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Relativistic electron moving in a multimode quantized radiation field
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We derive a set of exact solutions of the Dirac equation for a single electron moving in a multimode
guantized radiation field. All the modes in this field are propagating in the same direction. Our method entails
the application of the Lie-algebra procedure. We discuss the physical meaning and possible applications of
these solutiond.S1050-29476)09507-9

PACS numbdps): 03.65.Pm, 12.26-m, 32.80.Wr

I. INTRODUCTION ansatz in Keldysh-Faisal-Reiss theB}. Being in the field
is a feature of the electron described by Volkov states, con-
Searching for exact and approximate solutions for a singlérary to the fact that all photoelectrons are collected in a
electron interacting with an electromagneiien) wave has a  Situation where there is no radiation field. A close compari-
long history. In Gordon’s and Volkov’El] pioneering work ~ SON, which shows the discrepancy between the theoretical
and other authors’ successive woik—4], the em waves result based on the Keldysh ansatz and the experimental re-
were treated as classical fields. These solutions are of greSt!t obtained by Bucksbauret al. [10] in standing-wave
importance in treatments of multiphoton ionizatiéMPI) multiphoton ionization including the half Kapitza-Dirac ef-

and multiphoton scattering proces$és-6]. fect[13], has been made by Guo and Drak&D) [14]. The

Rapid increases of the power of laser equipment may 3D analysis shows that a photoelectron does undergo two

sult in more photon absorption by the electron in MPI pro_processes. The first process is the ionization process of the

cesses, making the photoelectron more energetic, to the poiﬁ{ectron from th_e atom into the radiation field, Wh"e_" th?
of possessing relativistic speeds. Some work has been doﬁgcond process is the escape process fro_m 'ghe ' adlathn field
on the relativistic photoelectron produced in strong-field MP1© free space. Bucksbauat al's angular distribution split-

[7,8]. Multicolor and multimode MPI experiments have beenting does not occur in the first Process, which is the Keldysh-
performed by some groud®,10]. It is necessary to obtain Faisal-ReisgKFR) process. It occurs in the second process

wave functions for a relativistic electron moving in multi- predicted by the scattering theory of Guo, Aberg, and Crase-

mode electromagnetic waves. These kinds of wave function ann (GAC) [15]. The agreement between our scattering

can also be used for, as mentioned by Rosenberg and Zh eory and the Bucksbauet al’s experiment shows the cor-

[4], the construction of wave packets, fields that are localize ectness of quantum f|elq wave functions, and a'§° that the
in space as well as time and hence capable of providing olkov states or Volkov-like states cannot be the final states

more realistic description in MPI, but play a role as intermediate states.

The em waves in the Volkov-type solutions have been The original Volkov solutiong1] are for a relativistic
treated as quantized fields only in recent dec4ddd Ber- electron interacting with a multimode electromagnetic wave
ropagating in the same direction. The parallel solutions in

son and Fedorov and Kazakov found solutions of the Dira : iimode photon field tina in th
equation in the case of the quantized single-mode linearl 1€ case of a muiimode photon Tield propagaling In the same
irection have not been obtained.

olarized em plane wave in the Bargman representatiorn. )
P b 9 P In this paper we start from the most general case, the

Bialynicki-Birula found solutions in the phase representation _. . : ; ; )
y P P Dirac equation for an electron interacting with a multimode

that correspond to solutions in the large-photon-number lim- : T N
its. Bergou and Ehlotzky and Filipowicz found solutions of photon field propagating in different directions, then reduce

the Dirac equation in the quantized single-mode em planéhk:stequat'%n to an algetbrglctr(]equatlon.dl_n ﬂl.e case whleretr;]lll
wave, which is independent of the field operator representds oton modes propagate in tné same direction, we Solve the

tion, but only in the case where the em wave is circularly rac equatlon exactly. A .br|ef d|spus§|on addresses '.[he
physical meaning and possible applications of the resulting

polarized. )
In recent years, in a series of papers, we obtained exaf@ct solutions.
solgtlons fo'r a rel_at|V|st|c electron interacting with an arbi- Il. PHOTON MODES PROPAGATING
trarily polanzgq smgle-modg photqn fle[d] and _solutlons IN DIFFERENT DIRECTIONS
for a nonrelativistic electron interacting with multimode pho-
ton fields with multiple propagation directiof$2]. When a relativistic electron moves in a multimode quan-

Classical Volkov solutions have been used to describe thézed electromagnetic plane wave, its wave function satisfies
final state of the electron in MPI according to the Keldyshthe Dirac equation
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the single-mode equation. We assume that fok althere is

70— YAL(KeX)—Me| W (x)=0, () ak such that
kK,= ok,
whereq is the index for the modes of the radiation field and
. . k k=0, (10
Aa(KaX) =0l €,a,8" e+ efale’ ), 2)
. 71/2 . . . . |k| = 1 .
with g,=(2V,w,) "% In this paper, there is no implied
summation on repeated photon mode indices. The following relations hold for all the modes:
The polarization four-vectorg, can be defined by the K K.=0 (11)
following relations: antp
e, =—1, k,A=kA=0. (12
o We can introduce the projection operators as in the single-
€a€a= ~COZ,E e, 3 mode case,
ehey=—Ccost,e ', P=(yp+me) yki2kp, Q= yk(yp—mg)/2kp. (13)
wheree,=(0,¢,). In a coordinate system, we define The following eigenvector equations fd® and Q can be
— 0 /2 observed:
€,=[€C04¢,/2) +i€sSiN(£,/2) ],
4 Pyk=0,
€ =[,cO8 £,/2) i €,SiN(£,/2) e 1Ol mz—p? m3— p?
o X o y @ . —
Pl yp+me+ 2Kp vk | =yp+m.+ 2Kp vk,

In  this paper we wuse the metric gf,)=
diag(1;-1,—1,—1). The scalar productor of two 4-vectors YKP= 7k,
is defined amb=g,,a“b” and the scalar produeta is de-

fined asy,a*; y stands for 44 Dirac matrices. mg— p?
A canonical transformation YP—Met 2kp Yk |P=0, (14
«y(x)zexp(iz kaxNa> H(X), (5) Qyk= 7k,

whereN,=}(a,al+a’a,) is the number operator for each 0
photon mode, can be applied to Ed) to eliminate the ex-
plicit dependence on the coordinates in the Dirac equation.

2.2
m —
yp+ me+ ;kpp yk) =0,

After performing this transformation, El) becomes YkQ=0,
2 2 2 2
. m;—p m:—p
iyd— kN —eyA—m X)=0, 6 — & = = yn— e "
(7 ;Ya 2" €Y e)¢() (6) (yp Me+ 2Kp yk)Q YP— Mg+ 2Kp Yk.
where the vector potential is Now we want to expresg in terms of P¢. Using yk to
operate on Eq(9) from the left, we get
A=2 gule,dqterar). )
“ (ykyp—eykyA—meyk) $=0;
We set . thus
N ()= exp(~1px); ® $=(2kp) H(ypyk+merk+erkyA)p.  (15)
en,
Since ykyA= — yAvyk and ykQ=0, as in the single-mode
yp— 2> Yk N, —eyA—m,|$=0. (99 case, we still get
‘ b= (1+eykyAl2kp)Pe. (16)
This is the equation in the most general case where photon
modes can have different directions of propagation. Multiplying Eq. (9) from the left by (yp+mc)/2kp, we have
+m 2—m?
PS w N | e e Pl g
11l. PHOTON MODES PROPAGATING a 2kp 2kp
IN THE SAME DIRECTION (17)

If all the modes propagate in the same direction, ®y. The second term in Eq17) can be treated by using the
can be solved exactly by extending the method for solvingight-hand side of Eq(16) for ¢
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e(yptmg)  pP-mi| [e(yp+my)  pP-mg)(  eykyA
2kp 7 T2kp /O 2kp YA~ 2kp 1+ 2kp Pé

_[erptme) €(yptme) yAvKyA pPomg e(p?-mg)ykyA .

| 2kp 7 2kp 2kp 2kp (2kp)2
[ 2 2 2 2 2

_|2epA_eyAlyp—me)  EyAYA pT-me (P —mg) ykyA »

| 2kp 2kp 2kp 2kp (2kp)? ¢

__ZGDA_reszVA_PZ—mﬁ_ Vp—me+(m§—p2)7k »

| 2kp 2kp 2kp 2kp (2kp)? ¢
[2epA A2 €y, [A%A"]  pP-m;

| 2kp _Tka - 4kp - 2kp P, (18

where we have used one of the “eigenvector relations,”

namely, 2kpY, w,N,+2epA—e?A+e?g?Ps ,— p?+m2| Po
mg —p?

vp—mg+ 2Kp vk|P=0, =0, (20

and the algebraic identity where %, is a 4x4 diagonal matrix with element
YAYA= 7,7, APAT=1 (7,7, + 7,7,) ALAY (1,—1,1,—1) or (o,,0,), andg? is defined as
+ 3 VoY u(ATAE— AFAY) _
g?=> gisin,. (21)
=A%+ 37,7, A" AM]. (19 “

The equation fofP¢ is then The derivation leading t&, is as follows:

Y, VAT AR = ymaEB 9.0 (€L, + € al) (ehag+ el* al) — (eka,+ e*al)(ejas+ €5 al)]
= mﬂaEB 9.0pl (e eh—et* ep)alagt(ehel* — ey )a ap]
= m@ﬁ 9.0pl (e ef—et* ep)alag+(epel* —eher)azal]
== '}’V')’,Lazﬁ gagg[(e,ﬁ* €~ ehr 52}3)(51532_ aZaﬁ)]
=- aEﬂ 904 ves vegllag.al]=— QZB 9.9l veh  ves] Spa

== gllver ve = —ilvex, ve, 12 92sing,

=—i[y,vy]X g3sing,=—23,>, g2siné,. (22)
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Here we can see that the electron spin mainly aligns in the S,vs=Svs, S=+1. (25)
direction of propagation of the photon field, except De

part, which is the second term in the E#6) and will vanish ~ The eigenvalue equation @2, follows from Eqgs.(23) and
at the nonrelativistic limit. This is a different physical con- (25) directly,

sequence.
For the spin operata¥,, we have following identities: P2 Pvs)=s(Pus), (26)

PS,P=P3,, (23)  Which makes Eq(20) separable from the bispinor space. We
factorize the wave functio®¢ as
which can be proven as follows. It is straightforwardly veri-

fied that Po=|p)(Pvs). 27
vk ,=3,vk. (24)  The|p) is a wave function belonging to the photon Hilbert
space, satisfying the following equation:
With
YKP= vk, 2kpY, w N, +2epA-e?A2+e?g?s—p2+ mg} |p)=0.
we have (28
(yp+me) vk In our earlier work{12] we developed a Lie-algebra method,
P3,P= szzp by which we obtained analytical wave functions for a single
nonrelativistic electron moving in a multimode arbitrarily
(yp+mg)2,yk polarized photon field. By using this method, we obtained
= Tpp analytical wave functions and energy levels for a charged
harmonic oscillator in a photon field. The results for the en-
(yp+mg)2 vk ergy levels of an irradiated harmonic oscillator were used in
:Tp modeling the energy shifts of atomic bound states irradiated

by a laser field 16].

Equation(28) involves only quadratic photon operators,
which, in the case of a finite number of modes, form a Lie
algebra with finite dimensions. The problems to solve just
which is Eq.(23). fits our Lie-algebra method.

Since %, is a 4X4 diagonal matrix with elements To show the method, we treat the two-mode case as an
(1,-1,1,-1), its eigenvectorw satisfy the eigenvalue example. First of all, we define a Lie algelgdy the basis
equation set

_(yptme)yk
- TpEZ_PEZ,

t ot a2 a2 at2 ot2 Tt t 4t
{N{,N,,l,a,,a,,a;,a5,a7,85,8,°,8,", a,8,,8,8,,8,8,,8,a,}, (29

and + )
C= ezglgzcosgl > & gi(01702)/2

h=2B;N;+ A;a3+ A¥al?+2B,N,+ A,as+ A% a)?

§1= 82 0@
+2Caja,+2C*alal+2Da,a)+ 2D* ala,+ F | D=e%g,9,c05— €010,
+G1a;+ Gt al+Goa,+Gh a) (30 F=m2—p?+eg’s,
is an element o). By defining the coefficients G,=2eg,pe,
By=kpw,+ €797, Go=2eg,pe,,
Bz=kpw2+ezg§, Eq. (28) can be expressed as
h[p)=0. (32

A;=e’g?cogt,€'91,
There is a trivial Cartan subalgebheCg, with the number
A2=ezg§co§2ei®2 operators and the identity operator as the basis set

3D {N1,N2, 1}, (33
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such that the other basis elementgyiare eigenoperators of Bi=l31COSf(2X1)+A15inf‘(2)(1)e_i®1
an element oh in commutator relations; e.g.,
=[(kpo; +e?g7)*—e*gicosé |2
[2B;N;+2B,N,,a;a5]=(—2B,+2B,)aa).  (34) ,
By=B,cosh(2x,) + A,sinh(2y,)e 192

The eigenstates for an element of the trivial Cartan algebra 29 44 "
are very easy to find, but the problem is thais an element =[(kpwy+€°g3)’—e*g;cos¢, ],
of the trivial Cartan subalgebra only in the noninteracting (39
case. The question becomes: Can we find an alternative rep- o . i0
resentation such that the operakoof an interacting system C'=C costixytx2) + D sinh(x1 +x2)€2,
will be an element of a trivial Cartan subalgebra in the alter-
native representation? If we can, the problem is solved.

To find the alternative representation, we follow the fol- g,
lowing numbered steps:

D' =C sinh( x;+ x,)e 92+ D cosh x1+ x2),

(i) We truncate the Lie-algebra elemdmtexpressed by | A4 ezg'fcosfl
Eq. (30) by keeping only quadratic photon operators tanh(2x,) = — B, =- kpw, +e2g?’
h—h=2B,N; + 4,82+ A* al+ 2B,N,+ A,a2+ A% a}? (40
| Aq| e’g5cost,
+2Ca,a,+2C*ajal+2Daal+2D*ala,. (35 tanh(2x2) = — B, kpo,t &g
(i) V\lTe caIcuITate the commutators bfwith operatorsay,  |n most cases the following inequalities hold:
a,, a;, anda, successively, and write the result according
to the order kpw,>€?g?,
[h,a;]=—2B,a;—2D*a,— 2 A% al—2C*al, kpw,>e?g2. (41)
[h_,a2]= —2Da,;—2Ba,— 2C* aI_zAg ag, Hence, we can see thgt and xy, are small numbers, and

|B;| and|B,| are much larger thafC| and|D|. These con-

(36) ditions lead tgB;| and|B;| being much larger thajt’| and

[h_,aI]ZZAlaﬁ 2Ca,+2B,al+2Dal, |D’|. Thus all four roots are real numbers. ' .
The expressions of the four eigenvectors obtained in our
[h_,ag] =2Ca, + 24,8, + 2D* aIJr ZBZa;. earlier work[12] can be directly used here. For the complete-

ness of this paper, we just rewrite the results as follows:
(iii ) We write the transpose of the coefficient matrix of the

right-hand side of the above equation: % %2 81 82
t —2D* —2B,+p'Y 2C 2A,
—_— _— C = L
B =D A C TRl _our —20r 2B,+pY 2D
-D* -B, C
> 2 Az 37) —2c* —2A3 2D 2B,+p'H
-AY —-C* B, D*
1 1 (42
- -A, D B
A 2 a; a; aj a}
(iv) We obtain four eigenvalues and the corresponding four —2B;+ P(ﬂ —2D 24, 2C
eigenvectors of the above matrix. The four eigenvalues are c,=t ,
g g 272 a4t 20 2B,+p? 2D
ph=—p1, —20*  —2A% 2D 2B,+p3)
T t
p =2V} (B + B~ [C' 2+ D -, . A %
(39) - 243 —2D  —2B,+pY
c,=t )
p@ = — ) Lot 2B+l 2D —2A, -2C
-1 +11
2D* 2B,+pY -2C —2A,
(2):2 1812+B!2_612+D!2+ i
pA=21} (B4 By~ |C [+ |D' P+ N . a N
where oA 2C* —2B,+p'?) —2D*
c,=t )
BE=B7)7° 2 2 2B+ p3 2D —2A, -2C
Y=\~ (B=B)C [P+ (Bi+By)?|D' |2, 2D*  2B,+pd  —2¢ —24,
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where the normalization constaritsandt, are chosen such ¥, ad —Bu —PBa
that . N
) . L1 al,  ayp  — P —Bax 51
[ci.ci]=[ca,Co]=1, -B5 —BY oy ay |
(cy)T=cl, (43 —Bl. —Bn @ axp
(c)=c]. The Lie-algebra elemerth is then expressed in terms of

c-photon operators as

The other commutators are zero, 1 5 " :
. . . h=pMNe, +p N, +Gici+Gi* el +G5co+Go* s+ F 1.
[C1.C2]=[cy,Co]=[C1,C5]=[C2,C1]=0. (44) (52

with c-photon operators, the truncated Lie-algebra elemenfye can introduce now the displacement oper&tdo elimi-
h can be expressed in terms of the number operators of nate the linear terms of the annihilation and creation opera-

photons, tors
h=pNe,+ PN, (45 lp)—p")=Dlp),
(53
where
D=exp(— &;cl+ 85 ¢~ 8,65+ 85 ¢y).
Ne,= 2 (cici+cley),
It is easy to verify that
_1 T At
ch_ 2 (CZC2+C202)' (46) DchT:Cl+ 51|,
For convenience, we write the transformation, , as
Bp) DciDT=cl+ 671,
C1= a11as+ a1 8.+ Brial+ B1Al, (54)
Co= appds+ apdy+ Boidl+ Bodl, DcyDT=c,+ &,
4
. , “7 DciDT=cl+651.
C1=pBTa1+ BTA,+ aja) + aja;,
By choosing
Ch=B3a1+ BhA,+asal +asal. .
g!
The linear operators in Eq30) can be written in terms of 1=~ —1y»
c-photon operators, 1
Gray +Gial+ aa,+ G5 ah= i1+ G1* el + Ghco+ G5* __ %
(48) 52_ (2 (55)
P+1
thus the Lie-algebra elemerttit in Eq. (52) becomes
91 G1 h'=pHNe +p PN, + F'1, (56)
gé L*l T gz
Gi* =L G|’ (49 where
% g* ' ’
7 : Fromtpregis. AL _1GE o
where P(ﬂ P(ﬂ
aj; @ P P2 Thus, Eq.(32) becomes
an  axp PBa B2
L= . 50 h'[p")=0, (58)
Bi1 Bl aiy ai, (50
B% By a3 ab, which has solutions in the form
The inverse ofL can be obtained by evaluating the mixed [p"y=In1,N5)c, (59

commutators betweeo-photon operators and-photon op-
erators. Thus we have if the following energy momentum relation is satisfied:
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(1

p2=m§+ezgzs+p+{(n1+ %)+p(+2{(n2+ 1 For a givenL, the condition for findingB is thatL is nons-

ingular. TheL defined by Eq(47) is indeed nonsingular. In

|G1|2  1GI? a convenient notation, we write
P EEECE (60)
+1 1 F=-1SinL. (70)

(v) We obtain the vacuum state and number states for the ]
c-photon system. There are two ways to obtain the newOr an arbitrary number state, we therefore have
vacuum and number states. One may solve the following set

—af
of infinite-dimensional linear equations: In1.nz)c=eng.ny), (71)
¢41/0,0.=0, where|ny,n,) are eigenstates dfi, andN,, while n,; and

n, are the photon numbers of the two modes.
C,/0,0,=0 (62) After taking the above steps numbergg-(v), the prob-

lem stated is essentially solved. What remains to be done
to obtain the vacuum stat€,0)., which has been given in consists of tracing back all the transformations we have
Ref.[12]. One can generate all new number states by usingnade and writing the final solutions of the original Dirac
new creation operators; andc} to act on the new vacuum equation. The final solutions in the two-mode case are
state. The second method is used to find an exponential
transformation in the photon Hilbert space to transform the W(x) =V, YZexdi(k;N;+k,N,— p)x]
old vacuum and number states to the new vacuum and num-
ber states, as it transforms th&photon operators to
c-photon operatorkl6]. By applying the second method, we
solved the problem of a harmonic oscillator in a radiation
field. Now we repeat our method here. We assume that th
transformation of Eq(47) can be written in an exponential

X (1+eykyAl2kp)DT|n,,n) Pus. (72

By a direct inspection, we see that these solutions can be
f60rmally generalized to the case with arbitrary number of
photon modes propagating in the same direckioithus, the
generalized solutions are in the form

form
efae T=La, (62 W(x) =V, Y2exgi(kiNy+koNy+ - - - —p)x]
t
wheref is a quadratic scalar operator satisfying X(1+eykyAlkp)DT[ng.ny, . . . )cPus.
(73
f=a'Fa, (63
with a being a column vector of operators IV. DISCUSSION
a A. Stationary states and energy levels
1
Without losing generality, we limit our discussion in the
a, X : X ;
a= (64) two-mode case. The obtained solutions are in a Lorentz in-
T | . . .
a variant form where the four coordinates, temporal and spatial
al coordinates, are treated equally. The solutions look time-

dependent, but they are stationary solutions as shown below.

a' the transpose o, andF a 4x 4 matrix in the two-mode  The solutions can be factorized as
case. To look forf, we set

W(x)=exp(—ift+iH HW(r), (79
f,a]=Ba, 65
Lf.a] €9 where
whereB is a 4X4 matrix. We can easily identify the follow-
ing relation: H,=w;N;+wyN; (75)
F=-13B, (66) is the Hamiltonian of the free-photon field. By the transfor-
2 mation of Eq.(74), the original Dirac equation, Eql), can
whereS is the symplectic metric matrix be cast, after multiplying with/°, into the time-independent
form
0 -l
=) (67) (H,+He V)W (r)=£¥(r), (76)
By writing power expansions, we find where
efae '=eBa (68) He=a-(—iV)+pm, (77
Thus, we have is the free-electron Hamiltonian, and

e®=L. (69 V=—ea-[A(—Kky-1)+A(—kz1)] (78
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is the electron-photon interaction term, with The four-vector relation Eq:81) can be written as
Au(—Kq-T)=exp(—iH DA (kx)expiH t)  (a=12) E=Etxo,
(79) (84)
p=P+ k.

as the photon field operator. The positive-kinetic-energy so-
lutions of Eq.(76) are given by
In our definition, evenv = |k|=1; for the convenience of our
_ readers, we still spell it out clearly. The interaction energy
W onn,s(1) =Ve2expi(p-r—K;-rN3—ka-rNy)] and momentum are

X (1+eykyAl2kp)D[ny,ny) Pus, (80) A= k-3 (n.+ Do,
whereV, is the normalization volume of the electron. “
The corresponding energy eigenvalfiethe total energy (85)
of the electron-photon system, is the temporal component of
the four-vectom, which can be seen by comparing E¢S).
and (8) with Eq. (74). In the single-mode case we have Ap=kk—2 (n,+ Pk,,
proven thatp, the spatial component gf, is the total mo- “
mentum of the system as an eigenvalue of the total momen-
tum operator—iV+KkN. It is easy to generalize the result to where we can see that the interaction four-momentum is al-
the multimode case, such that still stands for the total ways along the light propagating direction. In the strong ra-

four-momentum of the electron-photon system. diation field cases, the interaction energy is mainly the pon-
From Eq.(60), we can see that the total four-momentum deromotive energy. Equatiort85) shows also that the
p can have a following decomposition: ponderomotive energy has its counterpart, which should be

called the pondermotive momentum.
The stationary feature of these solutions is due to the
p=P+kk, (81)  quantum field treatment. In the Dirac equation, Ex, the
electromagnetic field is described by photon operators, and
the photons are thus treated as particles in the closed system
whereP is on the electron-mass shell akds a null vector, a5 well as the electron. In contrast, the classical Volkov so-
le., lutions are for an electron interacting with a classical elec-
p2— m2 tromagnetidem) wave. The classical em wave is an external
e and time-dependent field. Thus, the classical Volkov solu-
(82 tions are not stationary solutions, and one cannot obtain an
K2=0, energy level for the interacting system by the classical-field
treatment.
and the value ok is

B. Large-photon-number limit and nonrelativistic (NR) limit

k==—|e?g’s+p Y (n,+ 3)+pZ(n+ ) Solutions in the large-photon-number limit and NR limit
2kP have wide applications in MPI theofy,15] and the Kapitza-
G2 |62 Dirac effect theo.ry[.14]. To optain solutions.in tht_a large-
_%_% ) (83) photon-number limit we rewrite Eq@80) by inserting an
Py1 Py1 identity operator into the expression of the solutions,

W onn,s(1) = Ve Y2exili(p-r —ky- Ny —kp- TN) J(1+eykyA/2kp)exi(Ky - Ny +kp N ]

XeXF{i(_kl'er_kz'er)]; ||11|2><|1!|2|DT||1!|2>C7)US
1'2

=V "2 explilpr—ky r(lit ) ko r(lo+ 2)]}

X[L1+eykyA(r)/2kp][l1,12)(I1,12| D[Ny ,n)cPus, (86)
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with
A(r)=Ai(—ky-1)+Ay(—ky1).

In large-photon-number limit, we let; andn, be very
large numbers, such that

givni—A; (i=1,2), (87)

while g; without multiplying by y/n; will be considered as 0.

In the limit, (I4,1,/D'|n;,n,). depends only on the trans-

ferred photon numberg,=1,—n; andj,=1,—n,. By not-
ing

(11,121D 7y, ng) = Jj (O * expl —ij 1p1— 1] 252),

the solutions are simplified as

\Ppnlnzs(r) :V;UZZ eXF{i (P+ (upl_ J 1)k1

Jal2

+(Up2—J2)ka) - r][1+eykyA(r)]/2kp
X|ny+j1,na+i2)J,5,(0*

Xexp(—ij1¢1—ij2¢2)Pus, (88)

Wherejjljz(g) are the generalized Bessel functions obtaine

by the integration methofl2],

«7j1j2(5): 2 Jiil+2q3+q5+q6(gl)efi(2q3+Q5+qe)¢>1
d3,44,95,96
x‘]—jz+ZQ4+Q5_%(§2)e_i(2q4+qS_Q6)¢2
XJ—Qa(ZS)eiq3¢3' ! 'J—QG(gﬁ)eiq6¢61 (89

and

2le[A,
= P-e],
1 klP | l|
1=tan [ (P, /Ptan£,/2)]+ 3 O,
2le[A,
gZ_ k2P | '€2|1
¢2=tanfl[(Py/PX)tar‘(§2/2)]+ 30,,
{3=73 UpyCOSEY,
¢3:11
(90)
{4=3 UpyCoshy,
ba=0,,
{s=2€"A1A5c08 3 (£1+ &)1/ (ki tko)P,
$5=3(0,+0),),
{6=267A1A,c09 3 (&1 &) 1/(K —ko)P,
$6=3(0,-0)),
and
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e’A?

:ki_P (|:1,2)

upi (91)

In the NR limit the solutions expressed by H&8) can be
further simplified:

\Ppnlnz(r) =Ve:1/22 exp{i [P+ (upl_ J 1)k1

Jil2
+(Upa— kol rHni+j1.na+j2) 7, (0

Xexp(—ij1d1—ij2¢,). (92

In the arguments of the generalized Bessel functions, all
kP (i=1,2) need to be replaced lym,. This result does
agree with our earlier resulfi2].

C. Evaluation of electron self-energy and mass renormalization

Most applications of the nonperturbative quantum electro-
dynamics (NPQED developed in recent years are in the
strong radiation field regime. Here we present an attempt to
use the NPQED approach to treat some typical QED effects
in vacuum. The method may initiate an alternative way to

valuate free and bound electron self-energies, electron mass
enormalization, and bound-electron Lamb shifts. Here we
only show how this method and our results work for the
electron mass-renormalization problem. The renormalized
mass can be found from the energy shift due to spontaneous
photon emission, which should be a part of the energy level
of the wave function shown by E@73), in principle. Since
Eq. (73) is only for the case where all modes propagate in
one direction, the mass-renormalization effect contained in
the energy level of the solution EG73) is only due to the
modes spontaneously emitted in that direction. To work out a
complete mass-renormalization effect, one has to deal with
all possible spontaneously emitted modes propagating in all
different directions. The following approach is not rigorous,
but instructive.

The energy level for an electron interacting with a single-
mode photon field i$17]

P2 C(n+3) ~ e’g?(P- &) (P €)

&= 2m, mC

~ .93

where

C=[(mew+e??)?~e'g*cose]

(94)
g=(2V,w) 2

The first term in Eq(93) is the electron kinetic energy.
The second term, which is proportional to the background
photon number of the field with the inclusion of the zero-
point energy of the field, is important in the strong radiation
field case. The third term, which originates from tReA
term in the Hamiltonian, is due to spontaneous emission and
reabsorption. Without considering cross interactions due to
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different modes in the weak-field case, the energy expressiae fact that there might be some quantum-field effects in
of Eg. (93) can be generalized to the multimode case andtrong radiation field cases. If there is one, it can only be

reads as

P> C(n+ 3)
- 2me+2 ome

e’9*(P- &) (P- €;)
Mg 2 m.C '
(95

&

predicted by a quantum-field treatment; that is something we
are still working on. The second reason is as follows. In
quantum-field treatments, since the interacting system of at-
oms and photons has a well-defined total energy and momen-
tum at every step, the quantum-field results provide a precise
prescription for formulating the relevant energy-momentum

where the summation is made over all possible modes propgonservation laws as the electron ionizes, acquires pondero-

gating in all different directions.

motive energy and momentum, and then ultimately leaves

If there is no external radiation field, the background pho-he radiation field. In time-dependent semiclassical theories,
ton numbem is zero. By ignoring the zero-point energy, the those quantities are not always so well defined. The first
energy shift due to all possible spontaneous emission angzson may not convince some readers to use the quantum-

reabsorption is

AE=—2

2~2 2
e’g’|P- €|
Me(Mew + €°g?)

e’ |P-¢gl?
== —— —5—— (wy=e%12V,m,).
mg2V,, w’+ g (0= VeT/2V,m,). (96)

The self-energy of the electron can be obtained from th
above equation by performing the summation as an integréf
over thek space, summing over the two independent polar

izations. The result is

1 €? (0]
=~ |pl2—= — 1 __max
AE 62 m, P| e Wmax— Wotan 0o | (97

By taking a cutoff valuewm,,=me and lettingV,— o, we
simplify the above expression as

AE=—— —|P%, (98)

67

which leads to a correct renormalized mas8§]

137/ 37

1)\ 4
PO
wherem, is the bare mass of the electron.

D. Comments on the quantum-field approach

field approach in strong radiation field cases, but the second
reason is sufficient enough to establish the importance of the
quantum-field approach. The modeling of Bucksbaem
al.'s experiment on the half Kapitza-Dirac effect by Guo and
Drake shows the success of the quantum-field approach to
strong-field multiphoton processes.

In the most general case, the Dirac equation for an elec-

dron interacting with a multimode photon field propagating in

ifferent directions has not been solved. For wider applica-
tions and further development on the theory, searching for

exact and approximate quantum-field solutions in the most
general case is of great importance.

In the approach showed in this paper, many-electron ef-
fects, such as vacuum polarization, production of electron-
positron pairs, and some other electron-photon effects, are
not included. The external field treated in this approach is a
plane wave, not a solution of the Maxwell equations with the
involved electron as the radiative source of the field. Thus,
the reaction of the electron on the field is not included in the
treatment. The obtained wave functions with a sign change
on the mass can describe a positron, which can be seen from
Eg. (1). Using the obtained single-body electron and positron
wave functions as basis sets to express the electron wave
operator in performing second quantization, as in the tradi-
tional QED, many relativistic QED effects might be treated
properly by this nonperturbative method. These should be
good topics for future research.
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