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Relativistic electron moving in a multimode quantized radiation field
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We derive a set of exact solutions of the Dirac equation for a single electron moving in a multimode
quantized radiation field. All the modes in this field are propagating in the same direction. Our method entails
the application of the Lie-algebra procedure. We discuss the physical meaning and possible applications of
these solutions.@S1050-2947~96!09507-8#

PACS number~s!: 03.65.Pm, 12.20.2m, 32.80.Wr
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I. INTRODUCTION

Searching for exact and approximate solutions for a sin
electron interacting with an electromagnetic~em! wave has a
long history. In Gordon’s and Volkov’s@1# pioneering work
and other authors’ successive work@2–4#, the em waves
were treated as classical fields. These solutions are of g
importance in treatments of multiphoton ionization~MPI!
and multiphoton scattering processes@4–6#.

Rapid increases of the power of laser equipment may
sult in more photon absorption by the electron in MPI p
cesses, making the photoelectron more energetic, to the p
of possessing relativistic speeds. Some work has been
on the relativistic photoelectron produced in strong-field M
@7,8#. Multicolor and multimode MPI experiments have be
performed by some groups@9,10#. It is necessary to obtain
wave functions for a relativistic electron moving in mult
mode electromagnetic waves. These kinds of wave funct
can also be used for, as mentioned by Rosenberg and Z
@4#, the construction of wave packets, fields that are locali
in space as well as time and hence capable of providin
more realistic description.

The em waves in the Volkov-type solutions have be
treated as quantized fields only in recent decades@11#. Ber-
son and Fedorov and Kazakov found solutions of the Di
equation in the case of the quantized single-mode line
polarized em plane wave in the Bargman representat
Bialynicki-Birula found solutions in the phase representat
that correspond to solutions in the large-photon-number l
its. Bergou and Ehlotzky and Filipowicz found solutions
the Dirac equation in the quantized single-mode em pl
wave, which is independent of the field operator represe
tion, but only in the case where the em wave is circula
polarized.

In recent years, in a series of papers, we obtained e
solutions for a relativistic electron interacting with an arb
trarily polarized single-mode photon field@7# and solutions
for a nonrelativistic electron interacting with multimode ph
ton fields with multiple propagation directions@12#.

Classical Volkov solutions have been used to describe
final state of the electron in MPI according to the Keldy
541050-2947/96/54~2!/1087~11!/$10.00
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ansatz in Keldysh-Faisal-Reiss theory@6#. Being in the field
is a feature of the electron described by Volkov states, c
trary to the fact that all photoelectrons are collected in
situation where there is no radiation field. A close compa
son, which shows the discrepancy between the theore
result based on the Keldysh ansatz and the experimenta
sult obtained by Bucksbaumet al. @10# in standing-wave
multiphoton ionization including the half Kapitza-Dirac e
fect @13#, has been made by Guo and Drake~GD! @14#. The
GD analysis shows that a photoelectron does undergo
processes. The first process is the ionization process o
electron from the atom into the radiation field, while th
second process is the escape process from the radiation
to free space. Bucksbaumet al.’s angular distribution split-
ting does not occur in the first process, which is the Keldy
Faisal-Reiss~KFR! process. It occurs in the second proce
predicted by the scattering theory of Guo, Åberg, and Cra
mann ~GAC! @15#. The agreement between our scatteri
theory and the Bucksbaumet al.’s experiment shows the cor
rectness of quantum field wave functions, and also that
Volkov states or Volkov-like states cannot be the final sta
in MPI, but play a role as intermediate states.

The original Volkov solutions@1# are for a relativistic
electron interacting with a multimode electromagnetic wa
propagating in the same direction. The parallel solutions
the case of a multimode photon field propagating in the sa
direction have not been obtained.

In this paper we start from the most general case,
Dirac equation for an electron interacting with a multimo
photon field propagating in different directions, then redu
this equation to an algebraic equation. In the case where
photon modes propagate in the same direction, we solve
Dirac equation exactly. A brief discussion addresses
physical meaning and possible applications of the resul
exact solutions.

II. PHOTON MODES PROPAGATING
IN DIFFERENT DIRECTIONS

When a relativistic electron moves in a multimode qua
tized electromagnetic plane wave, its wave function satis
the Dirac equation
1087 © 1996 The American Physical Society
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F ig]2e(
a

gAa~kax!2meGC~x!50, ~1!

wherea is the index for the modes of the radiation field a

Aa~kax!5ga~eaaae
2 ikax1ea* aa

†eikax!, ~2!

with ga5(2Vava)
21/2. In this paper, there is no implie

summation on repeated photon mode indices.
The polarization four-vectorsea can be defined by the

following relations:

ea* ea521,

eaea52cosjae
iQa, ~3!

ea* ea*52cosjae
2 iQa,

whereea5(0,ea). In a coordinate system, we define

ea5@excos~ja/2!1 ieysin~ja/2!#eiQa/2,
~4!

ea*5@excos~ja/2!2 ieysin~ja/2!#e2 iQa/2.

In this paper we use the metric (gmn)5
diag(1,21,21,21). The scalar productor of two 4-vecto
is defined asab5gmna

mbn and the scalar productga is de-
fined asgma

m; g stands for 434 Dirac matrices.
A canonical transformation

C~x!5expS i(
a

kaxNaDf~x!, ~5!

whereNa[ 1
2(aaaa

†1aa
†aa) is the number operator for eac

photon mode, can be applied to Eq.~1! to eliminate the ex-
plicit dependence on the coordinates in the Dirac equat
After performing this transformation, Eq.~1! becomes

S ig]2(
a

gkaNa2egA2meDf~x!50, ~6!

where the vector potential is

A5(
a

ga~eaaa1ea* aa
† !. ~7!

We set

f~x!5f exp~2 ipx!; ~8!

then,

S gp2(
a

gkaNa2egA2meDf50. ~9!

This is the equation in the most general case where ph
modes can have different directions of propagation.

III. PHOTON MODES PROPAGATING
IN THE SAME DIRECTION

If all the modes propagate in the same direction, Eq.~9!
can be solved exactly by extending the method for solv
n.

on

g

the single-mode equation. We assume that for allka there is
a k such that

ka5vak,

kak50, ~10!

uku51.

The following relations hold for all the modes:

kakb50, ~11!

kaA5kA50. ~12!

We can introduce the projection operators as in the sin
mode case,

P5~gp1me!gk/2kp,  Q5gk~gp2me!/2kp. ~13!

The following eigenvector equations forP andQ can be
observed:

Pgk50,

PS gp1me1
me
22p2

2kp
gkD 5gp1me1

me
22p2

2kp
gk,

gkP5gk,

S gp2me1
me
22p2

2kp
gkDP50, ~14!

Qgk5gk,

QS gp1me1
me
22p2

2kp
gkD 50,

gkQ50,

S gp2me1
me
22p2

2kp
gkDQ5gp2me1

me
22p2

2kp
gk.

Now we want to expressf in terms ofPf. Usinggk to
operate on Eq.~9! from the left, we get

~gkgp2egkgA2megk!f50;

thus

f5~2kp!21~gpgk1megk1egkgA!f. ~15!

SincegkgA52gAgk andgkQ50, as in the single-mode
case, we still get

f5~11egkgA/2kp!Pf. ~16!

Multiplying Eq. ~9! from the left by (gp1me)/2kp, we have

P(
a

vaNaf1Fe ~gp1me!

2kp
gA2

p22me
2

2kp Gf50.

~17!

The second term in Eq.~17! can be treated by using th
right-hand side of Eq.~16! for f
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S e~gp1me!

2kp
gA2

p22me
2

2kp Df5S e~gp1me!

2kp
gA2

p22me
2

2kp D S 11
egkgA

2kp DPf

5Fe~gp1me!

2kp
gA1

e2~gp1me!

2kp

gAgkgA

2kp
2
p22me

2

2kp
2
e~p22me

2!gkgA

~2kp!2
GPf

5F2epA2kp
2
egA~gp2me!

2kp
2P

e2gAgA

2kp
2
p22me

2

2kp
2e

~p22me
2!gkgA

~2kp!2
GPf

5F2epA2kp
2P

e2gAgA

2kp
2
p22me

2

2kp
2egAS gp2me

2kp
1

~me
22p2!gk

~2kp!2
D GPf

5F2epA2kp
2P

e2A2

2kp
2P

e2gmgn@Am,An#

4kp
2
p22me

2

2kp GPf, ~18!
s,

t

where we have used one of the ‘‘eigenvector relation
namely,

S gp2me1
me
22p2

2kp
gkDP50,

and the algebraic identity

gAgA5gmgnA
mAn5 1

2 ~gmgn1gngm!AmAn

1 1
2 gngm~AnAm2AmAn!

5A21 1
2 gngm@An,Am#. ~19!

The equation forPf is then
’’ S 2kp(
a

vaNa12epA2e2A21e2g2PSz2p21me
2DPf

50, ~20!

where Sz is a 434 diagonal matrix with elemen
(1,21,1,21) or (sz ,sz), andg

2 is defined as

g2[(
a

ga
2sinja . ~21!

The derivation leading toSz is as follows:
gngm@An,Am#5gngm(
ab

gagb@~ea
naa1ea

n* aa
† !~eb

mab1eb
m* ab

† !2~ea
maa1ea

m* aa
† !~eb

nab1eb
n* ab

† !#

5gngm(
ab

gagb@~ea
n* eb

m2ea
m* eb

n !aa
†ab1~ea

n eb
m*2ea

meb
n* !aaab

† #

5gngm(
ab

gagb@~ea
n* eb

m2ea
m* eb

n !aa
†ab1~eb

n ea
m*2eb

mea
n* !abaa

† #

52gngm(
ab

gagb@~ea
n* eb

m2ea
m* eb

n !~abaa
†2aa

†ab!#

52(
ab

gagb@gea* ,geb#@ab ,aa
† #52(

ab
gagb@gea* ,geb#dba

52(
a

ga
2@gea* ,gea#52 i @gex ,gey#(

a
ga
2sinja

52 i @gx ,gy#(
a

ga
2sinja522Sz(

a
ga
2sinja . ~22!
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Here we can see that the electron spin mainly aligns in
direction of propagation of the photon field, except theQf
part, which is the second term in the Eq.~16! and will vanish
at the nonrelativistic limit. This is a different physical co
sequence.

For the spin operatorSz , we have following identities:

PSzP5PSz , ~23!

which can be proven as follows. It is straightforwardly ve
fied that

gkSz5Szgk. ~24!

With

gkP5gk,

we have

PSzP5
~gp1me!gk

2kp
SzP

5
~gp1me!Szgk

2kp
P

5
~gp1me!Szgk

2kp

5
~gp1me!gk

2kp
Sz5PSz ,

which is Eq.~23!.
Since Sz is a 434 diagonal matrix with element

(1,21,1,21), its eigenvectorsvs satisfy the eigenvalue
equation
e Szvs5svs , s561. ~25!

The eigenvalue equation ofPSz follows from Eqs.~23! and
~25! directly,

PSz~Pvs!5s~Pvs!, ~26!

which makes Eq.~20! separable from the bispinor space. W
factorize the wave functionPf as

Pf5ur&~Pvs!. ~27!

The ur& is a wave function belonging to the photon Hilbe
space, satisfying the following equation:

F2kp(
a

vaNa12epA2e2A21e2g2s2p21me
2G ur&50.

~28!

In our earlier work@12# we developed a Lie-algebra metho
by which we obtained analytical wave functions for a sing
nonrelativistic electron moving in a multimode arbitrari
polarized photon field. By using this method, we obtain
analytical wave functions and energy levels for a charg
harmonic oscillator in a photon field. The results for the e
ergy levels of an irradiated harmonic oscillator were used
modeling the energy shifts of atomic bound states irradia
by a laser field@16#.

Equation~28! involves only quadratic photon operator
which, in the case of a finite number of modes, form a L
algebra with finite dimensions. The problems to solve j
fits our Lie-algebra method.

To show the method, we treat the two-mode case as
example. First of all, we define a Lie algebrag by the basis
set
$N1 ,N2 ,I ,a1 ,a2 ,a1
† ,a2

† ,a1
2 ,a2

2 ,a1
†2,a2

†2, a1a2 ,a1
†a2

† ,a1a2
† ,a1

†a2%, ~29!
and

h52B1N11A1a1
21A1* a1

†212B2N21A2a2
21A2* a2

†2

12Ca1a212C* a1†a2†12Da1a2†12D* a1†a21F I

1G1a11G1* a1†1G2a21G2* a2† ~30!

is an element ofg. By defining the coefficients

B25kpv11e2g1
2 ,

B25kpv21e2g2
2 ,

A15e2g1
2cosj1e

iQ1,

A25e2g2
2cosj2e

iQ2,

~31!
C5e2g1g2cos
j11j2
2

ei ~Q11Q2!/2,

D5e2g1g2cos
j12j2
2

ei ~Q12Q2!/2,

F5me
22p21e2g2s,

G152eg1pe1 ,

G252eg2pe2 ,

Eq. ~28! can be expressed as

hur&50. ~32!

There is a trivial Cartan subalgebrah,g, with the number
operators and the identity operator as the basis set

$N1 ,N2 ,I %, ~33!
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such that the other basis elements ing are eigenoperators o
an element ofh in commutator relations; e.g.,

@2B1N112B2N2 ,a1a2
†#5~22B112B2!a1a2† . ~34!

The eigenstates for an element of the trivial Cartan alge
are very easy to find, but the problem is thath is an element
of the trivial Cartan subalgebra only in the noninteracti
case. The question becomes: Can we find an alternative
resentation such that the operatorh of an interacting system
will be an element of a trivial Cartan subalgebra in the alt
native representation? If we can, the problem is solved.

To find the alternative representation, we follow the fo
lowing numbered steps:

~i! We truncate the Lie-algebra elementh expressed by
Eq. ~30! by keeping only quadratic photon operators

h→h̄52B1N11A1a1
21A1* a1

†212B2N21A2a2
21A2* a2

†2

12Ca1a212C* a1†a2†12Da1a2†12D* a1†a2 . ~35!

~ii ! We calculate the commutators ofh̄ with operatorsa1 ,
a2 , a1

† , anda2
† successively, and write the result accordi

to the order

@ h̄,a1#522B1a122D* a222A1* a1
†22C* a2† ,

@ h̄,a2#522Da122B2a222C* a1†22A2* a2
† ,

~36!

@ h̄,a1
†#52A1a112Ca212B1a1†12Da2† ,

@ h̄,a2
†#52Ca112A2a212D* a1†12B2a2† .

~iii ! We write the transpose of the coefficient matrix of t
right-hand side of the above equation:

2S 2B1 2D A1 C
2D* 2B2 C A2

2A1* 2C* B1 D*
2C* 2A2* D B2

D . ~37!

~iv! We obtain four eigenvalues and the corresponding f
eigenvectors of the above matrix. The four eigenvalues a

r21
~1!52r11

~1! ,

r11
~1!52A 1

2 ~B1821B282!2uC8u21uD8u22Y,
~38!

r21
~2!52r11

~2! ,

r11
~2!52A 1

2 ~B1821B282!2uC8u21uD8u21Y,

where

Y5A~B2822B182!2

4
2~B282B18!2uC8u21~B181B28!2uD8u2,
ra

p-

-

r
e

B185B1cosh~2x1!1A1sinh~2x1!e
2 iQ1

5@~kpv11e2g1
2!22e4g1

4cos2j1#
1/2,

B285B2cosh~2x2!1A2sinh~2x2!e
2 iQ2

5@~kpv21e2g2
2!22e4g2

4cos2j2#
1/2,

~39!

C85C cosh~x11x2!1D sinh~x11x2!e
iQ2,

D85C sinh~x11x2!e
2 iQ21D cosh~x11x2!,

and

tanh~2x1!52
uA1u
B1

52
e2g1

2cosj1
kpv11e2g1

2 ,

~40!

tanh~2x2!52
uA2u
B2

52
e2g2

2cosj2
kpv21e2g2

2 .

In most cases the following inequalities hold:

kpv1@e2g1
2 ,

kpv2@e2g2
2 . ~41!

Hence, we can see thatx1 and x2 are small numbers, and
uB1u and uB2u are much larger thanuCu and uDu. These con-
ditions lead touB18u anduB28u being much larger thanuC8u and
uD8u. Thus all four roots are real numbers.

The expressions of the four eigenvectors obtained in
earlier work@12# can be directly used here. For the comple
ness of this paper, we just rewrite the results as follows:

c15t1U a1 a2 a1
† a2

†

22D* 22B21r11
~1! 2C 2A2

22A1* 22C* 2B11r11
~1! 2D*

22C* 22A2* 2D 2B21r11
~1!

U ,
~42!

c25t2U a1 a2 a1
† a2

†

22B11r11
~2! 22D 2A1 2C

22A1* 22C* 2B11r11
~2! 2D*

22C* 22A2* 2D 2B21r11
~2!

U ,
c1
†5t1*U a1 a2 a1

† a2
†

2C* 2A2* 22D 22B21r11
~1!

2B11r11
~1! 2D 22A1 22C

2D* 2B21r11
~1! 22C 22A2

U ,
c2
†5t2*U a1 a2 a1

† a2
†

2A1* 2C* 22B11r11
~2! 22D*

2B11r11
~2! 2D 22A1 22C

2D* 2B21r11
~2! 22C 22A2

U ,
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where the normalization constantst1 and t2 are chosen such
that

@c1 ,c1
†#5@c2 ,c2

†#5I ,

~c1!
†5c1

† , ~43!

~c2!
†5c2

† .

The other commutators are zero,

@c1 ,c2#5@c1
† ,c2

†#5@c1 ,c2
†#5@c2 ,c1

†#50. ~44!

with c-photon operators, the truncated Lie-algebra elem
h̄ can be expressed in terms of the number operatorsc
photons,

h̄5r11
~1!Nc1

1r11
~2!Nc2

, ~45!

where

Nc1
5 1

2 ~c1c1
†1c1

†c1!,

Nc2
5 1

2 ~c2c2
†1c2

†c2!. ~46!

For convenience, we write the transformation, Eq.~42!, as

c15a11a11a12a21b11a1
†1b12a2

† ,

c25a21a11a22a21b21a1
†1b22a2

† ,

~47!

c1
†5b11* a11b12* a21a11* a1

†1a12* a2
† ,

c2
†5b21* a11b22* a21a21* a1

†1a22* a2
† .

The linear operators in Eq.~30! can be written in terms o
c-photon operators,

G1a11G1* a1†1G2a21G2* a2†5G18c11G18* c1†1G28c21G28* c2† ;
~48!

thus

S G18G28G18*
G28*

D 5~L21!TS G1G2G1*
G2*

D , ~49!

where

L5S a11 a12 b11 b12

a21 a22 b21 b22

b11* b12* a11* a12*

b21* b22* a21* a22*
D . ~50!

The inverse ofL can be obtained by evaluating the mixe
commutators betweenc-photon operators anda-photon op-
erators. Thus we have
nt

L215S a11* a21* 2b11 2b21

a12* a22* 2b12 2b22

2b11* 2b21* a11 a21

2b12* 2b22* a12 a22

D . ~51!

The Lie-algebra elementh is then expressed in terms o
c-photon operators as

h5r11
~1!Nc1

1r11
~2!Nc2

1G18c11G18* c1†1G28c21G28* c2†1F I .
~52!

We can introduce now the displacement operatorD to elimi-
nate the linear terms of the annihilation and creation ope
tors

ur&→ur8&5Dur&,

~53!

D5exp~2d1c1
†1d1* c12d2c2

†1d2* c2!.

It is easy to verify that

Dc1D
†5c11d1I ,

Dc1
†D†5c1

†1d1* I ,

~54!

Dc2D
†5c21d2I ,

Dc2
†D†5c2

†1d2* I .

By choosing

d152
G18*
r11

~1! ,

d252
G28*
r11

~2! , ~55!

the Lie-algebra elementh in Eq. ~52! becomes

h85r11
~1!Nc1

1r11
~2!Nc2

1F 8I , ~56!

where

F 85me
22p21e2g2s2

uG18u2

r11
~1! 2

uG28u2

r11
~2! . ~57!

Thus, Eq.~32! becomes

h8ur8&50, ~58!

which has solutions in the form

ur8&5un1 ,n2&c , ~59!

if the following energy momentum relation is satisfied:
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54 1093RELATIVISTIC ELECTRON MOVING IN A MULTIMODE . . .
p25me
21e2g2s1r11

~1! ~n11
1
2 !1r11

~2! ~n21
1
2 !

2
uG18u2

r11
~1! 2

uG28u2

r11
~2! . ~60!

~v! We obtain the vacuum state and number states for
c-photon system. There are two ways to obtain the n
vacuum and number states. One may solve the following
of infinite-dimensional linear equations:

c1u0,0&c50,

c2u0,0&c50 ~61!

to obtain the vacuum stateu0,0&c , which has been given in
Ref. @12#. One can generate all new number states by us
new creation operatorsc1

† andc2
† to act on the new vacuum

state. The second method is used to find an expone
transformation in the photon Hilbert space to transform
old vacuum and number states to the new vacuum and n
ber states, as it transforms thea-photon operators to
c-photon operators@16#. By applying the second method, w
solved the problem of a harmonic oscillator in a radiati
field. Now we repeat our method here. We assume that
transformation of Eq.~47! can be written in an exponentia
form

efae2 f5La, ~62!

where f is a quadratic scalar operator satisfying

f5aTFa, ~63!

with a being a column vector of operators

a5S a1a2a1†
a2
†

D , ~64!

aT the transpose ofa, andF a 434 matrix in the two-mode
case. To look forf , we set

@ f ,a#5Ba, ~65!

whereB is a 434 matrix. We can easily identify the follow
ing relation:

F52 1
2 SB, ~66!

whereS is the symplectic metric matrix

S5S 0 2I

I 0 D . ~67!

By writing power expansions, we find

efae2 f5eBa. ~68!

Thus, we have

eB5L. ~69!
e
w
et

g

ial
e
m-

e

For a givenL, the condition for findingB is thatL is nons-
ingular. TheL defined by Eq.~47! is indeed nonsingular. In
a convenient notation, we write

F52 1
2 S lnL. ~70!

For an arbitrary number state, we therefore have

un1 ,n2&c5ef un1 ,n2&, ~71!

where un1 ,n2& are eigenstates ofN1 andN2 , while n1 and
n2 are the photon numbers of the two modes.

After taking the above steps numbered~i!–~v!, the prob-
lem stated is essentially solved. What remains to be d
consists of tracing back all the transformations we ha
made and writing the final solutions of the original Dira
equation. The final solutions in the two-mode case are

C~x!5Ve
21/2exp@ i ~k1N11k2N22p!x#

3~11egkgA/2kp!D†un2 ,n2&cPvs . ~72!

By a direct inspection, we see that these solutions can
formally generalized to the case with arbitrary number
photon modes propagating in the same directionk. Thus, the
generalized solutions are in the form

C~x!5Ve
21/2exp@ i ~k1N11k2N21•••2p!x#

3~11egkgA/2kp!D†un1 ,n2 , . . . &cPvs .
~73!

IV. DISCUSSION

A. Stationary states and energy levels

Without losing generality, we limit our discussion in th
two-mode case. The obtained solutions are in a Lorentz
variant form where the four coordinates, temporal and spa
coordinates, are treated equally. The solutions look tim
dependent, but they are stationary solutions as shown be
The solutions can be factorized as

C~x!5exp~2 iEt1 iH gt !C~r !, ~74!

where

Hg5v1N11v2N2 ~75!

is the Hamiltonian of the free-photon field. By the transfo
mation of Eq.~74!, the original Dirac equation, Eq.~1!, can
be cast, after multiplying withg0, into the time-independen
form

~Hg1He1V!C~r !5EC~r !, ~76!

where

He5a•~2 i¹!1bme ~77!

is the free-electron Hamiltonian, and

V52ea•@A1~2k1•r !1A2~2k2•r !# ~78!
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is the electron-photon interaction term, with

Aa~2ka•r !5exp~2 iH gt !Aa~kax!exp~ iH gt ! ~a51,2!
~79!

as the photon field operator. The positive-kinetic-energy
lutions of Eq.~76! are given by

Cpn1n2s
~r !5Ve

1/2exp@ i ~p•r2k1•rN12k2•rN2!#

3~11egkgA/2kp!D†un1 ,n2&cPvs, ~80!

whereVe is the normalization volume of the electron.
The corresponding energy eigenvalueE, the total energy

of the electron-photon system, is the temporal componen
the four-vectorp, which can be seen by comparing Eqs.~5!
and ~8! with Eq. ~74!. In the single-mode case we hav
proven thatp, the spatial component ofp, is the total mo-
mentum of the system as an eigenvalue of the total mom
tum operator2 i¹1kN. It is easy to generalize the result
the multimode case, such thatp still stands for the total
four-momentum of the electron-photon system.

From Eq.~60!, we can see that the total four-momentu
p can have a following decomposition:

p5P1kk, ~81!

whereP is on the electron-mass shell andk is a null vector,
i.e.,

P25me
2 ,

~82!

k250,

and the value ofk is

k5
1

2kP Fe2g2s1r11
~1! ~n11

1
2 !1r11

~2! ~n21
1
2 !

2
uG18u2

r11
~1! 2

uG28u2

r11
~2! G . ~83!
-

of

n-

The four-vector relation Eq.~81! can be written as

E5E1kv,

~84!

p5P1kk.

In our definition, evenv5uku51; for the convenience of ou
readers, we still spell it out clearly. The interaction ener
and momentum are

DE5kv2(
a

~na1 1
2 !va ,

~85!

Dp5kk2(
a

~na1 1
2 !ka ,

where we can see that the interaction four-momentum is
ways along the light propagating direction. In the strong
diation field cases, the interaction energy is mainly the p
deromotive energy. Equation~85! shows also that the
ponderomotive energy has its counterpart, which should
called the pondermotive momentum.

The stationary feature of these solutions is due to
quantum field treatment. In the Dirac equation, Eq.~1!, the
electromagnetic field is described by photon operators,
the photons are thus treated as particles in the closed sy
as well as the electron. In contrast, the classical Volkov
lutions are for an electron interacting with a classical el
tromagnetic~em! wave. The classical em wave is an extern
and time-dependent field. Thus, the classical Volkov so
tions are not stationary solutions, and one cannot obtain
energy level for the interacting system by the classical-fi
treatment.

B. Large-photon-number limit and nonrelativistic „NR… limit

Solutions in the large-photon-number limit and NR lim
have wide applications in MPI theory@7,15# and the Kapitza-
Dirac effect theory@14#. To obtain solutions in the large
photon-number limit we rewrite Eq.~80! by inserting an
identity operator into the expression of the solutions,
Cpn1n2s
~r !5Ve

21/2exp@ i ~p•r2k1•rN12k2•rN2!#~11egkgA/2kp!exp@ i ~k1•rN11k2•rN2!#

3exp@ i ~2k1•rN12k2•rN2!#(
l1l2

u l 1 ,l 2&^ l 1 ,l 2uD†u l 1 ,l 2&cPvs

5Ve
21/2(

l1l2
exp$ i @p•r2k1•r ~ l 11

1
2 !2k2•r ~ l 21

1
2 !#%

3@11egkgA~r !/2kp#u l 1 ,l 2&^ l 1 ,l 2uD†un1 ,n2&cPvs , ~86!
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with

A~r !5A1~2k1•r !1A2~2k2•r !.

In large-photon-number limit, we letn1 and n2 be very
large numbers, such that

giAni→L i ~ i51,2!, ~87!

while gi without multiplying byAni will be considered as 0
In the limit, ^ l 1 ,l 2uD†un1 ,n2&c depends only on the trans
ferred photon numbersj 15 l 12n1 and j 25 l 22n2 . By not-
ing

^ l 1 ,l 2uD†un1 ,n2&c→Jj 1 j 2~z!* exp~2 i j 1f12 i j 2f2!,

the solutions are simplified as

Cpn1n2s
~r !5Ve

21/2(
j 1 j 2

exp@ i ~P1~up12 j 1!k1

1~up22 j 2!k2!•r #@11egkgA~r !#/2kp

3un11 j 1 ,n21 j 2&Jj 1 j 2~z!*

3exp~2 i j 1f12 i j 2f2!Pvs , ~88!

whereJj 1 j 2(z) are the generalized Bessel functions obtain
by the integration method@12#,

Jj 1 j 2~z!5 (
q3 ,q4 ,q5 ,q6

J2 j 112q31q51q6
~z1!e

2 i ~2q31q51q6!f1

3J2 j 212q41q52q6
~z2!e

2 i ~2q41q52q6!f2

3J2q3
~z3!e

iq3f3
•••J2q6

~z6!e
iq6f6, ~89!

and

z15
2ueuL1

k1P
uP•e1u,

f15tan21@~Py /Px!tan~j1/2!#1 1
2 Q1 ,

z25
2ueuL2

k2P
uP•e2u,

f25tan21@~Py /Px!tan~j2/2!#1 1
2 Q2 ,

z35
1
2 up1cosj1 ,

f35Q1 ,

~90!
z45

1
2 up2cosj2 ,

f45Q2 ,

z552e2L1L2cos@
1
2 ~j11j2!#/~k11k2!P,

f55
1
2 ~Q11Q2!,

z652e2L1L2cos@
1
2 ~j12j2!#/~k12k2!P,

f65
1
2 ~Q12Q2!,

and
d

upi5
e2L i

2

kiP
~ i51,2!. ~91!

In the NR limit the solutions expressed by Eq.~88! can be
further simplified:

Cpn1n2
~r !5Ve

21/2(
j 1 j 2

exp$ i @P1~up12 j 1!k1

1~up22 j 2!k2#•r%un11 j 1 ,n21 j 2&Jj 1 j 2~z!*

3exp~2 i j 1f12 i j 2f2!. ~92!

In the arguments of the generalized Bessel functions,
kiP ( i51,2) need to be replaced byv ime . This result does
agree with our earlier result@12#.

C. Evaluation of electron self-energy and mass renormalization

Most applications of the nonperturbative quantum elect
dynamics ~NPQED! developed in recent years are in th
strong radiation field regime. Here we present an attemp
use the NPQED approach to treat some typical QED effe
in vacuum. The method may initiate an alternative way
evaluate free and bound electron self-energies, electron m
renormalization, and bound-electron Lamb shifts. Here
only show how this method and our results work for t
electron mass-renormalization problem. The renormali
mass can be found from the energy shift due to spontane
photon emission, which should be a part of the energy le
of the wave function shown by Eq.~73!, in principle. Since
Eq. ~73! is only for the case where all modes propagate
one direction, the mass-renormalization effect contained
the energy level of the solution Eq.~73! is only due to the
modes spontaneously emitted in that direction. To work ou
complete mass-renormalization effect, one has to deal w
all possible spontaneously emitted modes propagating in
different directions. The following approach is not rigorou
but instructive.

The energy level for an electron interacting with a sing
mode photon field is@17#

E5
P2

2me
1
C~n1 1

2 !

me
2
e2g2~P•ec!~P•ec* )

meC
, ~93!

where

C5@~mev1e2g2!22e4g4cos2j#1/2,

~94!

g5~2Vgv!21/2.

The first term in Eq.~93! is the electron kinetic energy
The second term, which is proportional to the backgrou
photon number of the field with the inclusion of the zer
point energy of the field, is important in the strong radiati
field case. The third term, which originates from theP•A
term in the Hamiltonian, is due to spontaneous emission
reabsorption. Without considering cross interactions due
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different modes in the weak-field case, the energy expres
of Eq. ~93! can be generalized to the multimode case a
reads as

E5
P2

2me
1(

C~n1 1
2 !

me
2(

e2g2~P•ec!~P•ec* !

meC
,

~95!

where the summation is made over all possible modes pr
gating in all different directions.

If there is no external radiation field, the background ph
ton numbern is zero. By ignoring the zero-point energy, th
energy shift due to all possible spontaneous emission
reabsorption is

DEk52(
e2g2uP•ecu2

me~mev1e2g2!

52(
e2

me
22Vg

uP•ecu2

v21v0
2 ~v05Ae2/2Vgme!. ~96!

The self-energy of the electron can be obtained from
above equation by performing the summation as an inte
over thek space, summing over the two independent po
izations. The result is

DE52
1

6p2

e2

me
uPu2

1

me
S vmax2v0tan

21
vmax

v0
D . ~97!

By taking a cutoff valuevmax5me and lettingVg→`, we
simplify the above expression as

DE52
1

6p2

e2

me
uPu2, ~98!

which leads to a correct renormalized mass@18#

me*5F11S 1

137D 4

3pGme , ~99!

whereme is the bare mass of the electron.

D. Comments on the quantum-field approach

There are two main reasons for using the quantum-fi

approach in strong radiation field cases. The first stems fro

tum Electrodynamics~Pergamon, Oxford, 1982!.
@3# S. Rashid, Phys. Rev. A40, 4242~1989!.
on
d

a-

-

nd

e
al
r-

ld

the fact that there might be some quantum-field effects
strong radiation field cases. If there is one, it can only
predicted by a quantum-field treatment; that is something
are still working on. The second reason is as follows.
quantum-field treatments, since the interacting system of
oms and photons has a well-defined total energy and mom
tum at every step, the quantum-field results provide a pre
prescription for formulating the relevant energy-momentu
conservation laws as the electron ionizes, acquires pond
motive energy and momentum, and then ultimately lea
the radiation field. In time-dependent semiclassical theor
those quantities are not always so well defined. The fi
reason may not convince some readers to use the quan
field approach in strong radiation field cases, but the sec
reason is sufficient enough to establish the importance of
quantum-field approach. The modeling of Bucksbaumet
al.’s experiment on the half Kapitza-Dirac effect by Guo a
Drake shows the success of the quantum-field approac
strong-field multiphoton processes.

In the most general case, the Dirac equation for an e
tron interacting with a multimode photon field propagating
different directions has not been solved. For wider appli
tions and further development on the theory, searching
exact and approximate quantum-field solutions in the m
general case is of great importance.

In the approach showed in this paper, many-electron
fects, such as vacuum polarization, production of electr
positron pairs, and some other electron-photon effects,
not included. The external field treated in this approach i
plane wave, not a solution of the Maxwell equations with t
involved electron as the radiative source of the field. Th
the reaction of the electron on the field is not included in
treatment. The obtained wave functions with a sign cha
on the mass can describe a positron, which can be seen
Eq. ~1!. Using the obtained single-body electron and positr
wave functions as basis sets to express the electron w
operator in performing second quantization, as in the tra
tional QED, many relativistic QED effects might be treat
properly by this nonperturbative method. These should
good topics for future research.
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