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Implications of the intrinsic decoherence in quantum mechanics
to nonequilibrium statistical mechanics

A. K. Rajagopal
Naval Research Laboratory, Washington, D.C. 20375

~Received 17 January 1996!

The discrete-time jump model for intrinsic decoherence in quantum mechanics proposed recently by Milburn
is here generalized to explicitly time-dependent Hamiltonians. In this model, a time-dependent entropy is
obtained and thus it admits of an interpretation that this is a model for an open system. Unlike in the Milburn
model, we introduce a minimum uncertainty phase change dictated by the minimum ‘‘time-energy uncertainty
product’’ to define the shortest time scale in the system. Implications of this model to quantum nanometric
devices such as quantum dots or resonant tunneling devices are indicated.@S1050-2947~96!05308-5#

PACS number~s!: 03.65.Bz, 03.65.Sq, 03.65.Ca
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The temporal behavior of intrinsically quantum syste
such as nanometric devices involving quantum dots, qu
tum wells, etc@1#. will become an important issue as th
times of operation, switching times, etc. become increasin
shorter and shorter, so that one may be approaching lim
tions due to the presence of the intrinsic quantum pha
before the phase coherence is destroyed. This destructio
phase coherence may come about either because the ph
properties of the device approach a ‘‘macroscopic level’’
operation or due to the interactions with the other com
nents in which this nanometric device is embedded. We
this ‘‘intrinsic decoherence’’ in a somewhat more gene
sense than Milburn@2#. The systems we have in mind a
some future ultrafast, ultrasmall nanoelectronic devi
based on, for example, quantum dots, quantum wells,
which are subjected to time-dependent bias or expose
laser beams and the like and as such are nonequilibr
quantum statistical mechanical systems. We are thus fo
ing on thehigh resolution in timein contrast to the low
resolution in phase space often associated with the clas
limit. This should be contrasted with the recent discussion
the transition from quantum to classical behavior@3# due to
decoherence. From such considerations, we are motivate
this paper to generalize the Milburn model to time-depend
Hamiltonians, and thus enlarge its scope.

Our description of the time-dependent phenomena
scribed here is entirely within the nonrelativistic context.
general approach to this problem is in terms of a tim
dependent density matrixr̂(t) whose trace is unity,
r̂(t)2<r̂(t), implying that the system need not be in a pu
state, and obeying a Liouville–von Neumann equation w
the dynamics determined by a time-dependent Hamilton
operatorĤ(t):

i\
dr̂~ t !

dt
5 i\

]r̂~ t !

]t
1@Ĥ~ t !,r̂~ t !#2 . ~1!

The first term on the right-hand side of this equation is due
intrinsic time dependence~arising from the possible time de
pendence of the occupation probabilities! and the second
term represents the usual unitary time evolution of the Sch¨-
dinger wave function. The time dependence of the Ham
541050-2947/96/54~2!/1124~4!/$10.00
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tonian, for example, may be because of the bias applie
the system. There are two important consequences of
equation.

~a! Time dependence of the von Neumann entropy as
ciated with this density matrix becomes time dependent,

S~ t !52trr̂~ t !lnr̂~ t !, ~2!

because its time rate of change, using Eq.~1!, is now

dS~ t !

dt
52trH S ]r̂~ t !

]t D lnr̂~ t !J , ~3!

which is nonzero because of the presence of the first term
Eq. ~1!. It is greater than or equal to zero, following from th
properties of the density matrix listed above. Thus such tim
dependent Hamiltonians describe open systems.

~b! The time rate of change of the average of any phys
quantity represented by a Hermitian operator,Â(t), which
may have its own intrinsic time dependence, defined by

^Â~ t !& t[trÂ~ t !r̂~ t !, ~4!

will acquire an additional contribution due to the intrins
time dependence of the density matrix:

i\
d^Â~ t !& t

dt
5K H i\ ]Â~ t !

]t
1@Ĥ~ t !,Â~ t !#2J L

t

1K Â~ t !i\
] lnr̂~ t !

]t L
t

. ~5!

The first term on the right-hand side is the usual term wh
the second term reflects the intrinsic time dependence of
system.

These two new features introduce possibilities for dev
operations before the decoherence sets in, as well as com
cations not expected in the conventional density matrix
proach.

In the present work we explore the implications of the
features for the nonequilibrium systems mentioned earlie
some detail by applying a modified version of the mod
1124 © 1996 The American Physical Society
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54 1125IMPLICATIONS OF THE INTRINSIC DECOHERENCE . . .
proposed recently by Milburn@2# by identifying the cause for
the presence of the intrinsic time-dependent term@the first
term on the right-hand side of Eq.~1!# as due to the quantum
nature of the system, which entails discrete-time ph
changes@2#. The original model@2# has already been em
ployed by Kuang, Chen, and Ge and others@4# to study its
consequences in quantum optics based on the Jay
Cummings model. An alternate approach to decohere
based on diffusion processes@5# will not be addressed in the
present paper.

It is not out of place here to mention that there is a v
literature on how to model, understand, and manipulate
intrinsic time dependence of the density matrix in Eq.~1!
using semiclassical and stochastic notations~memory, Mar-
kov, Langevin, etc.!, perturbation theoretic arguments~Pauli
master equation!, etc. In particular, the most successf
among these is the model of Lindblad@6#, who considered a
subsystem interacting with an environment, and propose
Markovian approach to describe this time-dependent pr
lem by providing a nonunitary linear operator structure
the first term on the right-hand side of Eq.~1!. More re-
cently, Banks, Susskind, and Peskin@7# derived this nonuni-
tary time evolution feature without invoking both the su
system and the Markovian assumptions, but from gen
considerations of linearity, locality in time, and the requir
ment of conservation of probability, all of which are satisfi
by the equation derived by Lindblad. In this developme
one has, besides the Hamiltonian operator, other Herm
operators which must be given at the outset. The Lindb
equation has only recently been employed to investig
problems in quantum optics and dynamics of open quan
nanostructure systems@8# and in discussing decoherence a
dissipation in quantum systems@9#. The Milburn model is,
however, very different from these, it should be stressed
too has, besides the Hamiltonian operator, an extra param
associated with the minimum phase change, and the ph
obey a Poisson process.

Recent investigations of ideas based on ‘‘decoherence
understand intrinsically quantum phenomena leading
‘‘classical’’ behavior in macroscopic systems, which are e
tirely different from those mentioned above, open a n
door to these questions again, particularly when one con
ers systems lying in the borderline of macroscopic and
croscopic sizes. We here modify the model of Milburn@2# by
generalizing it to include a time-dependent Hamiltonian t
incorporates the basic features of quantum mechanic
phase changes generated by a unitary time-dependent H
tonian evolution. This generalization will make the syste
behave as if it is an open system. Our modification involv
the change in the state of the system in a time inter
(t,t1t) when the system is evolving unitarily under the a
tion of a time-dependent Hamiltonian, and is given by

r̂~ t1t!5Ût~t!r̂~ t !Ût
†~t!,

~6!

Ût~t!5TexpS 2
i

\Et
t1t

dt8Ĥ~ t8! D ,
where † stands for Hermitian conjugate andT for positive
time ordering. Our corresponding modification of Milburn
postulates essentially consists in the observation that for
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ficiently small time scalet, the probability that the system
changes isp(t), and thatÛt(t) does not depend ont, being
given by

Ût~t!5exp2
i

\
w~t!H̄
ˆ

[Û~t!, ~7!

where

Ĥ̄5
1

w~t!
E
t

t1t

dt8Ĥ~ t8!.

Here w(t) is the phase change induced by the ‘‘averag
Hamiltonian defined in Eq.~7!. The change in the state of th
system is thus given by

r̂~ t1t!5Û~t!r̂~ t !Û†~t![Ĵ~t!r̂~ t !. ~8!

In standard quantum mechanics with time-independ
Hamiltonian,p(t)51 andw(t)5t. We follow Milburn @2#
and assume that there is a minimum unitary phase cha
but unlike Milburn, we here suggest that it is dictated by t
minimum uncertainty product@10#, which in turn sets the
minimum time scale. This involves the dispersion of t
time-dependent Hamiltonian and thus a quantity arising
tirely from quantum principles. The implication of this sug
gestion is that the time scales in the time-dependent Ha
tonian should not be smaller thant. This relates to the
statement in the introduction concerning the high-resolut
time and ultrafast nature of the system we are envisagin
the system. But as discussed in@10#, the minimum uncer-
tainty product now depends on the definition of ‘‘time’’ an
a corresponding definition of dispersion in ‘‘energy’’ in th
problem. For example, in a resonant tunneling device,
‘‘time’’ may be taken to be the ‘‘dwell time’’ of the electron
in the quantum well, in which case the associated dispers
in energy that goes with the ‘‘uncertainty principle’’ is th
dispersion of the Hamiltonian. For other definitions
‘‘time’’ and associated energy, one may refer to@10#.

Thus we assume limt→0w(t)5w0 . With these modifica-
tions, dividing the time interval (0,t) into K steps, each of
lengtht, following the rest of the arguments in@2#, we find
r̂(t)5$11p(t)@J(t)21#%K5t/tr̂(0), from which we ob-
tain finally the generalized evolution equation based on
‘‘Poisson model,’’

i\
dr̂~ t !

dt
5 i\g$Ût~g21!r̂~ t !Ût†~g21!2 r̂~ t !%, ~9!

where

Ût~g21!5Texp2
i

\Ett1g21

dt8Ĥ~ t8!.

Note that in this equation the short time jump feature h
been made explicit. It may not be out of place here to m
tion that there is another approach@11# which incorporates
the effects of stochastic fluctuations in the atom-field int
actions of the Jaynes-Cummings model.

We may rewrite Eq.~9! in a deceptively simple form,
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i\
dr̂~ t !

dt
5 i\g$r̂H~ t;g21!2 r̂~ t !%, ~98!

where

r̂H~ t;g21!5Ût~g21!r̂~ t !Ût†~g21!.

Here the parameterg21 has the same meaning as in@2#, and
this equation is equivalent to the assumption that on a s
ciently short time scale the probability the system evolve
gt. We should point out that this equation has the same fo
as that obtained by Milburn@2# for the time-independen
Hamiltonian, to which it reduces, as it must. This then is
proposed generalized Milburn evolution equation for tim
dependent Hamiltonians. In view of the observations~a! and
~b! above, we will now employ this equation to be applicab
to nonequilibrium time-dependent situations and thus be
par with Eq.~1!.

The distinguishability of states differing by unitary tran
formations that cause the phase changes leading to infe
the time parameter—from which we here identify the fi
term in Eq.~1!—is thus explicitly found to be

i\
]r̂~ t !

]t
5 i\g$Ût~g21!r̂~ t !Ût†~g21!2 r̂~ t !%

2@Ĥ~ t !,r̂~ t !#2

5 i\g$r̂H~ t;g21!2 r̂~ t !%2@Ĥ~ t !,r̂~ t !#2 .

~10!

g here is a parameter that is a measure of the minim
unitary phase change allowed by quantum mechanics. W
this parameter is taken to be infinity, observing first that
leading order ing21 we have the result

Ût~g21!5Texp2
i

\Ett1g21

dt8Ĥ~ t8!'exp2
i

\
g21Ĥ~ t !,

we recover the usual unitary Schro¨dinger description for the
time-dependent Hamiltonian dynamics. As in@2#, the deco-
herence or the rapid decay of coherence between states
are widely separated in energy compared to Planck’s c
stant is obtained when we compute the first-order correc
on the right-hand side of Eq.~10!.

Also, we can show that the time rate of change of entro
in this model is now given by

dS~ t !

dt
5gtr$„r̂~ t !2 r̂H„t;g

21!…lnr̂~ t !%. ~11!

For short times compared to those determined byg21, one
obtains a change in entropy on that time scale due to int
sically quantum phase fluctuations before decoherence
curs, exhibiting the possible transition from a mixed to
pure state and vice versa. Thus in this Poisson model
have a description of an open system different from the o
described earlier, including that of Lindblad, even though
fi-
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leading order ing21 this equation takes superficially a sim
lar form @2#. This is also an important aspect of the noneq
librium phenomena.

In this model, the time rate of change of an operator giv
in Eq. ~5! takes the form

i\
d^Â~ t !& t

dt
5K H i\ ]Â~ t !

]t
1@Ĥ~ t !,Â~ t !#2J L

t

1gK i\„ÂH~ t;2g21!2Â~ t !…

2
1

g
@Ĥ~ t !,Â~ t !#2L

t

. ~12!

Here we have written ÂH(t;2g21)
[Ût†(g21)Â(t)Ût(g21).

It should be of interest to point out that Lewis@12# intro-
duced a class of exact constants of motion for classical
time-dependent Hamiltonians and showed how they can
used to solve time-dependent problems in terms of the
either exactly or in a more accurate way. In this work w
observe that there is an additional contribution to the ti
dependence through the intrinsic property of the density m
trix on time scales ofg21. This may be interpreted as im
plying that there is breakdown of a dynamical constant
motion due to nonequilibrium processes in the system, a t
of spontaneous symmetry breakdown, arising from the tim
dependent ensemble.

The main point of this paper is to draw attention to t
implications of the ideas of intrinsic decoherence in quant
mechanics in the discussion of nonequilibrium phenome
by generalization Milburn’s work to time-dependent Ham
tonians. In this process, we also give a different significa
to his minimum phase by relating it to the minimum tim
energy uncertainty product, as propounded in@10#. We be-
lieve that this may be a way to understand the performa
of quantum nanometric devices before decoherence eff
wash out the innate quantum processes in the system.
seems to indicate that the shortest time scale of quan
operation of such systems may be of the order of the de
herence time. Thus the observable effects of decohere
may be found in the nanometric quantum devices. In t
connection we may cite Ref.@1#, in which Gammonet al.
describe their fabrication and spectroscopic analysis of w
separated single GaAs quantum dots and found than
possess unique finite structure splittings in their optical sp
tra, with energy splittings of the order of a few meV. The
structures are precursors to future fast electronic devi
More generally, this effect may be found in determining t
time scale of a phase transition where the buildup
‘‘anomalous’’ correlations over a period of time leads to t
transition of the normal state towards the new state. As no
above, the decoherence ideas naturally lead to temp
changes in the entropy and ‘‘constant of motion’’ of the sy
tem under consideration which are thus temporal marker
phase change in the system.

I thank Professor G. J. Milburn for reading several dra
of this paper and making useful comments. This work
supported in part by the Office of Naval Research.
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