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The discrete-time jump model for intrinsic decoherence in quantum mechanics proposed recently by Milburn
is here generalized to explicitly time-dependent Hamiltonians. In this model, a time-dependent entropy is
obtained and thus it admits of an interpretation that this is a model for an open system. Unlike in the Milburn
model, we introduce a minimum uncertainty phase change dictated by the minimum “time-energy uncertainty
product” to define the shortest time scale in the system. Implications of this model to quantum nanometric
devices such as quantum dots or resonant tunneling devices are indj&it@80-294{6)05308-3

PACS numbgs): 03.65.Bz, 03.65.Sq, 03.65.Ca

The temporal behavior of intrinsically quantum systemstonian, for example, may be because of the bias applied to
such as nanometric devices involving quantum dots, quarthe system. There are two important consequences of this
tum wells, etc[1]. will become an important issue as the equation.
times of operation, switching times, etc. become increasingly (a) Time dependence of the von Neumann entropy asso-
shorter and shorter, so that one may be approaching limiteziated with this density matrix becomes time dependent,
tions due to the presence of the intrinsic quantum phases R .
before the phase coherence is destroyed. This destruction of S(t)=—trp(t)Inp(1), )
phase coherence may come about either because the physi
properties of the device approach a “macroscopic level” of
operation or due to the interactions with the other compo- dst) B r[(ﬁi)(t))m,}(t)]

al L . .
Because its time rate of change, using 8g, is now

nents in which this nanometric device is embedded. We call
this “intrinsic decoherence” in a somewhat more general dt

sense than Milburi2]. The systems we have in mind are . . . .
: . which is nonzero because of the presence of the first term in
some future ultrafast, ultrasmall nanoelectronic device . .
g.(1). It is greater than or equal to zero, following from the

based on, for example, quantum dots, quantum wells, etc; : . o .
; . : . roperties of the density matrix listed above. Thus such time-
which are subjected to time-dependent bias or exposed L .
ependent Hamiltonians describe open systems.

laser beams and the like and as such are nonequilibrium (b) The time rate of change of the average of any physical
guantum statistical mechanical systems. We are thus focus- 9 9€, y phy

ing on thehigh resolution in timein contrast to the low duantity represented by a Hermitian operat(t), which

resolution in phase space often associated with the classicAldY have its own intrinsic time dependence, defined by
limit. This should be contrasted with the recent discussion of ~ T

the transition from quantum to classical behaVi®f due to (A)=AP(L), @
decoherence. From such considerations, we are motivatedniéy

. ()

ill acquire an additional contribution due to the intrinsic

this paper to generalize the Milburn model to time-depende ime dependence of the density matrix:

Hamiltonians, and thus enlarge its scope.

Our description of the time-dependent phenomena de- d(A(t)) aA(t) . .
scribed here is entirely within the nonrelativistic context. A ih—— Tt < ( iﬁ—+[H(t),A(t)]]>
general approach to this problem is in terms of a time- dt Jt
dependent density matrixp(t) whose trace is unity, -
p(t)?<p(t), implying that the system need not be in a pure +<A(t)ih dinp(t) > )
state, and obeying a Liouville—von Neumann equation with dat '
the dynamics determined by a time-dependent Hamiltonian

t

operatorH(t): The first term on the right-hand side is the usual term while
the second term reflects the intrinsic time dependence of the
dp(t) ap(t)  ~ system.
i —g =i — = +[HU.p(D]-. oy These two new features introduce possibilities for device

operations before the decoherence sets in, as well as compli-
The first term on the right-hand side of this equation is due t@ations not expected in the conventional density matrix ap-
intrinsic time dependendgrising from the possible time de- proach.
pendence of the occupation probabilijieend the second In the present work we explore the implications of these
term represents the usual unitary time evolution of the Schrofeatures for the nonequilibrium systems mentioned earlier in
dinger wave function. The time dependence of the Hamilsome detail by applying a modified version of the model
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proposed recently by Milburi2] by identifying the cause for ficiently small time scaler, the probability that the system
the presence of the intrinsic time-dependent t¢the first changes ip(7), and thatJ,(7) does not depend an being
term on the right-hand side of E(l)] as due to the quantum given by
nature of the system, which entails discrete-time phase
changeq2]. The original model2] has already been em- - i =~ .
ployed by Kuang, Chen, and Ge and othgtbto study its Ui(m)=exp—ze(n)H=U(7), (7)
consequences in quantum optics based on the Jaynes-
Cummings model. An alternate approach to decoherencgnere
based on diffusion processgs will not be addressed in the
present paper. ~ 1 (tir .

It is not out of place here to mention that there is a vast H= —f dt’H(t").
literature on how to model, understand, and manipulate the o(7) )i
intrinsic time dependence of the density matrix in Eg).
using semiclassical and stochastic notatitmemory, Mar-
kov, Langevin, etg, perturbation theoretic argumen{®auli , i
master equation etc. In particular, the most successful SyStem is thus given by
among these is the model of Lindblggl], who considered a ~ ~ A ~
subsystem interacting with an environment, and proposed a p(t+1)=U(7n)pt)UT(n)=T(7)p(t). ®
Markovian approach to describe this time-dependent prob- ] ] o
lem by providing a nonunitary linear operator structure for!n standard quantum mechanics with time-independent
the first term on the right-hand side of E(f). More re- Hamiltonian,p(7)=1 ande(7)=r. We follow Milburn [2]
cently, Banks, Susskind, and Pesk#j derived this nonuni- and assume that there is a minimum unitary phase change,
tary time evolution feature without invoking both the sub- Put unlike Milburn, we here suggest that it is dictated by the
system and the Markovian assumptions, but from generdPinimum uncertainty produdtlO], which in turn sets the
considerations of linearity, locality in time, and the require-Minimum time scale. This involves the dispersion of the
ment of conservation of probability, all of which are satisfiedtime-dependent Hamiltonian and thus a quantity arising en-
by the equation derived by Lindblad. In this development/irely from quantum principles. The implication of this sug-
one has, besides the Hamiltonian operator, other Hermitiagestion is that the time scales in the time-dependent Hamil-
operators which must be given at the outset. The Lindbladonian should not be smaller than This relates to the
equation has only recently been employed to investigatétatemem in the introduction concerning the h|gh-rgsolyt|o_r1
problems in quantum optics and dynamics of open quanturime and ultrafast nature of the system we are envisaging in
nanostructure systenig] and in discussing decoherence andthe system. But as discussed[it0], the minimum uncer-
dissipation in quantum systenig]. The Milburn model is, tainty product now depends on the definition of “time” and
however, very different from these, it should be stressed. [& corresponding definition of dispersion in “energy” in the
too has, besides the Hamiltonian operator, an extra parametgfoblem. For example, in a resonant tunneling device, the
associated with the minimum phase change, and the phasgidme” may be taken to be the “dwell time” of the electron
obey a Poisson process. !n the quantum well, in. which case the. assocjatgd dispersion

Recent investigations of ideas based on “decoherence” té) energy that goes with the “uncertainty principle” is the
understand intrinsically quantum phenomena leading télispersion of the Hamiltonian. For other definitions of
“classical” behavior in macroscopic systems, which are en-‘time” and associated energy, one may refer{i®].
tirely different from those mentioned above, open a new Thus we assume lim.o@(7)=¢o. With these modifica-
door to these questions again, particularly when one considions, dividing the time interval (6) into K steps, each of
ers systems lying in the borderline of macroscopic and milength 7, following the rest of the arguments [&], we find
croscopic sizes. We here modify the model of Milb{@hby ~ A()={1+p(7)[J(7)—11}*"""p(0), from which we ob-
generalizing it to include a time-dependent Hamiltonian thatain finally the generalized evolution equation based on this
incorporates the basic features of quantum mechanics—Poisson model,”
phase changes generated by a unitary time-dependent Hamil- R
tonian evolution. This generalization will make the system .hdp(t) B AT SO (v 1) — 3 9
behave as if it is an open system. Our modification involves ! dt AHU(y Dp(OU (v = p(0}, ©)
the change in the state of the system in a time interval
(t,t+ 7) when the system is evolving unitarily under the ac-where
tion of a time-dependent Hamiltonian, and is given by

Here ¢(7) is the phase change induced by the “average”
Hamiltonian defined in Eq.7). The change in the state of the

N i 441 R
p(t+7)=U(n)pt)Ul(7), Mt(7‘1)=Texrrgf: TOdvH).
(6)

N i [t+7 , ,
Ut(q-)=Texr<—%ft dt’'H(t")

Note that in this equation the short time jump feature has
been made explicit. It may not be out of place here to men-
tion that there is another approafhl] which incorporates
where 1 stands for Hermitian conjugate ahdor positive  the effects of stochastic fluctuations in the atom-field inter-
time ordering. Our corresponding modification of Milburn’s actions of the Jaynes-Cummings model.

postulates essentially consists in the observation that for suf- We may rewrite Eq(9) in a deceptively simple form,
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Cdp(t) R R leading order iny~ ! this equation takes superficially a simi-
h =4 =ihy{pu(t;y™H—p(b)}, (9)  lar form[2]. This is also an important aspect of the nonequi-
librium phenomena.
In this model, the time rate of change of an operator given

where in Eq. (5) takes the form

Pr(tiy H=U(y DU (Y. d(AM) AL .
iﬁ—t=<(ih—+[H(t),A(t)]]>

Here the parametey ! has the same meaning ag &1, and dt Jt t

this equation is equivalent to the assumption that on a suffi-

ciently short time scale the probability the system evolves is + 7< iﬁ(AH(t; ) —A(t))

y7. We should point out that this equation has the same form

as that obtained by Milburfi2] for the time-independent

Hamiltonian, to which it reduces, as it must. This then is the _ E[ﬁ(t) A(t)] > _ (12)

proposed generalized Milburn evolution equation for time- Y ’ -

dependent Hamiltonians. In view of the observati@sand

t

(b) above, we will now employ this equation to be applicableHere we  have written A (t;—y" )
to nonequilibrium time-dependent situations and thus be ol (v HAL)U(y™Y).
par with Eq.(1). It should be of interest to point out that Lewis2] intro-

The distinguishability of states differing by unitary trans- duced a class of exact constants of motion for classical and
formations that cause the phase changes leading to inferrifgne-dependent Hamiltonians and showed how they can be
the time parameter—from which we here identify the firstused to solve time-dependent problems in terms of these,
term in Eqg.(1)—is thus explicitly found to be either exactly or in a more accurate way. In this work we

observe that there is an additional contribution to the time
(1) dependence through the1 intrinsic property of the density ma-
; i YIS NP, PR N trix on time scales ofy” *. This may be interpreted as im-
I at Aty Dp(OU (y ) = p (U} plying that there is breakdown of a dynamical constant of
~ - motion due to nonequilibrium processes in the system, a type
—[H(®),p(0)]- of spontaneous symmetry breakdown, arising from the time-
—i A1y AP dependent ensemble.
=ihylpr(ty D) =p(O} = [H(D,p(0]-. EI)'he main point of this paper is to draw attention to the
(10 implications of the ideas of intrinsic decoherence in quantum
mechanics in the discussion of nonequilibrium phenomena,
y here is a parameter that is a measure of the minimunby generalization Milburn’s work to time-dependent Hamil-
unitary phase change allowed by quantum mechanics. Whegnians. In this process, we also give a different significance
this parameter is taken to be infinity, observing first that toto his minimum phase by relating it to the minimum time-
leading order iny~* we have the result energy uncertainty product, as propoundediifi]. We be-
lieve that this may be a way to understand the performance

A i (gl i A of quantum nanometric devices before decoherence effects

U(y Y)=Texp— _f dt’H(t")~exp— -y H(t), wash out the innate quantum processes in the system. This
Rl h seems to indicate that the shortest time scale of quantum

. operation of such systems may be of the order of the deco-

we recover the usual unitary Schifoger description for the  herence time. Thus the observable effects of decoherence
time-dependent Hamiltonian dynamics. As[RJ, the deco- may be found in the nanometric quantum devices. In this

herence or the rapid decay of coherence between states th@dnnection we may cite Refl], in which Gammonet al.

are widely separated in energy compared to Planck’s cordescribe their fabrication and spectroscopic analysis of well-
stant is obtained when we compute the first-order correctiogeparated single GaAs quantum dots and found than they

on the right-hand side of Eq10). possess unique finite structure splittings in their optical spec-
Also, we can show that the time rate of change of entropyra, with energy splittings of the order of a few meV. These
in this model is now given by structures are precursors to future fast electronic devices.
More generally, this effect may be found in determining the
ds(t) i i i time scale of a ph(_’;\se transition _Where_ the buildup of
—gr = GO —prty H)Inp(1)}- (1)  “anomalous” correlations over a period of time leads to the
transition of the normal state towards the new state. As noted

) , above, the decoherence ideas naturally lead to temporal
For short times compared to those determinedyby, one changes in the entropy and “constant of motion” of the sys-

obtains a change in entropy on that time scale due 10 intringsm ynder consideration which are thus temporal markers of
sically quantum phase fluctuations before decoherence OGhase change in the system.

curs, exhibiting the possible transition from a mixed to a

pure state and vice versa. Thus in this Poisson model we | thank Professor G. J. Milburn for reading several drafts
have a description of an open system different from the onesf this paper and making useful comments. This work is
described earlier, including that of Lindblad, even though tosupported in part by the Office of Naval Research.
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