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4Department of Solid State Physics, Lora´nd Eötvös University of Sciences, Muzeum krt. 6-8, Budapest 1088, Hungary
~Received 21 November 1995!

We study the anomalous diffusion resulting from the standard map in the so-called accelerating state, and we
observe that it is determined by unusually large times of sojourn of the classical trajectories in the fractal
region at the border between the chaotic sea and the acceleration island. The quantum-mechanical breakdown
of this property implies a coherence among so slightly different values of momentum as to become much more
robust against environment fluctuations than the quantum localization corresponding to normal diffusion.
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PACS number~s!: 03.65.Bz, 05.40.1j, 05.45.1b

I. INTRODUCTION

In quantum mechanics the superposition of two indepen-
dent states, both referring to a physically plausible solution
of the Schro¨dinger equation, is still a plausible solution of
the Schro¨dinger equation. If the two solutions have a classi-
cal meaning, for instance, they are two distinct trajectories, it
is not clear how to interpret their superposition, which, yet,
according to quantum mechanics should be regarded as a
valid picture of reality. A widely accepted solution of this
problem is afforded by the decoherence theory~DT! recently
made quite popular by Zurek@1# but corresponding to a
viewpoint shared by many other authors@2#. It rests on the
assumption that there are no such things in nature as isolated
systems. Thus if a macroscopic oscillator, with massM and
friction G, is prepared in a superposition,c1u1&1c2u2&,
of two states,u1& and u2&, corresponding to two distinct
positions separated by the distanceDQ, as an effect of the
environmental fluctuations the coherence between these two
states is lost within a time defined by

tdec5
\2

2Ms~DQ!2
, ~1!

with s5GkBT. Notice that this decoherence time is propor-
tional to the square of the Planck constant. Thus it turns out
to be virtually instantaneous, if the parameters of the oscil-
lator have values corresponding to a macroscopic body
yielding for the denominator of~1! an extremely large value.
This is the key physical interpretation behind all the ap-
proaches resting on the essential role of the environment to
recover classical from quantum physics@1–3#. A careful ex-
amination of this theoretical approach to the transition from
quantum to classical mechanics@4# reveals that it rests on the
assumption that the system of interest, as well as the envi-
ronment, is driven by ordinary equilibrium statistical phys-
ics. The main purpose of this paper is to study the conse-
quence of rejecting the assumption that the system undergoes
an ordinary process of statistical mechanics, while retaining
the plausible assumption that the environment still obeys this
condition.

II. QUANTUM-CLASSICAL CORRESPONDENCE
IN ORDINARY STATISTICAL MECHANICS

Let us now focus our attention on the kicked rotator@5#.
In the classical case, this system is described by the standard
map

pt115pt1Ksinu t , ~2!

u t115u t1pt11 mod~2p!.

This is an area-preserving map driving the discrete evolution
of a classical rotator kicked at regular intervals of time by an
impulsive torque with a strength proportional toKsinu. In
the case of strong chaos (K@1) the variableKsinu, as well
asu, can be perceived as a quickly fluctuating variable, re-
sulting in a diffusional process for the momentump. The
fluctuating variableKsinu is characterized by a finite-time
scale, and in the long-time limit this diffusion process turns
out to be Gaussian~on the basis of the central limit theorem!
and the second moment^p2(t)& becomes a linear function of
time. We shall refer to this process as normal diffusion and
as an example of ordinary statistical mechanics.

To discuss the corresponding quantum-mechanical de-
scription let us observe the time evolution of the Wigner
distribution subsequent to an initial condition with the
Wigner distribution virtually identical to the Liouville distri-
bution. This implies the adoption of a Planck constant\
much smaller than the volume of the classical phase space
explored by the system during the process of observation.
Note that, as usual in the field of quantum chaos, the
‘‘Planck constant’’ we adopt is actually a parameter express-
ing the ratio of the characteristic classical action to the real
Planck constant. Zurek and Paz@6# show that as a result of
the process of fragmentation of the Liouville distribution, the
quantum corrections to the classical Poisson brackets~clas-
sical term! become important at the time

tx5
1

l
lnS x

\ D , ~3!

where l is the Lyapunov coefficient of the classical and
chaotic trajectories andx is a scale parameter proportional to
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the derivative of the potential of order higher than the sec-
ond. This is a widely accepted property in the field of quan-
tum chaos@7# and implies that, in spite of the fact that the
true value of the Planck constant is extremely small, the
transition from classical to quantum physics, in a condition
where the correspondence principle is expected to apply,
might take place at times compatible with an experimental
observation.

However in the case of the standard map no significant
statistical discrepancy between quantum and classical time
evolution is found at that time. We think that this is subtly
related to the reasons why strong chaos makes the linear-
response theory work, in spite of the fact that the fragmented
Liouville density responds nonlinearly to the influence of
external perturbations. If the fragmented distribution is used
to weight a smooth variable the result of the averaging can
turn out to be independent of the details of the fragmentation
@8#. Thus the essential equivalence between quantum and
classical mechanics seems to be due to the statistical equiva-
lence of quantum and classical distribution, in spite of sig-
nificant discrepancies of their fine details. A different but
probably equivalent way of accounting for this property rests
on the remark that normal diffusion, in classical physics, is a
statistical process insensitive to the presence of weak fluc-
tuations@9#.

In conclusion, as widely stressed in@10#, a fair discussion
of the correspondence between quantum and classical me-
chanics implies that the former is compared with classical
statistical mechanics. This is so because a quantum-
mechanical mean value implies that the observation process
results in the collapse of the wave function into the eigen-
states of the observable under study. This is a stochastic
process implying the adoption of a Gibbs picture, and there-
fore making quite natural the adoption of the Wigner formal-
ism which immediately establishes a comparison between
quantum mechanics and the classical Liouville equation. As
pointed out in@4#, the classical statistical processes used so
far to establish a correspondence between quantum and clas-
sical physics pertain to the field of ordinary statistical pro-
cesses, for instance, ordinary Brownian motion.

In the standard map the discrepancy between classical and
quantum physics is made evident at later times by the occur-
rence of the well-known phenomenon of quantum localiza-
tion ~QL! @5#. As pointed out by many authors@11#, the
process of normal diffusion is broken after a time, the local-
ization timetL , of the order

tL}
K2

\2 , ~4!

and is replaced by a process where^p2(t)& fluctuates around
a constant value. This conflict between classical and quan-
tum mechanics, albeit occurring at astronomical large times
in the case of macroscopic systems, has been cured by many
authors@12# adopting essentially the perspective that there
are no systems in nature which are isolated from the envi-
ronment. Thus the quantum-mechanical counterpart of a sys-
tem such as

pt115pt1Ksinu t1 f t , ~5!

u t115u t1pt11 mod~2p!

was considered, wheref t is a white Gaussian noise of vari-
ances. The discussion of how to derive this white noise
from a rigorous Hamiltonian coupling with the environment
is the object of an intense research effort@12,13#. This white-
noise approximation was derived within a rigorously Hamil-
tonian treatment by Cohen and Fishman@13# in the high-
temperature limit. We are convinced that the simulation of
the nonlocal quantum interaction between a system of inter-
est and its quantum environment might conflict with this
white-noise assumption, especially in the case of weak envi-
ronment fluctuations. This is related with the intriguing prob-
lem of the validity of the Markov approximation which has
been escaping us for years, and still is, a satisfactory settle-
ment. However, since the Markov approximation is a widely
adopted assumption, and the related white-noise assumption
is widely used by many researchers@6,12,13#, we accept both
of them here with no discussion. An important reason for this
choice, in addition to the fact that it is universally made, is
that many experimental processes, for instance in the field of
quantum optics, are satisfactorily explained by theories rest-
ing on the Markov approximation, and even if this is not
theoretically well founded, it cannot be ruled out on the basis
of a conflict with experimental data. In this paper we prefer
to focus our attention on the robustness of the quantum fluc-
tuations against white-noise fluctuations, because this has
physical consequences which are in principle experimentally
observable. The recent analysis of Shiokawa and Hu@14#
shows that these methods, resting on the picture of Eq.~5!,
are essentially equivalent to the DT. Furthermore, these au-
thors find the following expression for the decoherence time
@to compare to~1!#:

tdec5
\2

2s~Dp!2
, ~6!

whereDp5l \5K2/\, l being the so-called localization
length. Again, as in~1!, the denominator in~6! refers to
macroscopic quantities thereby resulting in a decoherence
time much shorter than the localization time~4!, and conse-
quently in the breakdown of localization with noises of rela-
tively small intensity.

III. NUMERICAL RESULTS: ANOMALOUS
VERSUS NORMAL DIFFUSION

This section is devoted to the discussion of the numerical
results illustrated by Figs. 1 and 2. The numerical results
concerning the classical case are obtained via numerical in-
tegration of the equation of motion~5!. As to the quantum
version of it, this is obtained by building up the quantum
mapping corresponding to~5!. This is realized by applying to
the wave functionuc t& the Floquet operatorF, so that

uc t11&5Fuc t&. ~7!

The explicit form of the Floquet operator corresponding to
the classical map of~5! is

F5e2~ i /2\!~p1 f t!
2
e2~ i /\!k cosq. ~8!

We establish the initial condition in the quantum case by
setting the wave function in the eigenstate of the momentum
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with a vanishing eigenvalue. In the classical case, to make a
fair comparison between the classical and the quantum pre-
diction, we distribute the angle variable uniformly between
0 and 2p. As a consequence of this choice the early time
evolution predicted by quantum mechanics is made to coin-
cide with the classical time evolution so as to fit the main
purpose of this paper, namely, the discussion of the
quantum-classical correspondence, as the assessment of the
time span of the statistical equivalence between quantum and
classical dynamics: this is guaranteed in the early part of the
dynamical process by a wise choice of the initial conditions
and it is eventually broken at later times by the emergent
quantum correlations.

Figure 1 shows that, according to the DT, external fluc-
tuations play an efficient role to recover classical from quan-
tum mechanics. The comparison between quantum and clas-
sical time evolution of the second moment^p2(t)&, with no
influence of external fluctuations, is made in Fig. 1~a!. We

see that the quantum dynamics show a clear sign of the lo-
calization process, under the form of an increasing departure
of the quantum prediction~solid line! from the classical
~dashed line!. The comparison between the quantum and the
classical case in the presence of weak external fluctuations is
illustrated by Fig. 1~b!: we see that the quantum case~still
denoted by the solid line! is virtually indistinguishable from
the classical case~still denoted by the dashed line!. Notice
that the attainment of the equivalence between quantum and
classical dynamics implies only a slight change of the clas-
sical time evolution of̂ p2(t)&. By inspection of Fig. 1, it is
seen that the dashed curve of Fig. 1~a! is virtually coincident
with the dashed curve of Fig. 1~b!. This is a consequence of
the fact that the noise intensity chosen,s5431026, is very

FIG. 1. The mean valuêp2(t)& as a function of time. All the
curves refer toK56, a value of the control parameter implying, in
classical physics, normal diffusion. The dashed curves denote the
classical case and the solid lines refer to the quantum case. Figure
1~a! refers to the case of the kicked rotator isolated from its envi-
ronment. Figure 1~b! refers to the case of the kicked rotator inter-
acting with the environment according to Eq.~5!, classical case, and
Eqs. ~7! and ~8!, quantum case. The noise intensity is
s5431026 and the value of the Planck constant adopted is
\50.01.

FIG. 2. The mean valuêp2(t)& as a function of time. All the
curves refer toK56.9115, a value of the control parameter imply-
ing, in classical physics, anomalous diffusion. The two upper curves
of Fig. 2~a! illustrate the classical case, without external noise~A!
and with external noise~B!. The two lower curves of Fig. 2~a!
denote the quantum case, without external noise~D! and with ex-
ternal noise~C!. The arrow in Fig. 2~a! denotes the time at which,
according to~13!, see@10#, QBAD occurs. Figure 2~b! shows the
curves C and D of Fig. 2~a! in a more enlarged scale. Note that the
dotted line refers to the quantum case with external noise while the
dashed line corresponds to the quantum case with no external noise.
The noise intensity iss5431026 and the value of the Planck
constant adopted is\50.01. Notice that these are the same values
as those used in the case normal diffusion illustrated in Fig. 1.
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weak. In the quantum case, on the contrary, as weak as this
external noise is, its intensity is large enough as to produce
the significant change from the solid line of Fig. 1~a! to the
solid line of Fig. 1~b!, a change virtually identical to that
from the solid line of Fig. 1~a! to the dashed line of Fig. 1~a!:
this confirms that the DT is a satisfactory way to establish a
correspondence between quantum and classical mechanics in
the case of ordinary~classical! diffusion.

The kicked rotator also affords an attractive example of
dynamics corresponding to nonordinary statistical mechan-
ics. It has to do with the special values of the control param-
eterK ~we use the valueK56.9115) corresponding to the
birth of accelerating islands, which produce a momentum
diffusion faster than ordinary Brownian motion, with
^p2(t)& increasing faster than linearly in time. All this is
widely discussed in Refs.@15,16# and it is illustrated here by
the upper solid curve~denoted by the letter A! in Fig. 2~a!,
which clearly shows a deviation of^p2(t)& from the linear
dependence on time.

The quantum-mechanical dynamics corresponding to this
condition was studied in Ref.@10#. It was shown that the use
of small but finite values of\ leads to an early time evolu-
tion of the mean-squared momentum which is indistinguish-
able from the predictions of classical mechanics. In Fig. 2~a!
this corresponds to the time region with the upper limit de-
noted by the arrow: after this time the quantum case, denoted
by the dashed line labeled by D, departs from the classical
dynamics. This departure timetQB is expected to be an in-
creasing function of 1/\.

We refer to this as the phenomenon of quantum break-
down of anomalous diffusion~QBAD!. In Ref. @10# argu-
ments are given to support the view that QBAD timetQB is a
function of \ with the same logarithmic structure as in~3!.
On an intuitive ground this is related to the fact that the time
at which the Wigner distribution departs from the Liouville
density now has a direct effect on diffusion, since it sets an
upper time limit to the sojourn of the ‘‘trajectories’’ in the
region at the border between chaotic sea and accelerating
islands@10# ~see also Sec. IV!.

We see from Fig. 2~a! that this unusual statistical-
mechanical condition leads to the failure of the DT as an
interpretative scheme to recover classical from quantum me-
chanics. In the classical case the presence of a fluctuation as
intense as that studied in Fig. 1~b! makes the anomalous
diffusion behavior described by curve A of Fig. 2~a! change
into the normal diffusion described by curve B. This shows
that after a given timetCB the process of diffusion becomes
normal again. This phenomenon is well understood theoreti-
cally and was studied in Refs.@9,17#. On the basis of the
results illustrated in Fig. 1 one would expect that a noise of
the same intensity should make the quantum result coincide
with the classical. We see, on the contrary, that this noise
does not significantly affect the quantum result: curve C of
Fig. 2~a!, taking into account the influence of noise, is essen-
tially indistinguishable, on the scale of the figure, from curve
D denoting the quantum evolution with no environmental
influence.

The response of the quantum system to the external fluc-
tuation is illustrated in an enlarged view in Fig. 2~b!, which
shows that actually the two quantum results depart one from
the other. The long-time linear behavior of the quantum re-

sult with noise~upper curve! is not followed by the quantum
evolution without noise, the slope of which becomes increas-
ingly smaller upon increase of time, in a qualitative agree-
ment with the departure of the two corresponding curves in
Fig. 1~a!. The order of magnitude of the two effects is the
same and we think that both of them reflect the same pro-
cess: the well-known QL phenomenon@5,11#.

We want to point out that the decoherence time~6!, ex-
pressing the standard prescription of DT@14#, evaluated by
choosing asDp the overall dimension of the wave function
at the timetQB would result, for the case of Fig. 2~a!, in a
time smaller than one time step, thereby implying the quan-
tum prediction to coincide with the classical. This conflicts
with our numerical results, showing that the quantum case,
denoted by curve C, is clearly distinct from the correspond-
ing classical case, denoted by curve B. This suggests that, in
the case of anomalous diffusion, a more careful evaluation of
Dp, expressing thep size of the quantum coherence, has to
be made. This is discussed in Sec. IV.

In conclusion these results suggest this qualitative picture:
quantum fluctuations provoke a transition from anomalous to
ordinary diffusion, and this ‘‘ordinary’’ diffusion, due to the
quantum nature of the system, is expected to undergo a pro-
cess of localization at later times. Environmental fluctua-
tions, with an intensity large enough as to break QL do not
affect QBAD, in spite of the fact that the coherence respon-
sible for QL is destroyed by environmental fluctuations in
times much shorter than the QBAD time. This means that the
quantum coherence behind QBAD is more robust against
environmental fluctuations than the quantum coherence re-
sponsible for QL.

IV. THEORETICAL INSIGHTS AND CONCLUSIONS

This section is devoted to accounting for the results of
Sec. III theoretically, with arguments that are expected to
become more and more reliable with decreasing the value of
the Planck constant and eventually exceeding the limited
range of the current computer treatments@10#. First of all, we
have to shortly review the key ingredients behind anomalous
diffusion in classical physics. In the specific case of the
kicked rotator, anomalous diffusion is caused by the fact that
the valueK56.9115 of the control parameter used for the
case of Fig. 2~a!, corresponds to the presence of accelerating
islands imbedded in the chaotic sea of the (p,u) phase space.
The border between the chaotic sea and one accelerating is-
land, called a laminar region, is fractal and self-similar
@15,16#, and for this reason the corresponding distribution of
sojourn timesC(t) for a particle moving in this region, is
shown, adopting a Markovian hierarchy of zones of quasi-
stability @18#, to have the inverse power-law structure

lim
t→`

C~ t !}
1

tm
, ~9!

with the indexm found numerically@15# and analytically
@19# to fulfill the condition:

2,m,3 . ~10!
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It is shown@20,21# that the second moment ofp must have
in the long-time limit the following behavior:

^p2~ t !&5Ht42m, ~11!

whereH denotes a constant factor. Under condition~10! this
leads to the anomalous diffusion of Fig. 2~a! ~curve A!. Note
that the case studied numerically in the present paper refers
to m52.667.

The theoretical model used to account for the inverse
power law~9! is based on the tree model of@19#: at each step
the system branches in either a ‘‘transversal’’ motion, essen-
tial to derive the correct value of the indexm, or in a ‘‘lon-
gitudinal’’ motion leading the trajectories, more quickly than
the ‘‘transversal,’’ to explore regions of the phase space of
so small size as to be incompatible with the dynamics of a
quantum distribution. This longitudinal motion is character-
ized by the scaling parametersd andb, for times and areas,
respectively. This means that while the trajectory imbeds it-
self more and more deeply in the laminar region, the size of
the region explored becomes smaller and smaller (b,1) and
the motion becomes slower and slower (d,1). The joint
action of the transversal and the longitudinal motion results
in a value of the indexm fitting very satisfactorily the nu-
merical calculations@19#.

Let us now discuss the quantum case. Let us denote by
J(0) the area of the ‘‘doorway’’ portions of the laminar
region, those directly arrived at by trajectories starting from
the chaotic sea. The early part of the diffusion process@the
times preceding the arrow of Fig. 2~a!# coincides with the
classical prediction. To account for this property we must
assume that\ is smaller thanJ(0). It is interesting to notice
that the classical trajectories traveling through the laminar
regions are not regular, but chaotic, since they are associated
with small but finite Lyapunov coefficients@22#. As pointed
out in @10,23#, as small as it is, a finite Lyapunov coefficient
implies the exponential increase of the quantum uncertainty
U(t)5Dp(t)Dq(t). At the same time the size of the region
explored by the quantum distribution is a known decreasing
function of timeJ(t). Note that on the basis of geometrical
information on the phase space@22# we are led to assume
thatDu is of the same order of magnitude asDp ~for sim-
plicity we setDu5Dp). Thus we can derive expressions of
Dp as a function ofJ(t), to use later to quantitatively esti-
mate the robustness of the new effect.

We maintain that the motion of the quantum distribution
departs from that of the classical distribution at the time
t5tQB defined by the condition

U~ t !5J~ t !. ~12!

Thus, the theoretical model adopted, in addition to account-
ing for the power-law nature of the waiting time distribution
~9!, leads us@10# to predict that anomalous diffusion is bro-
ken as an effect of quantum fluctuations, and normal diffu-
sion is recovered, at the timetQB given by

tQB}
1

l f
ln
1

\
, ~13!

wherel f denotes the Lyapunov coefficient of the laminar
region. Notice that this prediction has the same structure as

that by Zurek and Paz@6#. However, it is now adapted to a
condition where the microscopic departure of the quantum
from the classical distribution, implying the breakdown itself
of the concept of classical trajectory, has an immediate sta-
tistical consequence: the inverse power-law distribution of
waiting times~9! is truncated and the resulting diffusion pro-
cess, due to the special sensitivity of anomalous diffusion to
fluctuations@9#, is made normal again.

We need now to establish the minimum size of the quan-
tum coherence established in the fractal region by the wave
packet expressed in thep representation. This will allow us
to determine the corresponding decoherence time according
to the prescriptions of the DT. Using scaling arguments on
the Markov model of Ref.@18# we find the size of the phase-
space structures reached at the QBAD time. From this we get

Dp5„J~0!/$ ln@J~0!/\#%g
…

1/2, ~14!

whereg5(lnbd 2/lnbd)(lnb/lnd). Let us evaluate the deco-
herence time~6! by assigning toDp the value~14!. This
results in a decoherence time larger than the QBAD time,
thereby accounting for the result of Fig. 2~a!.

Notice that anomalous diffusion is destroyed by environ-
mental fluctuations also in the classical case. By setting the
condition that the process of motion through the laminar re-
gion is stopped when regions of the same size as the noise
variances are reached, the timetCB of crossover from
anomalous to normal diffusion is shown to be

tCB}s2~ lnd/ lnb!. ~15!

We find this prediction to be in a remarkably good agree-
ment with our numerical results: using the tree model we
have lnd/lnb50.48 and the numerical determination oftCB
results in the power index 0.46. The result of~15!, compared
to the logarithmic prediction~13!, suggests the striking ob-
servation that quantum-mechanical fluctuations can break
anomalous diffusion earlier than thermal fluctuations.

Let us come back to the quantum case. If the same as-
sumption is made as that by Lai, Ott, and Grebogi@24#, that
the quantum distribution is only stopped by structures as
large as\ itself, and the exponential increase ofU(t) is
disregarded, we obtain

tQB}\2~ lnd/ lnb! ~16!

and

Dp5\~1/2!. ~17!

The comparison of~16! with ~15! points out the ‘‘classical-
like’’ nature of the assumption by Lai, Ott, and Grebogi@24#:
notice that the computer results of@10# seem to support our
conviction that the prediction~13! reflects more properly the
effects of quantum mechanical coherence.

To assess more firmly that the quantum manifestation cor-
responding to the QBAD effect is more robust against envi-
ronmental fluctuations than the traditional QL effect, we es-
timate

RN[
tdec
tL

and RA[
tdec
tQB

. ~18!
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The estimate ofRA can either be made adopting the prescrip-
tion of Lai, Ott, and Grebogi@24# @based on~6!, ~16!, and
~17!# or that of Roncagliaet al. @10# @based on~6!, ~13!, and
~14!#. We denote the corresponding estimates ofRA by R1
andR2 , respectively. In the limit of small values of\, we
get

RN}\6!R1}\1.5, RN!R2}\2S lnJ~0!

\ D g21

, ~19!

which establishes QBAD as more robust than QL, whatever
prediction, either~13! or ~16!, is adopted. For this reason
QBAD seems to be an interesting channel for the macro-
scopic manifestation of quantum mechanics to be contrasted
to that proposed by Leggett@25#. The more plausible loga-
rithmic breakdown~13! is compatible with the direct obser-
vation of the QBAD effect even in the classical limit of small
but finite\ ’s. However according to the DT this implies the
noise intensity to be so weak as to realize the condition
RA.1. Is this possible? Answering this question implies fur-
ther theoretical research work and the design of experiments
along the promising lines established by the authors of Refs.
@26#. In these experiments the parameter\ is an ‘‘effective
Planck constant’’ determined by the experimental conditions
according to the prescriptions of Refs.@26#. To make the
results of this research work more relevant to the discussion
of the correspondence principle, the value of this parameter
should be so small as to make completely negligible
quantum-mechanical effects such as the tunneling from the
chaotic sea into the island and back. The value of\ defines
the area of a portion of the phase space which should be set
much smaller than the area of the fractal region surrounding
the accelerating islands. In our numerical treatment
(k56.911 5) the area of the overall region, including both
accelerating island and the fractal region around it, is of the
order of 1. On the other hand, the size of the fractal region is
about one order of magnitude smaller than the area of the

phase space pertaining to the accelerating islands@22#.
Therefore the value\50.01, used in Fig. 1, cannot yet be
regarded as being much smaller than the area of the fractal
region so as to realize a fully satisfactory classical condition.
However from the dynamical data of Fig. 1 we see that the
early part of the dynamical process is indistinguishable from
the prediction of classical physics. This means that the tunnel
effect, if any exists, is of moderate intensity.

To establish whether the QBAD time obeys the power-
law prediction ~16! or the logarithmic prediction~13! we
would need to study the dynamics corresponding to still
smaller values of\, and this, at the moment, conflicts with
the limitations of our computer facilities. We think, however,
that this paper provides conclusive evidence, supported by
both numerical results and theoretical arguments, that the
quantum-mechanical breakdown of anomalous diffusion is
much more robust against external fluctuations than the pro-
cess of quantum localization.

The result of this paper might have remarkable conse-
quences on the foundation of quantum mechanics, if further
numerical, or, hopefully, experimental evidence, will support
our conviction that the timetQB has a logarithmic depen-
dence on\. This would be equivalent to making quantum
effects observable also in the classical limit, in spite of the
presence of environmental fluctuations. Although the DT is a
rigorous application of quantum mechanics, its failure to re-
cover classical from quantum physics would not automati-
cally imply that quantum mechanics is wrong. We cannot
rule out the possibility that the results of this paper disclose
a new avenue to quantum manifestations in the classical re-
gime, and that a real experiment might prove the existence of
the quantum-mechanical effects that we predict. On the other
hand, if quantum mechanics will be proved to be correct
again, the failure of the DT would imply that the problem of
how to recover classical from quantum physics is not yet
settled, and doubts would be cast on the possibility that this
can be done from within quantum mechanics.
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