction with th
Langer-modified centrifugal potential is known to reprodu
the energy eigenvalues exactly@3#. The integral*x1

x2p(x)dx

between the classical turning pointsx1 andx2 can be calcu-
lated analytically,

E
x1

x2A2m@E2Vv
~g!~x!#dx5S E

2\v
2

1

2
Ag Dp\. ~30!

In the standard WKB method the centrifugal potential is su
jected to the Langer modification~21!, wherebyAg becomes
l 11/2, and the right-hand side of Eq.~30! is equated to
(n1m/4)p\ with a Maslov indexm52. This immediately
gives the correct quantum-mechanical energy eigenvalue

E5S 2n1 l 1
3

2D\v. ~31!

FIG. 4. Phase loss~27! due to reflection by the quadratic poten
tial ~25! as function of«5E/(\v).
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In the alternative procedure we are proposing, the c
trifugal potential remains intact — there is no Langer mo
fication — so the integral~30! contains the correct expres
sion for Ag, viz., Al ( l11). The right-hand side of~30! is
equated to (n1m/4)p\, but we now assume that the pha
loss due to reflection at the centrifugal barrrier is given
~22! rather thanp/2. The phase loss due to reflection at t
outer turning point may be assumed to bep/2 because this is
the correct value for a harmonic potential at the energ
where we expect the eigenvalues to be@cf. Eq. ~27! and Fig.
4#. Thus the Maslov indexm is

m5112S l 1
1

2
2Al ~ l 11! D11 ~32!

and the energies are again given by~31!.

V. CALCULATING f

In the examples discussed so far, we could make us
analytic expressions for the phase lossf based on exac
solutions of the Schro¨dinger equation containing all or a pa
of the potential being studied. It would of course be desira
to have a model-independent prescription for calculating
phase loss due to reflection at a classical turning point
the related nonintegral Maslov index in the general c
without reference to exact wave functions. In order
achieve this, we must use in some way the information
how the wave function decays in the classically forbidd
region because this determines its logarithmic derivative
the turning point, where it is matched to the wave function
the classically allowed region.

The WKB wave function is~weakly! singular at the clas-
sical turning point, so its logarithmic derivative cannot
used directly. One way of using the WKB wave function
construct an approximate wave function regular at the c
sical turning point is to insert it in the right-hand side of t
Lippmann-Schwinger equation

c~x!5c0~x!1E
2`

`

G~x,x8!V~x8!c~x8!dx8, ~33!

where G(x,x8) is a Green’s function for the ‘‘homoge
neous’’ part of the Schro¨dinger equation, for whichc0 is a
solution, andV stands for the ‘‘inhomogeneous’’ potentia
not accounted for inG.

Near the classsical turning pointx0 we haveE'V(x), so
we may assume the term @V(x)2E#c(x)
5@V(x)2V(x0)#c(x) in the Schro¨dinger equation~3! to be
the small inhomogeneity and apply the Lippmann-Schwin
equation based on the Green’s function

G~x,x8!5
2m

\2 ~x82x!Q~x82x!,

\2

2m

d2

dx2 G~x,x8!5d~x2x8!. ~34!

We assume the classically forbidden region to bex.x0. The
wave function atx0 is now
n-
-

y

s

of

le
e
d
e

n
n
at

s-

r

c~x0!5
2m

\2 E
x0

`

~x2x0!@V~x!2V~x0!#c~x!dx ~35!

and its derivative is

c8~x0!52
2m

\2 E
x0

`

@V~x!2V~x0!#c~x!dx. ~36!

The correct boundary conditionsc(x)→0 for x→` are ob-
tained by choosing the solution of the homogeneous equa
to vanish.

If the potential were to vanish identically on the clas
cally allowed side of the turning point, then the correct wa
function would be proportional to cos(kux2x0u2f/2),
k5A2mE/\, on the allowed side, and the matching con
tion would be

f522arctanS 1

k

c8~x0!

c~x0! D . ~37!

Inserting the decaying WKB wave function as given on t
left-hand side of~5! into Eqs.~35! and~36! and matching the
logarithmic derivative according to~37! defines one way of
obtaining an approximate value for the phase lossf on the
basis of the WKB wave functions alone. The matching co
dition ~37! neglects the difference between the exact wa
function and the free wave on the classically allowed side
the turning point. For a potential barrier that vanishes
x<0 and rises monotonically forx.0, this means approxi-
mating the wave function betweenx50 and the classica
turning point x5x0. In terms of wavelengths, the distanc
over which the wave function is approximated is measu
by the dimensionless parameterkx0, which goes to zero in
the long-wave limit, because bothk→0 andx0→0.

The method based on~37!, with the WKB wave functions
in the integrands in the expressions~35! for c(x0) and ~36!
for c8(x0), gives the correct phase lossp in the long-wave
limit and should be useful for small values of the dimensio
less parameterkx0. In order to obtain a quantitative estima
of how accurate it may be, we now study the special exam
of power-law potentials

Vb~x!5H V0xb for x>0

0 for x,0,
~38!

where V0.0 and b.0. With the lengthb defined by
b5@\2/(2mV0)#1/(b12), the classical turning point is
x05(E/V0)1/b5b(kb)2/b and the dimensionless paramet
kx0 is related tokb by kx05(kb)112/b. The exact phase los
due to reflection is defined as the phase lossf with which
the WKB wave function~5! is proportional to the exact so
lution of the Schro¨dinger equation in the asymptotic regio
x,0; the corresponding nonintegral Maslov index is,
course,f/(p/2). In terms of the exact solutioncex of the
Schrödinger equation, which decays in the classically forb
den regionx.x0, the exact phase lossf is

fex522arctanS 1

k

cex8 ~0!

cex~0!
D 1

2

\E0

x0
p~x!dx. ~39!
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The second term on the right-hand side of~39! accounts for
the phase accumulated in the WKB wave function betw
the classical turning pointx0 and the pointx50, where the
WKB wave function is matched to the exact wave functio
It can be evaluated analytically and is proportional
kx05(kb)112/b.

In the long-wave limit the leading deviation of the pha
loss fromp is twice the inverse of the argument of the ar
angent in~39!, which can be calculated analytically at ze
energy from the modified Bessel function representing
exact wave function~at zero energy!. The leading terms for
the phase loss in the long-wave limit are thus

fex5p2
2

~b12!b/~b12!

GS 1

b12D
GS b11

b12D kb

1
2

b

GS 1

b DGS 3

2D
GS 1

b
1

3

2D ~kb!112/b1O„~kb!3
…; ~40!

this is a generalization of~28! whereb52. If we calculate
the phase loss approximately via the wave function~35! with
the decaying WKB wave function in the integrand, then t
corresponding expansion forf near the long-wavelength
limit is

f5p22S b12

2 D 2/~b12! GS 3b18

2b14D
GS 3b14

2b14D kb

1
2

b

GS 1

b DGS 3

2D
GS 1

b
1

3

2D ~kb!112/b1O„~kb!3
…, ~41!

Up to order (kb)3 the approximate expression~41! differs
from the exact expression~40! only in the coefficient of
kb. The relative error in this coefficient approaches zero b
for b→0 and for b→`; its largest value is near 3% fo
b'1 and it amounts to 2.4% forb54.

The behavior of the approximate phase loss derived
~37! from the wave function~35! with the decaying WKB
wave function in the integrand is illustrated forb54 in
Fig. 5, together with the exact phase loss derived from
numerically calculated exact solution of the Schro¨dinger
equation. The abscissa is labeled by the energy in unit
E05\2/mb2, i.e. «5E/E05(kb)2/2. The approximate
phase loss is quite close to the exact value near the lo
wave limit and it remains within a few percent up to«'2,
beyond which approximatingf by its semiclassical limit
p/2 yields comparable or better accuracy. Similar results
observed for other powersb @10#: the relative error of the
approximate phase loss is at most a few percent up to e
gies where the exact phase has approached the s
wavelength limitp/2 to within a few percent. At higher en
n
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ergies, the approximate phase loss becomes increas
inaccurate, in particular it does not converge to the corr
short-wave limitp/2. The usefulness of the procedure bas
on Eqs.~35!–~37! and the decaying WKB wave function lie
in the fact that it is accurate to within a few percent near
long-wave limit, where the standard WKB breaks down.

The vicinity of the long-wave limit is relevant, e.g., fo
low-lying bound states in the potential

VR~x!5H V0~x2R!b for x>R

0 for 2R,x,R

V0ux1Rub for x<2R
~42!

describing a particle moving freely over a distance 2R
bounded on each side by the power-law potential. We h
calculated the energies of the lowest few eigenstates in
potential defined byb54 and R/b55 and the results are
shown in Table V. The exact eigenvalues are compared w
the present results derived via the quantization condition~7!,
but with the nonintegral Maslov index corresponding to t
approximate phase lossf, as shown in Fig. 5, at each turnin
point; we also show the results obtained with standard W
quantization, i.e., withf5p/2, and with the opposite limit
f5p. The eigenvalues obtained with the present quant
tion condition based on the~approximate! nonintegral
Maslov index are quite accurate for the lowest few states
they remain more accurate than the standard WKB results
long as the approximate phase loss is closer to the e
phase loss than is the standard choicep/2. The error relative
to the separation of successive levels is uniformly less t
3% in the energy range studied. Note that choosing
phase loss to bep at each turning point gives very poo
results even for the ground-state energy. The reason for
is that the leading deviation of the phase loss from its lo
wave limit p is proportional to the square root of the ener
@cf. Fig. 5 and Eqs.~40! and~41!# so that small increments in
energy lead to large shifts in phase loss.@See also Figs. 1 and
4 as well as Eqs.~12! and ~28!.# For reflection by a steep
wall, which is an essential feature of various tw
dimensional billard systems so extensively stud

FIG. 5. Phase loss due to reflection by the quartic poten
V(x)5@\2/(2mb2)#(x/b)4 as function of «5E/@\2/(mb2)#5
(kb)2/2. The exact result derived from the numerical solution
the Schro¨dinger equation is compared with the approximate ph
loss derived via Eq.~37! using the decaying WKB wave function in
the classically forbidden region in the integrands of~35! and ~36!.
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TABLE V. Eigenvalues«n5En /@\2/(mb2)# of the lowest eight bound states in the potential~42! for
b54 andR/b55. The exact eigenvalues are compared with the present results obtained via first-orde
quantization~7! with a nonintegral Maslov index corresponding to the approximate phase lossf as shown in
Fig. 5 at each turning point. Also shown are the standard WKB results based on phase lossp/2 as well as the
results obtained withf5p, which would be appropriate for steep wall potentials at the classical tur
points.

n Exact Present f5p/2 f5p

0 0.0292434 0.0300133 0.0108349 0.0412557
1 0.1167859 0.1197302 0.0895180 0.1544972
2 0.2620643 0.2677489 0.2353420 0.3313643
3 0.4641405 0.4713903 0.4419855 0.5667067
4 0.7217078 0.7286595 0.7050893 0.8567424
5 1.0331110 1.0369163 1.0213137 1.1984827
6 1.3963910 1.3943704 1.3879559 1.5894626
7 1.8093647 1.7992174 1.8027518 2.0275898
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nowadays@11#, we may expect that even a slight smoothi
of the wall will necessitate substantial modification of t
Maslov indices in the quantization formulas.

When b is an even integer and the lengthR is taken to
vanish, the potential~42! is an analytic function; forb54
we have the quartic oscillator. The semiclassical quantiza
of the quartic oscillator was studied by Benderet al. @12#
using the WKB series derived from Dunham’s formulati
of the quantization condition@13#. This theory yields an as
ymptotic series for the eigenvalues and gives extremely
curate results for highly excited states. For the ground s
of the quartic oscillator the series does not converge well
provides a rather poor approximation. The exact ground-s
energy is«50.530 181 05 . . . andstandard WKB quantiza
tion, which corresponds to the leading term of the Dunh
series, predicts«50.43, which is off by 18%. In the nex
order, standard WKB gives«50.49, which is about 8% off,
and the error grows again in higher orders@12#. The first-
order WKB quantization condition~7! with the nonintegral
Maslov index corresponding to the approximate phase lo
f as shown in Fig. 5 gives the ground-state energy of
quartic oscillator at«50.560 615, which is within 6% of the
exact result. This error is smaller than the error obtained
standard WKB quantization in any order.

VI. CONCLUSION

The WKB ansatz may be an accurate approximation
the quantum-mechanical Schro¨dinger equation away from
the semiclassical limit of short waves if the potential is s
ficiently smooth so that the condition of applicability~4! is
violated only near the classical turning points. The key
obtaining accurate wave functions in the classically allow
region is the correct choice of the phase lossf due to reflec-
tion at the classical turning points. Away from the limit o
short waves, this phase loss is in general not equal top/2 and
it approaches the valuep continuously in the limit of long
waves. The fact that the phase losses due to reflection a
general nonintegral multiples ofp/2 between the limits of
long and short waves can be expressed by noninte
Maslov indices in the WKB ansatz.

We have demonstrated the efficacy of the concept of n
integral Maslov indices in a number of physically releva
n
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cases. For the bound states in a Woods-Saxon potential~with
or without centrifugal potential! the use of the nonintegra
Maslov indices improves the accuracy of the WKB results
orders of magnitude. The energy eigenvalues of the ra
harmonic oscillator, which are given exactly in the standa
WKB theory, are also reproduced exactly in the present
satz based on nonintegral Maslov indices.

An especially important case is the repulsiveg/x2 poten-
tial, which is treated in the standard WKB method by assu
ing a phase lossp/2 at reflection and subjecting the potenti
to the Langer modificationg→g85g11/4. The WKB wave
function constructed in this way approaches the exact s
tion of the Schro¨dinger equation asymptotically, but the di
ference between WKB wave function and exact wave fu
tion decreases only as 1/kx. If we incorporate the correc
energy-independent phase loss~22! in the WKB ansatz
~which is no more difficult than assuming a phase lo
p/2), then there is no need for the Langer modification of
potential and the difference between the WKB wave funct
and exact wave function decreases as 1/(kx)3, i.e., the WKB
wave function approaches the exact solution of the Sch¨-
dinger equation more rapidly by two orders in 1/kx.

We have presented a method by which the phase loss
be derived approximately from the decaying WKB wa
functions in the classically forbidden region. For power-la
potentials this method yields approximate phase losses
are within a few percent of the exact phase losses for e
gies ranging from the long-waves limit up to values whe
the exact phase loss is already within a few percent of
short-wave limitp/2. With the approximate phase loss d
rived in this way, first-order WKB quantization reproduc
the ground-state energy of the quartic oscillator more ac
rately than standard WKB quantization in any order.
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