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Good quantum error-correcting codes exist
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A quantum error-correcting code is defined to be a unitary mapfengoding of k qubits (two-state
guantum systemsinto a subspace of the quantum state space giibits such that if any of the qubits
undergo arbitrary decoherence, not necessarily independently, the resutiirtajts can be used to faithfully
reconstruct the original quantum state of thencoded qubits. Quantum error-correcting codes are shown to
exist with asymptotic ratek/n=1-2H,(2t/n) where H,(p) is the binary entropy function
— plog,p—(1—p)log,(1—p). Upper bounds on this asymptotic rate are gi&1050-2947@6)00708-1

PACS numbd(s): 03.65.Bz, 89.70tc

[. INTRODUCTION be perfectly recovered from the remaining-t qubits.
Suppose that we have a coherent quantum stakecf-

With the realization that computers that use the interferbits that we wish to store using a physical quantum system
ence and superposition principles of quantum mechanic#hich is subject to some decoherence process. For example,
might be able to solve certain problems, including primeduring computation on the quantum computer proposed by
factorization, exponentially faster than classical computergirac and Zollef3], we would need to store quantum infor-
[1], interest has been growing in the feasibility of these quanmation in entangled electronic states of ions held in an ion
tum computers, and several methods for building quantungrap. The decoherence time of the quantum staté& ef-
gates and quantum computers have been prod@gdOne  tangled qubits is in general KLbf the decoherence time of
of the most cogent arguments against the feasibility of quangne qubit(this makes the optimistic assumption that coher-
tum computation appears to be the difficulty of eliminating o\ce hetween different qubits is as stable as coherence of a
error causgd by ina}ccuracy and_ decohergA¢eVhereas the single qubif. Thus one might expect that the best way to
best experimental implementations of quantum gates aCCoOM; ' the state ok entangled qubits is to store them in

plished so far have less than 90% accurgiy the accuracy ; . :
required for factorization of numbers large enough to be dif-phySICaI qubits. Our results show that if we use quantum

ficult on conventional computers appears to be closer to ong'ror-correcting codes, it is possible to store khqubits in

part in billions. We hope that the techniques investigated iHq>k qubits so that the decoherence time for the encoded

this paper can eventually be extended so as to reduce thgyantum state is a small constant fraction of the decoherence
quantity by several orders of magnitude time of one qubit. These results thus show that some mea-

In the storage and transmission of digital data, errors caﬁur""bIe nonlocal properties of entanglgd systems are much
be corrected by using error-correcting cod6% In’digital more stable under decoherence than is the entire entangled

computation, errors can be corrected by using redundancy; iﬁysgﬁm._ | ‘ h | il b likelv 1o |
fact, it has been shown that fairly unreliable gates could be ysical quantum channels will be ‘uniikely 1o leave

assembled to form a reliable compuf@t. It has widely been n—p qubits perfectly untouched and subject the remairting
assumed that the quantum no-cloning theof8hmakes er- gubits to decoherence. To analyze the behavior of our error-
: o dcorrecting code for physical quantum channels, we must

1ake some assumptions about the decoherence process. In
ec. VI, we will show that our error-correction method per-
orms well if the decoherence of different qubits occurs in-
dependently, i.e., if each of the qubits is coupled to a sepa-
Jate environment. Our error-correction method will actually
ork for more general channels, as it can tolerate coupled

computation because redundancy cannot be obtained by d
plicating quantum bits. This argument was shown to be ir‘;f
error for quantum communication in RéB], where a code

perfectly even after arbitrary decoherence of any one of thes _ -
nine qubits. This gives a quantum code on nine qubits with ecoherence behavior among small groups pf qubits.

rate 3 that protects against one error. Here we show the ex- The lower bound of.}2H2(2t/n) _shown In our paper
istence of better quantum error-correcting codes, having ﬁhOUId be compared with the theoretical upper bounds of
higher information transmission rate and better error-

correction capacity. Specifically, we show the existence of

quantum error-correcting codes encodingubits inton qu- min[1—H(2t/3n),H,([3 + V(1—t/n)t/n)]

bits that correctt errors and have an asymptotic rate

1-2H,(2t/n) asn—o. These codes work not by duplicat-

ing the quantum state of the encodedubits, but by spread- for t/n<3, and 0 fort/n=3. These are obtained from
ing it out over alln qubits so that it or fewer of these qubits bounds on the quantum information capacity of a quantum
are measured, no information about the quantum state of thehannel, which we derive in Sec. VI from results of Refs.
encoded bits is revealed and, in fact, the quantum state c4d0,11]. These bounds are plotted in Fig. 1.
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1.0 < 0000000, 0001011, 0010110, 0011101,
0.8 0100111, 0101100, 0110001, 0111010,

R gi 1000101, 1001110, 1010011, 1011000,
0.2 TTEmaa 1100010, 1101001, 1110100, 1111111. (1)
0.0 R

0. 0.3 0.4 0.5

The minimum distance is the minimum Hamming weight of
a nonzero codeword, which is 3, so this is a one-error cor-
FIG. 1. The solid line shows the asymptotic r&ef our quan-  "€cting code. It is easily verified that the dual code consists
tum codes versus the error rate of the chartiel Two upper ~ Of all vectors in the Hamming code with an even weight.
bounds for this quantity are also plotted: the Levitin-Holevo upper ~ The quantum Hilbert spacét; overn qubits is the com-
bound with a dashed line and the entanglement upper bound with plex space generated by basis vectdig), |b,), ...,
dotted line. |bon_1) whereb; is the representation of the numbiein
binary. This Hilbert space has a natural representation as a
Il. DEFINITIONS tensor_ product_oh qopies osz_, with theith copy corre-
sponding to theth bit of the basis vectors. We refer to each
Our constructions of quantum error-correcting codes relyof these copies of{, as aqubit
heavily on the properties of classical error-correcting codes. We define aquantum error-correcting cod@ with rate
We will thus first briefly review certain definitions and prop- k/n to be a unitary mapping ok into 7}. Strictly speak-
erties related to binary linear error-correcting codes. We onlyng, this is actually a unitary mapping oH§ into a
consider vectors and codes ovéy, the field of two ele- 2.dimensional subspace of(}; it can alternatively be
ments, so we have#41=0. A binary vectorv e F, with d viewed as a unitary mapping G{S@)Hg_k into ’)—(g, where
I's is said to haveHamming weight d denoted by the quantum state ift{j ¥ is taken to be that where all the
wt(v) =d. TheHamming distance (v, w) between two bi-  qubits have quantum sta{6). In our model of error ana-
nary vectorsy andw is wt(v +w). The supportof a vector  |yzed in Sec. IV, we will assume that the decoherence pro-
v, denoted by supp(), is the set of coordinates of where cess affects only bits; that is, the decoherence is modeled
the corresponding entry is not O, that is, supp€{i:v; by first applying an arbitrary unitary transformatiénto the
#0}. Suppose tha$ is a set of coordinates. Tharls de-  space consisting of the tensor prod@ti® H,,, of anyt of
notes the projection of onto S, i.e., the vector that agrees the qubits and some arbitrary Hilbert spdgg,, designating
with v on the coordinates ifs and is 0 on the remaining the environment, and then tracing over the environment
coordinates. For a binary vectd we usev|gz to mean Heny t0 Obtain the output of the channel, which will thus in
v|supp@. We also use esE to mean that general be anensemble of stateg-zigl We say that a quan-
suppE) CsuppE). tum code can corredt errors if the original stat¢x>e7-{‘§
A codeC of lengthn is a set of binary vectors of length can be recovered from the decohered encoded Bralix)
n, called codewords In a linear codethe codewords are by applying a unitary transformatioR (independent oD)
those vectors in a subspaceRJ (the n-dimensional vector to H3® Hane, WhereH,,cis a Hilbert space representing the
space over the fiel&, on two elements The minimum dis- state of an ancilldi.e., a supplementary quantum sysjeth
tance d=d(C) of a binary codeC is the minimum distance turns out that if our quantum code will correct arbitrary
between two distinct codewords.dfis linear then this mini- decoherence dfor fewer qubits, it will also be able to trans-
mum distance is just the minimum Hamming weight of amit information with high fidelity for a large class of chan-

nonzero codeword. nels with physically plausible decoherence processes; this is
A linear code with lengtm, dimensionk, and minimum  discussed in Sec. VI.
distanced is called an[n,k,d] code. For a code& with Since the error correction must work for any encoded

minimum distancel, any binary vector irF5 is within Ham-  stateQ|x), the property of being a quantum error-correcting
ming distance =|(d—1/2)| of at most one codeword; thus, code depends only on the subsp@®& of H3, and not on

a code with a minimum distanakcan correct errors made the actual mappin@. However, for ease of explanation, we

in the bits of a codeword; such a code is thus said to be awill nonetheless define an orthogonal basis of this subspace
error-correcting code. Theate R of a linear code of length of H3, which can be used to obtain an explicit mapping
n is dim(C)/n; this is the ratio of the information content of Q, and call the elements of this basis codewords.

a codeword to the information content of an arbitrary string

of length n. The dual codeC* of a codeC is the set of

vectors of perpendicular to all codewords, that@$={v Ill. QUANTUM CODES
Fl:v-c=0VceC}. From linear algebra, di , i
—Ekdizmlzci)zn ¢} 9 b We will now define our quantum code. Suppose that we

In this paper, we will use thg7,4,3 Hamming code as an have a linear cod€,CF). We Iet?—[c1 be the subspace of
example to illustrate our construction of quantum error-H5 generated by vectots) with ce C;. Let M be a genera-
correcting codes. This code contains the following 16 binarytor matrix for C;; this means that; is the row space of
vectors of length 7: M, so thatvM ranges over all the codewords @ asv
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ranges over all vectors iﬁgim(cl)_ Forwe F}, we define a why this should be true; while in the next section, we will
uantum stat b work out this calculation in detail. _ _

d %) by To show why our codes are error correcting, we must first

_ give another representation of our codewords. If we perform

lewy=2"0mC2 X (—1)PMWly M), (2)  the following change of basis,
UeFZIm( v
1

Note that ifwy+w,eCy, then|c,,)=|cy,), sincevMw, |0>—>E(|0>+|1>) (5
=uMw, for all veF3™ Y. Further note that(c,, |cy,)
=0 if wy+W, ¢ Cy . This follows sinceZ, (—1)"M¥=0 un- L 1 Oy I1
less uMw=0 for all veF3™ . Thus for weFY/c; 1) \/f(l )= 1),

the vectors|c,) form a basis for the spacelc, . (Here

FJ/C; stands for the cosets @k in F), which are the sets
C;+w wherew e F3; there are ™€) of these cosets and
they form the natural index set for the quantum states |y, = 2(dMCO=M2 >y wy), (6)
|CW>') ue(,'Jl'

Suppose now that we have another linear cGgeavith o - ) )
{0}CC,CC,CFY. Our quantum code will be constructed us- We can see this since [ik) is any basis state in the rotated
ing codes’; andC,. We define the codewords of our quan- P@Sis given by Eq(S), then
tum codeQ, ., as the set ofc,,) for all we C;, Recall that
two codewordgc,,) and|c,,) are equal ifw+w’ eC-. The (x|g,y=27(nrdmeyiz X (—gypeMwEo (7
natural index set for the codewords is thus oggfC;, the verym e
cosets ofC; in C;. This code thus contains®(¢2)~dim(C2)
orthogonal vectors. Since its lengthrisqubits, it has a rate and this sumis 0 unless+xeC; . Lettingu=w-+x, we get
(dim(Cy) —dim(C,))/n. To construct a quantum error- EQ. (6). For our example quantum code,
correcting code from the Hamming code given in Ek), we

to each of the bits of our codewotd,,) we obtain the state

will take C, to be this code and’, to be C;. Thus, _ 1
dim(C;)=4 and dim(C,)=3, so our quantum error- [S0) 2\/§(|OOOOOOO+|0011101+|0100111
correcting code will map 4 3=1 qubit into 7 qubits. There
are thus two codewords. The first is +|0111010+|1001110+(1010013
+]110100%+ (111010 8
|co)= % (]0000000+|0011103+|0100113+|0111010 | 3| 9 ®
+]1001110+|1010013} +|110100}+|1110100 and
+|0001013%+|0010110+|0101100+|{011000 1
| 3] A 0+ } |s;)= —=(|000101}+|0010110+|0101100
+]1000103 +|1011000+|1100010+|111111}), V2
3 +]011000%+|1000103 +|1011000

and the second is +]1100010+(1111113). 9

We can now see how these codes are able to correct er-

_1
|c1) = 7 (/0000000+001110} +[010011}+0111019 rors. In thelc,,) representation, all the codewords are super-

+/1001110+ 1010013 +|1101003 +]1110100 positions of basis vector) with veC;. Thus anyt bit
errors (those errors taking0)—|1) and|1)—|0)) can be
—|0001013—]0010110—|0101100—|011000% corrected by performing a classical error-correction process

for the codeC, in the original basis. In thés,) representa-
~[1000103~[1011000—[1100010—[1111113). tion, all the codewords are superpositions of basis vectors
(4) |v) with v € C; . Thus anyt bit errors in the rotated basis can
) be corrected by performing a classical error-correction pro-
Note that 'n|Cl>_ all the codewords of the Hamming code ¢egs for the cod€, in the rotated basis. However phase
with an odd weight have a negative amplitude, and all theyors in the original basigerrors taking|0)—|0) and
codewords with an even weight have a positive amplitude1y_, _|1y) are bit errors in the rotated basis and vice versa.

. . MW .

This is the effect of the { 1)° N termin Eq.(2). Thus our quantum code can corredbit errors andt phase
We will show that ifC; andC; have a minimum distance gors in the original basis.

d, then the quantum cod@. , can correct=|(d—1/2)] The correction process we use for our quantum error-

errors. (For our example code;;=C;, has a minimum dis- correcting codes is indeed to first correct bit errors in the
tance 3, so our quantum code will correct one ejrrthe  |c,) basis classically and then to correct bit errors in the
remainder of this section, we will give some intuition as to|s,) basis classically. It remains to be shown that the correc-
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tion process for the bit errors does not interfere with the IV. DECODING QUANTUM CODES
correction process for the phase errors, and that arbitrary
nonunitary errors ot or fewer quantum bits of our code will In this section we will show that errors in amygubits of

also be corrected by this procedure. This is done througbur quantum codes can be corrected by first correcting bit
calculations which are performed in Sec. IV of our paper. errors in the|c) basis, and then correcting bit errors in the

As in Ref.[9], we correct the error by correcting the de- |s) pasis. For this section and the remainder of this paper, we
coherence without disturbing the encoded information. Intuyii assume for simplicity that din@)=n—k and

itively, what we do is to measure the decoherence Witho“&im(cz)zk' thus. the rate of our codes will be—12k/n.

observing the encoded state; this then lets us correct the OI?I'owever, all of our results are easily extendable to quantum

coherence while leaving the encoded state unchanged. In our . : n .
decoding procedure, we thus learn which qubits had bit erQOSnGSSiO?]e“VGd from classical codésCC,CF; of any di-

rors and which had phase errors, which tells us somethinB1 | q h . d b
about the decoherence process but which gives no informa- | Order to prove that errors in quantum codes can be

tion about our encoded state. Linear codes are very wefforrected, we first need a lemma about purely classical
suited for this application: each codeword has the same rel&2des. _ _ _
tion to all the other words in the code, and this property is Lemma 1Suppose that is a binary linear code of length
what enables us to measure the error without learning which. Lete, E e F3, with e<E and wt(E) <d(C"). Then there
codeword it is that is in error. exists a vectove C such thaw | syppe) = €.

Recently we learned that related work has been done by Proof. The projection ofC onto E has to have full rank,
Steang12]. Steane generates his quantum code using codéecause otherwis&€* would contain a vectorw with

words wt(w) <wt(E) <d(C").
We now need the following lemma about the states
s =272 3, [v+w), (10 lew).
vel; Lemma 2Suppose thaf; has a minimum distance. Let

N L
where w is chosen fromC,/C,. This is the same as our e EeF thh e<E. Let P be the prmecpqn onto the
|s,) basis if the code€; andC; are interchanged. It should subspr?ce of{ generated by allv) wherev is in the set
also be noted that these codewofs[s) generate exactly the 10 € F2:v[e=e}, thatis, withv equal toe on suppg). Then
same subspace 6f} as the codewordke,,) given by Eq.

(2), and thus effectively give a different basis for the same

guantum code.

(Cw,|Plcy, )=2"(""H 2 (—1)oMwatwr) (119
1 2 vivMig=e

(—1)& (Cctwatw) oWE) i Jc e 7 such that+w,+w,<E,

:{ (11

0 otherwise.

Proof. From the definition ofc,,) in Eq. (2), it is straight- Now, because the set{vM:vM|g=0} is an
forward to show Eq(118. We must now show that this is n—k—wt(E) dimensional subspace &%, the sum(12b) is
equal to Eq(11b). Since wtg)<d(Cy), by Lemma 1 there 0 unlessuM(w;+w,)=0 for all vM in this subspace. It is
is a vectorv, such thatv ,M|z=e. We can obtain the linear clear that if there is ae(C such thatw;+w,+c<E,
space{v e F; *:v|g=e} by taking every vector in the set then vM(w;+w;)=0 if vM[e=0, and veM(w;+Wwy)

{v e F)~*:v|g=0} and adding the vectar,. Using this sub- =€:(C+W3+wp). This shows the first part of EqL1b).
stitution in Eq.(119 gives We now prove the _other direction. Suppose that
vM(w;+w,)=0 for allv with uM|g=0. Lete; be the vec-
tor that is 1 on thgth coordinate ofe and 0 on the other
(=) (0 +o MWy +wp) coordirlalztes. We know from Lemma 1 that there is a vector
<Cw1|P|Cw2>_2 U:v%zo(_l) € vjeF; “such thav;M[g=e¢;. Let0'£=UJ'M(W1+W2). We
F (129 consider the vector’ =w; +w,+ E}NLE)ajej ; we will show
that this vector satisfies the conditions for than Eq. (11b).
Clearly, w,+w,+c’<E. We need also to show that
=27 (=K (— 1 )veMwrtwr) eC; . Consider any vectos e Fj . We can decompose it
into v =vo+="Eaju; wherevoM|g=0, ande; is 0 or 1.
X 2 (—1)oMwytwy) (12b) Note thatv;Me;= 5(i,j) whereé is the Kroneckers func-
vioMlg=0 tion. Now,
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WH(E) ) Note that since M € C;, we have now corrected our state to
vMc' =

Wi W+ 7€ some state in the Hilbert spagé. . Recall that the vectors
=1 . .
. (139 |c,) with ue F) generated. . What we do now is to con-
sider the Hilbert spacefc, in terms of the basis elements

wi(E) |cy) for ue F3/Cy instead of the basis elemerjisM). We
Wi+ Wo+ ,Zl 0;€ do this by substituting the identity

Wt(E)
Uo+ 2 aivi) M
i=1

wt(E)
:< Zl aivi) M
(13b

() i) oMy=27E 2 ()™M (A7)
=D auiM(Wy+Wy)+ D, a0 (130 veFlG
i=1 =1

in Eq. (16). This gives the same type of effect as the change
=0, of basis in Eq.(5) in that it produces a representation in
which it is easier to deal with phase errors. The substitution
proving the second part of Eql1b). The terms containing (17) gives the equation
vy vanish in Eq. (133 becausevyM(w;+w,)=0 since
voM|g=0, andvyMe;=0 sinceg;<E. The two terms in Eq.

(130 cancel because of the definition of . RiDlcyy=2""03 (—1)"MwW

We are now ready to prove the following theorem. v

Theorem 1If C; andC; are both lineafn,n—k,d] codes
with {0}CC,CC;CF}, then the quantum cod@ c, is a x> (—1)”MU|CU>Z |aymg e[ Ae),
t-error-correcting code, whete=| (d—1)/2]. ‘ e=F

Proof. We show how to correct antyerrors. Let us start (18

with a codewordc,,) for weC, . Now, letE be the binary

vector such that suppg is the set of qubits that have deco- which can be rewritten as

hered. By our hypothesis that at masgubits decohere, we

can take wtE) =t. We denote states of the environment by

|a;). Since the decoherence only operates on those qubits in ~ R;D|c,)=2"""9> |A.) >, |aerye>2 [cy)
suppE), the most general decoherendeis a unitary pro- e<E e'<E u
cess operating on a binary vectoand the initial state of the

environmenta,) as follows: X2 (—1)PMW(—1)eMu, (19
vioM|g=¢’
D|u,a0>=e;E |u+e>|au|E’e>' (14 Now, by Lemma 2, the inner sum is O unless there exists

ce(C; for which c+w+u<E. This means thajc,) can
where the states of the environmeat) are not necessarily only decohere to|c,) if there is aceC; such that
normalized. Now, we let this decoherence act|op)|ag).  wt(u+w+c)<t. We now show this means that for each
We get |c,) there is a uniquec,) with we C;/C; which it could

have arisen from. Suppose that we have two sty wy

andw, with w;+u+c,;=e; andw,+u+c,=e,. Then,
Dlc ) :zf(nfk)IZ -1 vMw
|Cwa0) 2 (=D

n—
UEFZ

el+82=Wl+W2+C1+C2€CJ2_. (20)
X 2, [oM+e)la,u - (15)
e<E However,
Now, we knowvM e C,, which is a code with a minimum WH(e,+e,) <Wi(e;) +wi(e,) <2t 21)
1T €)= 1 2)= <l

distanced>2wt(e). Thus we can restoreM + e to a unique
codewordvM eC; . Intuitively, this corrects bits that have
flipped from O to 1 orvice versa We can do this using a But C; has minimum distanced>2t; thus e;=e,, SO
unitary operatofR; provided we make the operation revers- w;+w,e Cy and|c,, )=|cy,)-
ible; to do this we record the errerin a set of ancilla qubits This means that we can unitarily express the state in Eq.
A. After this process, the quantum state of our system is  (19) in terms of|c,), whereue F)/C}, and then correct the
state |[c,) to |c,), since there is at most on& with
— 5—(n—K)12 _1yoMw dy(w,u)<t. As before, to unitarily corredtc,) to |c,) we
RiDlew)=2 2 =1 need to use a second ancilld to record which bits we
needed to flip to get fronn to w. These flipped bits corre-
x> |UM>|avM|E,e>|Ae>- (16) spond to phase errors in the original basis. Denoting this
é<E correction operator bR, we get
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RprD|CW>:27(n7k);E |Ae> Z |ae’,e>

e'<E

XX X (—1yvMw

vivM|g=e' €’'<E

X ( _ 1)UM(W+e")|CW>|Aé">

=2 ey X A) S Jawe) (22

e'<E

X E |Ae”> Z

e"<E vivM|g=e’

(— 1)vMe"
=27"®cy) 2, [Ae) 2 |AL)

e"<E

X E (_1)er'err|ae’,e>a

e'<E

1103

In fact, explicit constructions for classical codes that attain
the Gilbert—Varshamov bound asymptotically are not
known.

Consider towers of codes as shown below

{o}c((1M))ycccetcFs, 27

where din€=k and dinC-=n—k. Here((1")) denotes the
subspace of) generated by the vector”lcontaining all
ones. The code§ andC* correspond ta, andC,, respec-
tively, in Sec. Ill; we have now added the requirement that
C;=C,. We follow MacWilliams, Sloane, and Thompson
[13]. They call a codaveakly self-dualf

((1M)cece. (29

Given a vectow with even weight we need that the number
of k-dimensional weakly self-dual codes for whighk: C- is
independent ofv. In other words, the number of
k-dimensional weakly self-dual cod€scontained in a given
hyperplanev is independent of.

We apply Theorem 2.1 of Ref13] (actually a stronger

which is just|c,,) tensored with a state of the ancillae and thestatement established in the prpdfet o, s be the number

environment thatloes not dependn w. We have thus uni-

of k-dimensional weakly self-dual cod€g, \; that contain a

tarily restored the original state and correctedecohered givens-dimensional cod€;, 5. Then the numbers,, s are

bits.

V. WEAKLY SELF-DUAL CODES

independent of the cod&, ; that was chosen.
We separate the casee C[n,k]gc[ln’k] from the casev
€Cink\Cink - The number ofk-dimensional weakly self-

To show that a family of codes contains codes that meeflu@l c0de<n i for whichv e Cry iy is justo i 2, the num-

the Gilbert-Varshamov bound we can often employ a ver
simple greedy argument; this argument appears in [oéf.

pp. 557 and 55&proof of Theorem 31 of Chap. 17
Lemma 3Let ¢; be a set of n; ,k;] codes such that
1) kij/ni>R

er of codes -containing the two-dimensional space
((1",v)). Next we consider pairs{, ;,v) whereC, ; is a
k-dimensional weakly self-dual code and: Cf;, ,;\Cin, - I
this case(, ; andv generate ak— 1)-dimensional weakly
self-dual code’;, 17 containing the two-dimensional space

(2) each nonzero vector of length belongs to the same ((1".v)). The number of choices fof, k+17 iS Tnk+1,2:

number of codes i; .

Then there are codes in the family that asymptoticall

meet the Gilbert-Varshamov bound

d
R=1—H,

- asn—c, (23

Proof. Let W, be the number of codes i#; that contain a

particular vectow. By hypothesis,
(2M—1)W;=(24-1)| . (24)

The number of vectors with weight less thdris

|

n;
j ) (25

n;

] <W(2M—1)/(24-1) =] ] (26)

d-1
W, >
j=0

then there is a code ig; with minimum distance=d.
Q.E.D.

Every codeC;p k417 contains % k-dimensional weakly self-

ydual codes of which ' do not contain the two-

dimensional spacé(1",v)). Hence given a vectos with
even Hamming weight, the number lofdimensional weakly
self-dual codes contained in* is independent of. This is
all that is needed to apply the greedy argument used to es-
tablish the Gilbert-Varshamov bound.

The statement that there are codes meeting the Gilbert—
Varshamov bound is that given a ratin (whered denotes
minimum distancg we may achieve a rate

. (29

d
(n—k)/nzl—Hz(ﬁ

The redundancyk/n satisfiesk/n<H,(d/n), so that the
quantum codes achieve a rate

R=(n—2kﬂn>1—2H4§). (30)

This function is plotted in Fig. 1.

VI. QUANTUM CHANNELS

In order to carry Shannon’s theory of information to the

This proof is not constructive in that it does not producequantum regime, it is necessary to have some reasonable
codes satisfying this bound, but merely shows that they existefinition of a noisy quantum channel. We will define a
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guantum channélV by a probability distributiorf® on uni- ' in , ,

tary transformationsJ),y mappingHy® H eny- FOr any pure E<y|RprW”|y>>JZO ( j )Fn '(1-F) (32
input state|x) the channel produces as output a mixed state

by first obtaining an ensemble of states #yq® Heny DY for all |y) in our quantum cod€. This quantity is close to 1
applying the transformatioty, to |x) with probability dis- a5 jong ag/n>1—F. Thus, if the fidelityF for each trans-
tribution P, and secondly tracing ovét.,,. While the ini-  mitted qubit is large enough, our quantum codes guarantee
tial state ofH,,, could be given by an ensemble of states, ithigh fidelity transmission for our encoding kfqubits. Our
may also without loss of generality be taken to be a fixedyyantum codes will give good results for any charivethat
pure state, as the probability distribution given by an en+ransmits statefy) e H3 well enough thatW|y) has an ex-
semble of initial states may be absorbed into the probabili%ected projection of length at least-% onto the subspace of
distribution on the unitary transformatidh,,. The probabil- 13 obtained from|x) by the decoherence at mdsgubits.

ity distribution could also be concentrated entirely in theolzJr encoding and decoding schemes then give a channel on

inital mixed state ofH,,, , and a fixed unitary transforrd : K \whi i ;
be used, but this leads to a slightly less intuitive descriptior;[he Hilbert spacg, which has fidelity 1. We will next

of the one quantum channel that we later discuss in detail. 3¢ this observation to obtain an upper bound on the channel

: capacity of quantum channels.
Actual quantum channels are unlikely to produce output An upper bound for the amount of classical information

that differs from the input exactly by the decoherence of atcarried by a quantum channel is given by the Levitin—
mostt qubits, and thus are unlikely to be able to transmit . .
quantur% states perfectly using thisyscheme However. if thHoIevo theoreni10]. If the output of the channel is a signal
. . ' t has density matrix, with probitility p,, the Levitin—
average behavior of the channel results in the decoherence ;a : a o .
fewergthant qubits, a channel may still be able to transmitﬂdevo bound on the information content of this signal is
guantum states very well. A measure of the success of trans-
mission of quantum states that has previously been success- H(p)—E paH(pa), (33
ful applied in quantum information theory is fidelifg4,11]. a
In this paper, we define fidelity slightly differently from the _ . .
definition in Refs[14]; we make this change as these previ-wher?p_zgpapha (tr:_'e defsit}’r m?tr'x for t?ﬁ ensem'\tlale of
ous papers discuss channels that transmit some distributigiignals. and whereH(p) =—Tr(plogyp) is the von Neu-
of quantum states givea priori, whereas we want our chan- mann entropy. .Smce quantum |nfo_rr_nat|on can be used to
nel to faithfully transmit any pure input state. Suppose tha arry c(ljafsmzlt mformaﬂon, tbhe Lg\?tmt—hHoletvo lf)ound cr:m
we have a noisy chann#V that transmits quantum states in € used to obtain an upper bound for the rate of a quantum

: _ - I error-correcting code.
EeH”bert spacés,. We define the fidelity of the channel to Consider the following quantum channel discussed in Ref.

[11]; this channel treats each qubit independently. With
probability 1—p, a qubit is unchanged, corresponding to the
min  E(x|W|x), (3D identity transformatiori} 2). Otherwise, with each possibility
%) € Hsig having probabilityp/3, the qubit is acted on by the unitary
transformation corresponding to one of the three matrices:
where the expectation is taken over the output of the channel.
In other words, we are measuring the fidelity of transmission 01 10 0 1
of the pure state transmitted with least fidelity. We could also 1 0/’ o -1/’ or | _ 1 0/
measure the fidelity of transmission of a typical state in
Hsig: this average fidelity is a quantity which is closer to the That is, each of the following possibilities has probability
previous definition, and may be more useful in some situap/3: the qubit is negated, or its phase is changed, or it is both
tions. negated and its phase is changed/tf>p+ e for e>0, the
Assume that a chann®V transmits qubits with a fidelity length projection of the output of this channel onto the sub-
of F and is that the decoherence process affects each quljpace ofH; with at mostt errors approaches 1 asgrows,
independently, i.e., each the decoherence of one qubit has B@ the quantum error-correcting codes given earlier in this
correlation with the decoherence of any other qubit. Thispaper guarantee high fidelity. This channel can alternatively
would follow from the assumption that each qubit has a dif-pe described as transmitting a qubit error-free with probabil-
ferent environment, and this situation corresponds to memdty 1 — 4p, and producing a random quantum state with prob-
ryless channels in classical information theory. Thenapility 2p. This description shows that the entropy of the
Ew(X|W|x)=F for every statdx) e H,. If the output of our  output of the channel is at lealst,(2p), so by the Levitin—
channel is a pure state, our error-correction procedurgiolevo theorem an upper bound on the classical information
RpRy will be successful with probability equal to the length capacity of this channel is2H(2p). This bound is plotted
of the projection of the state onto the subspacétbfwhich  in Fig. 1. For this channel, the bound is achievable for clas-
results from decoherence of ahyr fewer qubits. Since the sical information, but we believe it is unlikely to be tight for
decoherence process for each qubit is independent, we cgmantum information.
use the binomial theorem to calculate the probability that the Another question that has been studied is: how much en-
state W"|y) is projected onto the correctable subspace ofanglement can be transmitted over a quantum chagrrg
H5, where|y) is in our quantum cod€. We thus have a Since any means of transmitting quantum states with high
channel which transmits statgg) with fidelity fidelity can also be used to transmit entanglement, upper
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