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Efficient networks for quantum factoring
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California Institute of Technology, Pasadena, California 91125
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We consider how to optimize memory use and computation time in operating a quantum computer. In
particular, we estimate the number of memory quantum bits~qubits! and the number of operations required to
perform factorization, using the algorithm suggested by Shor@in Proceedings of the 35th Annual Symposium
on Foundations of Computer Science,edited by S. Goldwasser~IEEE Computer Society, Los Alamitos, CA,
1994!, p. 124#. A K-bit number can be factored in time of orderK3 using a machine capable of storing
5K11 qubits. Evaluation of the modular exponential function~the bottleneck of Shor’s algorithm! could be
achieved with about 72K3 elementary quantum gates; implementation using a linear ion trap would require
about 396K3 laser pulses. A proof-of-principle demonstration of quantum factoring~factorization of 15! could
be performed with only 6 trapped ions and 38 laser pulses. Though the ion trap may never be a useful
computer, it will be a powerful device for exploring experimentally the properties of entangled quantum states.
@S1050-2947~96!01008-6#
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I. INTRODUCTION AND SUMMARY

Recently, Shor@1# has exhibited a probabilistic algorithm
that enables a quantum computer to find a nontrivial facto
a large composite numberN in a time bounded from abov
by a polynomial in log(N). As it is widely believed that no
polynomial-time factorization algorithm exists for a classic
Turing machine, Shor’s result indicates that a quantum co
puter can efficiently perform interesting computations t
are intractable on a classical computer, as had been an
pated by Feynman@2#, Deutsch@3#, and others@4#.

Furthermore, Cirac and Zoller@5# have suggested an in
genious scheme for performing quantum computation us
a potentially realizable device. The machine they envisag
an array of cold ions confined in a linear trap and interact
with laser beams. Such linear ion traps have in fact b
built @6# and these devices are remarkably well protec
from the debilitating effects of decoherence. Thus the Cir
Zoller proposal has encouraged speculation that a proo
principle demonstration of quantum factoring might be p
formed in the reasonably near future.

Spurred by these developments, we have studied the c
putational resources that are needed to carry out the fa
ization algorithm using the linear ion trap computer or
comparable device. Of particular interest is the inevita
tension between two competing requirements. Becaus
practical limitations on the number of ions that can be sto
in the trap, there is a strong incentive to minimize the nu
ber of quantum bits~qubits! in the device by managing

*Electronic address: beckman@theory.caltech.edu
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memory resources frugally. On the other hand, the dev
has a characteristic decoherence time scale and the co
tation will surely crash if it takes much longer that the dec
herence time. For this reason, and because optimizing s
is desirable anyway, there is a strong incentive to minim
the total number of elementary operations that must be c
pleted during the computation. A potential rub is that frug
memory management may result in longer computation tim

One of our main conclusions, however, is that substan
squeezing of the needed memory space can be achi
without sacrificing much in speed. A quantum computer
pable of storing 5K11 qubits can run Shor’s algorithm t
factor aK-bit numberN in a time of orderK3. Faster imple-
mentations of the algorithm are possible for asymptotica
largeN, but these require more qubits and are relatively
efficient for values ofN that are likely to be of practica
interest. For these values ofN, a device with unlimited
memory using our algorithms would be able to run only
little better than twice as fast as a device that stores 5K11
qubits. Further squeezing of the memory space is also p
sible, but would increase the computation time to a hig
power ofK.

Shor’s algorithm~which we will review in detail in Sec.
II ! includes the evaluation of the modular exponential fun
tion, that is, a unitary transformationU that acts on element
of the computational basis as

U:ua& i u0&o°ua& i uxa~modN!&o . ~1.1!

Here N is the K-bit number to be factored,a is an L-bit
number ~where usuallyL'2K), and x is a randomly se-
lected positive integer less thanN that is relatively prime to
N; u & i andu &o denote the states of the ‘‘input’’ and ‘‘output’
registers of the machine, respectively. Shor’s algorithm a
to find the period of this function, theorder of x modN.
1034 © 1996 The American Physical Society
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54 1035EFFICIENT NETWORKS FOR QUANTUM FACTORING
From the order ofx, a factor ofN can be extracted with
reasonable likelihood, using standard results of num
theory.

To perform factorization, one first prepares the input re
ister in a coherent superposition of all possibleL-bit compu-
tational basis states:

1

2L/2 (
a50

2L21

ua& i . ~1.2!

Preparation of this state is relatively simple, involving ju
L one-qubit rotations~or, for the Cirac-Zoller device, jus
L laser pulses applied to the ions in the trap!. Then the
modular exponential function is evaluated by applying
transformationU above. Finally, a discrete Fourier transfo
mation is applied to the input register and the input registe
subsequently measured. From the measured value, the
of x modN can be inferred with reasonable likelihood.

Shor’s crucial insight was that the discrete Fourier tra
form can be evaluated in polynomial time on a quant
computer. Indeed, its evaluation is remarkably efficie
With an improvement suggested by Coppersmith@7# and
Deutsch@8#, evaluation of theL-bit Fourier transform is ac-
complished by composingL one-qubit operations an
1
2 L(L21) two-qubit operations.@For the Cirac-Zoller de-
vice, implementation of the discrete Fourier transform
quiresL(2L21) distinct laser pulses.#

The bottleneck of Shor’s algorithm is the rather mo
mundane task of evaluating the modular exponential fu
tion, i.e., the implementation of the transformationU in Eq.
~1.1!. This task demands far more computational resour
than the rest of the algorithm, so we will focus on evaluat
of this function in this paper. There is a well-known~classi-
cal! algorithm for evaluating the modular exponential th
involvesO(K3) elementary operations and we will make u
of this algorithm here.

The main problem that commands our attention is
management of the ‘‘scratchpad’’ space that is needed
perform the computation, that is, the extra qubits aside fr
the input and output registers that are used in intermed
steps of the computation. It is essential to erase the scra
pad before performing the discrete Fourier transform on
input register. Before the scratchpad is erased, the state o
machine will be of the form

1

2L/2(
a

ua& i uxa~modN!&oug~a!&s , ~1.3!

whereug(a)&s denotes the ‘‘garbage’’ stored in the scratc
pad. If we were now to perform the discrete Fourier tra
form on u& i , we would be probing the periodicity propertie
of the functionxa(modN) ^ g(a), which may be quite differ-
ent than the periodicity properties ofxa(modN) that we are
interested in. Thus the garbage in the scratchpad mus
erased, but the erasure is a somewhat delicate proces
avoid destroying the coherence of the computation, era
must be performed as a reversible unitary operation.

In principle, reversible erasure of the unwanted garb
presents no difficulty. Indeed, in his pioneering paper
reversible computation, Bennett@9# formulated a genera
strategy for cleaning out the scratchpad: one can run
er
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calculation to completion, producing the state Eq.~1.3!, copy
the result from the output register to another ancillary reg
ter, and then run the computation backward to erase both
output register and the scratchpad. However, while this st
egy undoubtedly works, it may be far from optimal, for
may require the scratchpad to be much larger than is actu
necessary. We can economize on scratchpad space by
ning subprocesses backward at intermediate stages o
computation, thus freeing some registers to be reused
subsequent process.~Indeed, Bennett himself@10# described
a general procedure of this sort that greatly reduces the s
memory requirements.! However, for this reduction in re-
quired scratchpad space, we may pay a price in increa
computation time.

One of our objectives in this paper is to explore th
tradeoff between memory requirements and computa
time. This tradeoff is a central general issue in quantum co
putation ~or classical reversible computation! that we have
investigated by studying the implementation of the modu
exponential function, the bottleneck of Shor’s factorizati
algorithm. We have constructed a variety of detailed qu
tum networks that evaluate the modular exponential and
have analyzed the complexity of our networks. A conveni
~though somewhat arbitrary! measure of the complexity of a
quantum algorithm is the number of laser pulses that wo
be required to implement the algorithm on a device like t
envisioned by Cirac and Zoller. We show that ifN andx are
K-bit classical numbers anda is anL-bit quantum number,
then, on a machine with 2K11 qubits of scratch space
the computation of xa(modN) can be achieved with
198L@K21O(K)# laser pulses. If the scratch space of t
machine is increased by a single qubit, the number of pu
can be reduced by about 6%~for K large!, and ifK qubits are
added, the improvement in speed is about 29%. We a
exhibit a network that requires onlyK11 scratch qubits, but
where the required number of pulses is of orderLK4.

The smallest composite number to which Shor’s alg
rithm may be meaningfully applied isN515. ~The algorithm
fails for N even and forN5pa, p prime.! Our general pur-
pose algorithm~which works for any value ofN), in the case
N515 ~or K54, L58), would require 21 qubits and abou
15 000 laser pulses. In fact, a much faster special purp
algorithm that exploits special properties of the number
can also be constructed: for what it is worth, the spec
purpose algorithm could ‘‘factor 15’’ with 6 qubits and onl
38 pulses.

The fastest modern digital computers have difficulty fa
toring numbers larger than about 130 digits~432 bits!. Ac-
cording to our estimates, to apply Shor’s algorithm to a nu
ber of this size on the ion trap computer~or a machine of
similar design! would require about 2160 ions and 331010

laser pulses. The ion trap is an intrinsically slow device,
the clock speed is limited by the frequency of the fundam
tal vibrational mode of the trapped ions. Even under ve
favorable conditions, it seems unlikely that more than 14

operations could be implemented per second. For a com
tation of practical interest, the run time of the computation
likely to outstrip by far the decoherence time of the machi
It seems clear that a practical quantum computer will requ
a much faster clock speed than can be realized in the Ci
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1036 54BECKMAN, CHARI, DEVABHAKTUNI, AND PRESKILL
Zoller design. For this reason, a design based on cavity q
tum electrodynamics~in which processing involves excita
tion of photons rather than phonons! @11,12# may prove more
promising in the long run.

Whatever the nature of the hardware, it seems likely t
a practical quantum computer will need to invoke some ty
of error correction protocol to combat the debilitating effe
of decoherence@13#. Recent progress in the theory of erro
correcting quantum codes@14# has bolstered the hope th
real quantum computers will eventually be able to perfo
interesting computational tasks.

Although we expect that the linear ion trap is not likely
ever become a practical computer, we wish to emphasize
it is a marvelous device for the experimental studies of
peculiar properties of entangled quantum states. Cirac
Zoller @5# have already pointed out that maximally entang
states ofn ions @15# can be prepared very efficiently. Since
is relatively easy to make measurements in the Bell oper
basis for any pair of entangled ions in the trap@16#, it should
be possible to, say, demonstrate the possibility of quan
teleportation@17# ~at least from one end of the trap to th
other!.

In Sec. II of this paper, we give a brief overview of th
theory of quantum computation and describe Shor’s al
rithm for factoring. Cirac and Zoller’s proposed impleme
tation of a quantum computer using a linear ion trap is
plained in Sec. III. Section IV gives a summary of the ma
ideas that guide the design of our modular exponentia
algorithms; the details of the algorithms are spelled out
Sec. V and the complexity of the algorithms is quantified
Sec. VI. The special caseN515 is discussed in Sec. VII. In
Sec. VIII we propose a simple experimental test of the qu
tum Fourier transform. Finally, in the Appendix, we descri
a scheme for further improving the efficiency of our ne
works.

Quantum networks that evaluate the modular exponen
function have also been designed and analyzed by Des
et al. @18#, by Shor@19#, and by Vedral, Barenco, and Eke
@20#. Our main results are in qualitative agreement with
conclusions of these authors, but the networks we desc
are substantially more efficient.

II. QUANTUM COMPUTATION
AND SHOR’S FACTORIZATION ALGORITHM

A. Computation and physics

The theory of computation would be bootless if the co
putations that it describes could not actually be carried
using physically realizable devices. Hence it is really the t
of physics to characterize what is computable and to clas
the efficiency of computations. The physical world is qua
tum mechanical. Therefore, the foundations of the theory
computation must be quantum mechanical as well. The c
sical theory of computation~e.g., the theory of the universa
Turing machine! should be viewed as an important spec
case of a more general theory.

A ‘‘quantum computer’’ is a computing device that in
vokes intrinsically quantum-mechanical phenomena, suc
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interference and entanglement.1 In fact, a Turing machine
can simulate a quantum computer to any desired accu
~and vice versa!; hence the classical theory and the mo
fundamental quantum theory of computation agree on w
is computable@3#. But they may disagree on the classific
tion of complexity; what is easy to compute on a quantu
computer may be hard on a classical computer.

B. Bits and qubits

In classical theory, the fundamental unit of information
the bit: it can take either of two values, say 0 and 1. A
classical information can be encoded in bits and any class
computation can be reduced to fundamental operations
flip bits ~changing 0 to 1 or 1 to 0! conditioned on the values
of other bits.

In the quantum theory of information, the bit is replac
by a more general construct: the quantum bit, orqubit. We
regardu0& andu1& as the orthonormal basis states for a tw
dimensional complex vector space. The state of a qubit~if
‘‘pure’’ ! can be any normalized vector, denoted

c0u0&1c1u1&, ~2.1!

where c0 and c1 are complex numbers satisfyinguc0u2

1uc1u251. A classical bit can be viewed as the special ca
in which the state of the qubit is always eitherc051,
c150 or c050, c151.

The possible pure states of a qubit can be parametrize
two real numbers.~The overall phase of the state is phys
cally irrelevant.! Nevertheless, only one bit of classical in
formation can be stored in a qubit and reliably recovered
the value of the qubit in the state Eq.~2.1! is measured, the
result is 0 with probabilityuc0u2 and 1 with probability

uc1u2; in the caseuc0u25uc1u25 1
2 , the outcome of the mea

surement is a random number and we recover no informa
at all.

A string of n classical bits can take any one of 2n possible
values. Forn qubits, these 2n classical strings are regarde
as the basis states for a complex vector space of dimen
2n and a pure state ofn qubits is a normalized vector in thi
space.

C. Processing

In a quantum computation,n qubits are initially prepared
in an algorithmically simple input state, such as

u input&5u0&u0&u0&•••u0&. ~2.2!

Then a unitary transformationU is applied to the input state
yielding an output state

uoutput&5Uu input&. ~2.3!

Finally, a set of commuting observablesO1 ,O2 ,O3 , . . . is
measured in the output state. The measured values of t
observables constitute the outcome of the computation. S
the output state is not necessarily an eigenstate of the m

1For a lucid review of quantum computation and Shor’s alg
rithm, see@21#.
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54 1037EFFICIENT NETWORKS FOR QUANTUM FACTORING
sured observables, the quantum computation is not deter
istic; rather, the same computation, performed many tim
will generate a probability distribution of possible outcome

@Note that the observables that are measured in the
step are assumed to be simple in some sense; otherwis
transformationU would be superfluous. Without loss of ge
erality, we may specify that the values of all qubits~or a
subset of the qubits! are measured at the end of the comp
tation; that is, thej th qubit u& j is projected onto the ‘‘com-
putational basis’’$u0& j ,u1& j%.#

To characterize the complexity of a computation, we m
formulate some rules that specify how the transformat
U is constructed. One way to do this is to demand thatU is
expressed as a product of elementary unitary transfor
tions, or ‘‘quantum gates,’’ that act on a bounded number
qubits ~independent ofn). In fact, it is not hard to see@22#
that ‘‘almost any’’ two-qubit unitary transformation, togeth
with qubit swapping operations, is universal for quantu
computation. That is, given a generic 434 unitary matrix
Ũ, let Ũ ( i , j ) denoteŨ acting on thei th and j th qubits ac-
cording to

Ũ ~ i , j !:ue i& i ue j& j°Ũe ie j ,e
i8e

j8
ue i8& i ue j8& j . ~2.4!

Then any 2n32n unitary transformationU can be approxi-
mated to arbitrary precision by a finite string ofŨ ( i , j )’s,

U.Ũ ~ i T , j T!
•••Ũ ~ i 2 , j 2!Ũ ~ i 1 , j 1!. ~2.5!

The lengthT of this string~the ‘‘time’’ ! is a measure of the
complexity of the quantum computation.

Determining the precise string ofŨ ( i , j )’s that is needed to
perform a particular computational task may itself be co
putationally demanding. Therefore, to have a reasonable
tion of complexity, we should require that a convention
computer~a Turing machine! generates the instructions fo
constructing the unitary transformationU. The complexity of
the computation is actually the sum of the complexity of t
classical computation and the complexity of the quant
computation. Then we may say that a problem istractableon
a quantum computer if the computation that solves the pr
lem can be performed in a time that is bounded from ab
by a polynomial inn, the number of qubits contained in th
quantum register. This notion of tractability has the n
property that it is largely independent of the details of t
design of the machine, that is, the choice of the fundame
quantum gates. The quantum gates of one device can
simulated to polynomial accuracy in polynomial time by t
quantum gates of another device.

It is also clear that a classical computer can simulat
quantum computer to any desired accuracy: all that is
quired to construct the stateuoutput& is repeated matrix mul-
tiplication and we can simulate the final measurement of
observables by expandinguoutput& in a basis of eigenstate
of the observables. However, the classical simulation m
involve matrices of exponentially large size (U is a 2n32n

matrix! and so may take an exponentially long time. It w
this simple observation that led Feynman@2# to suggest that
quantum computers may be able to solve certain probl
far more efficiently than classical computers.
in-
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D. Massive parallelism

Deutsch@3# put this suggestion in a more tangible form b
emphasizing that a quantum computer can exploit ‘‘mass
quantum parallelism.’’ Suppose we are interested in study
the properties of a functionf defined on the domain of non
negative integers 0,1,2,. . . ,2L21. Imagine that a unitary
transformationU f can be constructed that efficiently com
putesf :

U f :u~ i L21i L22 . . . i 1i 0!& inu~00•••00!&out

°u~ i L21i L22 . . . i 1i 0!& inu f ~ i L21i L22••• i 1i 0!&out.

~2.6!

Here (i L21i L22••• i 1i 0) is an integer expressed in binar
notation andu( i L21i L22 . . . i 1i 0)& denotes the correspondin
basis state ofL qubits. Since the functionf might not be
invertible, U f has been constructed to leave the state in
u& in register undisturbed to ensure that it is indeed a rev
ible operation.

Equation ~2.6! defines the action ofU f on each of 2L

basis states and hence, by linear superposition, on all s
of a 2L-dimensional Hilbert space. In particular, starting wi
the stateu(00•••00)& in and applying single-qubit unitary
transformations to each of theL qubits, we can easily pre
pare the state

S 1

A2
u0&1

1

A2
u1& D L

5
1

2L/2 (
i L2150

1

••• (
i 150

1

(
i 050

1

u~ i L21i L22••• i 1i 0!& in

[
1

2L/2 (
x50

2L21

ux& in , ~2.7!

an equally weighted coherent superposition of all of theL

distinct basis states. With this input, the action ofU f pre-
pares the state

uc f&[
1

2L/2 (
x50

2L21

ux& inu f ~x!&out. ~2.8!

The highly entangled quantum state Eq.~2.8! exhibits what
Deutsch called ‘‘massive parallelism.’’ Although we hav
run the computation~applied the unitary transformatio
U f) only once, in a sense this state encodes the value o
function f for each possible value of the input variablex.
Were we to measure the value of all the qubits of the in
register, obtaining the resultx5a, a subsequent measure
ment of the output register would reveal the value off (a).
Unfortunately, the measurement will destroy the entang
state, so the procedure cannot be repeated. We succeed,
in unambiguously evaluatingf for only a single value of its
argument.

E. Periodicity

Deutsch @3# emphasized, however, that certain glob
properties of the functionf can be extracted from the stat
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1038 54BECKMAN, CHARI, DEVABHAKTUNI, AND PRESKILL
Eq. ~2.8! by making appropriate measurements. Suppose
example, thatf is a periodic function ~defined on the non-
negative integers!, whose periodr is much less than 2L

~where r does not necessarily divide 2L) and that we are
interested in finding the period. In general, determiningr is a
computationally difficult task~for a classical computer! if r
is large. Shor’s central observation is that a quantum co
puter, by exploiting quantum interference, can determine
period of a function efficiently.

Given the state Eq.~2.8!, this computation of the period
can be performed by manipulating~and ultimately measur
ing! only the state of the input register; the output regis
need not be disturbed. For the purpose of describing the
come of such measurements, we may trace over the u
served state of the output register, obtaining the mixed d
sity matrix

r in, f[trout~ uc f&^c f u!5
1

r (
k50

r 21

uck&^cku, ~2.9!

where

uck&5
1

AN (
j 50

N21

ux5k1r j & in ~2.10!

is the coherent superposition of all the input states that
mapped to a given output.@HereN21 is the greatest intege
less than (2L2k)/r .#

Now, Shor showed that the unitary transformation

T:ux&°
1

2L/2 (
y50

2L21

e2p ixy/2L
uy& ~2.11!

~the Fourier transform! can be composed from a number
elementary quantum gates that is bounded from above
polynomial inL. The Fourier transform can be used to pro
the periodicity properties of the state Eq.~2.9!. If we apply
T to the input register and then measure its valuey, the
outcome of the measurement is governed by the probab
distribution

P~y!5
N
2L U 1

N (
j 50

N21

e2p iyr j /2LU2

. ~2.12!

This probability distribution is strongly peaked about valu
of y of the form

y

2L 5
~ integer!

r
6O~22L!, ~2.13!

where the integer is a random number less thanr . ~For other
values ofy, the phases in the sum overj interfere destruc-
tively.! Now suppose that the periodr is known to be less
than 2L/2. The minimal spacing between two distinct ration
numbers, both with denominator less than 2L/2, is O(22L).
Therefore, if we measurey, the rational number with de
nominator less than 2L/2 that is closest toy/2L is reasonably
likely to be a rational number with denominatorr , where the
numerator is a random number less thanr . Finally, it is
known that if positive integersr ands,r are randomly se-
or

-
e

r
t-
b-
n-

re

a

ty

s

l

lected, thenr ands will be relatively prime with a probabil-
ity of order 1/log logr. Hence, even after the rational numb
is reduced to lowest terms, it is not unlikely that the denom
nator will be r .

We conclude then~if r is known to be less than 2L/2) that
each time we prepare the state Eq.~2.8!, apply theT to the
input register, and then measure the input register, we ha
probability of order 1/log logr.1/logL of successfully infer-
ring from the measurement the periodr of the function f .
Hence, if we carry out this procedure a number of times t
is large compared to logL, we will find the period off with
probability close to unity.

All that remains to be explained is how the constructi
of the unitary transformationT is actually carried out. A
simpler construction than the one originally presented
Shor @1# was later suggested by Coppersmith@7# and
Deutsch@8#. ~It is, in fact, the standard fast Fourier tran
form, adapted for a quantum computer.! In their construc-
tion, two types of elementary quantum gates are used.
first type is a single-qubit rotation

U ~ j !:S u0& j

u1& j
D °

1

A2
S 1 1

1 21D S u0& j

u1& j
D , ~2.14!

the same transformation that was used to construct the
Eq. ~2.7!. The second type is a two-qubit conditional pha
operation

V~ j ,k!~u!:ue& j uh&k°ei ehuue& j uh&k . ~2.15!

That is,V( j ,k)(u) multiplies the state by the phaseeiu if both
the j th and kth qubits have the value 1 and acts trivial
otherwise.

It is not difficult to verify that the transformation

T̂[$U ~0!V~0,1!~p/2!V~0,2!~p/4!•••V~0,L21!~p/2L21!%

3$U ~L23!V~L23,L22!~p/2!V~L23,L21!~p/4!%

3$U ~L22!V~L22,L21!~p/2!%$U ~L21!% ~2.16!

acts as specified in Eq.~2.11!, except that the order of the
qubits iny is reversed.2 ~Here the transformation furthest t
the right acts first.! We may act on the input register wit
T̂ rather thanT, and then reverse the bits ofy after the mea-
surement. Thus the implementation of the Fourier transfo
is achieved by composing altogetherL one-qubit gates and
L(L21)/2 two-qubit gates.

Of course, in an actual device, the phases of
V( j ,k)(u) gates will not be rendered with perfect accurac
Fortunately, the peaking of the probability distribution in E
~2.12! is quite robust. As long as the errors in the phas
occurring in the sum overj are small compared to 2p, con-
structive interference will occur when the condition E
~2.13! is satisfied. In particular, the gates in Eq.~2.16! with
small values ofu5p/2u j 2ku can be omitted, without much
affecting the probability of finding the correct period of th

2For a lucid explanation, see@19#.
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function f . Thus~as Coppersmith@7# observed! the time re-
quired to execute theT operation to fixed accuracy increas
only linearly with L.

F. Factoring

The above observations show that a quantum comp
can find the prime factors of a number efficiently, for it
well known that factoring can be reduced to the problem
finding the period of a function. Suppose we wish to find
nontrivial prime factor of the positive integerN. We choose
a random numberx,N. We can efficiently check, using Eu
clid’s algorithm, whetherx andN have a common factor. I
so, we have found a factor ofN, as desired. If not, let us
compute the period of the modular exponential function

f N,x~a![xa~modN!. ~2.17!

The period is the smallest positiver such that
xr[1( modN), called theorder of x modN. It exists when-
everN andx,N have no common factor.

Now suppose thatr is even and thatxr /2Ó21( modN).
Then, since N divides the product (xr /211)(xr /221)
5xr21, but does not divide either one of the facto
(xr /261), N must have a common factor with each
(xr /261). This common factor, a nontrivial factor ofN, can
then be efficiently computed.

It only remains to consider how likely it is, given a ran
dom x relatively prime toN, that the conditionsr even and
xr /2Ó21(modN) are satisfied. In fact, it can be show
@19,21# that, forN odd, the probability that these condition
are met is at least 1/2, except in the case whereN is a prime
power (N5pa, p prime!. @The trouble withN5pa is that in
this case61 are theonly ‘‘square roots’’ of 1 in multiplica-
tion modN, so that, even ifr is even,xr /2[21(modN) will
always be satisfied.# Anyway, if N is of this exceptional type
~or if N is even!, it can be efficiently factored by conven
tional ~classical! methods.

Thus Shor formulated a probabilistic algorithm for facto
ing N that will succeed with probability close to 1 in a tim
that is bounded from above by a polynomial in logN. To
factor N we chooseL so that, say,N2<2L,2N2. Then,
since we know thatr ,N,2L/2 we can use the method de
scribed above to efficiently compute the periodr of the func-
tion f N,x . We generate the entangled state Eq.~2.8!, apply
the Fourier transform, and measure the input register,
generating a candidate value ofr . Then, a classical compute
is used to find the greatest common divisor of (xr /221,N). If
there is a nontrivial common divisor, we have succeeded
finding a factor ofN. If not, we repeat the procedure until w
succeed.

Of course, it is implicit in the above description that th
evaluation of the functionf N,x can be performed efficiently
on the quantum computer. The computational complexity
f N,x is, in fact, the main topic of this paper.

G. Outlook

It is widely believed that no classical algorithm can fac
a large number in polynomially bounded time~though this
has never been rigorously demonstrated!. The existence of
Shor’s algorithm, then, indicates that the classification
er

f

us

in

f

r

f

complexity for quantum computation differs from the corr
sponding classical classification. Aside from being an int
esting example of an intrinsically hard problem, factoring
also of some practical interest: the security of the wid
used RSA public key cryptography scheme@23# relies on the
presumed difficulty of factoring large numbers.

It is not yet known whether a quantum computer can
ficiently solve ‘‘NP-complete’’ problems, which are be
lieved to be intrinsically more difficult than the factorin
problem.~The ‘‘traveling salesman problem’’ is a notoriou
example of anNP-complete problem.! It would be of great
fundamental interest~and perhaps of practical interest! to
settle this question. Conceivably, a positive answer could
found by explicitly exhibiting a suitable algorithm. In an
event, better characterizing the class of problems that ca
solved in ‘‘quantum polynomial time’’ is an important un
solved problem.

The quantum factoring algorithm works by coheren
summing an exponentially large number of amplitudes t
interfere constructively, building up the strong peaks in t
probability distribution Eq.~2.12!. Unfortunately, this ‘‘ex-
ponential coherence’’ is extremely vulnerable to the effe
of noise@13#. When the computer interacts with its enviro
ment, the quantum state of the computer becomes entan
with the state of the environment; hence the pure quan
state of the computer decays to an incoherent mixed sta
phenomenon known as decoherence. Just as an illustra
imagine that, after the coherent superposition state Eq.~2.10!
is prepared, each qubit has a probabilityp!1 of decohering
completely before theT is applied and the device is mea
sured; in other words,pL of the L qubits decohere and th
state of the computer becomes entangled with 2pL mutually
orthogonal states of the environment. Thus the numbe
terms in the coherent sum in Eq.~2.12! is reduced by the
factor 22pL and the peaks in the probability distribution a
weakened by the factor 222pL. For any nonzerop, then, the
probability of successfully finding a factor decreases ex
nentially asL grows large.

Interaction with the environment, and hence decoheren
always occur at some level. It seems, then, that the pote
of a quantum computer to solve hard problems efficien
can be realized only if suitable schemes are found that c
trol the debilitating effects of decoherence. In some rema
able recent developments@14#, clever error correction
schemes have been proposed for encoding andstoringquan-
tum information that sharply reduce its susceptibility
noise. Some remaining challenges are to incorporate e
correction into the operation of a quantum network~so that it
can operate with high reliability in spite of the effects
decoherence! and to find efficient error-correction schem
that can be implemented in realistic working devices.

III. THE LINEAR ION TRAP

A. A realizable device

The hardware for a quantum computer must meet a v
ety of demanding criteria. A suitable method for storing q
bits should be chosen such that~1! the state of an individua
qubit can be controlled and manipulated,~2! carefully con-
trolled strong interactions between distinct qubits can be
duced~so that nonlinear logic gates can be constructed!, and
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~3! the state of a qubit can be read out efficiently. Furth
more, to ensure effective operation~1! the storage time for
the qubits must be long enough so that many logical op
tions can be performed,~2! the machine should be free o
imperfections that could introduce errors in the logic gat
and ~3! the machine should be well isolated from its en
ronment, so that the characteristic decoherence time is s
ciently long.

Cirac and Zoller@5# proposed an incarnation of a quantu
computer that meets these criteria remarkably well and
may be within the grasp of existing technology. In their pr
posal, ions are collected in a linear harmonic trap. The in
nal state of each ion encodes one qubit: the ground s
ug& is interpreted asu0& and a long-lived metastable excite
stateue& is interpreted asu1&. The quantum state of the com
puter in this basis can be efficiently read out by the ‘‘qua
tum jump method’’@24#. A laser is tuned to a transition from
the stateug& to a short-lived excited state that decays back
ug&; when the laser illuminates the ions, each qubit w
value u0& fluoresces strongly, while the qubits with valu
u1& remain dark.

Coulomb repulsion keeps the ions sufficiently well sep
rated that they can beindividually addressed by pulsed lase
@6#. If a laser is tuned to the frequencyv, where\v is the
energy splitting betweenug& and ue&, and is focused on the
the i th ion, then Rabi oscillations are induced betweenu0& i

and u1& i . By timing the laser pulse properly and choosi
the phase of the laser appropriately, we can prepare thei th
ion in an arbitrary superposition ofu0& i andu1& i . ~Of course,
since the statesug& and ue& are nondegenerate, the relativ
phase in this linear combination rotates with time ase2 ivt

even when the laser is turned off. It is most convenient
express the quantum state of the qubits in the interac
picture, so that this time-dependent phase is rotated awa!

Crucial to the functioning of the quantum computer a
the quantum gates that induce entanglement between dis
qubits. The qubits must interact if nontrivial quantum ga
are to be constructed. In the ion trap computer, the inte
tions are effected by the Coulomb repulsion between
ions. Because of the mutual Coulomb repulsion, there
spectrum of coupled normal modes for the ion motion. Wh
an ion absorbs or emits a laser photon, the center of mas
the ion recoils. But if the laser is properly tuned, then wh
a single ion absorbs or emits, a normal mode involving ma
ions will recoil coherently~as in the Mo¨ssbauer effect!.

The vibrational mode of lowest frequency~frequencyn)
is the center-of-mass~c.m.! mode, in which the ions oscillate
in lockstep in the harmonic well of the trap. The ions can
laser cooled to a temperature much less thann, so that each
vibrational normal mode is very likely to occupy it
quantum-mechanical ground state. Now imagine that a la
tuned to the frequencyv2n shines on thei th ion. For a
properly timed pulse~a p pulse, or akp pulse fork odd!, the
stateue& i will rotate to ug& i , while the c.m. oscillator make
a transition from its ground stateu0& c.m. to its first excited
stateu1&c.m. ~a c.m. ‘‘phonon’’ is produced!. However, the
stateug& i u0&c.m. is not on resonance for any transition and
is unaffected by the pulse. Thus, with a single laser pulse
may induce the unitary transformation
-
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Wphon
~ i ! :H ug& i u0&c.m.°ug& i u0&c.m.

ue& i u0&c.m.°2 i ug& i u1&c.m.
. ~3.1!

This operation removes a bit of information that is initial
stored in the internal state of thei th ion and deposits the bi
in the c.m. phonon mode. ApplyingWphon

( i ) again would re-
verse the operation~up to a phase!, removing the phonon and
reinstating the bit stored in ioni . However, all of the ions
couple to the c.m. phonon, so that once the information
been transferred to the c.m. mode, this information will
fluence the response of ionj if a laser pulse is subsequent
directed at that ion. By this scheme, nontrivial logic ga
can be constructed, as we will describe in more detail bel

An experimental demonstration of an operation similar
W phon

( i ) was recently carried out by Monroeet al. @27#. In this
experiment, a single9Be1 ion occupied the trap. In earlie
work, a linear trap was constructed that held 33 ions,
these were not cooled down to the vibrational ground st
The effort to increase the number of qubits in a worki
device is ongoing.

Perhaps the biggest drawback of the ion trap is that it is
intrinsically slow device. Its speed is ultimately limited b
the energy-time uncertainty relation; since the uncertainty
the energy of the laser photons should be small compare
the characteristic vibrational splittingn, the pulse must last a
time large compared ton21. In the Monroeet al.experiment,
n was as large as 50 MHz, but it is likely to be orders
magnitude smaller in a device that contains many ions.

In an alternate version of the above scheme~proposed by
the Pellizzariet al. @12#! many atoms are stored in an optic
cavity and the atoms interact via the cavity photon mo
~rather than the c.m. vibrational mode!. In principle, quan-
tum gates in a scheme based on cavity QED could be int
sically much faster than gates implemented in an ion trap.
experimental demonstration of a rudimentary quantum g
involving photons interacting with an atom in a cavity w
recently reported by Turchetteet al. @11#.

B. Conditional phase gate

An interesting two-qubit gate can be constructed by
plying three laser pulses@5#. After a phonon has been~con-
ditionally! excited, we can apply a laser pulse to thej th ion
that is tuned to the transitionug& j u1&c.m.°ue8& j u0&c.m., where
ue8& is another excited state~different from ue&) of the ion.
The effect of a 2p pulse is to induce the transformation

V~ j !:5
ug& j u0&c.m.°ug& j u0&c.m.

ue& j u0&c.m.°ue& j u0&c.m.

ug& j u1&c.m.°2ug& j u1&c.m.

ue& j u1&c.m.°ue& j u1&c.m..

~3.2!

Only the phase of the stateug& j u1&c.m. is affected by the 2p
pulse, because this is the only state that is on resonance
transition when the laser is switched on.~It would not have
had the same effect if we had tuned the laser to the trans
from ug&u1&c.m. to ue&u0&c.m., because then the stat
ue&u0&c.m. would also have been modified by the pulse.! Ap-
plying Wphon

( i ) again removes the phonon and we find that
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V~ i , j ![Wphon
~ i ! V~ j !W phon

~ i ! :ue& i uh& j°~21!ehue& i uh& j
~3.3!

is aconditional phasegate; it multiplies the quantum state b
(21) if the qubitsu& i and u& j both have the value 1 and ac
trivially otherwise. A remarkable and convenient feature
this construction is that the two qubits that interact need
be in neighboring positions in the linear trap. In princip
the ions on which the gate acts could be arbitrarily far ap

This gate can be generalized so that the conditional ph
(21) is replaced by an arbitrary phaseeiu: we replace the
2p pulse directed at ionj by two p pulses with differing
values of the laser phase and modify the laser phase for
of p pulses directed at ioni . Thus, with four pulses, we
construct the conditional phase transformationV( i , j )(u) de-
fined in Eq.~2.15! that is needed to implement the Fouri
transformT̂. The L-qubit Fourier transform, then, requirin
L(L21)/2 conditional phase gates andL single-qubit rota-
tions, can be implemented with altogetherL(2L21) laser
pulses.

Actually, we confront one annoying little problem whe
we attempt to implement the Fourier transform. The sing
qubit rotations that can be simply induced by shining
laser on an ion are unitary transformations with determin
one ~the exponential of an off-diagonal Hamiltonian!, while
the rotationU ( j ) defined in Eq.~2.14! actually has determi-
nant (21). We can replaceU ( j ) in the construction of the
T̂ operator@Eq. ~2.16!# by the transformation

Ũ ~ j !:~ u0& j u1& j !°
1

A2
S 1 1

21 1D S u0& j

u1& j
D ~3.4!

~which can be induced by a single laser pulse with prope
chosen laser phase!. However, the transformationT̃ thus con-
structed differs fromT̂ according to

^yuT̃_ux&5~21!Par~y!^yuT̂ ux&, ~3.5!

where Par(y) is theparity of y, the number of 1’s appearin
in its binary expansion. Fortunately, the additional pha
Par(y) has no effect on the probability distribution E
~2.12!, so this construction is adequate for the purpose
carrying out the factorization algorithm.

C. Controlled k-NOT gate

The conditional (21) phase gate Eq.~3.3! differs from a
controlled-NOT gate by a mere change of basis@5#. The
controlled-NOT operationCv i b , j acts as

Cv i b , j :ue& i uh& j°ue& i uh % e& j , ~3.6!

where% denotes the logicalXOR operation~binary addition
mod 2!. ThusCv i b , j flips the value of the target qubitu& j if the
control qubitu& i has the value 1 and acts trivially otherwis
We see that the controlled-NOT can be constructed as

Cv i b , j[@Ũ ~ j !#21V~ i , j !Ũ ~ j !5@Ũ ~ j !#21Wphon
~ i ! V~ j !W phon

~ i ! Ũ ~ j !,
~3.7!

whereŨ ( j ) is the single-qubit rotation defined in Eq.~3.4!.
Since Ũ ( j ) ~or its inverse! can be realized by directing
f
t

,
t.
se

ne

-
e
t

e

f

p/2 pulse at ionj , we see that the controlled-NOT operation
can be implemented in the ion trap with altogether five la
pulses.

The controlled-NOT gate can be generalized to an ope
tion that has a string ofk control qubits; we will refer to this
operation as the controlledk- NOT operation.~For k52, it is
often called the Toffoli gate.! Its action is

Cv i 1 , . . . ,i kb , j :ue1& i 1
•••uek& i k

ue& j

°ue1& i 1
•••uek& i k

ue % ~e1`•••`ek!& j , ~3.8!

where` denotes the logicalAND operation~binary multipli-
cation!. If all k of the control qubits labeledi 1 , . . . ,i k take
the value 1, thenCv i 1 , . . . ,i kb , j flips the value of the targe

qubit labeled j ; otherwise,Cv i 1 , . . . ,i kb , j acts trivially. To
implement this gate in the ion trap, we will make use of
operationVphon

( i ) that is induced by directing ap pulse at ion
i tuned to the transitionug& i u1& c.m.°ue8& j u0& c.m.; its action
is

Vphon
~ i ! :5

ug& i u0&c.m.°ug& i u0&c.m.

ue& i u0&c.m.°ue& i u0&c.m.

ug& i u1&c.m.°2 i ue8& i u0&c.m.

ue& i u1&c.m.°ue& i u1&c.m..

~3.9!

The pulse has no effect unless the initial state
ug& i u1&c.m., in which case the phonon is absorbed and ioi
undergoes a transition to the stateue8& i . We thus see that the
controlledk- NOT gate can be constructed as@5#

Cv i 1 , . . . ,i kb , j[@Ũ ~ j !#21Wphon
~ i 1! V phon

~ i 2!
•••Vphon

~ i k!

3V~ j !Vphon
~ i k!

•••Vphon
~ i 2! Wphon

~ i 1! Ũ ~ j !. ~3.10!

To understand how the construction works, note first of
that if e150, no phonon is ever excited and none of t
pulses have any effect. Ife15e25•••5em2151 and
em50 (m<k), then the firstWphon

( i 1) produces a phonon that i

absorbed during the firstVphon
( i m) operation, reemited during th

secondVphon
( i m) operation, and finally absorbed again during t

secondWphon
( i 1) ; the other pulses have no effect. Since each

the four pulses that is on resonance advances the phase o
state by p/2, there is no net change of phase.
e15e25•••5ek51, then a phonon is excited by the fir
W phon

( i 1) and all of theVphon
( i m) ’s act trivially; hence, in this case

Cv i 1 , . . . ,i kb , j has the same action asCv i 1b , j .

We find, then, that the controlledk-NOT gate (k
51,2, . . . ) can beimplemented in the ion trap with alto
gether 2k13 laser pulses. These gates are the fundame
operations that we will use to build the modular exponen
function.3

3In fact, the efficiency of our algorithms could be improved som
what if we adopted other fundamental gates that can also be sim
implemented with the ion trap. Implementations of some alterna
gates are briefly discussed in the Appendix.
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IV. MODULAR EXPONENTIATION:
SOME GENERAL FEATURES

In Sec. V we will describe in detail several algorithms f
performing modular exponentiation on a quantum compu
These algorithms evaluate the function

f N,x~a!5xa~modN!, ~4.1!

whereN andx areK-bit classical numbers~c numbers! and
a is anL-qubit quantum number~q number!. Our main mo-
tivation, of course, is that the evaluation off N,x is the bottle-
neck of Shor’s factorization algorithm.

Most of our algorithms require a ‘‘time’’~number of el-
ementary quantum gates! of orderK3 for largeK. In fact, for
asymptotically largeK, faster algorithms@time of order
K2log(K)loglog(K)# are possible: these take advantage
tricks for performing efficient multiplication of very larg
numbers@25#. We will not consider these asymptotical
faster algorithms in any detail here. Fast multiplication
quires additional storage space. Furthermore, because
multiplication carries a high overhead cost, the advantag
speed is realized only when the numbers being multiplied
enormous.

We will concentrate instead on honing the efficiency
algorithms requiringK3 time and will study the tradeoff o
computation time versus storage space for these algorith
We will also briefly discuss an algorithm that takes cons
erably longer (K5 time!, but enables us to compress the st
age space further.

Finally, we will describe a ‘‘customized’’ algorithm tha
is designed to evaluatef N,x in the caseN515, the smallest
value of N for which Shor’s algortihm can be applied. Un
surprisingly, this customized algorithm is far more efficie
both in terms of computation time and memory use, than
general purpose algorithms that apply for any value ofN and
x.

A. The model of computation

1. A classical computer and a quantum computer

The machine that runs our program can be envisioned
quantum computer controlled by a classical computer. T
input that enters the machine consists of both classical
~a string of classical bits! and quantum data~a string of qu-
bits prepared in a particular quantum state!. The classical
data take a definite fixed value throughout the computat
while for the quantum data coherent superpositions of dif
ent basis states may be considered~and quantum entangle
ment of different qubits may occur!. The classical compute
processes the classical data and produces an output tha
program for the quantum computer.

The quantum computer is a quantum gate network of
sort described by Deutsch@3#. The program prepared by th
classical computer is a list of elementary unitary transform
tions that are to be applied sequentially to the input stat
the quantum register.~Typically, these elementary transfo
mations act on one, two, or three qubits at a time; their p
cise form will vary depending on the design of the quant
computer.! Finally, the classical computer calls a routine th
measures the state of a particular string of qubits and
r.
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result is recorded. The result of this final measurement is
output of our device.

This division between classical and quantum data is
strictly necessary. Naturally, ac number is just a special cas
of a q number, so we could certainly describe the who
device as a quantum gate network~though, of course, our
classical computer, unlike the quantum network, can perfo
irreversible operations!. However, if we are interested in how
a practical quantum computer might function, the distincti
between the quantum computer and the classical comput
vitally important. In view of the difficulty of building and
operating a quantum computer, if there is any operation p
formed by our device that is intrinsically classical, it will b
highly advantageous to assign this operation to the class
computer; the quantum computer should be reserved
more important work.~This is especially so since it is likely
to be quite a while before a quantum computer’s ‘‘clo
speed’’ will approach the speed of contemporary class
computers.!

2. Counting operations

Accordingly, when we count the operations that our alg
rithms require, we will be keeping track only of the eleme
tary gates employed by the quantum computer and will
discuss in detail the time required for the classical compu
to process the classical data. Of course, for our device to
able to perform efficient factorization, the time required f
the classical computation must be bounded above by a p
nomial in K. In fact, the classical operations take a time
order K3; thus the operation of the quantum computer
likely to dominate the total computation time even for a ve
long computation.4

In the case of the evaluation of the modular exponen
function f N,x(a), the classical input consists ofN andx and
the quantum input isa stored in the quantum register; i
addition, the quantum computer will require some additio
qubits~initially in the stateu0&) that will be used for scratch
space. The particular sequence of elementary quantum g
that are applied to the quantum input will depend on
values of the classical variables. In particular, the numbe
operations is actually a complicated function ofN andx. For
this reason, our statements about the number of operat
performed by the quantum computer require clarification

We will report the number of operations in two form
which we will call the ‘‘worst case’’ and the ‘‘average
case.’’ Our classical computer will typically compute an
read a particular classical bit~or sequence of bits! and then
decide on the basis of its value what operation to instruct
quantum computer to perform next. For example, the qu
tum computer might be instructed to apply a particular
ementary gate if the classical bit reads 1, but to do nothin
it reads 0. To count the number of operations in the wo
case, we will assume that the classical control bits alw

4Indeed, one important reason that we insist that the quan
computer is controlled by a classical computer is that we wan
have an honest definition of computational complexity; if it r
quired an exponentially long classical computation to figure
how to program the quantum computer, it would be misleading
say that the quantum computer could solve a problem efficient
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54 1043EFFICIENT NETWORKS FOR QUANTUM FACTORING
assume the value that maximizes the number of operat
performed. This worst case counting will usually be a serio
overestimate. A much more realistic estimate is obtaine
we assume that the classical control bits are random~0 50%
of the time and 1 50% of the time!. This is how the average
case estimate is arrived at.

3. The basic machine and the enhanced machine

Our quantum computer can be characterized by the
ementary quantum gates that are ‘‘hard wired’’ in the devi
We will consider two different possibilities. In our ‘‘basi
machine’’ the elementary operations will be the single-qu
NOT operation, the two-qubit controlled-NOT operation, and
the three-qubit controlled-controlled-NOT operation~or Tof-
foli gate!. These elementary gates are not computation
universal ~we cannot construct arbitrary unitary operatio
by composing them!, but they will suffice for our purposes
our machine will not need to be able to do anything els5

Our ‘‘enhanced machine’’ is equipped with these gates p
two more: a four-qubit controlled3-NOT gate and a five-qubi
controlled4-NOT gate.

In fact, the extra gates that are standard equipment for
enhanced machine can be simulated by the basic mac
However, this simulation is relatively inefficient, so that
might be misleading to quote the number of operations
quired by the basic machine when the enhanced mac
could actually operate much faster. In particular, Cirac a
Zoller described how to execute a controlledk-NOT (k>1)
operation using 2k13 laser pulses in the linear ion trap
thus, e.g., the controlled4-NOT operation can be performe
much more quickly in the ion trap than if it had to be co
structed from controlledk-NOT gates withk50,1,2.

To compare the speed of the basic machine and the
hanced machine, we must assign a relative cost to the b
operations. We will do so by expressing the number of
erations in the currency of laser pulses under the Cirac-Zo
scheme: one pulse for aNOT, five for a controlled-NOT, seven
for a controlled2-NOT, nine for a controlled3-NOT, and
eleven for a controlled4-NOT. We realize that this measure o
speed is very crude. In particular, not all laser pulses
really equivalent. Different pulses may actually have diffe
ing frequencies and differing durations. Nevertheless, for
purpose of comparing the speed of different algorithms,
will make the simplifying assumption that the quantum co
puter has a fixed clock speed and administers a laser pul
an ion in the trap once in each cycle.

The case of the~uncontrolled! NOT operation requires spe
cial comment. In the Cirac-Zoller scheme, the single-qu
operations always are 232 unitary operations of determinan
one ~the exponential of an off-diagonal 232 Hamiltonian!.
But the NOT operation has determinant (21). A simple so-
lution is to use the operationi ~NOT! instead~which does
have determinant 1 and can be executed with a single l
pulse!. The overall phase (i ) has no effect on the outcome o
the computation. Hence we take the cost of aNOT operation
to be one pulse.

5That is, these operations suffice for evaluation of the modu
exponential function. Other gates will be needed to perform
discrete Fourier transform, as described in Sec. II E.
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In counting operations, we assume that the control
k-NOT operation can be performed on any set ofk11 qubits
in the device. Indeed, a beautiful feature of the Cirac-Zo
proposal is that the efficiency of the gate implementation
unaffected by the proximity of the ions. Accordingly, we d
not assign any cost to ‘‘swapping’’ the qubits before th
enter a quantum gate.6

B. Saving space

A major challenge in programming a quantum compu
is to minimize the scratchpad space that the device requ
We will repeatedly appeal to two basic tricks~both originally
suggested by Bennett@9,10#! to make efficient use of the
available space.

1. Erasing garbage

Suppose that a unitary transformationF is constructed
that computes a~not necessarily invertible! function f of a
q-number input b. Typically, besides writing the resul
f (b) in the output register, the transformationF will also fill
a portion of the scratchpad with some expendable garb
g(b); the action ofF can be expressed as

Fa,b,g :ub&au0&bu0&g°ub&au f ~b!&bug~b!&g , ~4.2!

whereu&a , u&b , andu&g denote the input, output, and scratc
registers, respectively. Before proceeding to the next ste
the computation, we would like to clearg(b) out of the
scratch register, so that the spaceu&g can be reused. To eras
the garbage, we invoke a unitary operation COPYa,d that
copies the contents ofu&a to an additional registeru&d and
then we apply theinverse F21 of the unitary operationF.
Thus we have

XFa,b,g,d[Fa,b,g
21 3COPYa,d3Fa,b,g :ub&au0&bu0&gu0&d

°ub&au0&bu0&gu f ~b!&d . ~4.3!

The composite operation XF uses both of the registersu&b
andu&g as scratch space, but it cleans up after itself. Note
XF preserves the value ofb in the input register. This is
necessary, for a general functionf , if the operation XF is to
be invertible.

2. Overwriting invertible functions

We can clear even more scratch space in the special
where f is an invertible function. In that case, we can al
construct another unitary operation XFI that computes
inverse functionf 21, that is,

XFIa,b :ub&au0&b°ub&au f 21~b!&b ~4.4!

or, equivalently,

XFIb,a :u0&au f ~b!&b°ub&au f ~b!&b . ~4.5!

r
e

6For a different type of hardware, such as the device envisio
by Lloyd @26#, swapping of qubits would be required and the nu
ber of elementary operations would be correspondingly larger.
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@XFI, like XF, requires scratchpad space. But since XFI, l
XF, leaves the state of the scratchpad unchanged, we
suppressed the scratch registers in Eqs.~4.4! and ~4.5!.# By
composing XF and XFI21, we obtain an operation OF tha
evaluates the functionf (b) and ‘‘overwrites’’ the inputb
with the resultf (b):

OFa,b[XFIb,a
21 3XFa,b :ub&au0&b°u0&au f ~b!&b . ~4.6!

@Strictly speaking, this operation does not overwrite the
put; rather, it erases the input registeru&a and writesf (b) in
a different registeru&b . A genuinely overwriting version of
the evaluation off can easily be constructed, if desired,
following OF with a unitary SWAP operation that inte
changes the contents of theu&a and u&b registers. Even more
simply, we can merely swap thelabels on the registers, a
purely classical operation.#

In our algorithms for evaluating the modular exponent
tion function, the binary arithmetic operations that we p
form have one classical operand and one quantum oper
For example, we evaluate the productyb(modN), wherey is
a c number andb is a q number. Evaluation of the produc
can be viewed as the evaluation of afunction fy(b) that is
determined by the value of thec numbery. Furthermore,
since the positive integers less thanN that are relatively
prime to N form a group under multiplication, the functio
f y is an invertible function if the greatest common divisor o
(y,N)51. Thus, for the greatest common divisor
(y,N)51, we can~and will! use the above trick to overwrit
the q numberb with a newq numberyb(modN).

C. Multiplexed adder

The basic arithmetic operation that we will need to p
form is addition ~modN): we will evaluatey1b(modN),
where y is a c number andb is a q number. The most
efficient way that we have found to perform this operation
to build amultiplexedmodN adder.

Suppose thatN is a K-bit c number, thaty is a K-bit c
number less thanN, and thatb is a K-qubit q number, also
less thanN. Evaluation ofy1b(modN) can be regarded as
function, determined by thec numbery, that acts on theq
number b. This function can be described by th
‘‘pseudocode’’

if ~N2y.b! ADD y,

if ~N2y<b! ADD y2N. ~4.7!

Our multiplexed adder is designed to evaluate this functi
First a comparison is made to determine if thec number
N2y is greater than theq numberb and the result of the
comparison is stored as a ‘‘select qubit.’’ The adder th
reads the select qubit and performs an ‘‘overwriting ad
tion’’ operation on theq numberb, replacing it by either
y1b ~for N2y.b) or y1b2N ~for N2y<b). Finally, the
comparison operation is run backward to erase the se
qubit.

Actually, a slightly modified version of the abov
pseudocode is implemented. Since it is a bit easier to ad
positive c number than a negative one, we choose to a
2K1y2N to b for N2y<b. The (K11)st bit of the sum
ve
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~which is guaranteed to be 1 in this case! need not be~and is
not! explicitly evaluated by the adder.

D. Enable bits

Another essential feature of our algorithms is the use
‘‘enable’’ qubits that control the arithmetic operations. O
multiplexed adder, for example, incorporates such an en
qubit. The adder reads the enable qubit and if it has the va
1, the adder replaces the inputq number b by the sum
y1b(modN) ~wherey is a c number!. If the enable qubit
has the value 0, the adder leaves the inputq numberb un-
changed.

Enable qubits provide an efficient way to multiply aq
number by ac number. AK-qubit q numberb can be ex-
panded in binary notation as

b5 (
i 50

K21

bi2
i ~4.8!

and the product ofb and ac numbery can be expressed a

by~modN!5 (
i 50

K21

bi@2i y~modN!#. ~4.9!

This product can be built by running the pseudocode

For i 50 to K21, if bi51, ADD 2i y~modN!;
~4.10!

multiplication is thus obtained by performingK conditional
modN additions. Hence our multiplication routine calls th
multiplexed adderK times; in thei th call,bi is the enable bit
that controls the addition.

In fact, to compute the modular exponential function
described below, we will need conditional multiplication; th
multiplication routine will have an enable bit of its own. Ou
multiplier will replace the q number b by the product
by(modN) ~wherey is ac number! if the enable qubit reads
1 and will leaveb unchanged if the enable qubit reads 0. T
construct a multiplier with an enable bit, we will need a
adder with apair of enable bits, that is, an adder that
switched on only when both enable qubits read 1.

The various detailed algorithms that we will describe d
fer according to how enable qubits are incorporated into
arithmetic operations. The most straightforward proced
~and the most efficient, in the linear ion trap device of Cir
and Zoller! is that underlying the design of our enhanc
machine. We will see that a multiplexed adder can be c
structed from the elementary gatesNOT, controlled-NOT, and
controlled2-NOT. One way to promote this adder to an add
with two enable bits is to replace each controlledk-NOT by a
controlled(k12)-NOT, where the two enable bits are added
the list of control bits in each elementary gate. We thus c
struct a routine that performs~multiplexed! addition when
both enable bits read 1 and does nothing otherwise. The
tine is built from elementary controlledk-NOT gates with
k54 or less.

In fact, it will turn out that we will not really need to add
enable bits to the control list of every gate. But following th
above strategy does require controlledk-NOT gates for
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54 1045EFFICIENT NETWORKS FOR QUANTUM FACTORING
k50,1,2,3,4. This is how our enhanced machine perfor
modN addition with two enable bits~and modN multiplica-
tion with one enable bit!.

Because controlled4-NOT and controlled3-NOT gates are
easy to implement on the linear ion trap, the above proced
is an efficient way to compute the modular exponential fu
tion with an ion trap. However, for a different type of qua
tum computing hardware, these elementary gates might
be readily constructed. Therefore, we will also conside
few other algorithms, which are built from elementary co
trolledk-NOT gates for onlyk50,1,2. These algorithms fo
our basic machine follow the same general design as
algorithm for the enhanced machine, except that the c
trolled3-NOT and the controlled4-NOT gates are expanded ou
in terms of the simpler elementary operations.~The various
algorithms for the basic machine differ in the amount
scratch space that they require.!

E. Repeated squaring

One way to evaluate the modular exponentialxa(modN)
is to multiply by x a total ofa21 times, but this would be
terribly inefficient. Fortunately, there is a well-known tric
repeated squaring, that speeds up the computation eno
mously.

If a is an L-bit number with the binary expansio
( i 50

L21ai2
i , we note that

xa5x~( i 50
L21ai2

i !5 )
i 50

L21

~x2i
!ai. ~4.11!

Furthermore, since

x2i
5~x2i 21

!2, ~4.12!

we see thatx2i
(modN) can be computed by squaringx2i 21

.
We conclude thatxa(modN) can be obtained from at mos
2(L21)modN multiplications ~fewer if some of theai ’s
vanish!. If ordinary ‘‘grade school’’ multiplication is used
~rather than a fast multiplication algorithm!, this evaluation
of xa(modN) requires of orderLK2 elementary bit opera
tions~whereN andx,N areK-bit numbers!. Our algorithms
for evaluatingxa, wherea is an L-bit q number andx is a
K-bit c number, are based on grade school multiplication a
will require of orderLK2 elementary quantum gates.

Sincex is a c number, the repeated squaring to evalu
x2i

(modN) can be performed by our classical comput
Once thesec numbers are calculated and stored, th
xa(modN) can be found by running the pseudocode

for i 50 to L21, if ai51, MULTIPLY x2i
~modN!.

~4.13!

Thus the modular exponential function is obtained fromL
conditional multiplications. It is for this reason that o
modN multiplier comes equipped with an enable bit. O
modular exponentiation algorithm calls the modN multiplier
L times; in thei th call,ai 21 is the enable bit that controls th
multiplication.
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V. MODULAR EXPONENTIATION IN DETAIL

A. Notation

Having described above the central ideas underlying
algorithms, we now proceed to discuss their detailed imp
mentation. We will be evaluatingxa(modN), whereN is a
K-bit c number,x is a K-bit c number less thanN, anda is
an L-bit q number. For the factorization algorithm, we wi
typically chooseL'2K.

We will use the ket notationu& to denote the quantum
state of a singlequbit, a two-level quantum system. The tw
basis states of a qubit are denotedu0& andu1&. Since most of
theq numbers that will be manipulated by our computer w
be K qubits long, we will use a shorthand notation f
K-qubit registers; such registers will be denoted by a ket t
carries a lowercase greek letter subscript, e.g.,ub&a , where
b is a K-bit string that represents the number( i 50

K21bi2
i in

binary notation. Single qubits are denoted by kets that ca
a numeral subscript, e.g.,uc&1, where c is 0 or 1. Some
registers will beL bits long; these will be decorated by a
terisk superscripts, e.g.,ua&a*

The fundamental operation that our quantum compu
performs is the controlledk-NOT operation. This is the
(k11)-qubit quantum gate that acts on a basis accordin

Cv i 1 , . . . ,i kb , j :ue1& i 1
•••uek& i k

ue& j

°ue1& i 1
•••uek& i k

ue % ~e1`•••`ek!& j . ~5.1!

Here each ofe1 , . . . ,ek ,e takes the value 0 or 1,̀ denotes
the logicalAND operation~binary multiplication!, and % de-
notes the logicalXOR operation~binary addition mod2!. Thus
the gateCv i 1 , . . . ,i kb , j acts on k ‘‘control’’ qubits labeled

i 1 , . . . ,i k and on one ‘‘target qubit’’ labeledj . If all k of the
control qubits take the value 1, thenCv i 1 , . . . ,i kb , j flips the

value of the target qubit; otherwise,Cv i 1 , . . . ,i kb , j acts trivi-
ally. In order to represent our quantum circuits graphica
we will use Feynman’s notation for the controlledk-NOT,
shown in Fig. 1. Note thatCv i 1 , . . . ,i kb , j

21 5Cv i 1 , . . . ,i kb , j , so a

computation composed of controlledk-NOT’S can be inverted
by simply executing the controlledk-NOT’S in the reverse or-
der.

As we explained above, our basic machine comes with
NOT, controlled-NOT, and controlled2-NOT gates as standar

FIG. 1. The controlledk-NOT gate. Input values of the qubits ar
shown on the right and output values on the left. This gate flips
value of the target qubit if allk control qubits take the value 1
otherwise, the gate acts trivially.



e

e

ay

b
l b

h

-
rs
th

e
lled
las-

rm
i-
as

bit

he
os-

e

the

s

n-

us

ble

e

ar

1046 54BECKMAN, CHARI, DEVABHAKTUNI, AND PRESKILL
equipment. Our enhanced machine is equipped with th
fundamental gates and, in addition, the controlled3-NOT and
controlled4-NOT gates.

B. Addition

From the controlledk-NOT gates, we can build~reversible!
arithmetic operations. The basic operation in~classical! com-
puter arithmetic is the full adder. Given two addend bitsa
andb and an input carry bitc, the full adder computes th
sum bit

s5a% b% c ~5.2!

and the output carry bit

c85~a`b!~@c`~a~b!#. ~5.3!

The addition that our quantum computer performs alw
involves adding ac number to aq number. Thus we will use
two different types of quantum full adders, distinguished
the value of the classical addend bit. To add the classica
a50, we construct

FA~a50!1,2,3[Cv1b ,2Cv1,2b ,3 , ~5.4!

which acts on a basis according to

FA~a50!1,2,3:ub&1uc&2u0&3°ub&1ub% c&2ub`c&3 .
~5.5!

Here the string of controlledk-NOT’S defining FA is to be
read from right to left; that is, the gate furthest to the rig
acts on the kets first. The operation FA(a50) is shown dia-
grammatically in Fig. 2~a!, where, in keeping with our con
vention for operator ordering, the gate on the right acts fi
hence, in the diagram, time runs from right to left. To add
classical bita51, we construct

FIG. 2. The full adder FA(a). The order of the gates~here and
in all of the following figures! is to be read from right to left. The
gate array shown in~a! adds the classical bita50; the second qubit
carries the output sum bit and the third qubit carries the output c
bit. The gate array shown in~b! adds the classical bita51.
se

s

y
it

t
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e

FA~a51!1,2,3[Cv1b ,2Cv1,2b ,3C2Cv2b ,3 ~5.6!

@see Fig. 2~b!#, which acts as

FA~a51!1,2,3:ub&1uc&2u0&3

°ub&1b% c% 1&2uc85b~c&3 . ~5.7!

Equations~5.4! and ~5.6! provide an elementary exampl
that illustrates the concept of a quantum computer contro
by a classical computer, as discussed in Sec. IV A. The c
sical computer reads the value of the classical bita and then
directs the quantum computer to execute either FA~0! or
FA~1!.

As we have already remarked in Sec. IV C, to perfo
modular arithmetic efficiently, we will construct a mult
plexed full adder. The multiplexed full adder will choose
its classical addendeither oneof two classical bitsa0 and
a1, with the choice dictated by the value of a select qu
l . That is, if l 50 the classical addend will bea0 and if
l 51 the classical addend will bea1. Thus the multiplexed
full adder operation, which we denote MUXFA8, will actu-
ally be four distinct unitary transformations acting on t
qubits of the quantum computer, depending on the four p
sible values of the classical bits (a0 ,a1). The action of
MUXFA 8 is

MUXFA 8~a0 ,a1!1,2,3,4:u l &1ub&2uc&3u0&4°u l &1ub&2us&3uc8&4 ;
~5.8!

heres andc8 are the sum and carry bits defined in Eqs.~5.2!
and ~5.3!, but where nowa[a1` l ~a0`; l 5al .

In fact, for a05a1, the value of the select qubitl is irrel-
evant and MUXFA8 reduces to the FA operation that w
have already constructed:

MUXFA 8~a050,a150!1,2,3,4[FA~0!2,3,4,

MUXFA 8~a051,a151!1,2,3,4[FA~1!2,3,4. ~5.9!

For a050 anda151, MUXFA 8 addsl , while for a051 and
a150, it adds; l . This is achieved by the construction~Fig.
3!

MUXFA 8~a050,a151!1,2,3,4[Cv2b ,3Cv2,3b ,4Cv1b ,3Cv1,3b ,4 ,

MUXFA 8~a051,a150!1,2,3,4

[C1Cv2b ,3Cv2,3b ,4Cv1b ,3Cv1,3b ,4C1 .

~5.10!

~The second operation is almost the same as the first;
difference is that the qubitl is flipped at the beginning and
the end of the operation.!

The full adder that we will actually use in our algorithm
will be denoted MUXFA~without the prime!. As noted in
Sec. IV D, to perform multiplication and modular expone
tiation, we will need a~multiplexed! full adder that is con-
trolled by an enable bit or a string of enable bits. Th
MUXFA will be an extension of the MUXFA8 operation
defined above that incorporates enable bits. If all the ena
bits have the value 1, MUXFA acts just like MUXFA8. But
if one or more enable bit is 0, MUXFA will choose th

ry
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classical addend to be 0, irrespective of the values ofa0 and
a1. We will use the symbolL to denote the full list of enable
bits for the operation. Thus the action of MUXFA can be
expressed as

MUXFA ~a0 ,a1!vLb ,1,2,3,4:u l &1ub&2uc&3u0&4

°u l &1ub&2us&3uc8&4 ; ~5.11!

heres andc8 are again the sum and carry bits defined in Eqs
~5.19! and~5.3!, but this timea[L`(a1` l ~a0`; l ); that
is, it is 0 unless all bits ofL take the value 1. The listL may
not include the bits 1, 2, 3, or 4.

In our algorithms, the number of enable bits will be either
1 or 2. Hence there is a simple way to construct the MUXFA
operation on our enhanced machine that comes equipp
with controlled3-NOT and controlled4-NOT gates. To carry
out the construction, we note by inspecting Eqs.~5.9! and
~5.10! ~or Fig. 3! that MUXFA8(a0 ,a1) has the form
MUXFA 8(0,0)F(a0 ,a1); thus, by addingL to the list of
control bits for each of the gates inF(a0 ,a1), we obtain an
operation that acts as MUXFA8 whenL is all 1’s and adds 0
otherwise. Explicitly, we have

MUXFA ~a050,a150!vLb ,1,2,3,4[Cv2b ,3Cv2,3b ,4 ,

MUXFA ~a051,a151!vLb ,1,2,3,4

[Cv2b ,3Cv2,3b ,4CvLb ,3CvL,3b ,4 ,

MUXFA ~a050,a151!vLb ,1,2,3,4

[Cv2b ,3Cv2,3b ,4CvL,1b,3CvL,1,3b ,4 ,

MUXFA ~a051,a150!vLb ,1,2,3,4

[C1Cv2b ,3Cv2,3b ,4CvL,1b ,3CvL,1,3b ,4C1

~5.12!

FIG. 3. The multiplexed full adder MUXFA8(a0 ,a1). Herel is
the select bit that determines whethera0 or a1 is chosen as the
classical addend. In~a!, the casea050,a151 is shown; the gate
array adds the qubitl , which is the same asa0 for l 50 anda1 for
l 51. In ~b!, the casea051,a150 is shown; the array adds; l .
.

ed

~as indicated in Fig. 4!. Here, if L is a list of j bits, then
CvL,1,3b ,4, for example, denotes the controlled( j 12)-NOT with
L,1,3 as its control bits. Evidently, Eq.~5.12! is a construc-
tion of a multiplexed adder withj enable bits in terms of
controlledk-NOT gates withk< j 12. In particular, we have
constructed the adder with two enable bits that we will ne
using the gates that are available on our enhanced mach

The reader who is impatient to see how our algorith
work in detail is encouraged to proceed now to Sec. V C. B
first, we would like to dispel any notion that the algorithm
make essential use of the elementary controlled3-NOT and
controlled4-NOT gates. So let us now consider how the co
struction of the MUXFA operation can be modified so tha
can be carried out on the basic machine~which is limited to
controlledk-NOT gates withk<2). The simplest such modi
fication requires an extra bit~or two! of scratch space. Sup
pose we want to build a MUXFA9 operation with a single
enable bit, without using the controlled3-NOT gate. For
a05a1, the construction in Eq.~5.12! need not be modified
in those cases, the action of the operation is independen
the select bitl and therefore no controlled3-NOT gates were
needed. Fora0Þa1, controlled3-NOT gates are used, but w
note that the control string of these controlled3-NOT gates
includes both the enable bit and the select bit. Hence we
easily eliminate the controlled3-NOT gateCvL,1,3b ,4 by using
a controlled2-NOT to compute~and store! the logical AND

(L` l ) of the enable and select bits and then replacing
controlled3-NOT by a controlled2-NOT that has the scratch bi
as one of its control bits. Another controlled2-NOT at the end
of the operation clears the scratch bit. In an equation

MUXFA 9~a050,a151!vLb ,1,2,3,4,5

[CvL,1b ,5Cv2b ,3Cv2,3b ,4Cv5b ,3Cv5,3b ,4CvL,1b ,5 ,

MUXFA 9~a051,a150!vLb ,1,2,3,4,5

[C1CvL,1b ,5Cv2b ,3Cv2,3b ,4Cv5b ,3Cv5,3b ,4

3CvL,1b ,5C1 , ~5.13!

as illustrated in Fig. 5. If the scratch bitu&5 starts out in the
stateu0&5, MUXFA9 has the same action as MUXFA and
returns the scratch bit to the stateu0&5 at the end. By adding
yet another bit of scratch space and another controlle2-
NOT at the beginning and the end, we easily construc
MUXFA operation with two enable bits.

At the alternative cost of slightly increasing the number
elementary gates, the extra scratch bit in MUXFA9 can be
eliminated. That is, an operation with precisely the sa
action as MUXFA can be constructed from controlledk-NOT

gates with k<2 and without the extra scratch bit. Th
construction uses an idea of Barencoet al. @28# that a
controlledk-NOT can be constructed from two
controlled(k21)-NOT’s and two controlled2-NOT’s ~for any
k>3) by employing an extra bit. This idea differs from th
construction described above, because the extra bit, un
our scratch bit, is not required to be preset to 0 at the be
ning of the operation. Hence, to construct theCvL,1,3b ,4 gate
needed in MUXFA, we can useub&2 as the extra bit. That is
we may use the Barencoet al. identity
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FIG. 4. The multiplexed full adder MUXFA(a0 ,a1) has a select bitl and anenable stringL. If all the bits ofL take the value 1, then
MUXFA acts in the same way as MUXFA8 defined in Fig. 3. Otherwise, the classical addend is chosen to be 0.
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CvL,1,3b ,45Cv2,3b ,4CvL,1b ,2Cv2,3b ,4CvL,1b ,2 ~5.14!

to obtain, say,

MUXFA-~a050,a151!vLb ,1,2,3,4

[Cv2b ,3Cv2,3b ,4CvL,1b ,3Cv2,3b ,4

3CvL,1b ,2Cv2,3b ,4CvL,1b ,2 ~5.15!

~as in Fig. 6!. This identity actually works irrespective of th
number of bits in the enable stringL, but we have succeede
in reducing the elementary gates to those that can be im
mented on the basic machine only in the case of MUX
with a single enable bit. To reduce the MUXFA operati
with two enable bits to the basic gates, we can apply
same trick again, replacing each controlled3-NOT by four
controlled2-NOT’s ~using, say, the fourth bit as the extra b
le-

e

required by the Barencoet al. construction!. We will refer to
the resulting operation as MUXFA99.

Aside from the multiplexed full adder MUXFA, we will
also use a multiplexedhalf adder, which we will call
MUXHA. The half adder does not compute the final car
bit; it acts according to

MUXHA ~a0 ,a1!vLb ,1,2,3:u l &1ub&2uc&3°u l &1ub&2us&3 ,
~5.16!

wheres5a% b% c anda5L`(a1` l ~a0`; l ). ~Note that,
since the input qubitb is preserved, the final carry bit is no
needed to ensure the reversibility of the operation.! MUXHA
is constructed from elementary gates according to

MUXHA ~a050,a150!vLb ,1,2,3[Cv2b ,3 ,

MUXHA ~a051,a151!vLb ,1,2,3[Cv2b ,3CvLb ,3 ,
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FIG. 5. The multiplexed full adder MUXFA9(a0 ,a1) ~shown here fora050,a151) is a modification of MUXFA that uses an extra b
of scratch space. The first gate storesL` l in the extra scratch qubit and subsequent gates use this scratch bit as a control bit. The la
clears the scratch bit. The advantage of MUXFA9 is that the longest control string required by any gate is shorter by one bit than the lo
control string required in MUXFA.
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MUXHA ~a050,a151!vLb ,1,2,3[Cv2b ,3CvL,1b ,3 ,

MUXHA ~a051,a150!vLb ,1,2,3[C1Cv2b ,3CvL,1b ,3C1
~5.17!

~see Fig. 7!. For a single enable bit, this construction can
carried out on the basic machine. If there are two enable
the controlled3-NOT’S can be expanded in terms o
controlled2-NOT’S as described above.

A multiplexedK-bit adder is easily constructed by chai
ing together (K21) MUXFA gates and one MUXHA gate
as shown in Fig. 8. This operation, which we denote MAD
depends on a pair ofK-bit c numbersa anda8. MADD ~if
all enable bits read 1! adds eithera or a8 to the K-bit q
numberb, with the choice determined by the value of th
select bit l . ~That is, it addsa for l 50 and addsa8 for
l 51.! Thus MADD acts according to

MADD ~a,a8!vLb ,b,g,1 :ub&bu0&gu l &1°ub&bus&gu l &1 ,
~5.18!

where

s5@b1L`~a8` l ~a`; l !#mod2K. ~5.19!

The @ #mod2K notation in Eq.~5.19! indicates that the sums
residing inu&g at the end of the operation is onlyK bits long:
MADD does not compute the final carry bit. Since we w
s,

,

not need the final bit to perform addition modN, we save a
few elementary operations by not bothering to compute
~The MADD operation is invertible nonetheless.!

Transcribed as an equation, Fig. 8 says that MADD
constructed as

MADD ~a,a8!vLb ,b,g,1

[MUXHA ~aK21 ,aK218 !vLb ,1,bK21 ,gK21

3S )
i 50

K22

MUXFA ~ai ,ai8!vLb ,1,b i ,g i ,g i 11D .

~5.20!

We have skewed the subscript and superscript of) in Eq.
~5.20! to remind the reader that the order of the operation
to be read from right to left; hence the product has the
erator with i 50 furthest to theright ~acting first!. Each
MUXFA operation reads the enable stringL and, if enabled,
performs an elementary~multiplexed! addition, passing its
final carry bit on to the next operation in the chain. The tw
classical bits used by thej th MUXFA are aj and aj8, the
j th bits of thec numbersa and a8. The final elementary
addition is performed by MUXHA rather than MUXFA be
cause the final carry bit will not be needed.

C. Comparison

In our algorithms, we need to perform addition modN of a
c numbera and aq numberb. An important step in modular
A,
FIG. 6. The multiplexed full adder MUXFA-(a0 ,a1) ~shown here fora050,a151) uses simpler gates than those required by MUXF
but unlike MUXFA9, it does not need an extra scratch bit.
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FIG. 7. The multiplexed half adder MUXHA is simpler than MUXFA because it does not compute the output carry bit.
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addition is comparison: we must find out whethe
a1b>N. Thus our next task is to devise a unitary operat
that compares ac number and aq number. This operation
should, say, flip a target bit if thec number is greater than
the q number and leave the target bit alone otherwise.

A conceptually simple way to compare aK-bit c number
a and aK-bit q numberb is to devise an adder that comput
the sum of thec number 2K212a and theq numberb.
Since the sum is less than 2K only for a.b, the final carry
bit of the sum records the outcome of the comparison. T
method works fine, but we will use a different method th
turns out to be slightly more efficient.

The idea of our method is that we can scana andb from
left to right and compare them one bit at a time. IfaK21 and
bK21 are different, then the outcome of the comparison
determined and we are done. IfaK21 andbK21 are the same
we proceed to examineaK22 andbK22 and repeat the pro
cedure, etc. We can represent this routine in pseudocod
follows:

if aK2150,H bK2150⇒PROCEED

bK2151⇒b>a END
J ,
n

is
t

s

as

if aK2151, H bK2150⇒b,a END

bK2151⇒PROCEED
J ,

if aK2250, H bK2250⇒PROCEED

bK2251⇒b>a END
J ,

if aK2251, H bK2250⇒b,a END

bK2251⇒PROCEED
J ,

•

•

•

~5.21!

if a050, b>a END,

if a051, H b050⇒b,a END

b051⇒b>a END
J .

To implement this pseudocode as a unitary transformat
we will use enable qubits in each step of the comparis
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FIG. 8. The multiplexedK-bit adder MADD(a,a8) is constructed by chaining togetherK21 MUXFA operations and one MUXHA
operation. MADD adds aK-bit c number to an inputK-bit q number and obtains an outputK-bit q number~the final carry bit is not
computed!. If MADD is enabled, the classical addend isa when the select bit has the valuel 50 or a8 when l 51. ~When MADD is not
enabled, the classical addend is 0.!
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Once the comparison has ‘‘ended,’’ all subsequent ena
bits will be switched off, so that the subsequent operati
will have no effect on the outcome. Unfortunately, to imp
ment this strategy reversibly, we seem to need a new en
bit for ~almost! every step of the comparison, so the co
parison operation will fillK21 bits of scratch space with
junk. This need for scratch space is not really a big de
though. We can immediately clear the scratch space, w
will be required for subsequent use anyway.

As in our construction of the adder, our comparison o
eration is a sequence of elementary quantum gates tha
pends on the value of theK-bit c numbera. We will call the
operation LT~for ‘‘less than’’!. Its action is

LT~a!b,1,ĝ :ub&bu0&1u0&ĝ°ub8&bu l &1u junk&ĝ , ~5.22!

where l takes the value 1 forb,a and the value 0 for
b>a. Here the register labeledu&ĝ is actuallyK21 rather
than K qubits long. The junk that fills this register has
complicated dependence ona andb, the details of which are
not of interest. In passing, the LT operation also modifies
q numberb, replacing it byb8. (b8 is almost thenegationof
b, b with all of its qubits flipped, except thatb0 is not flipped
unlessa051.! We need not be concerned about this eith
as we will soon run the LT operation backward to repair
damage.

The LT operation is constructed from elementary gates
le
s

le
-

l,
h

-
e-

e

r,
e

s

LT~a!b,1,ĝ

[$ if ~a051!Cv ĝ0 ,b0b ,1Cb0
%

3 )
i 51

K22 H if ~ai50! Cv ĝ i ,b i b ,ĝi 21
Cb i

if ~ai51! Cv ĝ i ,b i b ,1
Cb i

Cv ĝ i ,b i b ,ĝi 21

J
3H if ~aK2150! CvbK21b ,ĝK22

CbK21

if ~aK2151! CvbK21b ,1CbK21
CbK21,ĝK22

J .

~5.23!

As usual, the gates furthest to the right act first. We ha
skewed the subscript and superscript of) here to indicate
that the operator withi 51 is furthest to theleft ~and hence
acts last!. The first step of the LT algorithm is different from
the rest because it is not conditioned on the value of
‘‘switch.’’ For each of the K22 intermediate steps
( i 5K22,K21, . . . ,1), theswitch ĝ i is read, and if the
switch is on, the comparison ofai and bi is carried out. If
aiÞbi , then the outcome of the comparison ofa and b is
settled; the value ofl is adjusted accordingly and the switc
ĝ i 21 is not turned on. Ifai5bi , thenĝ i 21 is switched on, so
that the comparison can continue. Finally, the last step
be simplified, as in Eq.~5.21!.

We can now easily construct a comparison operator
cleans up the scratch space and restores the original valu
b, by using the trick mentioned in Sec. IV B: we run LT
copy the outcomel of the comparison, and then run LT i
reverse. We will actually want our comparison operator to
enabled by a stringL, which we can achieve by controlling
the copy operation withL. The resulting operator, which w
call XLT, flips the target qubit ifb,a:
XLT ~a!vLb ,b,1,2,ĝ[LT~a!b,2,ĝ
21 CvL,2b ,1LT~a!b,2,ĝ :ub&bux&1u0&2u0&ĝ°ub&bux% y&1u0&2u0&ĝ , ~5.24!
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FIG. 9. The modN addition operator ADDN(a,N) computesa1b(modN), wherea is a K-bit c number andb is a K-bit q number.
When ADDN is enabled, the comparison operator XLT(N2a) flips the value of the select bit tol 51 if a1b,N; then the multiplexed
adder MADD(2K1a2N,a) chooses thec-number addend to bea for l 51 and 2K1a2N for l 50. XLT uses and then clearsK bits of
scratch space before MADD writes the modN sum there.
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where y is 1 if b,a and 0 otherwise. We recall that th
registeru&ĝ is actuallyK21 qubits long, so the XLT routine
requiresK qubits of scratch space.

D. Addition modN

Now that we have constructed a multiplexed adder an
comparison operator, we can easily perform addit
modN. First XLT compares thec numberN2a with the q
numberb and switches on the select bitl if a1b,N. Then
the multiplexed adder adds eithera ~for a1b,N) or
2K1a2N ~for a1b>N) to b. Note that 2K1a2N is guar-
anteed to be positive (N and a are K-bit numbers with
a,N). In the case where 2K1a2N is added, the desired
result a1b(modN) is obtained by subtracting 2K from the
sum, that is, by dropping the final carry bit. That is why o
MADD routine does not bother to compute this final bit.

We call our modN addition routine ADDN; it acts as

ADDN~a,N!vLb ,b,1,g :ub&bu0&1u0&g

°ub&bu l[L`~a1b,N!&1ub1L`a~modN!&g .

~5.25!

@Here the notationl[L`(a1b,N) means that the qubitl
reads 1 if the statementL`(a1b,N) is true and reads 0
otherwise.# If enabled, this operator compute
a1b( modN); if not, it merely copiesb.7 ADDN is con-
structed from MADD and XLT according to

ADDN~a,N!vLb ,b,1,g

[MADD ~2K1a2N,a!vLb ,b,g,1XLT ~N2a!vLb ,b,1,g

~5.26!

~see Fig. 9!. Note that XLT uses and then clears theK bits of
scratch space in the registeru&g , before MADD writes the
modN sum there.

The ADDN routine can be viewed as the computation
an invertible function~specified by thec numbersa and
N) of the q numberb. @Note that the output of this function

7Thus, if ADDN is not enabled, Eq.~5.25! is valid only for
b,N. We assume here and in the following thatb,N is satisfied;
in the evaluation of the modular exponential function, our opera
will always be applied toq numbers that satisfy this condition.
a
n

r

f

is the suma1b(modN) and the comparison bitl : the com-
parison bit is needed to ensure invertibility, since it is po
sible thatb>N.# Thus we can use the trick mentioned in Se
IV B to devise an overwriting version of this function. Ac
tually, since we will not need to know the value ofl ~or
worry about the caseb>N), we can save a qubit by modi
fying the trick slightly.

The overwriting addition routine OADDN is constructe
as

OADDN~a,N!vLb ,b,1,g

[SWAPb,gADDN21~N2a,N!vLb ,g,1,b

CvLb ,1ADDN~a,N!vLb ,b,1,g ~5.27!

~see Fig. 10! and acts~for b,N) according to

OADDN~a,N!vLb ,b,1,g :ub&bu0&1u0&g

°ub&bu l[L`~a1b,N!&1ub1L`a~modN!&g

°ub&bu l[L`~a1b>N!&1ub1L`a~modN!&g

°u0&bu0&1ub1L`a~modN!&g

°ub1L`a~modN!&bu0&1u0&g . ~5.28!

Here, in Eq.~5.28!, we have indicated the effect of each
the successive operations in Eq.~5.27!. We can easily verify
that applying ADDN(N2a,N) vLb ,g,1,b to the second-to-las
line of Eq. ~5.28! yields the preceding line. If the enabl
stringL is false, the verification is trivial, forb,N. ~It was
in order to ensure that this would work that we needed
XLT operation to be enabled byL.! WhenL is true, we need
only observe thatN2a1@b1a(modN)#,N if and only if
a1b>N ~assuming thatb,N).

The SWAP operation in Eq.~5.27! is not a genuine quan
tum operation at all; it is a mererelabeling of the u&b and
u&g registers that is performed by theclassicalcomputer. We
have included the SWAP because it will be convenient
the sum to be stored in theu&b register when we chain to
gether OADDN’s to construct a multiplication operator. W
see that OADDN uses and then clearsK11 qubits of scratch
space.

rs
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FIG. 10. TheoverwritingmodN addition operator OADDN(a,N) ~when enabled! adds thec numbera to theq numberb and then erases
b. The ‘‘swapping of the leads’’ is a classical operation, not a quantum gate. OADDN uses and then clearsK11 bits of scratch space; thi
scratch space is suppressed on the left-hand side of the figure.
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E. Multiplication mod N

We have already explained in Sec. IV D how modN mul-
tiplication can be constructed from conditional modN addi-
tion. Implementing the strategy described there, we can c
struct a conditional multiplication operator MULN that ac
according to

MULN~a,N!vLbb,g,1,d :ub&bu0&gu0&1u0&d

°ub&buL`ab~ modN!&gu0&1u0&d . ~5.29!

If enabled, MULN computes the product modN of the c
numbera and theq numberb; otherwise, it acts trivially.

We could construct MULN by chaining togetherK
OADDN operators. The first ADDN loadsab0, the second
addsa2b1, the third addsa22b2, and so on. But we can
actually save a few elementary operations by simplifying
first operation in the chain. For this purpose we introduce
n-

e
n

elementary multiplication operator EMUL that multiplies
c numbera by a single qubitb0:

EMUL~a!vLb ,1,g :ub0&1u0&g°ub0&1uL`ab0&g ,
~5.30!

which is constructed according to

EMUL~a!vLb ,1,g[ )
i 50

K21

if ~ai51! CvL,1b ,g i
.

~5.31!

Now we can construct MULN as

MULN ~a,N!vLb ,b,g,1,d

[ )
i 51

K21

OADDN@2ia~ modN!,N# vL,b i b ,g,1,d

3EMUL~a!vLb ,b0 ,g ~5.32!
FIG. 11. The modN multiplication operator MULN(a,N) ~when enabled! computesab(modN), wherea is a c number andb is a q
number; it is constructed by chaining togetherK21 OADDN operators and one EMUL operator.
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FIG. 12. The overwriting modN multiplication operator OMULN(a,N) ~when enabled! computesab(modN) and then erases theq
numberb. The XOR gates at the end~when enabled! swap the contents of the two registers. OMULN uses and then clears 2K11 qubits of
scratch space, of which onlyK bits are indicated in the figure.
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~see Fig. 11!. Note that the computation of 2ia(modN) is
carried out by the classical computer.~It can be done effi-
ciently by ‘‘repeated doubling.’’!

As long asa andN have no common divisor@the greatest
common divisor of (a,N)51#, the operation of multiplying
by a(modN) is invertible. In fact, the multiplicative invers
a21(modN) exists and MULN(a) is inverted by MULN
(a21). Thus we can use the trick discussed in Sec. IV B
construct an overwriting version of the multiplication oper
tor. This operator, denoted OMULN, acts according to

OMULN~a,N!vLb ,b,g,1,d :ub&bu0&gu0&1u0&d

°uL`ab~modN!~;L`b&bu0&gu0&1u0&d .

~5.33!

Note that OMULN acts trivially when not enabled. It can b
constructed as

OMULN~a,N!vLb ,b,g,1,d[XORvLb ,b,gXORvLb ,g,b

3MULN21~a21,N!vLb ,g,b,1,d

3MULN ~a,N!vLb ,b,g,1,d ~5.34!

~see Fig. 12!. Here the~conditional! XOR operation is

XORvLb ,a,b[ )
i 50

L21

CvL,a i b ,b i
:ua&aub&b°ua&aub% ~a`L!&b ,

~5.35!

where% denotes bitwise addition mod2. It is easy to ver
that, when enabled, OMULN acts as specified in Eq.~5.33!;
the two XOR’s at the end are needed to swapu0&b and
o
-

uab(modN)&g . To verify Eq. ~5.33! when OMULN is not
enabled, we need to know that MULN, when not enabl
acts according to

MULN ~a,N!vLÞ1b ,b,g,1,d :u0&bub&gu0&1u0&d

°u0&bub&gu0&1u0&d . ~5.36!

Though Eq.~5.36! does not follow directly from the defining
action of MULN specified in Eq.~5.29!, it can be seen to be
a consequence of Eqs.~5.32! and~5.28!. Note that the com-
putation ofa21 is performed by the classical computer.~This
is, in fact, the most computationally intensive task that o
classical computer will need to perform.!

We will require the OMULN operator with an enabl
stringL that is only a single qubit. Thus the construction th
we have described can be implemented on our enhanced
chine. So constructed, the OMULN operator uses~and then
clears! 2K11 qubits of scratch space. This amount is all
the scratch space that will be required to compute the mo
lar exponential function.

If we wish to construct OMULN on the basic machin
~using controlledk-NOT’S with k50,1,2), there are severa
alternatives. One alternative~that requiring the fewest el
ementary gates! is to use two additional qubits of scratc
space (2K13 scratch qubits altogether!. Then, when MULN
calls for OADDN with two enable bits, we use one of th
scratch qubits to store the logicalAND of the two enable bits.
Now OADDN with one enable bit can be called instea
where the scratch bit is the enable bit.~See Fig. 13.! When
OADDN eventually calls for MUXFA with a single enabl
bit, we can use the second extra scratch qubit to const
MUXFA 9 as in Eq.~5.13! and Fig. 5. Of course, anothe
alternative is to use the Barencoet al. identity Eq. ~5.14!



LN

it.

54 1055EFFICIENT NETWORKS FOR QUANTUM FACTORING
FIG. 13. The modified modN multiplication routine MULN8(a,N) uses simpler elementary gates than those used by MULN, but MU8
requires an extra bit of scratch space. Instead of calling the OADDN routine with two enable bits, MULN8 first stores theAND of the two
enable bits in the extra scratch bit. Then OADDN with one enable bit can be called instead, where the scratch bit is the enable b
r
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repeatedly to expand all the controlled3-NOT and con-
trolled4-NOT gates in terms of controlledk-NOT gates with
k50,1,2. Then we can get by with 2K11 bits of scratch
space, but at the cost of sharply increasing the numbe
elementary gates.

F. Modular exponentiation

The operator EXPN that computes the modular expon
tiation operator can now be constructed from the conditio
overwriting multiplication operator, as outlined in Sec. IV
Its action is

EXPN~x,N!a,b,g,1,d :ua&a* u0&bu0&gu0&1u0&d

°ua&a* uxa~modN!&bu0&gu0&1u0&d . ~5.37!

~Recall thatu&a* denotes a register that isL qubits long;N
andx areK-bit c numbers.! It is constructed as

EXPN~x,N!a,b,g,1,d

[S )
i 50

L21

OMULN@x2i
~modN!,N# va i b ,b,g,1,dDCb0

~5.38!

~Fig. 14!. Note that theCb0
is necessary at the beginning

set the registeru&b to 1 ~not 0!. The classical computer mus
calculate eachx2i

and each inversex22i
. The computation of

x21(modN) can be performed using Euclid’s algorithm
O(K3) elementary bit operations using grade school mu
of

n-
l

-

plication, or more efficiently, using fast multiplication tricks
Fortunately, only one inverse need be computed:
x22i

’s, like thex2i
’s, are calculated by repeated squaring.

Actually, it is possible to reduce the number of quantu
gates somewhat if theNOT and the first OMULN in Eq.
~5.38! are replaced by the simpler operation

~Ca0
Cva0b ,b0

Ca0
!3EMUL~x!a0 ,b . ~5.39!

It is easy to verify that this operator has the same action
the stateua0&a0

u0&b as OMULN(x,N) va0b ,b,g,1,dCb0
. With

this substitution, we have defined the EXPN operation wh
complexity will be analyzed in the following section.

VI. SPACE VERSUS TIME

Now that we have spelled out the algorithms in detail,
can count the number of elementary quantum gates that
use.

A. Enhanced machine

We will use the notation

@OPERATOR#5@c0 ,c1 ,c2 ,c3 ,c4# ~6.1!

to indicate that OPERATOR is implemented usingc0 NOT

gates,c1 controlled-NOT gates,c2 controlled2-NOT gates,
c3 controlled3-NOT gates, andc4 controlled4-NOT gates on
the enhanced machine or

@OPERATOR#5@c0 ,c1 ,c2# ~6.2!
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FIG. 14. The modN exponentiation operator EXPN(x,N) computesxa( modN), wherex is aK-bit c number anda is anL-bit q number.
It is constructed by chaining together LOMULN operators and aNOT. The 2K11 qubits of scratch space used byEXPN are suppressed in
the figure. The first OMULN in the chain can be replaced by a simpler operation, as discussed in the text.
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to indicate that OPERATOR is implemented usingc0 NOT

gates,c1 controlled-NOT gates, andc2 controlled2-NOT gates
on the basic machine. By inspecting the network construc
in Sec. V, we see that the following identities hold:

@EXPN#5~L21!@OMULN@1##1@ EMUL#

1@controlled-NOT#12@NOT#,

@OMULN@1##52@MULN @1##12@XOR@1##,

@MULN @1##5~K21!@OADDN@2##1@EMUL@1##,

@OADDN@2##52@ADDN@2##1@controlled2-NOT#,

@ADDN@2##5@MADD @2##1@XLT @2##,

@MADD @2##5~K21!@MUXFA @2##1@MUXHA @2##,

@XLT @2##52@LT#1@ controlled3-NOT#. ~6.3!

These equations just say that OMULN@1# , say, is con-
structed from 2MULN@1#’s and 2XOR@1#’s and so forth. The
subscript@ # indicates the length of the string of enable b
for each operator. By combining these equations, we find
following expression for the total number of elementa
gates called by our EXPN routine:

@EXPN#5~L21!$4~K21!2@MUXFA @2##14~K21!

3@MUXHA @2##18~K21!@LT#14~K21!

3@controlled3-NOT#12~K21!@controlled2-NOT#

12@EMUL@1##12@XOR@1##%

1@EMUL#1@controlled-NOT#12@NOT#. ~6.4!
d

e

By plugging in the number of elementary gates used
MUXFA, MUXHA, LT, EMUL, and XOR, we can find the
number of controlledk-NOT gates used in the EXPN network

For largeK, the leading term in our expression for th
number of gates is of order LK2. Only the MUXFA and LT
operators contribute to this leading term; the other opera
make a subleading contribution. Thus

@EXPN#5~4LK2@MUXFA @2##18LK@LT# !@11O~1/K !#.
~6.5!

We will now discuss how this leading term varies as w
change the amount of available scratch space or replace
enhanced machine by the basic machine.

The numbers of elementary gates used by MUXFA a
by LT actually depend on the particular values of the clas
cal bits in the binary expansions of 2j x62i

(modN) and
2K2N12 j x62i

(modN), where j 51, . . . ,K21 and
i 50,1, . . . ,L21. We will estimate the number of gates
two different ways. To count the gates in the worst case,
always assume that the classical bits take values that m
mize the number of gates. To count in the average case
make the much more reasonable assumption that the cl
cal bits take the value 0 with probability12 and take the value
1 with probability 1

2 .
For example, in the case of the implementation

MUXFA @2# on the enhanced machine described in E
~5.12!, counting the operations yields

@MUXFA ~0,0!@2##5@0,1,1,0,0#,

@MUXFA ~1,1!@2##5@0,1,2,1,0#,

@MUXFA ~0,1!@2##5@0,1,1,1,1#,

@MUXFA ~1,0!@2##5@2,1,1,1,1# ~6.6!
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and thus

@MUXFA @2##
worst5@2,1,2,1,1#,

@MUXFA @2##
ave5F1

2
,1,

5

4
,
3

4
,
1

2G . ~6.7!

That is, the worst case is themaximumin each column and
the average case is themeanof each column. When we quot
the number of gates without any qualification, the avera
case is meant. Similarly, for the LT operation described
Eq. ~5.23!, we have

@LT#worst5@K,2,2K23,0,0#,

@LT#ave5FK2
1

2
,
3

2
,
3

2
K2

5

2
,0,0G . ~6.8!

Note that LT uses no controlled3-NOT or controlled4-NOT

gates and so can be implemented as above on the basic
chine.

Now, from Eq.~6.5!, we find the leading behavior of th
number of gates used by the EXPN routine:

@EXPN#enhanced,2K11
worst 5 LK2@16,4,24,4,4#@11O~1/K !#,

@EXPN#enhanced,2K11
ave 5LK2@10,4,17,3,2#@11O~1/K !#,

~6.9!

where the subscript enhanced,2K11 serves to remind us tha
this count applies to the enhanced machine with 2K11 qu-
bits of scratch space. A convenient~though quite crude!
‘‘one-dimensional’’ measure of the complexity of the alg
rithm is the total number of laser pulses required to imp
ment the algorithm on a linear ion trap, following the sche
of Cirac and Zoller. Assuming 1 pulse for aNOT and
2k13 pulses for a controlledk-NOT, k51,2,3,4, we obtain

@EXPN#enhanced,2K11
worst pulses 5256LK2@11O~1/K !#,

@EXPN#enhanced,2K11
ave pulses 5198LK2@11O~1/K !#. ~6.10!

@The estimate for the worst case is not obtained directly fr
Eq. ~6.9!; instead we assume that MUXFA is always call
with the argument (a051,a150): this maximizes the num
ber of pulses required, though it does not maximize the nu
ber of controlled2-NOT gates.# Including the subleading con
tributions, the count of gates and pulses used by our netw
in the average case is

@EXPN#enhanced,2K11
ave 5~L21!@10K2214K14,4K218K

212,17K2236K122,3K223,2K2

24K12#1@2,1
2 K11,0,0,0#,

@EXPN#enhanced,2K11
ave pulses 5~L21!~198K22270K193!

1 5
2 K17. ~6.11!

By allowing one extra qubit of scratch space, we can
duce the complexity~measured in laser pulses! somewhat.
When MULN@1# calls for OADDN@2# , we may use a con
e
n

a-

-
e

-

rk

-

trolled2-NOT to store theAND of the two enable bits in the
extra scratch qubit and then call OADDN@1# instead, with the
scratch bit as the enable bit. The extra controlled2-NOT’S that
compute and clear theAND bit do not affect the leading be
havior of the count of elementary gates. The only effect
the leading behavior is that MUXFA@2# can be replaced by
MUXFA @1# , for which

@MUXFA @1##
worst5@2,2,2,1,0#,

@MUXFA @1##
ave5F1

2
,
5

4
,
7

4
,
1

2
,0G . ~6.12!

Hence we find

@EXPN#enhanced,2K12
worst 5 LK2@16,8,24,4,0#@11O~1/K !#,

@EXPN#enhanced,2K12
ave 5LK2@10,5,19,2,0#@11O~1/K !#

~6.13!

and

@EXPN#enhanced,2K12
worst pulses 5240LK2@11O~1/K !#,

@EXPN#enhanced,2K12
ave pulses 5186LK2@11O~1/K !#. ~6.14!

The precise count in the average case is

@EXPN#enhanced,2K12
ave 5~L21!@10K2214K14,5K2110K

214,19K2234K121,2K2

24K12,0#1@2,1
2 K11,0,0,0#,

@EXPN#enhanced,2K12
ave pulses 5~L21!~186K22238K199!

1 5
2 K17 . ~6.15!

Note that, in this version of the algorithm, no controlled4-
NOT gates are needed.

B. Basic machine

Now we consider the basic machine, first with 2K13 bits
of scratch space. We use one of our extra scratch bit
combine the enable bits for OADDN as explained abo
The other extra bit is used to replace MUXFA@1# by the
version MUXFA@1#9 given in Eq. ~5.13!: MUXFA @1#9 uses
only the gates available on the basic machine. The new co
is

@MUXFA @1#9 #worst5@2,2,4#,

@MUXFA @1#9 #ave5F1

2
,
7

4
,
11

4 G . ~6.16!

The LT operation need not be modified, as it requires
controlled3-NOT or controlled4-NOT gates. We therefore find

@EXPN#basic,2K13
worst 5LK2@16,8,32#@11O~1/K !#,

@EXPN#basic,2K13
ave 5LK2@10,7,23#@11O~1/K !#

~6.17!
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and

@EXPN#basic,2K13
worst pulses5280LK2@11O~1/K !#,

@EXPN#basic,2K13
ave pulses 5206 LK2@11O~1/K !#. ~6.18!

With the subleading corrections we have in the average c

@EXPN#basic,2K13
ave 5~L21!@10K2214K14,7K216K

212,23K2242K125#1@2,1
2 K11,0#,

@EXPN#basic,2K13
ave pulses 5~L21!~206K22278K1119!1 5

2 K17.
~6.19!

We can squeeze the scratch space down to 2K12 bits if
we replace MUXFA@1#9 by MUXFA@1#- given in Eq.~5.15!,
which does not require an extra scratch bit. The gate co
becomes

@MUXFA @1#- #worst5@2,2,6#,

@MUXFA @1#- #ave5F1

2
,
5

4
,
15

4 G , ~6.20!

so that we now have

@EXPN#basic,2K12
worst 5LK2@16,8,40#@11O~1/K !#,

@EXPN#basic,2K12
ave 5LK2@10,5,27#@11O~1/K !#

~6.21!

and

@EXPN#basic,2K12
worst pulses5316LK2@11O~1/K !#,

@EXPN#basic,2K12
ave pulses 5224 LK2@11O~1/K !#. ~6.22!

The precise count of gates and pulses in the average ca

@EXPN#basic,2K12
ave 5~L21!@10K2214K14,5K2110K

214,27K2250K129#1@2,1
2 K11,0#,

@EXPN#basic,2K12
ave pulses 5~L21!~224K22314K1137!1 5

2 K17 .
~6.23!

To squeeze the scratch space by yet another bit, we m
abandon the extra bit used by MULN. We then constr
MUXFA @2#99 by expanding the controlled3-NOT and

controlled4-NOT gates in terms of controlled2-NOT gates, as
discussed in Sec. V B. We find that

@MUXFA @2#99 #worst5@2,1,15#,

@MUXFA @2#99 #ave5F1

2
,1,

37

4 G ; ~6.24!

therefore,
se

nt

is

st
t

@EXPN#basic,2K11
worst 5LK2@16,4,76#@11O~1/K !#,

@EXPN#basic,2K11
ave 5LK2@10,4,49#@11O~1/K !#

~6.25!

and

@EXPN#basic,2K11
worst pulses5568LK2@11O~1/K !#,

@EXPN#basic,2K11
ave pulses 5373 LK2@11O~1/K !#. ~6.26!

Including the subleading corrections the count in the aver
case is

@EXPN#basic,2K11
ave 5~L21!@10K2214K14,4K218K

212,49K2276K130#1@2,1
2 K11,0#,

@EXPN#basic,2K11
ave pulses 5~L21!~373K22506K1154!1 5

2 K17.
~6.27!

Our results for the average number of gates and pulses
summarized in the following table:

Basic Enhanced
Scratch Gates Pulses Gates Puls

2K11 @10,4,49# 373 @10,4,17,3,2# 198
2K12 @10,5,27# 224 @10,5,19,2,0# 186
2K13 @10,7,23# 206

~6.28!
Each entry in the table is the coefficient of LK2 ~the leading
term! in the number of gates or pulses, where the notation
the number of gates is that defined in Eqs.~6.1! and~6.2!. Of
course, the numbers just represent our best effort to cons
an efficient network. Perhaps a more clever designer co
do better.

C. Unlimited space

The gate counts summarized in Eq.~6.28! provide a
‘‘case study’’ of the tradeoff between the amount of scra
space and the speed of computation. But all of the algorith
described above are quite parsimonious with scratch sp
We will now consider how increasing the amount of scra
space considerably allows us to speed things up further.

First of all, recall that our OADDN routine calls the com
parison operator LT four times, twice running forward a
twice running in reverse. The point was that we wanted
clear the scratch space used by LT before MADD acted
that space could be reused by MADD. But if we were
increase the scratch space byK21 bits, it would not be
necessary for LT to run backward before MADD acts. I
stead, a modified OADDN routine could clear the scra
space used by LT and by MADD, running each subrout
only twice ~once forward and once backward!.

Thus, with adequate space, we can replace Eq.~6.5! with

@EXPN#5~4LK2@MUXFA @1##14LK@LT# !@11O~1/K !#.
~6.29!

Using this observation, we can modify our old network
the enhanced machine~with 2K12 bits of scratch! to obtain
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@EXPN#enhanced,3K11
ave 5LK2@6,5,13,2,0#@11O~1/K !#,

@EXPN#enhanced,3K11
ave pulses 5140LK2@11O~1/K !#, ~6.30!

about 25% faster.
To do substantially better requires much more space.

timized for speed, our algorithms will never clear the scra
space at intermediate stages of the computation. Inst
EXPN will carry out of order LK additions, filling new spac
each time a comparison is performed or a sum is compu
Once the computation ofxa(modN) is complete, we copy
the result and then run the computation backward to clea
the scratch space. But with altogether;LK ADDN’s, each
involving a comparison and a sum, we fill about 2LK2 qubits
of scratch space. Combining the cost of running the ga
forward and backward, we have

@EXPN#@EXPN21#5~2LK2@MUXFA @1##

12LK@LT# !@11O~1/K !# ~6.31!

and therefore

@EXPN#enhanced,;2LK2
ave

5LK2F3,
5

2
,
13

2
,1,0G@11O~1/K !#,

@EXPN#enhanced,;2LK2
ave pulses

570LK2@11O~1/K !#, ~6.32!

another factor of 2 improvement in speed.
For asymptotically largeK, further improvements are

possible, for we can invoke classical algorithms that multi
K-bit numbers in time less thanO(K2). The fastest
known, the Scho¨nhage-Strassen algorithm, requir
O(K logK log logK) elementary operations@25#. It thus
should be possible to perform modular exponentiation o
quantum computer in a time of order LK logK log logK. We
have not worked out the corresponding networks in detai
determined the precise scratch space requirements for
an algorithm.

D. Minimal space

Now consider the other extreme, where we disreg
speed and optimize our algorithms to minimize space. Si
addition is an invertible operation, it is possible to constr
a unitary overwriting addition operator that adds ac number
to a q number and replaces theq-number addend with the
sum. But the construction of our OADDN operator involve
two stages: first we performed the additionwithoutoverwrit-
ing the input and then ran the addition routine backward
erase the input. Thus our overwriting OADDN routine f
adding aK-bit c number to aK-bit q number (modN) re-
quiredK11 bits of scratch space.

There is no reason in principle why this scratch spa
should be necessary~though eliminating it may slow down
the computation!. In fact, we will show that it is possible to
add without using any scratch space at all. Of course, we
still need a comparison bit to perform modN addition. And
there is no obvious way to eliminate the need for aK-bit
scratch register that stores partial sums when we multi
Still, using overwriting addition, we can construct an EXP
operator that requires justK11 bits of scratch space~com-
p-
h
d,

d.
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pared to 2K11 in our best previous effort!. The price we
pay is that the computation slows down considerably.

The key to adding without scratch space is to work fro
left to right instead of right to left. It is sufficient to see ho
to add a single-bitc number a0 to a K-bit q number b,
obtaining a (K11)-bit q number. Of course, if the classica
bit is 0, we do nothing. If the classical bit is 1, we perfor
addition by executing the pseudocode

if bK215bK225•••5b15b051, flip bK ,

if bK225bK235•••5b15b051, flip bK21 ,

•

•

•

if b15b051, flip b2 ,

if b051, flip b1 ,

flip b0 . ~6.33!

Thus the operator

ADD~a0!bK ,b[ if ~a051!

Cb0
Cvb0b ,b1

•••Cvb0 ,b1 . . . bK22b ,bK21
Cvb0 ,b1 . . . bK21b ,bK

~6.34!

has the action

ADD~a0!bK ,b :u0&bK
ub&b°u~b1a0!K&bK

ub1a0&b .
~6.35!

It fills the K11 qubits u&bK
u&b with the (K11)-bit sum

b1a0. To add aK-bit c numbera to the K-bit q number
b, we apply this procedure iteratively. After addinga0 to
b, we add a1 to the (K21)-qubit number
bK21bK22•••b2b1, then adda2 to the (K22)-qubit number
bK21bK22•••b3b2, and so on. Thus the computation
b1a requires in the worst case (a5111•••11) a total num-
ber of operations

@ADD~a!#5@K,K,K21,K22, . . . ,2,1#, ~6.36!

that is, K NOT’S, K controlled-NOT’S, K21 controlled2-
NOT’s, . . . , 2 controlledK21-NOT’S, and 1 controlledK-NOT.
In the average case~where half the bits ofa are zero!, only
half of these gates need to be executed. For the Cirac-Zo
device, figuring 2k13 laser pulses for a controlledk-NOT

with k>1 and one pulse for aNOT, this translates into
1
6 K(2K2115K119) laser pulses for eachK-bit addition, in
the worst case, or, in the average case,

@ADD#no scratch
ave pulses5 1

6 K31 5
4 K21 19

12 K. ~6.37!

We can easily promote this operation to a conditional AD
with l enable bits by simply adding the enable qubits to
control string of each gate; the complexity then becom
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@ADD@ l ##no scratch
ave pulses5

1

6
K31S 1

2
l 1

5

4DK21S 3

2
l 1

31

12DK,l>1.

~6.38!

We will need to add modN. But if we can add, we can
compare. We can do the comparison ofN2a andb by add-
r
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-ing (2K2N1a) to b; the final carry bit will be 1 only for
a1b>N. Thus we can use the overwriting addition oper
tion ADD in place of LT to fix the value of the select bit an
then use a multiplexed version of ADD to complete t
modN addition. Following this strategy, we construct a
overwriting modN adder that uses just one qubit of scrat
space according to
OADDN8~a,N!vLb ,b,bK

[ADD~a!vLb ,bK ,bMADD 8~N2a,2K2a!vLb ,bK ,bADD~2K2N1a!vLb ,bK ,b:u0&bK
ub&b°u0&bK

ub1L`a~modN!&b .

~6.39!
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Here each ADD operation computes a (K11)-bit sum as
above, placing the final carry bit in the qubitu&bK

; however,

MADD 8 computes aK-bit sum: it is a multiplexed adde
that addsN2a if the select bit u&bK

reads 0 and add

2K2a if the select bit reads 1. The construction of MADD8
follows the spirit of the construction of MADD described
Sec. V B. In the average case, the number of laser pu
required to implement this OADDN8 operation is

@OADDN@ l #8 #1 scratch
ave pulses5 7

12 K31~ 7
4 l 1 33

8 !K21~ 15
4 l 1 169

24 !K.
~6.40!

The construction of the modular exponentiation opera
EXPN from this OADDN8 operator follows the constructio
described in Sec. V. Thus, using the expression for@EXPN#
in terms of@OADDN@2## implicit in Eq. ~6.3!, we find that
with K11 qubits of scratch space, the EXPN function can
computed, in the average case, with a number of laser pu
given by

@EXPN#K11
ave pulses5~L21!~ 7

6 K41 169
12 K31 83

6 K22 97
12 K !

1 5
2 K17. ~6.41!

For small values ofK (K,7), fewer pulses are required tha
for the algorithms described in Secs. VI A and VI B.

VII. N515

As we noted in Sec. II F, Shor’s factorization algorith
fails if N is even or a prime power (N5pa, p prime!. Thus
the smallest composite integerN that can be successfull
factored by Shor’s method isN515. Though factoring 15 is
not very hard, it is amusing to consider the computatio
resources that would be needed to solve this simples
quantum factoring problems on, say, a linear ion trap.

Appealing to Eq.~6.11!, with K54 andL52K58, our
average case estimate of the number of laser pulses req
on a machine with altogetherK1L1(2K11)521 qubits of
storage is 15 284. With 22 qubits of storage, our estim
improves to 14 878 pulses. With another three qubits~25
total!, we can use the technique described in Sec. VI C
achieve a further improvement in speed.
es
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Several observations allow us to reduce these resou
substantially further. First of all, we notice that, for any po
tive integerx with x,15 and the greatest common divisor
(x,15)51 ~i.e., for x51,2,4,7,8,11,13,14), we hav
x4[1(mod15). Therefore,

xa5x2a1xa0; ~7.1!

only the last two bits ofa are relevant in the computation o
xa. Hence we might as well chooseL52 instead ofL58,
which reduces the number of elementary operations requ
by a factor of about 7.~Even if the value ofL used in the
evaluation of the discrete Fourier transform is greater tha
there is still no point in usingL.2 in the evaluation of the
modular exponential function.!

Second, we can save on storage space~and improve
speed! by noting that the overwriting addition routine de
scribed in Sec. VI D is reasonably efficient for small valu
of K. For K54 andL52, we need 11 qubits of storage an
an estimated 1406 laser pulses.

For N515, the above is the most efficient algorithm w
know that actually computesxa on the quantum computer
We can do still better if we are willing to allow the classic
computer to perform the calculation ofxa. Obviously, this
strategy will fail dismally for large values ofK: the classical
calculation will require exponential time. Still, if our goal i
merely to construct the entangled state

1

2L/2(
a

ua& i uxa~modN!&o , ~7.2!

while using our quantum computational resources as s
ingly as possible, then the classical computation ofxa is the
most efficient procedure for smallK.

So we imagine thatx,15 with the greatest common d
visor of (x,15)51 is randomly chosen and that the classic
computer generates a ‘‘lookup table’’ by computing the fou
bit numberxa(mod15) for a50,1,2,3. The classical com
puter then instructs the quantum computer to execute a
quence of operations that prepares the state Eq.~7.2!. These
operations require no scratch space at all, so onlyL1K56
qubits of storage are needed to prepare the entangled s

The worst case~most complex lookup table! is x57 or
13. The lookup table forx57 is the following:
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a 7a(mod15)

0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 0 0
1 1 1 1 0 1
a1 a0 b3 b2 b1 b0

~7.3!

An operator

EXPN~x57,N515!a,b :ua&a* u0&b°ua&a* u7a~mod15!&b

~7.4!

that recreates this table can be constructed as

EXPN~x,N!a,b[Ca1
Cva1 ,a0b ,b1

Ca0
Cva1 ,a0b ,b2

Ca1

3Cva1 ,a0b ,b0
Ca0

Cva1 ,a0b ,b3
Cb2

Cb0
.

~7.5!

The twoNOT’s at the beginning generate a table that is all
in the b0 and b2 columns and all 0’s in theb1 and b3
columns. The remaining operations fix the one incorrect
try in each row of the table. Thus we have constructed
EXPN operator with complexity

@EXPN~7,15!#5@6,0,4#; ~7.6!

it can be implemented with 34 laser pulses on the Cir
Zoller device. Since two additional pulses suffice to prep
the input register in the superposition state

1

2(
a50

3

ua& i ~7.7!

before EXPN acts, we need 36 laser pulses to prepare
entangled state Eq.~7.2!.

The EXPN operator constructed in Eq.~7.5! acts trivially
on the inputq numbera. Of course, this feature is not nec
essary; as long as the output state has the right correla
between theu&a* and u&b registers, we will successfully pre
pare the entangled state Eq.~7.2!. By exploiting this obser-
vation, we can achieve another modest improvement in
complexity of EXPN; we see that

Cva1 ,a0b ,b3
Ca0

Cva1 ,a0b ,b0
Ca1

Cva1 ,a0b ,b2

3Ca0
Cva1 ,a0b ,b1

Cb2
Cb0

~7.8!

applied to the input Eq.~7.7! also produces the output Eq
~7.2!, even though it flips the value ofa1. Compared to Eq.
~7.5!, we do without the finalNOT gate and hence save on
laser pulse. We can do better still by invoking the ‘‘custo
gates’’ described in the Appendix; another implementat
of the EXPN operator is
s

-
n

-
e

he

ns

e

n

EXPN8~x,N!a,b

[Cv ā 1 ,a0b ,b1
Cv ā 1 ,ā 0b ,b2

Cva 1 ,ā 0,bb0
Cva1 ,a0b ,b3

Cb2
Cb0

.

~7.9!

HereCv ā 1 ,ā 0b ,b2
, for example, is a gate that flips the valu

of qubitb2 if and only if both qubita1 and qubita0 have the
valuezero rather than one~see the Appendix!. Each custom
gate in Eq.~7.9! can be implemented with seven laser puls
Hence, compared to Eq.~7.5!, we save four pulses and th
state Eq.~7.2! can be prepared with just 32 pulses.

To complete the task of ‘‘factoring 15,’’ it only remain
to perform the Fourier transform on the input register a
read it out. The measured value, the result of our quan
computation, will be a non-negative integery,2L satisfying

y

2L 5
~ integer!

r
, ~7.10!

wherer is the order ofx modN (r 54 in the caseN515 and
x57! and the integer takes a random value ranging from 0
r 21. @Here the probability distribution fory is actually per-
fectly peaked at the values in Eq.~7.10!, becauser divides
2L.# Thus, if we perform the Fourier transform withL52,
the result fory is a completelyrandomnumber ranging over
y50,1,2,3.~Even so, by reducingy/4 to lowest terms, we
succeed in recovering the correct value ofr with probability
1/2.!

It is a bit disappointing to go to all the trouble to prepa
the state Eq.~7.2! only to read out a random number in th
end. If we wish, we can increase the number of qubitsL of
the input register~though the EXPN operator will still ac
only on the last two qubits!. Then the outcome of the calcu
lation will be a random multiple of 2L22. But the probability
of recovering the correct value ofr is still 1/2.

Once we have foundr 54, a classical computer calculate
7(4/2)61[3,5(modN), which are, in fact, the factors o
N515. Since theL52 Fourier transform can be performe
usingL(2L21)56 laser pulses on the ion trap, we can fa
tor 15 with 38 pulses~not counting the final reading out o
the device!. For values ofx other than 7 and 13, the numbe
of pulses required is even smaller.

VIII. TESTING THE FOURIER TRANSFORM

In Shor’s factorization algorithm, a periodic function~the
modular exponential function! is computed, creating en
tanglement between the input register and the output reg
of our quantum computer. Then the Fourier transform is
plied to the input register and the input register is read.
Sec. VII we noted that a simple demonstration of this pro
dure~factorization of 15! could be carried out on a linear io
trap, requiring only a modest number of laser pulses.

Here we point out an even simpler demonstration of
principle underlying Shor’s algorithm. Consider the functio

f K~a!5a~mod2K!. ~8.1!

Evaluation of this function is very easy, since it merely co
ies the lastK bits of the argumenta. A unitary operator
MOD 2K that acts according to
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MOD2K:ua&a* u0&b°ua&a* ua~mod2K!&b ~8.2!

can be constructed as

MOD2K[CvaK21b ,bK21
•••Cva1b ,b1

Cva0b ,b0
~8.3!

~whereu&a* is anL-qubit register andu0&b is a K-qubit reg-
ister!. TheseK controlled-NOT operations can be accom
plished with 5K laser pulses in the ion trap. Including th
L single qubit rotations needed to prepare the input regis
then, the entangled state

1

2L/2 (
a50

2L21

ua&a* ua~mod2K!&b ~8.4!

can be generated with 5K1L pulses.
Now we can Fourier transform the input regist

@L(2L21) pulses# and read it out. Since the period 2K of
f K divides 2L, the Fourier transform should be perfect
peaked about values ofy that satisfy

y52L2K3~ integer!. ~8.5!

Thus, yK21 , . . . ,y1 ,y0 should be identically zero, while
yL21 , . . . ,yK11 ,yK take random values.

The very simplest demonstration of this type (L52,
K51) requires only three ions. Sincef 1 has period 2, the
two-qubit input register, after Fourier transforming, shou
read y15random,y050. This demonstration can be pe
formed with 13 laser pulses~not counting the final reading
out! and should be feasible with current technology.
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APPENDIX: CUSTOM GATES

In the algorithms that we have described in this paper,
have used the controlledk-NOT operator as our fundamenta
quantum gate. Of course, there is much arbitrariness in
choice. For example, instead of the operationCv i 1 , . . . ,i kb , j ,

which flips qubitj if and only if qubitsi 1 , . . . ,i k all take the
value 1, we could employ a gate that flips qubitj if and only
if i 1i 2 . . . i k is some other specified string ofk bits. This
generalized gate, likeCv i 1 , . . . ,i kb , j itself, can easily be imple-
mented on, say, a linear ion trap. We remark here that u
such custom gates can reduce the complexity of some a
on
r

r,

ch
-
-

e

is

g
o-

rithms ~as measured by the total number of laser pulses
quired!.

To see how these generalized gates can be constru
using the ion trap, we note first of all that if we apply a
appropriately tuned 3p pulse ~instead of ap pulse! to the
i th ion,8 then the operationWphon

( i ) defined in Eq.~3.1! is
replaced by

W̃phon
~ i ! :H ug& i u0&c.m.°ug& i u0&c.m.

ue& i u0&c.m.° i ug& i u1c.m.
~A1!

~whose nontrivial action differs by a sign from that o
W phon

( i ) ). With Wphon
( i ) andW̃phon

( i ) we can construct an alterna
tive conditional phase gate

Ṽ~ i , j̄ ![Wphon
~ i ! V~ j !W̃phon

~ i ! :ue& i uh& j°~21!e`;hue& i uh& j
~A2!

that acts nontrivially only ife51 andh50. With an appro-
priate change of basis, this conditional phase gate becom

Cv ī b , j[@Ũ ~ j !#21V~ j , ī !Ũ ~ j !

5@Ũ ~ j !#21Wphon
~ j ! V~ i !W̃phon

~ j ! Ũ ~ j !:ue& i uh& j

°ue& i uh % e % 1& j , ~A3!

a modified controlled-NOT gate that flips the target qubit i
and only if the control qubit readszero@compare Eq.~3.7!#.
Like the controlled-NOT gate, then,Cv ī b , j can be imple-
mented with five laser pulses. Following the discussion
Sec. III C, it is straightforward to construct a modified co
trolledk-NOT gate with a specified custom control string, f
any k>1.

As a simple illustration of how a reduction in complexi
can be achieved by using custom gates, consider the
adderFA(a) defined by Eqs.~5.4! and ~5.6! and shown in
Fig. 2. We can replace FA~1! by the alternative implementa
tion

FA8~a51!1,2,3[Cv 1̄ b ,2Cv 1̄ ,2b ,3Cv1b ,3 ~A4!

@where theī indicates that qubiti must have the value 0~not
1! for the gate to act nontrivially#. This saves oneNOT gate,
and hence one laser pulse, compared to the implementa
in Eq. ~5.6!. Another example of the use of custom gates
described in Sec. VII.

8Alternatively, we can implementW̃phon
( i ) with a p pulse if the laser
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