PHYSICAL REVIEW A VOLUME 54, NUMBER 1 JULY 1996
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We study the anomalous diffusion resulting from the standard map in the so-called accelerating state, and we
observe that it is determined by unusually large times of sojourn of the classical trajectories in the fractal
region at the border between the chaotic sea and the acceleration island. The quantum-mechanical breakdown
of this property implies a coherence among so slightly different values of momentum as to become much more
robust against environment fluctuations than the quantum localization corresponding to normal diffusion.
[S1050-2946)01107-9

PACS numbgs): 03.65.Bz, 05.40kj, 05.45+b

I. INTRODUCTION II. QUANTUM-CLASSICAL CORRESPONDENCE
IN ORDINARY STATISTICAL MECHANICS

In qguantum mechanics the superposition of two indepen-
dent states, t.’Oth refernng to'a physmally plau3|ble §olutlor]n the classical case, this system is described by the standard
of the Sichrdmger equation, is still a plausible solution of map
the Schrdinger equation. If the two solutions have a classi-
cal meaning, for instance, they are two distinct trajectories, it Pi+1=P:+ Ksing,, 2
is not clear how to interpret their superposition, which, yet,
according to quantum mechanics should be regarded as a
valid picture of reality. A widely accepted solution of this
problem is afforded by the decoherence the@y) recently

”.‘ade quite popular by ZureKl] but corresponding to a impulsive torque with a strength proportional ksiné. In
viewpoint shared by many other authg@. It rests on the the case of strong chao&K$ 1) the variableKsing, as well

assumption tha; there are no S.UCh things in r?a“”e as isoIat%% 0, can be perceived as a quickly fluctuating variable, re-
systems. Thus if a macroscopic oscillator, with miksnd sulting in a diffusional process for the momentym The

friction I', is prepared in a superp05|t|(_)o+|+)+c,|_—)_, fluctuating variableKsing is characterized by a finite-time
of t\.N.O states|+) and|—), cprrespondmg fo two distinct scale, and in the long-time limit this diffusion process turns
pos!tlons separated by the distant®, as an effect of the out to be Gaussia(on the basis of the central limit theorém
environmental fluctuations the coherence between these WA 4 the second mome(p?(t)) becomes a linear function of
states is lost within a time defined by

time. We shall refer to this process as normal diffusion and

Let us now focus our attention on the kicked rotdis}.

Or+1= ¢+ Prr1 mod 27r).

This is an area-preserving map driving the discrete evolution
of a classical rotator kicked at regular intervals of time by an

52 as an example of ordinary statistical mechanics.
P — 1 To discuss the corresponding quantum-mechanical de-
dec 2M A 2 ( ) .. . . .
o(AQ) scription let us observe the time evolution of the Wigner

. . . . distribution subsequent to an initial condition with the
with o=T'kgT. Notice that this decoherence time is propor-

) . Wigner distribution virtually identical to the Liouville distri-
tional to the square of the Planck constant. Thus it turns o

be virtually i it th £ th i ution. This implies the adoption of a Planck constént
to be virtually instantaneous, If the parameters of the 0SCliy,ch smaller than the volume of the classical phase space
lator have values corresponding to a macroscopic bod

L . léxplored by the system during the process of observation.
yielding for the denominator dfl) an extremely large value. Noe that, as usual in the field of quantum chaos, the
This is the kgy physical Interpretation behind a_II the aP-pjanck constant” we adopt is actually a parameter express-
proaches resting on the essential role of the environment t

: fhg the ratio of the characteristic classical action to the real
recover classical from quantum physds-3|. A careful ex- pjanck constant. Zurek and PE&] show that as a result of

. _ Mhe process of fragmentation of the Liouville distribution, the
quantum. to classical mechan[c;é_reveals that it rests on the quantum corrections to the classical Poisson braciais-
assumption thf"‘t the system of Interest, as Wel.l as the envep) term become important at the time

ronment, is driven by ordinary equilibrium statistical phys-

ics. The main purpose of this paper is to study the conse- 1 [x

guence of rejecting the assumption that the system undergoes tX:XIn %) ' )
an ordinary process of statistical mechanics, while retaining

the plausible assumption that the environment still obeys thisvhere \ is the Lyapunov coefficient of the classical and

condition. chaotic trajectories angl is a scale parameter proportional to
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the derivative of the potential of order higher than the secwas considered, wherg is a white Gaussian noise of vari-
ond. This is a widely accepted property in the field of quan-anceo. The discussion of how to derive this white noise
tum chaoq7] and implies that, in spite of the fact that the from a rigorous Hamiltonian coupling with the environment
true value of the Planck constant is extremely small, thds the object of an intense research effd2,13. This white-
transition from classical to quantum physics, in a conditionnoise approximation was derived within a rigorously Hamil-
where the correspondence principle is expected to applytpnian treatment by Cohen and Fishmds] in the high-
might take place at times compatible with an experimentatemperature limit. We are convinced that the simulation of
observation. the nonlocal quantum interaction between a system of inter-
However in the case of the standard map no significangst and its quantum environment might conflict with this
statistical discrepancy between quantum and classical tim&hite-noise assumption, especially in the case of weak envi-
evolution is found at that time. We think that this is subtly ronment fluctuations. This is related with the intriguing prob-
related to the reasons why strong chaos makes the linealem of the validity of the Markov approximation which has
response theory work, in spite of the fact that the fragmentetbeen escaping us for years, and still is, a satisfactory settle-
Liouville density responds nonlinearly to the influence of ment. However, since the Markov approximation is a widely
external perturbations. If the fragmented distribution is useddopted assumption, and the related white-noise assumption
to weight a smooth variable the result of the averaging caiis widely used by many research¢és12,13, we accept both
turn out to be independent of the details of the fragmentatiof them here with no discussion. An important reason for this
[8]. Thus the essential equivalence between quantum anchoice, in addition to the fact that it is universally made, is
classical mechanics seems to be due to the statistical equivirat many experimental processes, for instance in the field of
lence of quantum and classical distribution, in spite of sig-quantum optics, are satisfactorily explained by theories rest-
nificant discrepancies of their fine details. A different buting on the Markov approximation, and even if this is not
probably equivalent way of accounting for this property reststheoretically well founded, it cannot be ruled out on the basis
on the remark that normal diffusion, in classical physics, is af a conflict with experimental data. In this paper we prefer
statistical process insensitive to the presence of weak flude focus our attention on the robustness of the quantum fluc-
tuations[9]. tuations against white-noise fluctuations, because this has
In conclusion, as widely stressed[it0], a fair discussion  physical consequences which are in principle experimentally
of the correspondence between quantum and classical mebservable. The recent analysis of Shiokawa and[H{]
chanics implies that the former is compared with classicakhows that these methods, resting on the picture of(q.
statistical mechanics. This is so because a quantumare essentially equivalent to the DT. Furthermore, these au-
mechanical mean value implies that the observation proceshors find the following expression for the decoherence time
results in the collapse of the wave function into the eigen{to compare td1)]:
states of the observable under study. This is a stochastic

process implying the adoption of a Gibbs picture, and there- o= h? 6)
fore making quite natural the adoption of the Wigner formal- dec_Za(Ap)z '

ism which immediately establishes a comparison between

quantum mechanics and the classical Liouville equation. Asvhere Ap=/%=K?/#%, / being the so-called localization

pointed out in[4], the classical statistical processes used sdength. Again, as in(1), the denominator in6) refers to

far to establish a correspondence between quantum and clasacroscopic quantities thereby resulting in a decoherence

sical physics pertain to the field of ordinary statistical pro-time much shorter than the localization tirt®, and conse-

cesses, for instance, ordinary Brownian motion. quently in the breakdown of localization with noises of rela-
In the standard map the discrepancy between classical arttvely small intensity.

guantum physics is made evident at later times by the occur-

rence of the well-known phenomenon of quantum localiza- 1Il. NUMERICAL RESULTS: ANOMALOUS
tion (QL) [5]. As pointed out by many authofd 1], the VERSUS NORMAL DIFFUSION
process of normal diffusion is broken after a time, the local- ] o ] ] )
ization timet, , of the order This section is devoted to the discussion of the numerical
results illustrated by Figs. 1 and 2. The numerical results
K? concerning the classical case are obtained via numerical in-
tL“ﬁ' 4) tegration of the equation of motiofb). As to the quantum

version of it, this is obtained by building up the quantum
and is replaced by a process whépé(t)) fluctuates around Mapping corresponding 16). This is realized by applying to
a constant value. This conflict between classical and quarthe wave functiory') the Floguet operatd¥, so that
tum mechanics, albeit occurring at astronomical large times
i i |1y =Fly") 0
in the case of macroscopic systems, has been cured by many :
authors[12] adopting essentially the perspective that ther i .
are no systems in nature which are isolated from the env?];]r:eec‘la;(pl'.gglfﬁ:;n (()jgsgh.e Floguet operator corresponding to
ronment. Thus the quantum-mechanical counterpart of a sy%- Ss| P IS

tem such as = e—(i/2ﬁ,)(p+f1)ze—(i/h)k cosy 8

Pr+1= Pt Ksing +fy, ®) . I L
We establish the initial condition in the quantum case by
0;1 1= 6+ pi+1 mod 2) setting the wave function in the eigenstate of the momentum
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FIG. 1. The mean valuép®(t)) as a function of time. A". the_ FIG. 2. The mean valuép?(t)) as a function of time. All the
curves refer td.<:6’ a value_ of t_he control parameter implying, in curves refer ttK =6.9115, a value of the control parameter imply-
class!cal physics, normal _dlff_usmn. The dashed curves denote_ ﬂ‘iﬂg, in classical physics, anomalous diffusion. The two upper curves
classical case and the solid lines refer to the quantum case. Figufg Fig. 2a) illustrate the classical case, without external ndise
1(a) refers to the case of the kicked rotator isolated from its enVi'and with external noiséB). The two lower curves of Fig. (3)

ron_ment_. Figure &)_) refers to the case of the kicke_d rotator inter- denote the quantum case, without external néBeand with ex-
acting with the environment according to E§), cla_ssma_l case,_ and_ ternal nois&(C). The arrow in Fig. 23) denotes the time at which,
Egs. (7) 721nd (8), quantum case. The noise intensity IS according to(13), see[10], QBAD occurs. Figure @) shows the
gfgéllo and the value of the Planck constant adopted iS;\es ¢ and D of Fig. (@) in a more enlarged scale. Note that the
e dotted line refers to the quantum case with external noise while the
dashed line corresponds to the quantum case with no external noise.
with a vanishing eigenvalue. In the classical case, to make &he noise intensity isr=4x10"° and the value of the Planck
fair comparison between the classical and the quantum préonstant adopted =0.01. Notice that these are the same values
diction, we distribute the angle variable uniformly between?as those used in the case normal diffusion illustrated in Fig. 1.
0 and 2r. As a consequence of this choice the early time
evolution predicted by quantum mechanics is made to coinsee that the quantum dynamics show a clear sign of the lo-
cide with the classical time evolution so as to fit the maincalization process, under the form of an increasing departure
purpose of this paper, namely, the discussion of theof the quantum predictionisolid line) from the classical
guantum-classical correspondence, as the assessment of fdashed ling The comparison between the quantum and the
time span of the statistical equivalence between quantum amdassical case in the presence of weak external fluctuations is
classical dynamics: this is guaranteed in the early part of thélustrated by Fig. 1b): we see that the quantum caill
dynamical process by a wise choice of the initial conditionsdenoted by the solid lines virtually indistinguishable from
and it is eventually broken at later times by the emergenthe classical caséstill denoted by the dashed lineNotice
guantum correlations. that the attainment of the equivalence between quantum and
Figure 1 shows that, according to the DT, external fluc-classical dynamics implies only a slight change of the clas-
tuations play an efficient role to recover classical from quansical time evolution of p?(t)). By inspection of Fig. 1, it is
tum mechanics. The comparison between quantum and claseen that the dashed curve of Figa)lis virtually coincident
sical time evolution of the second momep(t)), with no  with the dashed curve of Fig(H). This is a consequence of
influence of external fluctuations, is made in Figa)l We the fact that the noise intensity chosens 4x 10 °, is very
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weak. In the quantum case, on the contrary, as weak as thslt with noise(upper curvgis not followed by the quantum
external noise is, its intensity is large enough as to producevolution without noise, the slope of which becomes increas-
the significant change from the solid line of Figallto the  ingly smaller upon increase of time, in a qualitative agree-
solid line of Fig. 1b), a change virtually identical to that ment with the departure of the two corresponding curves in
from the solid line of Fig. () to the dashed line of Fig(d): ~ Fig. 1. The order of magnitude of the two effects is the
this confirms that the DT is a satisfactory way to establish &ame and we think that both of them reflect the same pro-
correspondence between quantum and classical mechanicsG@ss: the well-known QL phenomen{f 11]. _

the case of ordinaryclassical diffusion. We want to point out that the decoherence ti(fg ex-

The kicked rotator also affords an attractive example ofPr€ssing the standard prescription of PT4], evaluated by
dynamics corresponding to nonordinary statistical mechanch00sing as\p the overall dimension of the wave function
ics. It has to do with the special values of the control param&!t the timetgg would result, for the case of Fig(@, in a
eterK (we use the valu&=6.9115) corresponding to the fime smaller than one time step, thereby implying the quan-
birth of accelerating islands, which produce a momentunfi™ prediction to coincide with the classical. This conflicts
diffusion faster than ordinary Brownian motion, with with our numerical results, showing that the quantum case,
(p(t)) increasing faster than linearly in time. All this is denoted by curve C, is clearly distinct from the correspond-
widely discussed in Ref§15,16 and it is illustrated here by Ng classical case, denoted by curve B. This suggests that, in
the upper solid curvédenoted by the letter Ain Fig. 2(a), the case of anomalous diffusion, a more careful evaluation of

which clearly shows a deviation ¢p2(t)) from the linear AP, expressing the size of the quantum coherence, has to
dependence on time. be made. This is discussed in Sec. IV.

The guantum-mechanical dynamics corresponding to this " conclusion these results suggest this qualitative picture:
condition was studied in Ref10]. It was shown that the use duantum fluctuations provoke a transition from anomalous to
of small but finite values ofi leads to an early time evoly- Ordinary diffusion, and this “ordinary” diffusion, due to the
tion of the mean-squared momentum which is indistinguishduantum nature of the system, is expected to undergo a pro-
able from the predictions of classical mechanics. In Fig) 2 C€SS of localization at later times. Environmental fluctua-
this corresponds to the time region with the upper limit de-ions, with an intensity large enough as to break QL do not
noted by the arrow: after this time the quantum case, denote@f(€ct @BAD, in spite of the fact that the coherence respon-
by the dashed line labeled by D, departs from the classicajiPle for QL is destroyed by environmental fluctuations in

dynamics. This departure titgy is expected to be an in- times much shorter than the QBAD time. This means that the
creasing function of . quantum coherence behind QBAD is more robust against

We refer to this as the phenomenon of quantum breakenvironmental fluctuations than the quantum coherence re-

down of anomalous diffusiofQBAD). In Ref.[10] argu-  SPonsible for QL.
ments are given to support the view that QBAD titgg is a
funct|or_1 of_f_L with the same logarithmic structure as (). _ IV. THEORETICAL INSIGHTS AND CONCLUSIONS
On an intuitive ground this is related to the fact that the time
at which the Wigner distribution departs from the Liouville  This section is devoted to accounting for the results of
density now has a direct effect on diffusion, since it sets arSec. Ill theoretically, with arguments that are expected to
upper time limit to the sojourn of the “trajectories” in the become more and more reliable with decreasing the value of
region at the border between chaotic sea and acceleratirije Planck constant and eventually exceeding the limited
islands[10] (see also Sec. IV range of the current computer treatmdrii§]. First of all, we

We see from Fig. @) that this unusual statistical- have to shortly review the key ingredients behind anomalous
mechanical condition leads to the failure of the DT as ardiffusion in classical physics. In the specific case of the
interpretative scheme to recover classical from quantum mekicked rotator, anomalous diffusion is caused by the fact that
chanics. In the classical case the presence of a fluctuation #se valueK=6.9115 of the control parameter used for the
intense as that studied in Fig(hl makes the anomalous case of Fig. 23), corresponds to the presence of accelerating
diffusion behavior described by curve A of Figia2change islands imbedded in the chaotic sea of thed) phase space.
into the normal diffusion described by curve B. This showsThe border between the chaotic sea and one accelerating is-
that after a given time.g the process of diffusion becomes land, called a laminar region, is fractal and self-similar
normal again. This phenomenon is well understood theoretit15,16], and for this reason the corresponding distribution of
cally and was studied in Ref§9,17]. On the basis of the sojourn times¥ (t) for a particle moving in this region, is
results illustrated in Fig. 1 one would expect that a noise oshown, adopting a Markovian hierarchy of zones of quasi-
the same intensity should make the quantum result coincidstability [18], to have the inverse power-law structure
with the classical. We see, on the contrary, that this noise
does not significantly affect the quantum result: curve C of

. o . . . 1
Fig. 2(a), taking into account the influence of noise, is essen- limWw(t)ec— (9)
tially indistinguishable, on the scale of the figure, from curve t—oo
D denoting the quantum evolution with no environmental
influence.

The response of the quantum system to the external flu with the index . found numerically[15] and analytically

tuation is illustrated in an enlarged view in Figb®, which Tlg] to fulfill the condition:
shows that actually the two quantum results depart one from
the other. The long-time linear behavior of the quantum re- 2<u<3. (10)
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It is shown[20,21] that the second moment pf must have that by Zurek and Pai6]. However, it is now adapted to a

in the long-time limit the following behavior: condition where the microscopic departure of the quantum
) o from the classical distribution, implying the breakdown itself
(pA(t))=Ht*"#, (1) of the concept of classical trajectory, has an immediate sta-

L tistical consequence: the inverse power-law distribution of
whereH denotes a constant factor. Under conditiag) this waiting times(9) is truncated and the resulting diffusion pro-
leads to the anomalous diffusion of Figap(curve A. Note  coqq que to the special sensitivity of anomalous diffusion to
that the case studied numerically in the present paper refefﬁjctuations[g] is made normal again.

o p=2667. . We need now to establish the minimum size of the quan-
The theoretical model used to account for the inversqm coherence established in the fractal region by the wave
power law(9) is based on the tree model[df9]: at each step cet expressed in therepresentation. This will allow us
the system branches in either a "transversal” motion, esserg, getermine the corresponding decoherence time according
tial to derive the correct value of the indgx or ina “lon- 4 the prescriptions of the DT. Using scaling arguments on
gitudinal” motion leading the trajectories, more quickly than o Markov model of Ref 18] we find the size of the phase-

the “transversal,” to explore regions of the phase space 0fyace structures reached at the QBAD time. From this we get
so small size as to be incompatible with the dynamics of a

guantum distribution. This longitudinal motion is character- Ap=(E(0){IN[E(0)/K]} Y2, (14)

ized by the scaling parametefsand 3, for times and areas,

respectively. This means that while the trajectory imbeds itwhere y=(InB5%InB8)(InB/Iné). Let us evaluate the deco-

self more and more deeply in the laminar region, the size oherence time6) by assigning toAp the value(14). This

the region explored becomes smaller and smaffer{) and  results in a decoherence time larger than the QBAD time,

the motion becomes slower and slowei<(1). The joint thereby accounting for the result of Figa2

action of the transversal and the longitudinal motion results Notice that anomalous diffusion is destroyed by environ-

in a value of the indexu fitting very satisfactorily the nu- mental fluctuations also in the classical case. By setting the

merical calculation$19]. condition that the process of motion through the laminar re-
Let us now discuss the quantum case. Let us denote bgion is stopped when regions of the same size as the noise

E(0) the area of the “doorway” portions of the laminar variance o are reached, the timé-g of crossover from

region, those directly arrived at by trajectories starting fromanomalous to normal diffusion is shown to be

the chaotic sea. The early part of the diffusion prodéiss

times preceding the arrow of Fig(&] coincides with the tegro INA), (15

classical prediction. To account for this property we must ] ] o ]

assume thak is smaller tharE (0). It isinteresting to notice We find this prediction to be in a remarkably good agree-

that the classical trajectories traveling through the laminafent with our numerical results: using the tree model we

regions are not regular, but chaotic, since they are associatégve I¥Ing=0.48 and the numerical determination tef

with small but finite Lyapunov coefficien{@2]. As pointed ~ 'esults in the power index 0.46. The result(®%), compared

out in[10,23, as small as it is, a finite Lyapunov coefficient to the logarithmic predictiori13), suggests the striking ob-

implies the exponential increase of the quantum uncertaintgervation that quantum-mechanical fluctuations can break

U(t)=Ap(t)Aq(t). At the same time the size of the region anomalous diffusion earlier than thermal fluctuations.

explored by the quantum distribution is a known decreasing L€t us come back to the quantum case. If the same as-

function of time=(t). Note that on the basis of geometrical SUmption is made as that by Lai, Ott, and Grebj@d], that

information on the phase spaf2?] we are led to assume the quantu_m distribution is only st.opped by structur_es as

that A @ is of the same order of magnitude A® (for sim- Iqrge ash itself, and_the exponential increase Oft) is

plicity we setA 9=Ap). Thus we can derive expressions of disregarded, we obtain

Ap as a function ofE(t), to use later to quantitatively esti-

mate the robustness of the new effect. tog*h (In/InB) (16)
We maintain that the motion of the quantum distribution d

departs from that of the classical distribution at the time

t=tqp defined by the condition Ap=#12, (17)

Ut ==(). (12) The comparison of16) with (15) points out the “classical-

like” nature of the assumption by Lai, Ott, and Grebp2y:
notice that the computer results [d0] seem to support our
conviction that the predictiofil3) reflects more properly the
effects of quantum mechanical coherence.

To assess more firmly that the quantum manifestation cor-
responding to the QBAD effect is more robust against envi-

Thus, the theoretical model adopted, in addition to account
ing for the power-law nature of the waiting time distribution
(9), leads ug10] to predict that anomalous diffusion is bro-
ken as an effect of quantum fluctuations, and normal diffu
sion is recovered, at the tintgg given by

1 1 ronmental fluctuations than the traditional QL effect, we es-
top> )\—fln%, (13)  timate
where \¢ denotes the Lyapunov coefficient of the laminar Ry= tdec and Ry= td_ec (18)

region. Notice that this prediction has the same structure as L tos
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The estimate oR, can either be made adopting the prescrip-phase space pertaining to the accelerating islaizf§.
tion of Lai, Ott, and Grebogj24] [based on(6), (16), and Therefore the valu& =0.01, used in Fig. 1, cannot yet be
(17)] or that of Roncaglit al.[10] [based or(6), (13), and  regarded as being much smaller than the area of the fractal
(14)]. We denote the corresponding estimatesRafby R; region so as to realize a fully satisfactory classical condition.
andR,, respectively. In the limit of small values @f, we  However from the dynamical data of Fig. 1 we see that the
get early part of the dynamical process is indistinguishable from
) the prediction of classical physics. This means that the tunnel
E(0)\" effect, if any exists, is of moderate intensity.
Ryocfi®<RyoA™, RN<R2“h2<In 7 ) , (19 To estab)I/ish whether the QBAD time o)k/)eys the power-
law prediction (16) or the logarithmic predictio13) we
which establishes QBAD as more robust than QL, whatevewould need to study the dynamics corresponding to still
prediction, either(13) or (16), is adopted. For this reason smaller values ofi, and this, at the moment, conflicts with
QBAD seems to be an interesting channel for the macrothe limitations of our computer facilities. We think, however,
scopic manifestation of quantum mechanics to be contrastefhat this paper provides conclusive evidence, supported by
to that proposed by Leggdt®5]. The more plausible loga- both numerical results and theoretical arguments, that the
rithmic breakdown(13) is compatible with the direct obser- quantum-mechanical breakdown of anomalous diffusion is
vation of the QBAD effect even in the classical limit of small much more robust against external fluctuations than the pro-
but finite #2’s. However according to the DT this implies the cess of quantum localization.
noise intensity to be so weak as to realize the condition The result of this paper might have remarkable conse-
Ra>1. Is this possible? Answering this question implies fur-quences on the foundation of quantum mechanics, if further
ther theoretical research work and the design of experimentsumerical, or, hopefully, experimental evidence, will support
along the promising lines established by the authors of Refsur conviction that the timeéqg has a logarithmic depen-
[26]. In these experiments the paramefieis an “effective  dence oni. This would be equivalent to making quantum
Planck constant” determined by the experimental conditionsffects observable also in the classical limit, in spite of the
according to the prescriptions of Ref26]. To make the presence of environmental fluctuations. Although the DT is a
results of this research work more relevant to the discussiorigorous application of quantum mechanics, its failure to re-
of the correspondence principle, the value of this parametetover classical from quantum physics would not automati-
should be so small as to make completely negligiblecally imply that quantum mechanics is wrong. We cannot
quantum-mechanical effects such as the tunneling from theule out the possibility that the results of this paper disclose
chaotic sea into the island and back. The valué afefines a new avenue to quantum manifestations in the classical re-
the area of a portion of the phase space which should be sgime, and that a real experiment might prove the existence of
much smaller than the area of the fractal region surroundinghe quantum-mechanical effects that we predict. On the other
the accelerating islands. In our numerical treatmenhand, if quantum mechanics will be proved to be correct
(k=6.911 5) the area of the overall region, including bothagain, the failure of the DT would imply that the problem of
accelerating island and the fractal region around it, is of thénow to recover classical from quantum physics is not yet
order of 1. On the other hand, the size of the fractal region isettled, and doubts would be cast on the possibility that this
about one order of magnitude smaller than the area of thean be done from within qguantum mechanics.
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