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We consider how to optimize memory use and computation time in operating a quantum computer. In
particular, we estimate the number of memory quantum(hiteits and the number of operations required to
perform factorization, using the algorithm suggested by $moProceedings of the 35th Annual Symposium
on Foundations of Computer Scienesglited by S. Goldwass€lEEE Computer Society, Los Alamitos, CA,
1994, p. 124. A K-bit number can be factored in time of order using a machine capable of storing
5K +1 qubits. Evaluation of the modular exponential functitiee bottleneck of Shor’s algorithntould be
achieved with about ®°® elementary quantum gates; implementation using a linear ion trap would require
about 39&2 laser pulses. A proof-of-principle demonstration of quantum factd(factorization of 15 could
be performed with only 6 trapped ions and 38 laser pulses. Though the ion trap may never be a useful
computer, it will be a powerful device for exploring experimentally the properties of entangled quantum states.
[S1050-294®6)01008-9

PACS numbd(s): 03.65.Bz, 89.80+h

I. INTRODUCTION AND SUMMARY memory resources frugally. On the other hand, the device
has a characteristic decoherence time scale and the compu-
Recently, Shof1] has exhibited a probabilistic algorithm tation wiII_surer cra;h if it takes much longer thgt t_h_e deco-
that enables a quantum computer to find a nontrivial factor oherence time. For this reason, and because optimizing speed
a large composite numbét in a time bounded from above is desirable anyway, there is a strong incentive to minimize
by a polynomial in logll). As it is widely believed that no the total ngmber of elemenyary operations that must be com-
polynomial-time factorization algorithm exists for a classical Pléted during the computation. A potential rub is that frugal
Turing machine, Shor’s result indicates that a quantum comMeMOry management may result in longer computation time.

puter can efficiently perform interesting computations that ©N€ Of our main conclusions, however, is that substantial

are intractable on a classical computer, as had been antiGGaueezing of the needed memory space can be achieved

ithout sacrificing much in speed. A quantum computer ca-
ated by Feynmaf2], Deutsch[3], and otherg4]. wi ) ) s '
P Furth)érm())/re, Cirac and Zolld6] have suggested an in- pable of storing K+ 1 qubits can run Shor’s algorithm to

. . . 3 .

genious scheme for performing quantum computation usin ctor QK'b't humberN In a time of ord_erK - Faster |mpl_e-
a potentially realizable device. The machine they envisage i entations of the a'gof"hm are posgble for asymptonca_lly
an array of cold ions confined in a linear trap and interactin argeN, but these require more quns and are relat|V(_aIy n-
with laser beams. Such linear ion traps have in fact beefiificient for values ofN that are likely to be of practical
built [6] and these devices are remarkably well protectedMterest. For these values &, a device with unlimited
from the debilitating effects of decoherence. Thus the Ciracl emory using our algorithms would be able to run only a
Zoller proposal has encouraged speculation that a proof-ofittle better than twice as fast as a device that storeés-3
principle demonstration of quantum factoring might be per-dubits. Further squeezing of the memory space is also pos-
formed in the reasonably near future. sible, but would increase the computation time to a higher

Spurred by these developments, we have studied the corROWer ofK. _ o -
putational resources that are needed to carry out the factor- Snor's algorithm(which we will review in detail in Sec.
ization algorithm using the linear ion trap computer or all) includes the evaluation of the modular exponential func-

comparable device. Of particular interest is the inevitabldion, thatis, a unitary transformatidn that acts on elements

tension between two competing requirements. Because & the computational basis as
practical limitations on the number of ions that can be stored
in the trap, there is a strong incentive to minimize the num- U:[a)i|0)o—>[a)i[x?(modN)), . (1.9
ber of quantum bits(qubity in the device by managing
Here N is the K-bit number to be factoreda is an L-bit
number (where usuallyL~2K), and x is a randomly se-

*Electronic address: beckman@theory.caltech.edu lected positive integer less th&hthat is relatively prime to
"Electronic address: chari@cco.caltech.edu N; | )i and| ), denote the states of the “input” and “output”
*Electronic address: dsrikris@cco.caltech.edu registers of the machine, respectively. Shor’s algorithm aims
SElectronic address: preskill@theory.caltech.edu to find the period of this function, therder of x mod\.
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54 EFFICIENT NETWORKS FOR QUANTUM FACTORING 1035
From the order ofx, a factor of N can be extracted with calculation to completion, producing the state Eig3), copy
reasonable likelihood, using standard results of numbethe result from the output register to another ancillary regis-
theory. ter, and then run the computation backward to erase both the
To perform factorization, one first prepares the input reg-output register and the scratchpad. However, while this strat-
ister in a coherent superposition of all possibkit compu-  egy undoubtedly works, it may be far from optimal, for it

tational basis states: may require the scratchpad to be much larger than is actually
Sl_q necessary. We can economize on scratchpad space by run-

1 D ), 1.2 ning subprocesses backward at intermediate stages of the

272 =, t ' computation, thus freeing some registers to be reused in a

_ . . _ _ . ~ subsequent procesdndeed, Bennett himselfL0] described
Preparation of this state is relatively simple, involving justa general procedure of this sort that greatly reduces the space
L one-qubit rotationgor, for the Cirac-Zoller device, just memory requirementsHowever, for this reduction in re-

L laser pulses applied to the ions in the raphen the quired scratchpad space, we may pay a price in increased
modular exponential function is evaluated by applying thecomputation time.

transformationJ above. Finally, a discrete Fourier transfor-  one of our objectives in this paper is to explore this

mation is applied to the input register and the input register i$;5qeoff between memory requirements and computation
subsequently measured. From the measured value, the ordgre This tradeoff is a central general issue in quantum com-

of )ém;)d\l can ble_ mfe{]rted WIttT] r?z:ﬁonda_lble |;kel|:|h00.d. ¢ putation (or classical reversible computatijothat we have
r's crucial insignt was that the discrete Fourer rar]S'investigated by studying the implementation of the modular
form can be evaluated in polynomial time on a quantum

computer. Indeed, its evaluation is remarkably eﬁicient_exponentlal function, the bottleneck of Shor’s factorization

With an improvement suggested by Coppersniith and ?Igonthtm. Vllletna;/e c?ns:rutcr':ed a(\j/alrlety of detatl_leld qgan—
Deutsch[8], evaluation of theL-bit Fourier transform is ac- um networks that evaluate the modular eéxponential and we

complished by composing. one-qubit operations and have analyzed the Complexity of our networks. A co_nvenient
11 (L—1) two-qubit operations[For the Cirac-Zoller de- (though somevyhat grbnra)ryneasure of the complexity of a
vice, implementation of the discrete Fourier transform re-duantum algorithm is the number of laser pulses that would
quiresL (2L —1) distinct laser pulsek. be required to implement the algorithm on a device like that
The bottleneck of Shor's algorithm is the rather more€nvisioned by Cirac and Zoller. We show thahifandx are

mundane task of evaluating the modular exponential funcK-bit classical numbers anal is anL-bit quantum number,
tion, i.e., the implementation of the transformatidnin Eq.  then, on a machine with R+1 qubits of scratch space,
(1.1). This task demands far more computational resourcetie computation ofx*(modN) can be achieved with
than the rest of the algorithm, so we will focus on evaluationl98L[K?+O(K)] laser pulses. If the scratch space of the
of this function in this paper. There is a well-knovalassi- ~machine is increased by a single qubit, the number of pulses
cal) algorithm for evaluating the modular exponential thatcan be reduced by about 6d6r K large), and ifK qubits are
involvesO(K?®) elementary operations and we will make useadded, the improvement in speed is about 29%. We also
of this algorithm here. exhibit a network that requires onk/+ 1 scratch qubits, but

The main problem that commands our attention is thevhere the required number of pulses is of ortér*.
management of the “scratchpad” space that is needed to The smallest composite number to which Shor’s algo-
perform the computation, that is, the extra qubits aside fronfithm may be meaningfully applied ¥=15. (The algorithm
the input and output registers that are used in intermediatils for N even and foN=p®, p prime) Our general pur-
steps of the computation. It is essential to erase the scratcpose algorithmwhich works for any value of), in the case
pad before performing the discrete Fourier transform on thd\=15 (or K=4, L=8), would require 21 qubits and about
input register. Before the scratchpad is erased, the state of t& 000 laser pulses. In fact, a much faster special purpose
machine will be of the form algorithm that exploits special properties of the number 15
can also be constructed: for what it is worth, the special
purpose algorithm could “factor 15” with 6 qubits and only
38 pulses.

The fastest modern digital computers have difficulty fac-
where|g(a))s denotes the “garbage” stored in the scratch-toring numbers larger than about 130 digi#82 bit9. Ac-
pad. If we were now to perform the discrete Fourier trans-cording to our estimates, to apply Shor’s algorithm to a num-
form on|);, we would be probing the periodicity properties ber of this size on the ion trap comput@r a machine of
of the functionx®(mod\) ® g(a), which may be quite differ- similar desigh would require about 2160 ions and<30%°
ent than the periodicity properties af(mod\) that we are laser pulses. The ion trap is an intrinsically slow device, for
interested in. Thus the garbage in the scratchpad must dbe clock speed is limited by the frequency of the fundamen-
erased, but the erasure is a somewhat delicate process. T vibrational mode of the trapped ions. Even under very
avoid destroying the coherence of the computation, erasuravorable conditions, it seems unlikely that more thaft 10
must be performed as a reversible unitary operation. operations could be implemented per second. For a compu-

In principle, reversible erasure of the unwanted garbagé¢ation of practical interest, the run time of the computation is
presents no difficulty. Indeed, in his pioneering paper orlikely to outstrip by far the decoherence time of the machine.
reversible computation, Benneff] formulated a general It seems clear that a practical quantum computer will require
strategy for cleaning out the scratchpad: one can run tha much faster clock speed than can be realized in the Cirac-

1
S )X (modN) )olg(@))s, (L3
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Zoller design. For this reason, a design based on cavity quainterference and entangleménin fact, a Turing machine
tum electrodynamicsin which processing involves excita- can simulate a quantum computer to any desired accuracy
tion of photons rather than phonorn41,12 may prove more (and vice versp hence the classical theory and the more
promising in the long run. fundamental quantum theory of computation agree on what
Whatever the nature of the hardware, it seems likely thats computable[3]. But they may disagree on the classifica-
a practical quantum computer will need to invoke some typdion of complexity what is easy to compute on a quantum
of error correction protocol to combat the debilitating effectsCOmputer may be hard on a classical computer.
of decoherencgl3]. Recent progress in the theory of error-

correcting quantum coddgd4] has bolstered the hope that B. Bits and qubits
real quantum computers will eventually be able to perform |n classical theory, the fundamental unit of information is
interesting computational tasks. the bit: it can take either of two values, say 0 and 1. All

Although we expect that the linear ion trap is not likely to classical information can be encoded in bits and any classical
ever become a practical computer, we wish to emphasize thabmputation can be reduced to fundamental operations that
it is a marvelous device for the experimental studies of thdlip bits (changing 0 to 1 or 1 to)dconditioned on the values
peculiar properties of entangled quantum states. Cirac anaf other bits.

Zoller [5] have already pointed out that maximally entangled In the quantum theory of information, the bit is replaced
states oh ions[15] can be prepared very efficiently. Since it by @ more general construct: the quantum bitgabit We

is relatively easy to make measurements in the Bell operatdegard|0) and|1) as the orthonormal basis states for a two-
basis for any pair of entangled ions in the tfap], it should ~ dimensional complex vector space. The state of a it
be possible to, say, demonstrate the possibility of quantumPure”) can be any normalized vector, denoted
toetlr:aepbortation[ﬂ] (at least from one end of the trap to the Col0)+¢4|1), 2.1)

In Sec. Il of this paper, we give a brief overview of the where Co and c, are Comp|ex numbers Satisfyinb;olz
theory of quantum computation and describe Shor’s algo-+|c,|?=1. A classical bit can be viewed as the special case
rithm for factoring. Cirac and Zoller's proposed implemen-in which the state of the qubit is always eitheg=1,
tation of a quantum computer using a linear ion trap is exc;=0 orcy,=0, c;=1.
plained in Sec. lll. Section IV gives a summary of the main  The possible pure states of a qubit can be parametrized by
ideas that guide the design of our modular exponentiatiowo real numbers(The overall phase of the state is physi-
algorithms; the details of the algorithms are spelled out incally irrelevant) Nevertheless, only one bit of classical in-
Sec. V and the complexity of the algorithms is quantified information can be stored in a qubit and reliably recovered. If
Sec. VI. The special cagé=15 is discussed in Sec. VII. In the value of the qubit in the state E@.1) is measured, the
Sec. VIl we propose a simple experimental test of the quantesult is 0 with probability|ce|?> and 1 with probability
tum Fourier transform. Finally, in the Appendix, we describe|c,|?; in the casgcg|?=|c,|%= 3, the outcome of the mea-

a scheme for further improving the efficiency of our net-surement is a random number and we recover no information
works. at all.

Quantum networks that evaluate the modular exponential A string of n classical bits can take any one df fossible
function have also been designed and analyzed by Despau@lues. Fom qubits, these 2 classical strings are regarded
et al.[18], by Shor[19], and by Vedral, Barenco, and Ekert as the basis states for a complex vector space of dimension
[20]. Our main results are in qualitative agreement with the2" and a pure state of qubits is a normalized vector in this
conclusions of these authors, but the networks we describ&ace.

are substantially more efficient.
C. Processing

In a quantum computatiom, qubits are initially prepared
[l. QUANTUM COMPUTATION in an algorithmically simple input state, such as
AND SHOR'S FACTORIZATION ALGORITHM
|inputy=[0)[0)[0)- - -|0). (2.2

A. Computation and physics
Then a unitary transformatiod is applied to the input state,

The theory of computation would be bootless if the com-'""%"’
yielding an output state

putations that it describes could not actually be carried ou
using physically realizable devices. Hence it is really the task
of physics to characterize what is computable and to classify
the efficiency of computations. The physical world is quan-Finally, a set of commuting observabléy ,0,,0s, . .. is
tum mechanical. Therefore, the foundations of the theory ofneasured in the output state. The measured values of these
computation must be quantum mechanical as well. The classbservables constitute the outcome of the computation. Since
sical theory of computatiofe.g., the theory of the universal the output state is not necessarily an eigenstate of the mea-
Turing maching should be viewed as an important special
case of a more general theory.

A “quantum computer” is a computing device that in- For a lucid review of quantum computation and Shor’s algo-
vokes intrinsically quantum-mechanical phenomena, such agthm, seef21].

|outpud = U |input). 2.3



54 EFFICIENT NETWORKS FOR QUANTUM FACTORING 1037

sured observables, the quantum computation is not determin- D. Massive parallelism

isf[ic; rather, the same .com_put.atio.n, performgd many times, DeutscH 3] put this suggestion in a more tangible form by
will generate a probability distribution of possible O_Utcome,s'emphasizing that a quantum computer can exploit “massive
ste[Ngi g]sastutrgi do?osirt\a/aski)rlﬁsléhiit :‘é?ngqggﬁgé?%g]‘etrcﬁszn%antum parallelism.” Suppose we are interested in studying
trar?sformatiorU would be sugerfluous. Without I’oss of gen- o properties of a functioh d(med on t'he domain of non-
gative integers 0,1,2,.,2—1. Imagine that a unitary

erality, we may specify that the values of all qubits¥ &  yansformationU; can be constructed that efficiently com-
subset of the qubijsare measured at the end of the compu-

: . s . X . utesf:
tation; that is, thgth qub|t|)j is projected onto the “com- P
putational baSiS_”{|o>j J1)i3] i . Ugz|(iL—q2i—2 - - 11i0))in(00- - -00)) gy

To characterize the complexity of a computation, we must o o o o
formulate some rules that specify how the transformation =iz - aio)inl fiL-aii—2+ - 11i0)out:
U is constructed. One way to do this is to demand thas (2.6)

expressed as a product of elementary unitary transforma-

tions, or “quantum gates,” that act on a bounded number oHere (, _4i, _»---iqig) is an integer expressed in binary

qubits (independent of). In fact, it is not hard to sef22]  notation and (i, _qi, _,...i4ig)) denotes the corresponding

that “almost any” two-qubit unitary transformation, together basis state of. qubits. Since the functiofi might not be

with qubit swapping operations, is universal for quantuminvertible, U; has been constructed to leave the state in the

computation. That is, given a generic<4 unitary matrix  |);, register undisturbed to ensure that it is indeed a revers-

U, let U0D denoteU acting on theith andjth qubits ac- ible operation.

cording to Equation (2.6) defines the action obJ); on each of 2

basis states and hence, by linear superposition, on all states
G(i’j)1|€i>i|€j>jHUe.e. e/e.’|€i'>i|€j'>j ) (2.4 ofa 2--dimensional Hilbert space. In particular, starting with
SR the state|(00- - -00));, and applying single-qubit unitary
transformations to each of tHe qubits, we can easily pre-

noo . .
Then any 2X 2" unitary transformatiord can be approxi- pare the state

mated to arbitrary precision by a finite string 0f"1)’s,
L
~ — _ 1 1
=ylr.n...yl2.i2yi1.id —|0)+ —|1
u=0 Uiz 12§, (2.5) (@I ) ﬁ' >>

The lengthT of this string(the “time”) is a measure of the
complexity of the quantum computation.

Determining the precise string of01)’s that is needed to
perform a particular computational task may itself be com- 1 2L
putationally demanding. Therefore, to have a reasonable no- =_1p
tion of complexity, we should require that a conventional 275
computer(a Turing machinggenerates the instructions for ) N
constructing the unitary transformatieh The complexity of ~ an equally weighted coherent superposition of all of the 2
the computation is actually the sum of the complexity of thedistinct basis states. With this input, the actionlbf pre-
classical computation and the complexity of the quantunpares the state
computation. Then we may say that a problerrastableon
a quantum computer if the computation that solves the prob-
lem can be performed in a time that is bounded from above |r)= ZTIQ)ZO |XYinl F (X)) out- 2.9
by a polynomial inn, the number of qubits contained in the

guantum registgr. This nption of tractability has .the niceThe highly entangled quantum state E.8) exhibits what
property that it is largely independent of the details of thepeytsch called “massive parallelism.” Although we have
design of the machine, that is, the choice of the fu_ndamenta}[m the computation(applied the unitary transformation
quantum gates. The quantum gates of one device can k) only once, in a sense this state encodes the value of the
simulated to polynomial accuracy in polynomial time by the fnction f for each possible value of the input variable
quantum gates of another device. _ Were we to measure the value of all the qubits of the input
It is also clear that a classical computer can simulate fegister, obtaining the resuk=a, a subsequent measure-
quantum computer to any desired accuracy: all that is regent of the output register would reveal the valuef (d).
quired to construct the stateutpu} is repeated matrix mul-  ynfortunately, the measurement will destroy the entangled
tiplication and we can simulate the final measurement of thg;ate so the procedure cannot be repeated. We succeed, then

observables by expandirjgutpup in a basis of eigenstates unambiguously evaluatinfy for only a single value of its
of the observables. However, the classical simulation ma\érgument.

involve matrices of exponentially large siz¥ (s a 2'x 2"
matrix) and so may take an exponentially long time. It was
this simple observation that led Feynm&j to suggest that
guantum computers may be able to solve certain problems Deutsch[3] emphasized, however, that certain global
far more efficiently than classical computers. properties of the functiori can be extracted from the state

N

0 i1=0ip=

1 1 1
2 2 2 i iio)in

Il
I\ll

- -
Nl

1
|X>ina (27)

=0

2b—1

E. Periodicity
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Eq. (2.8 by making appropriate measurements. Suppose, fdected, therr ands will be relatively prime with a probabil-

example, thatf is a periodic function (defined on the non- ity of order 1/loglog. Hence, even after the rational number

negative integeds whose periodr is much less than '2  is reduced to lowest terms, it is not unlikely that the denomi-

(wherer does not necessarily divide-® and that we are nator will ber.

interested in finding the period. In general, determining a We conclude thefif r is known to be less than*%) that

computationally difficult tasKfor a classical computgif r each time we prepare the state E2.8), apply the7 to the

is large. Shor's central observation is that a quantum cominput register, and then measure the input register, we have a

puter, by exploiting quantum interference, can determine th@robability of order 1/loglog>1/logL of successfully infer-

period of a function efficiently. ring from the measurement the periodof the functionf.
Given the state Eg2.8), this computation of the period Hence, if we carry out this procedure a number of times that

can be performed by manipulatii@nd ultimately measur- is large compared to ldg we will find the period off with

ing) only the state of the input register; the output registerprobability close to unity.

need not be disturbed. For the purpose of describing the out- All that remains to be explained is how the construction

come of such measurements, we may trace over the unobf the unitary transformatior¥ is actually carried out. A

served state of the output register, obtaining the mixed dersimpler construction than the one originally presented by

sity matrix Shor [1] was later suggested by Coppersmitfi] and

Deutsch[8]. (It is, in fact, the standard fast Fourier trans-

1 form, adapted for a quantum compujein their construc-
Pin i =oul | ¥1)(¥i]) = F;::o [0 Cd. (2.9 tion, two t‘;/pes of eleqmentary guantum gates are used. The
first type is a single-qubit rotation

r-1

where
- _ IO)J- 1 (l 1 >(|0>J-)
1 N-1 U(J):( —_ , (214)
|l//k>=\/_Nj§=:0 [X=K+rj)in (2.10 11);) 211 —1/1[1);

the same transformation that was used to construct the state

is the coherent superposition of all the input states that ar q. (2.7). The second type is a two-qubit conditional phase

mapped to a given outpUtHere /'~ 1 is the greatest integer

"
less than (2—k)/r.] operation
Now, Shor showed that the unitary transformation VO 8):|) | s €T ) | md 215
VAL RAN KUS .
2t-1
: ixy/2- is, V(K ol o
Tx)p— > el (2.1  Thatis,vVU:9(9) multiplies the state by the phas¥ if both
8 2% v the jth andkth qubits have the value 1 and acts trivially
otherwise.

(the Fourier transformncan be composed from a number of |t js not difficult to verify that the transformation
elementary quantum gates that is bounded from above by a

polynomial inL. The Fourier transform can be used to probe

A 111 (00 /(0.D) 0.2 OL-1)/, joL—1
the periodicity properties of the state H8.9). If we apply T={UVEI (@2 (7ld) - - -V (/2571

7 to the input register and then measure its vajyethe XUV =3L=2) (o) \(L=3L=D)( 7/g))
outcome of the measurement is governed by the probability
distribution x{Ut=2yL=2b=D oy b=y (2.1
N1 Nil 2 iyt 2 2 acts as specified in Eq2.11), except that the order of the
P(y)= 2N & € (2.12 qubits iny is reversed. (Here the transformation furthest to

the right acts first) We may act on the input register with
This probability distribution is strongly peaked about values7 rather tharZ, and then reverse the bits pfafter the mea-
of y of the form surement. Thus the implementation of the Fourier transform
; is achieved by composing altogetherone-qubit gates and
y (intege _ L(L—1)/2 two-qubit gates.
ot~ r £0(2h), (2.13 Of course, in an actual device, the phases of the
VUK (g) gates will not be rendered with perfect accuracy.
where the integer is a random number less thaifror other  Fortunately, the peaking of the probability distribution in Eq.
values ofy, the phases in the sum ovgrinterfere destruc- (2.12) is quite robust. As long as the errors in the phases
tively.) Now suppose that the periadis known to be less occurring in the sum over are small compared to72, con-
than 2/2. The minimal spacing between two distinct rational structive interference will occur when the condition Eq.
numbers, both with denominator less thar?2is O(271). (2.13 is satisfied. In particular, the gates in £8.16 with
Therefore, if we measurg, the rational number with de- small values off= /27K can be omitted, without much
nominator less than'? that is closest ty/2" is reasonably — affecting the probability of finding the correct period of the
likely to be a rational number with denominatgrwhere the
numerator is a random number less thanFinally, it is
known that if positive integers ands<r are randomly se-  2For a lucid explanation, sgd9].
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function f. Thus(as Coppersmitii7] observed the time re- complexity for quantum computation differs from the corre-
quired to execute th& operation to fixed accuracy increases sponding classical classification. Aside from being an inter-
only linearly with L. esting example of an intrinsically hard problem, factoring is
also of some practical interest: the security of the widely
F. Factoring used RSA public key cryptography schef@8] relies on the
é)rresumed difficulty of factoring large numbers.

It is not yet known whether a quantum computer can ef-
1Iiciently solve “NP-complete” problems, which are be-
lieved to be intrinsically more difficult than the factoring
problem.(The “traveling salesman problem” is a notorious
example of arlNP-complete problen).It would be of great
fundamental interestand perhaps of practical interggb
settle this question. Conceivably, a positive answer could be
found by explicitly exhibiting a suitable algorithm. In any
event, better characterizing the class of problems that can be

The above observations show that a quantum comput
can find the prime factors of a number efficiently, for it is
well known that factoring can be reduced to the problem o
finding the period of a function. Suppose we wish to find a
nontrivial prime factor of the positive integ&. We choose
a random numbex<<N. We can efficiently check, using Eu-
clid’s algorithm, whethex andN have a common factor. If
so, we have found a factor &, as desired. If not, let us
compute the period of the modular exponential function

fo(2)=x3(modN). (2.17 solved in “quantum polynomial time” is an important un-
’ solved problem.
The period is the smallest positivee such that The quantum factoring algorithm works by coherently
x"=1( modN), called theorder of xmodN. It exists when- summing an exponentially large number of amplitudes that
everN andx<N have no common factor. interfere constructively, building up the strong peaks in the

Now suppose that is even and thakrlzi_l( mod\l) prObablllty distribution Eq(212 Unfortunately, this “ex-
Then, since N divides the product X/2+1)(x"2—1)  Ponential coherence” is extremely vulnerable to the effects

=x"—1, but does not divide either one of the factorsOf Noise[13]. When the computer interacts with its environ-
(x'2+1), N must have a common factor with each of Ment, the quantum state of the computer becomes entangled
(x"2+1). This common factor, a nontrivial factor df, can with the state of the environment; hence the pure quantum
then be efficiently computed. state of the computer decays to an incoherent mix_ed state, a
It only remains to consider how likely it is, given a ran- phenpmenon known as decoherence. Jq;t as an illustration,
domx relatively prime toN, that the conditions even and imagine that, after the coherent superposition stat¢ Z#0)
X2 —1(modN) are satisfied. In fact, it can be shown IS Prepared, each qubit has a probabipz 1 of decohering
[19,21] that, forN odd, the probability that these conditions COMPpletely before thel"is applied and the device is mea-
are met is at least 1/2, except in the case wineie a prime sured; in other wordspL of the L qubits decohere and the
power (N=p®, p prime). [The trouble withN=p“ is that in state of the computer becomgs entangled with mutually
this case* 1 are theonly “square roots” of 1 in multiplica- orthoggnal states of the enylronment._Thus the number of
tion mocN, so that, even if is evenx”?=—1(mod) will terms in the coherent sum in E(R.12 is reduced by the

always be satisfiefiAnyway, if N is of this exceptional type factor 2 P- and the peaks iLn the probability distribution are
(or if N is even, it can be efficiently factored by conven- Weakened by the factor 2P - For any nonzerg, then, the
tional (classical methods. probability of successfully finding a factor decreases expo-

Thus Shor formulated a probabilistic algorithm for factor- Nentially asL. grows large.
ing N that will succeed with probability close to 1 in a time Interaction with the environment, and hence decoherence,

that is bounded from above by a polynomial in kogTo always occur at some level. It seems, then, that the po_tential
factor N we chooseL so that, sayN?<2'<2NZ2. Then, of a quantum computer to solve hard problems efficiently
since we know that <N< 22 we can use the method de- €an be reali_z_ed. only if suitable schemes are found that con-
scribed above to efficiently compute the perioof the func- trol the debilitating effects of decoherence. In some re.mark—
tion f,,. We generate the entangled state E%j8), apply able recent developmentgl4], clever error _correct|on
the Fourier transform, and measure the input register, thu&cneémes have been proposed for encodingséming quan-

generating a candidate valuerofThen, a classical computer tum information th_a'g sharply reduce its s_usceptlblllty to
is used to find the greatest common divisor 9f3— 1.N). If noise. Some remaining challenges are to incorporate error

there is a nontrivial common divisor, we have succeeded jgorrection into t.he operatpn qfla quantgm netw(s that it

finding a factor ofN. If not, we repeat the procedure until we can operate with h|g.h rella_b!llty in spite of the effects of

succeed ' decoherencgeand to find efficient error-correction schemes
Of course, it is implicit in the above description that thethat can be implemented in realistic working devices.

evaluation of the functioriy , can be performed efficiently

on the quantum computer. The computational complexity of IIll. THE LINEAR ION TRAP

fn.x I8, In fact, the main topic of this paper. A. A realizable device

The hardware for a quantum computer must meet a vari-
ety of demanding criteria. A suitable method for storing qu-
It is widely believed that no classical algorithm can factor bits should be chosen such thaj the state of an individual

a large number in polynomially bounded tin#nough this  qubit can be controlled and manipulatéd) carefully con-
has never been rigorously demonstratethe existence of trolled strong interactions between distinct qubits can be in-
Shor’s algorithm, then, indicates that the classification ofduced(so that nonlinear logic gates can be constructadd

G. Outlook
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(3) the state of a qubit_ can be rgad out efficiently_. Further- ) 19)i10Yc.m—19)il0)e.m.
more, to ensure effective operatiéh) the storage time for Mhoni 16%i10)e i — 19} Lern.
the qubits must be long enough so that many logical opera- Hsem. 9l Lrcm.
tions can be performed2) the machine should be free of . . . . . oL
imperfections that could introduce errors in the logic gates:rh'S operation removes a bit Qf |nformat|on that_ IS |n|t|a!ly
and (3) the machine should be well isolated from its envi- stored in the internal state of thth |0n(_§and deposits the bit
; G !
ronment, so that the characteristic decoherence time is suffi? the ¢.m. phonon mode. Applyind/;s,, again would re-
ciently long. verse the operaup(up toa _phf'as_)e removing the phonon and
Cirac and Zollef5] proposed an incarnation of a quantum reinstating the bit stored in ion However, all of the ions

o ouple to the c.m. phonon, so that once the information has
computer that meets these criteria remarkably well and thageefl transferred topthe c.m. mode, this information will in-

may be within the grasp of existing technology. In their PO fuence the response of ignif a laser pulse is subsequently

posal, ions are collected in a linear harmonic trap. The 'nterairected at that ion. By this scheme, nontrivial logic gates

T d dal lived bl itod %an be constructed, as we will describe in more detail below.
|g) is interpreted ag0) and a long-lived metastable excited ~ Ap experimental demonstration of an operation similar to

state|e) is interpreted agl). The quantum state of the com- W(pi))honwas recently carried out by Monra al. [27]. In this

puter in this basis can be efficiently read out by the "quan-g,heriment, a singléBe* ion occupied the trap. In earlier
tum jump method'24]. A laser is tuned to a transition from o 3 Jinear trap was constructed that held 33 ions, but
the statdg) to a short-.hved_ excited sta_te that decays baCk_ %these were not cooled down to the vibrational ground state.
|g); when the laser illuminates the ions, each qubit withThe effort to increase the number of qubits in a working
value |0) fluoresces strongly, while the qubits with value device is ongoing.
|1) remain dark. Perhaps the biggest drawback of the ion trap is that it is an
Coulomb repulsion keeps the ions sufficiently well sepa-intrinsically slow device. Its speed is ultimately limited by
rated that they can badividually addressed by pulsed lasers the energy-time uncertainty relation; since the uncertainty in
[6]. If a laser is tuned to the frequenay, wheref w is the  the energy of the laser photons should be small compared to
energy splitting betweefg) and|e), and is focused on the the characteristic vibrational splitting the pulse must last a
the ith ion, then Rabi oscillations are induced betw¢@)y;  time large compared to™*. In the Monroeet al. experiment,
and|1);. By timing the laser pulse properly and choosing» was as large as '50 MHz, but it is Iike_ly to be olrders of
the phase of the laser appropriately, we can preparétthe magnitude smaller in a device that contains many ions.
ion in an arbitrary superposition ¢8); and|1); . (Of course, In an alternate version of the above scheimposed by
since the stateflyy) and |e) are nondegenerate, the relative the Pellizzariet al.[12]) many atoms are stored in an optical
phase in this linear combination rotates with timeeas®t cavity and the atoms [ntergct via the cavllty.photon mode
even when the laser is turned off. It is most convenient to(rather than the c.m. vibrational moqen principle, quan-
express the quantum state of the qubits in the interactiowm gates in a scheme based on cavity QED could be intrin-

picture, so that this time-dependent phase is rotated away sically much faster than gates implemented in an ion trap. An

. o “experimental demonstration of a rudimentary quantum gate
Crucial to the functioning of the quantum computer are; b yq 9

. .~ ~involving photons interacting with an atom in a cavity was
the quantum ga’ges that ||jduce entanglemgnt between d'St'nFécentIy reported by Turchettet al. [11].

qubits. The qubits must interact if nontrivial quantum gates
are to be constructed. In the ion trap computer, the interac-
tions are effected by the Coulomb repulsion between the
ions. Because of the mutual Coulomb repulsion, there is a An interesting two-qubit gate can be constructed by ap-
spectrum of coupled normal modes for the ion motion. Wherplying three laser pulsd$]. After a phonon has begjgon-

an ion absorbs or emits a laser photon, the center of mass ditionally) excited, we can apply a laser pulse to flie ion

the ion recoils. But if the laser is properly tuned, then whenthat is tuned to the transitidg);|1)¢ m~>|€");|0)¢ m., where

a single ion absorbs or emits, a normal mode involving manye’) is another excited stat@ifferent from|e)) of the ion.

(3.2

B. Conditional phase gate

ions will recoil coherently(as in the Mssbauer effegt The effect of a 2r pulse is to induce the transformation
The vibrational mode of lowest frequené¢fyequencyv)

is the center-of-mas&.m) mode, in which the ions oscillate |g>1’|0>°-ma|g>l’|0>°-m-

in lockstep in the harmonic well of the trap. The ions can be 0. |e>j|0>c.ma|e>j|0>c.m. 39

laser cooled to a temperature much less thaso that each 1 19)i L em——19)Lem (3.2

vibrational normal mode is very likely to occupy its

guantum-mechanical ground state. Now imagine that a laser €}l Dem—[€)i| Lem.

tuned to the frequencw— v shines on thdth ion. For a

properly timed pulséa 7 pulse, or & pulse fork odd), the ~ Only the phase of the statg)|1). . is affected by the 2
state|e); will rotate to|g);, while the c.m. oscillator makes pulse, because this is the only state that is on resonance for a
a transition from its ground sta{®) ., to its first excited transition when the laser is switched dit.would not have
state|1)., (@ c.m. “phonon” is produced However, the had the same effect if we had tuned the laser to the transition
state|g)i|0) m. is not on resonance for any transition and soffom |g)|1)cm to |€)[0)cr, because then the state

is unaffected by the pulse. Thus, with a single laser pulse, wEe)|0). m would also have been modified by the pulsép-

may induce the unitary transformation plying Wgﬁon again removes the phonon and we find that
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V(i’j)EWgr:onV(j)W%onﬂE>i| 7)i—=>(—1) " €e)i| n); 7/2 pulse at ionj, we see that the controlledioT operation
(3.3 can be implemented in the ion trap with altogether five laser

: " . - pulses.
is aconditional phaseate; it multiplies the quantum state by The controlled-voT gate can be generalized to an opera-

(- 1)” if thﬁ q“bit3|>'&a”d|>j IEOtT hav; the value 1fand aCtSftion that has a string df control qubits; we will refer to this
trivially otherwise. A remarkable and convenient feature ol ation as the controllédNoT operation.(For k=2, it is

this construction is that the two qubits that interact need NOfien called the Toffoli gate lts action is

be in neighboring positions in the linear trap. In principle,

the ions on which the gate acts could be arbitrarily far apart.
This gate can be generalized so that the conditional phase

(—1) is replaced by an arbitrary phas¥: we replace the H|61>il- . '|€k>ik|6@(61/\' - Ne)j, (3.8

21 pulse directed at ion by two 7 pulses with differing

values of the laser phase and modify the laser phase for onghere/\ denotes the logicadND operation(binary multipli-

of 7 pulses directed at ion. Thus, with four pulses, we cation. If all k of the control qubits labeled, . . . ,i, take

construct the conditional phase transformat6h’)(6) de-  the value 1, therCy; il flips the value of the target

fined in Eq.(2.19 that is needed to implement the Fourier qubit labeled;; othérwise,c[[i 11, acts trivially. To

transform7. The L-qubit Fourier transform, then, requiring implement this gate in the ionlir.a.io‘ kv;;e will make use of an

L(L.—1)/2 conditional phase gates ahdsingle-qubit rota- operationV{)) that is induced by di’recting @ pulse at ion

tions, can be implemented with altogethef2L—1) laser i tuned to tphe transitiohg);| 1) ¢ m—>|€’ )10 ¢ its action

Cri,....iileni, - ledile);

pulses.
Actually, we confront one annoying little problem when IS
we attempt to implement the Fourier transform. The single- 19)i10)e.m>9)i0)
qubit rotations that can be simply induced by shining the nesem Hesem
laser on an ion are unitary transformations with determinant i . €)i[0)cm—>1€)il0)cm. 3.9
one (the exponential of an off-diagonal Hamiltonjanvhile phon- 1 1 y. 1) ¢ > —i]€/)i|0Yem (3.9
the rotationU(") defined in Eq.(2.14 actually has determi- o o
nant (—1). We can replac&)) in the construction of the &l L)cm—>1€)il e
T operator{Eq. (2.16] by the transformation The pulse has no effect unless the initial state is
101 1)/0) 19)il LYem., in which case the phonon is absorbed andiion
[j(J):(|o>j|1>j),_> _( )( J) (3.4) undergoes a transition to the st@é); . We thus see that the
21 -1 1/1[1), controlled- NOT gate can be constructed &
(which can be induced by a single laser pulse with properly Cu,. ... ikME[GU)]*lv\/pihl;nv(gﬁLn- : -Vﬂﬁin
chosen laser phageHowever, the transformatidgfithus con- o _ o
structed differs fron” according to ><V<1>Vgr‘;;n- : -Vgﬁ;nwgf}gnu“). (3.10
(YITIx)=(—1)P*Yy| T x), (3.5  To understand how the construction works, note first of all
) ] , ] that if e,=0, no phonon is ever excited and none of the
where Pary) is theparity of y, the number of 1's appearing pulses have any effect. le,=e,=---=€, ;=1 and

in its binary expansion. Fortunately, the additional phase _ ) (i) .
Pary) has no effect on the probability distribution Eg. em=0 (msk).,then th'e fl(rists/vphonpr(.)ducesa'phonon.that IS
(2.12), so this construction is adequate for the purpose ofibsorbed during the first \® operation, reemited during the

carrying out the factorization algorithm. second\/gr;"gn operation, and finally absorbed again during the
second\Ngﬁgn; the other pulses have no effect. Since each of
C. Controlled-NoT gate the four pulses that is on resonance advances the phase of the
The conditional ¢ 1) phase gate Eq3.3 differs froma  state by =/2, there is no net change of phase. If
controlledNOT gate by a mere change of ba$s]. The e€;=€,=---=¢€=1, then a phonon is excited by the first
controlledNoT operationCy;; ; acts as W(;)ﬁ)on and all of thevgggn’s act trivially; hence, in this case,
Cunlenl my—l el no ), 3@ O -.igs s he same action &,

We find, then, that the controlléeNoT gate

where® denotes the logicalor operation(binary additon ~=1,2,...) can bemplemented in the ion trap with alto-
mod 2. ThusCy;; ; flips the value of the target quhjjt; ifthe ~ gether X+3 laser pulses. These gates are the fundamental
control qubit|); has the value 1 and acts trivially otherwise. opergtlogls that we will use to build the modular exponential
We see that the controlledioT can be constructed as function:

CMJE[U(j)]—lv(ivj)u(J): [U(J')]—1Wgr=onv(J)W(Fi))honu(j),

(3.7 3In fact, the efficiency of our algorithms could be improved some-
o ) ) ) . ) what if we adopted other fundamental gates that can also be simply
where U is the single-qubit rotation defined in E(.4.  implemented with the ion trap. Implementations of some alternative

Since U0 (or its inversg can be realized by directing a gates are briefly discussed in the Appendix.
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IV. MODULAR EXPONENTIATION: result is recorded. The result of this final measurement is the
SOME GENERAL FEATURES output of our device.
In Sec. V we will describe in detail several algorithms for Th|s division between classical anq quantum d".“a IS not
performin-g modular exponentiation on a quantum computer?tm:tIy necessary. Naturally,(anumbgr IS just a_spemal case
These algorithms evaluate the function of ag number, so we could certainly describe the whole
device as a quantum gate netwdtkough, of course, our
classical computer, unlike the quantum network, can perform
irreversible operationsHowever, if we are interested in how
a practical quantum computer might function, the distinction
whereN andx areK-bit classical numberé&c numbersand  between the quantum computer and the classical computer is
a is anL-qubit quantum numbeig numbey. Our main mo-  vitally important. In view of the difficulty of building and
tivation, of course, is that the evaluationfgf , is the bottle-  operating a quantum computer, if there is any operation per-
neck of Shor’s factorization algorithm. formed by our device that is intrinsically classical, it will be
Most of our algorithms require a “time’{number of el-  highly advantageous to assign this operation to the classical
ementary quantum gatesf orderk? for largeK. In fact, for ~ computer; the quantum computer should be reserved for
asymptotically largeK, faster algorithms[time of order more important work(This is especially so since it is likely
KZlog(K)loglog(K)] are possible: these take advantage ofto be quite a while before a quantum computer's “clock
tricks for performing efficient multiplication of very large speed” will approach the speed of contemporary classical
numbers[25]. We will not consider these asymptotically computers.
faster algorithms in any detail here. Fast multiplication re-
quires additional storage space. Furthermore, because fast 2. Counting operations

multiplication carries a high overhead cost, the advantage in Accordingly, when we count the operations that our algo-

speed is realized only when the numbers being multiplied aABthms require, we will be keeping track only of the elemen-
enormous. . . . tary gates employed by the quantum computer and will not
We will concentrate instead on honing the efficiency of gisess in detail the time required for the classical computer
algorithms requiring<* time and will study the tradeoff of ¢, hr4cess the classical data. Of course, for our device to be
computation time versus storage space for these algorithmsp e 1o perform efficient factorization, the time required for
We will also briefly discuss an algorithm that takes consid-a classical computation must be bounded above by a poly-
erably longer K® time), but enables us to compress the Stor-pomia| in K. In fact, the classical operations take a time of
age space further. order K3; thus the operation of the quantum computer is

_ Finally, we will describe a “customized” algorithm that ;a1 to dominate the total computation time even for a very
is designed to evaluatl,  in the caseN=15, the smallest long computatiod.

value of N for which Shor's algortihm can be applied. Un- | the case of the evaluation of the modular exponential
surpr_|smgly, this custom|z_ed glgonthm is far more efficient, ¢,nction f\,(a), the classical input consists bf andx and
both in terms of computation time and memory use, than OUfhe quantljm input i stored in the quantum register: in
general purpose algorithms that apply for any valudl@nd addition, the quantum computer will require some additional

X. qubits(initially in the state|0)) that will be used for scratch
space. The particular sequence of elementary quantum gates
A. The model of computation that are applied to the quantum input will depend on the

values of the classical variables. In particular, the number of
operations is actually a complicated functionhdbfndx. For

The machine that runs our program can be envisioned asthis reason, our statements about the number of operations
guantum computer controlled by a classical computer. Th@erformed by the quantum computer require clarification.
input that enters the machine consists of both classical data We will report the number of operations in two forms,
(a string of classical bijsand quantum datéa string of qu-  which we will call the “worst case” and the “average
bits prepared in a particular quantum sjat€he classical case.” Our classical computer will typically compute and
data take a definite fixed value throughout the computatiormead a particular classical kior sequence of bijsand then
while for the quantum data coherent superpositions of differdecide on the basis of its value what operation to instruct the
ent basis states may be considefaedd quantum entangle- quantum computer to perform next. For example, the quan-
ment of different qubits may occurThe classical computer tum computer might be instructed to apply a particular el-
processes the classical data and produces an output that i®mentary gate if the classical bit reads 1, but to do nothing if
program for the quantum computer. it reads 0. To count the number of operations in the worst

The quantum computer is a quantum gate network of thease, we will assume that the classical control bits always
sort described by DeutsdB8]. The program prepared by the
classical computer is a list of elementary unitary transforma=—
tions that are to be applied sequentially to the input state in 4indeed, one important reason that we insist that the quantum
the quantum registeXTypically, these elementary transfor- computer is controlled by a classical computer is that we want to
mations act on one, two, or three qubits at a time; their prenave an honest definition of computational complexity; if it re-
cise form will vary depending on the design of the quantumquired an exponentially long classical computation to figure out
computer). Finally, the classical computer calls a routine thathow to program the quantum computer, it would be misleading to
measures the state of a particular string of qubits and theay that the quantum computer could solve a problem efficiently.

fnx(a)=x#modN), (4.2

1. A classical computer and a quantum computer
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assume the value that maximizes the number of operations In counting operations, we assume that the controlled
performed. This worst case counting will usually be a serious‘-NOT operation can be performed on any sekefl qubits
overestimate. A much more realistic estimate is obtained ifn the device. Indeed, a beautiful feature of the Cirac-Zoller
we assume that the classical control bits are ranf@®B0%  proposal is that the efficiency of the gate implementation is
of the time and 1 50% of the timeThis is how the average unaffected by the proximity of the ions. Accordingly, we do
case estimate is arrived at. not assign any cost to “swapping” the qubits before they

enter a quantum gafe.
3. The basic machine and the enhanced machine

Our quantum computer can be characterized by the el- B. Saving space
ementary quantum gates that are “hard wired” in the device. A major challenge in programming a quantum computer

We W'" SOI’]SIdeI‘ two different p.OSSIbI|.I'[IeS. In our basic .is to minimize the scratchpad space that the device requires.
machine” the elementary operations will be the smgle—qubltWe will repeatedly appeal to two basic tricksoth originally

NOT operation, the two-qubit controllegeT operation, and suggested by Bennel®,10]) to make efficient use of the
the three-qubit controlled-controlledsT operation(or Tof- available space

foli gate). These elementary gates are not computationally
universal(we cannot construct arbitrary unitary operations
by composing them but they will suffice for our purposes; ] o
our machine will not need to be able to do anything &lse. Suppose that a unitary transformatiénis constructed
Our “enhanced machine” is equipped with these gates plughat computes &not necessarily invertibjefunction f of a
two more: a four-qubit controlleNoT gate and a five-qubit d-humber inputb. Typically, besides writing the result
controlled*-NOT gate. f(b) in the output register, the transformatibrwill also fill

In fact, the extra gates that are standard equipment for th@ portion of the scratchpad with some expendable garbage
enhanced machine can be simulated by the basic maching(P); the action ofF can be expressed as
However, this simulation is relatively inefficient, so that it
might be misleading to quote the number of operations re- Fa,ﬁ,y:|b>a|0>ﬁ|0>yH|b>a|f(b)>ﬁ|9(b)>y’ (4.2)
quired by the basic machine when the enhanced machine

could actually operate much faster. In particular, Cirac andVhere|)a. |)5. and|), denote the input, output, and scratch
Zoller described how to execute a controffedoT (k=1) registers, respectively. Before proceeding to the next step of

operation using B+ 3 laser pulses in the linear ion trap; the computation, we would like to cleg(b) out of the
thus, e.g., the controlldéNoT operation can be performed SCratch register, so that the spagecan be reused. To erase
much more quickly in the ion trap than if it had to be con- e garbage, we invoke a unitary operation CQRYhat
structed from controlleéinoT gates withk=0,1,2. copies the contents dj, to an additional registef); and

To compare the speed of the basic machine and the ef?e€n we apply thenverse F* of the unitary operatiorF.

hanced machine, we must assign a relative cost to the basld'us we have
operations. We will do so by expressing the number of op- R
erations in the currency of laser pulses under the Cirac-Zoller XFap.y.6=Fapy
scheme: one pulse fornaT, five for a controlledNOT, seven
for a controlled-NoT, nine for a controlled-NnoT, and —[b),|0)4[0),|T(0))s. 4.3
eleven for a controllettNOT. We realize that this measure of ] ] ]
speed is very crude. In particular, not all laser pulses ard "€ composite operation XF uses both of the regisigys
really equivaient. Different pulses may actually have differ-and|), as scratch space, but it cleans up after itself. Note that
ing frequencies and differing durations. Nevertheless, for the<F preserves the value df in the input register. This is
purpose of comparing the speed of different algorithms, wéecessary, for a general functiénif the operation XF is to
will make the simplifying assumption that the quantum com-be invertible.
puter has a fixed clock speed and administers a laser pulse to o ) )
an ion in the trap once in each cycle. 2. Overwriting invertible functions

The case of théuncontrolled NOT operation requires spe-  We can clear even more scratch space in the special case
cial comment. In the Cirac-Zoller scheme, the single-qubitwheref is an invertible function. In that case, we can also
operations always areX22 unitary operations of determinant construct another unitary operation XFI that computes the

1. Erasing garbage

X COPYa,SX Fa,ﬁ’,'y : |b>a|O>B|O>y|O>5

one (the exponential of an off-diagonalX22 Hamiltonian). inverse functionf ~ 1, that is,
But the NOT operation has determinant-(1). A simple so-
lution is to use the operationNOT) instead (which does XFl, 5:1D)a|0) g—=[b) o[ f (b)) 4 4.9

have determinant 1 and can be executed with a single laser

pulse. The overall phasei) has no effect on the outcome of or, equivalently,

the computation. Hence we take the cost ofca operation

to be one pulse. XFlg ,:10),|f(b))g—>|b),|f(b))z. (4.5

SThat is, these operations suffice for evaluation of the modular 8For a different type of hardware, such as the device envisioned
exponential function. Other gates will be needed to perform theby Lloyd [26], swapping of qubits would be required and the num-
discrete Fourier transform, as described in Sec. Il E. ber of elementary operations would be correspondingly larger.
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[XFI, like XF, requires scratchpad space. But since XFlI, like(which is guaranteed to be 1 in this caseed not béand is
XF, leaves the state of the scratchpad unchanged, we hawet) explicitly evaluated by the adder.

suppressed the scratch registers in E4s)) and (4.5).] By

composing XF and XFI!, we obtain an operation OF that D. Enable bits

evaluates the functioi(b) and “overwrites” the inputb

with the resultf(b): Another essential feature of our algorithms is the use of

“enable” qubits that control the arithmetic operations. Our
OF, BEXH!;}YX XF o 5:|D)4|0) 5—[0),|f(D)) 5. (4.6) multiplexed adder, for example, incorporates such an enable
’ ’ ' qubit. The adder reads the enable qubit and if it has the value
[Strictly speaking, this operation does not overwrite the in-1, the adder replaces the inpgt numberb by the sum
put; rather, it erases the input register and writesf(b) in  y+b(mod\) (wherey is ac numbey. If the enable qubit
a different registef);. A genuinely overwriting version of has the value 0, the adder leaves the inputumberb un-
the evaluation off can easily be constructed, if desired, by changed.
following OF with a unitary SWAP operation that inter-  Enable qubits provide an efficient way to multiplyca
changes the contents of the, and|) ; registers. Even more number by ac number. AK-qubit g numberb can be ex-
simply, we can merely swap thabels on the registers, a panded in binary notation as
purely classical operatioh. ko1
In our algorithms for evaluating the modular exponentia- b= E b2l
tion function, the binary arithmetic operations that we per- =y
form have one classical operand and one quantum operand.
For example, we evaluate the prody&(mod\N), wherey is  and the product ob and ac numbery can be expressed as
a c number and is aq number. Evaluation of the product
can be viewed as the evaluation ofunction f,(b) that is K-1 ‘
determined by the value of the numbery. Furthermore, by(modN)= >, bj[2'y(modN)]. (4.9
since the positive integers less thahthat are relatively =0
prime toN form a group under multiplication, the function
f, is aninvertible function if the greatest common divisor of
(y,N)=1. Thus, for the greatest common divisor of . _ S i )
(y,N)=1, we can(and will) use the above trick to overwrite Fori=0to K—1, if b=1, ADD 2 y(mod\l()‘i 10
the g numberb with a newq numberyb(modN). '

4.9

This product can be built by running the pseudocode

multiplication is thus obtained by performirg conditional
C. Multiplexed adder modN additions. Hence our multiplication routine calls the
The basic arithmetic operation that we will need to per_multiplexed addeK tir_n_es; in theith call, b; is the enable bit
form is addition (modN): we will evaluatey+b(mody),  that controls the addition. _ _
wherey is a c number andb is a q number. The most In fact, to compute the modular exponential function as

efficient way that we have found to perform this operation isdescribed below, we will need conditional multiplication; the

to build amultiplexedmodN adder. mult@pl?catiorj routine will have an enable bit of its own. Our
Suppose thaN is a K-bit ¢ number, thay is a K-bit ¢ multiplier will replape theq number b by the product

number less thail, and thatb is a K-qubit g number, also  PY(Mod\) (wherey is ac numbey if the enable qubit reads

less tharN. Evaluation ofy+ b(modN) can be regarded as a 1 and will leaveb unchanged if the enable qubit reads 0. To

function, determined by the numbery, that acts on thej construct a multiplier with an enable bit, we will need an
number b. This function can be described by the adder with apair of enable bits, that is, an adder that is

switched on only when both enable qubits read 1.

pseudocode The various detailed algorithms that we will describe dif-
if (N—y>b) ADD vy, fer according to how enable qubits are incorporated into the
arithmetic operations. The most straightforward procedure

if (N—y<b) ADD y—N. (4.77  (and the most efficient, in the linear ion trap device of Cirac

and Zolley is that underlying the design of our enhanced
Our multiplexed adder is designed to evaluate this functionmachine. We will see that a multiplexed adder can be con-
First a comparison is made to determine if thenumber structed from the elementary gatesT, controlledNoT, and
N—vy is greater than the numberb and the result of the controlled®-NOT. One way to promote this adder to an adder
comparison is stored as a “select qubit.” The adder therwith two enable bits is to replace each controlleeT by a
reads the select qubit and performs an “overwriting addi-controlled*2-NnoT, where the two enable bits are added to
tion” operation on theq numberb, replacing it by either the list of control bits in each elementary gate. We thus con-
y+b (for N—y>b) ory+b—N (for N—y=<Db). Finally, the  struct a routine that perform@nultiplexed addition when
comparison operation is run backward to erase the seletioth enable bits read 1 and does nothing otherwise. The rou-
qubit. tine is built from elementary controlléeNoT gates with

Actually, a slightly modified version of the above k=4 or less.

pseudocode is implemented. Since it is a bit easier to add a In fact, it will turn out that we will not really need to add
positive ¢ number than a negative one, we choose to adanable bits to the control list of every gate. But following the
2X+y—N to b for N—y=<b. The (K+1)st bit of the sum above strategy does require controlledT gates for
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k=0,1,2,3,4. This is how our enhanced machine performs
modN addition with two enable bitsand modN multiplica-
tion with one enable bjt

Because controllédnoT and controlled-NoT gates are
easy to implement on the linear ion trap, the above procedure
is an efficient way to compute the modular exponential func-
tion with an ion trap. However, for a different type of quan-
tum computing hardware, these elementary gates might not
be readily constructed. Therefore, we will also consider a
few other algorithms, which are built from elementary con-
trolled*-NoT gates for onlyk=0,1,2. These algorithms for
our basic machine follow the same general design as the )
algorithm for the enhanced machine, except that the con- FIG. 1. The_controllebI-NOT gate. Input values of the qublts_ are
trolled3-NOT and the controllef-noT gates are expanded out shown on the right and pu_tput values on the_ left. This gate flips the
in terms of the simpler elementary operatiofiEhe various value Qf the target qubit |f .a|k control qubits take the value 1;
algorithms for the basic machine differ in the amount ofOtherW'se' the gate acts trivially.
scratch space that they requjre.

54

e® (g, A.Aeg)

L/

V. MODULAR EXPONENTIATION IN DETAIL
E. Repeated squaring A Notation

Having described above the central ideas underlying the
algorithms, we now proceed to discuss their detailed imple-
mentation. We will be evaluating®(mod\), whereN is a
K-bit ¢ number,x is aK-bit c number less thail, anda is
an L-bit g number. For the factorization algorithm, we will
typically choosel ~2K.

We will use the ket notation) to denote the quantum
state of a singlgubit, a two-level quantum system. The two
basis states of a qubit are denotéy and|1). Since most of
theg numbers that will be manipulated by our computer will
be K qubits long, we will use a shorthand notation for
K-qubit registers; such registers will be denoted by a ket that
carries a lowercase greek letter subscript, él.,, where
b is a K-bit string that represents the numkef_'b;2' in
binary notation. Single qubits are denoted by kets that carry
a numeral subscript, e.gl¢);, wherec is 0 or 1. Some
registers will beL bits long; these will be decorated by as-
terisk superscripts, e.ga)*

One way to evaluate the modular exponenki&mod\N)
is to multiply by x a total ofa—1 times, but this would be
terribly inefficient. Fortunately, there is a well-known trick,
repeated squaringthat speeds up the computation enor-
mously.

If a is an L-bit number with the binary expansion
>k 4a;2', we note that

L-1
L-1, . i
x23=x(Ei0ai2) = 1_[0 (x2)a,
=

(4.10)

Furthermore, since

) i_1
)(2':()(2I )2

, (4.12

we see thak? (modN) can be computed by squaring .

We conclude thak*(modN) can be obtained from at most  The fundamental operation that our quantum computer
2(L—1)modN multiplications (fewer if some of thea;'s  performs is the controllddNoT operation. This is the

vanish. If ordinary “grgdg sghool" mgltipligation is u;ed (k+1)-qubit quantum gate that acts on a basis according to
(rather than a fast multiplication algorithnthis evaluation

of x3(modN) requires of ordelK? elementary bit opera-

tions(whereN andx<'N areK-bit numbers. Our algorithms

for evaluatingx?, wherea is anL-bit g number and is a

K-bit ¢ number, are based on grade school multiplication and

will require of orderLK? elementary quantum gates. Here each ok, . .. € takes the value 0 or ¥\ denotes
Sincex is ac number, the repeated squaring to evaluatethe logicalanD operation(binary multiplication, and® de-

x2'(mod\|) can be performed by our classical computer.nOteS the logicakor operation(binary addition mod2 Thus

Once thesec numbers are calculated and stored, then'® 98t€Cyi ... acts onk “control” qubits labeled
. i and on one “target qubit” labeleg. If all k of the

x?(modN) can be found by running the pseudocode i,

control qubits take the value 1, the@“il ilLj flips the
value of the target qubit; otherwisé:,[[i1 i1 acts trivi-
ally. In order to represent our guantum circuits graphically,
we will use Feynman’s notation for the controlfesor,

. . . . ; H -1 —

Thus the modular exponential function is obtained fram shown in Fig. 1. Note tha€; " ; ;;=Cyi, .. jj. SO a
conditional multiplications. It is for this reason that our computation composed of controlledioTs can be inverted
mod\ multiplier comes equipped with an enable bit. Our by simply executing the controlléeNoT's in the reverse or-

..... il 3|€1>i1' : '|5k>ik|€>j

e lei led e\ Ne)j. (5.

1

MULTIPLY x2(modN).
(4.13

for i=0to L—-1, if a=1,

.....

modular exponentiation algorithm calls the mgdnultiplier
L times; in theith call, a; _; is the enable bit that controls the
multiplication.

der.
As we explained above, our basic machine comes with the
NOT, controlledNoT, and controlled-NOT gates as standard
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b P b FA(a=1)127=Cp1],2C[1.2,3C2Cy2)3 (5.6
ADD 0: [see Fig. Bb)], which acts as
b® ¢ D ® ¢ FA(a=1);,3:|b)|c),|0)s
—|b);b@cal),|c’=b\/cC)s. (5.7
Equations(5.4) and (5.6) provide an elementary example
(@) be P 0 that illustrates the concept of a quantum computer controlled
a (NP

by a classical computer, as discussed in Sec. IVA. The clas-
b . sical computer reads the value of the classicahkiind then

 d directs the quantum computer to execute eitherGFAor
ADD I: FA(Q).

As we have already remarked in Sec. IVC, to perform
modular arithmetic efficiently, we will construct a multi-
plexed full adder. The multiplexed full adder will choose as
its classical addendither oneof two classical bitsag and
0 a,, with the choice dictated by the value of a select qubit
I. That is, if I=0 the classical addend will bay and if
=1 the classical addend will b&,. Thus the multiplexed
full adder operation, which we denote MUXFAwill actu-
ally be four distinct unitary transformations acting on the
)qubits of the quantum computer, depending on the four pos-
sible values of the classical bita{,a;). The action of
MUXFA ' is
equipment. Our enhanced machine is equipped with thesﬁlUXFA’
fundamental gates and, in addition, the controlleht and
controlled*-NoT gates.

1D c ®

S
S

N
Ny

(b) ¢

FIG. 2. The full adder FA4). The order of the gatehere and
in all of the following figure$ is to be read from right to left. The
gate array shown ife) adds the classical bit=0; the second qubit
carries the output sum bit and the third qubit carries the output carr
bit. The gate array shown ifb) adds the classical b&=1.

(@0,81)1,2,3.4:]1)1/D)2/C)3|0)4—>1)1]b),|S)3lC" ) 4
(5.8

heres andc’ are the sum and carry bits defined in E(s2)
B. Addition and (5.3, but where nona=a;/\l\/a;\~I=4aq,.
In fact, forag=a,, the value of the select quHitis irrel-
evant and MUXFA reduces to the FA operation that we
have already constructed:

From the controlle-NOT gates, we can builéreversible
arithmetic operations. The basic operatiorigtassical com-
puter arithmetic is the full adder. Given two addend faits

:Srdnbbﬁnd an input carry bit, the full adder computes the MUXFA’ (ag=0.2;,=0)1 25 = FA(0)5 3.4,
s=asbac (5.2) MUXFA'(ap=1a;=1);1,37~FA(1)234. (5.9
and the output carry bit Foray=0 anda;=1, MUXFA’ addsl, while foray=1 and
a,;=0, it adds~I. This is achieved by the constructi@fig.
c'=(a\b)\/[c/\(a\/b)]. 5.3 3

The addition that our quantum computer performs always MUXFA'(ap=0a;= 1)1 234 Cy2],3C12.3.4C[11,3C11.3.4+
involves adding & number to eg humber. Thus we will use

two different types of quantum full adders, distinguished by MUXFA'(ag=1,2,=0)1,34

the value of the classical addend bit. To add the classical bit

a=0, we construct =C1Cy21,5C12,3,4Cq11,3C]1,3,4C1 -

(5.10
(The second operation is almost the same as the first; the
difference is that the qubltis flipped at the beginning and
FA(a=0)123:|b)1/C)2[0)3—|b)1[b@ C)o[b/\C)3. 55 the end of the operation.

FA(a=0)1,57=C1),2C[1.,3: (5.9

which acts on a basis according to

The full adder that we will actually use in our algorithms

will be denoted MUXFA (without the primg. As noted in
Here the string of controllddNoT's defining FA is to be  Sec. IV D, to perform multiplication and modular exponen-
read from right to left; that is, the gate furthest to the righttiation, we will need amultiplexed full adder that is con-
acts on the kets first. The operation & 0) is shown dia- trolled by an enable bit or a string of enable bits. Thus
grammatically in Fig. 2a), where, in keeping with our con- MUXFA will be an extension of the MUXFA operation
vention for operator ordering, the gate on the right acts firstdefined above that incorporates enable bits. If all the enable
hence, in the diagram, time runs from right to left. To add thebits have the value 1, MUXFA acts just like MUXFABut
classical bita=1, we construct if one or more enable bit is 0, MUXFA will choose the
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(as indicated in Fig. ¥ Here, if £ is a list of j bits, then
Cir.13,4 for example, denotes the controlféd?-NoT with
£,1,3 as its control bits. Evidently, E€5.12) is a construc-

tion of a multiplexed adder with enable bits in terms of
controlled-NOT gates withk<j+2. In particular, we have
constructed the adder with two enable bits that we will need,
using the gates that are available on our enhanced machine.
(@) ¢’ () 0 The reader who is impatient to see how our algorithms
work in detail is encouraged to proceed now to Sec. V C. But

l ® o— I}

g

l A Jan 1 first, we would like to dispel any notion that the algorithms
NP o .
make essential use of the elementary contréiedT and
b b  controlled*-NOT gates. So let us now consider how the con-
struction of the MUXFA operation can be modified so that it
s N o—e ¢ can be carried out on the basic mach{méich is limited to
, AN controlled-NOT gates withk<2). The simplest such modi-
() ¢ N % 0 fication requires an extra bibr two) of scratch space. Sup-

pose we want to build a MUXFAoperation with a single
FIG. 3. The multiplexed full adder MUXFA@a,,a,). Herel is  enable bit, without using the controllddioT gate. For
the s_elect bitthat determines whethex, or a is chosen as the ap,=a,, the construction in Eq55.12) need not be modified;
classical addend. ), the caseao=02,=1 is shown; the gate iy those cases, the action of the operation is independent of
array adds the qublt which is the same &, for |=0 anda, for  hq gelect bit and therefore no controlléeNoT gates were
|=1.In(b), the case,=1.a,=0 is shown; the array addsl. needed. Fomy# a,, controllecd®-NOT gates are used, but we
i , i note that the control string of these controffedoT gates
classical addend to be 0, irrespective of the valueso@nd  jnc|ydes both the enable bit and the select bit. Hence we can
aj. We will use the_symboll to denotg the full list of enable easily eliminate the controll€eNoT gateCy 1 3.4 by using
bits for the operation. Thus the action of MUXFA can be 5 -gntrolled-noT to compute(and storg the logical AND
expressed as (L/\1) of the enable and select bits and then replacing the
controllecf-NoT by a controlled-NoT that has the scratch bit
MUXFA (89,81)1£],1,2,3.4 1)1]0)2[C)3|0) 4 as one of its control bits. Another controliedioT at the end
—[1)1]bYolS)slc Va (5.11) of the operation clears the scratch bit. In an equation

(5.19 and(5.3), but this timea=£/\(a;/\I\yapg/\~1); that
is, it is O unless all bits of_ take the value 1. The lisf may
not include the bits 1, 2, 3, or 4.

In our algorithms, the number of enable bits will be either ~ MUXFA"(a,=121=0)£) 12345
1 or 2. Hence there is a simple way to construct the MUXFA
operation on our enhanced machine that comes equipped
with controlled®-NoT and controlled-NoT gates. To carry X Cyr.155C1 (5.13
out the construction, we note by inspecting E¢s9) and o

(5.10 (or Fig. 3 that MUXFA'(a,a;) has the form g jysirated in Fig. 5. If the scratch bits starts out in the

MUXFA'(0,0)F(ap,a,); thus, by addingZ to the list of state|0)s, MUXFA” has the same action as MUXFA and it

control_ bits for each of the gates ma@’al)’ Y"e obtain an  arns the scratch bit to the stdf 5 at the end. By adding

operation that acts as MUXFAvhenL is all 1's and adds 0 yet another bit of scratch space and another contrblled

otherwise. Explicitly, we have NOT at the beginning and the end, we easily construct a
MUXFA operation with two enable bits.

=C1Cy,,1,5C121,3C)2,3,4C5),3C5,3,4

MUXFA (ap=0,a1=0)[z],1,2,3.4~ C21,3C(2,3,4 At the alternative cost of slightly increasing the number of
elementary gates, the extra scratch bit in MUXF#an be
MUXFA(ap=1a1=1)[7]1.234 eliminated. That is, an operation with precisely the same
action as MUXFA can be constructed from controffedoT
=Ci21,3C12,3,4C121,3C1£,3,4> gates withk=<2 and without the extra scratch bit. This
construction uses an idea of Barenebal. [28] that a
MUXFA(ap=0a1=1)[£) 1234 controlled-NoT can be constructed from  two
controlled"Y)-noT's and two controlled-noT's (for any
=Ci21,3C12.9.4C1£.0,3C1£0.3.4, k=3) by employing an extra bit. This idea differs from the
construction described above, because the extra bit, unlike
MUXFA(ap=1,21=0)[£)1.234 our scratch bit, is not required to be preset to 0 at the begin-
. ning of the operation. Hence, to construct Bg: ; 3 4 gate
=C1C21.5C12.3.4C11.5C1£1.3.4C1 needed in MUXFA, we can uge), as the extra bit. That is,

(5.12  we may use the Barenast al. identity
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FIG. 4. The multiplexed full adder MUXFAs,,a,) has a select bit and anenable stringC. If all the bits of £ take the value 1, then
MUXFA acts in the same way as MUXFAdefined in Fig. 3. Otherwise, the classical addend is chosen to be 0.

Cir1.3.4= C123.4C1£.11,2C12.3,4C c.11,2 (5.19 required by the Barencet al. construction. We will refer to
o o e the resulting operation as MUXFA

to obtain, say, Aside from the multiplexed full adder MUXFA, we will
also use a multiplexedhalf adder which we will call
MUXFA"(ay=0a1=1)[£)1234 MUXHA. The half adder does not compute the final carry

bit; it acts according to

MUXHA(ao,al)[[L]],l,z,si||>1|b>2|c>3'—>||>1|b>2|5>3(-5 .

=Cy2),3C12,3,4C1£,11,3C2,3.4
XCz,1,2C12,3,4C1£,17.2 (5.19

(as in Fig. 6. This identity actually works irrespective of the wheres=a®b®c anda=L/\(a;/\I\yay,/\~1). (Note that,
number of bits in the enable string but we have succeeded since the input qubib is preserved, the final carry bit is not
in reducing the elementary gates to those that can be implereeded to ensure the reversibility of the operajitilUXHA
mented on the basic machine only in the case of MUXFAis constructed from elementary gates according to

with a single enable bit. To reduce the MUXFA operation

with two enable bits to the basic gates, we can apply the MUXHA (ap=0,a2;=0)(z,1,2,5=Cj2),3

same trick again, replacing each controfledbT by four

controllecP-NoOT's (using, say, the fourth bit as the extra bit MUXHA (ag=1,a;=1)j¢5125 Ci2),3C ] 3
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FIG. 5. The multiplexed full adder MUXFA(a,,a;) (shown here fomy=0,a;=1) is a modification of MUXFA that uses an extra bit
of scratch space. The first gate sto®3| in the extra scratch qubit and subsequent gates use this scratch bit as a control bit. The last gate
clears the scratch bit. The advantage of MUXHA that the longest control string required by any gate is shorter by one bit than the longest
control string required in MUXFA.

MUXHA (ag=0,2;=1)}1.25=Cy2].3C|.11.3- not need the final bit to perform addition mdf we save a
o o few elementary operations by not bothering to compute it.
MUXHA (a,=1,a,=0) =C.Cyo1 -C C (The MADD operation is invgrtible. nonetheleks. _
° vl 2RSS (15_17) Transcribed as an equation, Fig. 8 says that MADD is

constructed as
(see Fig. J. For a single enable bit, this construction can be ,
carried out on the basic machine. If there are two enable bité\,/lADD(a’a 12167
the controlled-NoT's can be expanded in terms of =MUXHA (ak-1,8¢_1)[z]
controlled-NoT's as described above.

A multiplexedK-bit adder is easily constructed by chain- K-2

ing together K—1) MUXFA gates and one MUXHA gate, X [T MUxFA(a A [LLL8 v, viey |-
as shown in Fig. 8. This operation, which we denote MADD, =0
depends on a pair df-bit c numbersa anda’. MADD (if (5.20
all enable bits read)ladds eithera or a’ to the K-bit q
numberb, with the choice determined by the value of the
select bitl. (That is, it addsa for =0 and addsa’ for
I=1.) Thus MADD acts according to

LB—1Yk-1

We have skewed the subscript and superscripil oh Eq.
(5.20 to remind the reader that the order of the operations is
to be read from right to left; hence the product has the op-
erator withi=0 furthest to theright (acting firs}. Each
, ) MUXFA operation reads the enable stridgand, if enabled,
MADD(a,a )ﬂﬁﬂvﬁy%l'|b>ﬁ|o>7|I>1H|b>ﬁ|s>7|l>l’5 1 performs an elementargmultiplexed addition, passing its
(5.18 final carry bit on to the next operation in the chain. The two
classical bits used by thgh MUXFA are a; and a;s, the
jth bits of thec numbersa anda’. The final elementary
s=[b+£A(a' Al\aA~I _ 51 addition is performed by MUXHA rather than MUXFA be-
[ ( v Hmoaz 619 cause the final carry bit will not be needed.

where

The [ ]mogx Notation in Eq.(5.19 indicates that the sum

residing in|)., at the end of the operation is oy bits long: _ -

MADD does not compute the final carry bit. Since we will  In our algorithms, we need to perform addition rhbdf a
¢ humbera and aq numberb. An important step in modular

C. Comparison

L ® L
. ' L ! !
)
| l ., b
’ MUXFA " b=
./ c s/ ™ c
— 0.1 — N NP
R ’ —o0 0
0 N L €/ 0

FIG. 6. The multiplexed full adder MUXFA(a,,a,) (shown here fomy=0,a;=1) uses simpler gates than those required by MUXFA,
but unlike MUXFA', it does not need an extra scratch bit.
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FIG. 7. The multiplexed half adder MUXHA is simpler than MUXFA because it does not compute the output carry bit.

addition is comparison we must find out whether
a+b=N. Thus our next task is to devise a unitary operation
that compares & number and a number. This operation
should, say, flip a target bit if the number is greater than
the g number and leave the target bit alone otherwise.

A conceptually simple way to comparekabit ¢ number
a and aK-bit g numberb is to devise an adder that computes
the sum of thec number ¥—1—a and theq numberb.
Since the sum is less tharf nly for a>b, the final carry
bit of the sum records the outcome of the comparison. This
method works fine, but we will use a different method that
turns out to be slightly more efficient.

The idea of our method is that we can s@aandb from
left to right and compare them one bit at a timeajlf ; and
bx_, are different, then the outcome of the comparison is
determined and we are donealf _;, andby_4 are the same,
we proceed to examing _, andbyk_, and repeat the pro-
cedure, etc. We can represent this routine in pseudocode as
follows:

bk _1=0=PROCEED
if ax_1=0, ;
K-l bk_,=1=b=a END

if 1 bk -1=0=b<a EnD
if ax_,=1, by_,=1=PROCEED|’
'f by _ ,=0=PROCEED
if ax_,=0, bx_,=1=b=a END|’
if bx-,=0=b<a END
if ax_,=1, bk _,=1=PROCEED|’
(5.21)
if ap=0, b=a END,
if ag=1, bo=1=b=a END

To implement this pseudocode as a unitary transformation,
we will use enable qubits in each step of the comparison.
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FIG. 8. The multiplexedK-bit adder MADD(@,a’) is constructed by chaining togeth&r—1 MUXFA operations and one MUXHA
operation. MADD adds &-bit ¢ number to an inpuK-bit g number and obtains an outpltbit g number(the final carry bit is not
computed. If MADD is enabled, the classical addendaswhen the select bit has the valle 0 ora’ whenl=1. (When MADD is not
enabled, the classical addend i$ 0.

Once the comparison has “ended,” all subsequent enableT(2) .15
bits will be switched off, so that the subsequent operations ={if (20=1)Cp5_ 5 11Cp}
will have no effect on the outcome. Unfortunately, to imple- 0:roRT 0
ment this strategy reversibly, we seem to need a new enable K=2 {if (a;=0) Cp3, .81%_,Cs, ]
bit for (almos} every step of the comparison, so the com- X

parison operation will fillK—1 bits of scratch space with =1

junk. This need for scratch space is not really a big deal, {

if (a=1) C3,.511C8C 13 .81% 1

though. We can immediately clear the scratch space, which
will be required for subsequent use anyway.

if (aK_]_ZO) CHBK,l]],A}k,ZCBK,l ]
As in our construction of the adder, our comparison op-

if (ag-1=1) CHﬁK*l]]'j'CﬁKflCﬁKfl:}k72

eration is a sequence of elementary quantum gates that de- (5.23
pends on the value of the-bit c numbera. We will call the  As usual, the gates furthest to the right act first. We have
operation LT(for “less than”). Its action is skewed the subscript and superscriptlbfhere to indicate

that the operator with=1 is furthest to thdeft (and hence

acts lask The first step of the LT algorithm is different from

the rest because it is not conditioned on the value of any
LT(a)z15:10)4]0Y110Y2—[b"Y 4l1}4] junk)s, (5.2 “switch.” For each of the K—2 intermediate steps

(@)5.57102610)1/0r5=>107) gl10a| junk5. (5.2 (i=K—2K—1,...,1), theswitch % is read, and if the

switch is on, the comparison @ andb; is carried out. If
a;#b;, then the outcome of the comparisonafandb is
settled; the value df is adjusted accordingly and the switch
¥i_1 is notturned on. Ifa;=b;, theny;_, is switched on, so
that the comparison can continue. Finally, the last step can
be simplified, as in Eq(5.27).
We can now easily construct a comparison operator that

where | takes the value 1 fob<a and the value O for
b=a. Here the register labeleldl; is actuallyK—1 rather
than K qubits long. The junk that fills this register has a
complicated dependence arandb, the details of which are
not of interest. In passing, the LT operation also modifies the,
g numberb, replacing it byb’. (b’ is almost thenegationof b, by using the trick mentioned in Sec. IV B: we run LT,
b, b with all of its qubits flipped, except tha is not flipped  copy the outcomé of the comparison, and then run LT in
unlessay=1.) We need not be concerned about this eithereverse. We will actually want our comparison operator to be
as we will soon run the LT operation backward to repair theenabled by a string, which we can achieve by controlling

damage. the copy operation witlf. The resulting operator, which we
The LT operation is constructed from elementary gates agall XLT, flips the target qubit ib<a:

XLT(@)11,8,1,25= LT(a);é,;c[[c,2]],1|—T(a),3,2,2y 1) glX)1|0)2| 0)5—>|b) g x B Y)1[0)2[0)3,, (5.24
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) I, 01 —_— ! 0
ADDN { XLT 1
b — b
(aN) 0 b L, _| Na b
sum MADD
sum _.(2K+a-N, a) 0

FIG. 9. The modl addition operator ADDNg,N) computesa+b(modN), wherea is a K-bit ¢ number and is a K-bit g number.
When ADDN is enabled, the comparison operator XNTa) flips the value of the select bit tio=1 if a+b<N; then the multiplexed
adder MADD(Z+a—N,a) chooses the-number addend to ba for =1 and *+a—N for |=0. XLT uses and then clea#$ bits of
scratch space before MADD writes the niwdum there.

wherey is 1 if b<a and O otherwise. We recall that the s the suma+b(mod\) andthe comparison bit: the com-
register|); is actuallyK — 1 qubits long, so the XLT routine parison bit is needed to ensure invertibility, since it is pos-

requiresK qubits of scratch space. sible thatb=N.] Thus we can use the trick mentioned in Sec.
IV B to devise an overwriting version of this function. Ac-
D. Addition modN tually, since we will not need to know the value bf(or

orry about the casb=N), we can save a qubit by modi-
ing the trick slightly.
The overwriting addition routine OADDN is constructed

Now that we have constructed a multiplexed adder and
comparison operator, we can easily perform addition
modN. First XLT compares the numberN—a with the q
numberb and switches on the select bitf a+b<N. Then
the multiplexed adder adds either (for a+b<N) or

2X+a—N (for a+ b=N) to b. Note that *+a—N is guar- OADDN(a,N)gzg,81,y

anteed to be positiveN and a are K-bit numbers with =SWAP, ,ADDN " Y{(N—2a,N);z] ;1.5
a<N). In the case where*2+ra—N is added, the desired 7 e
resulta+b(mod\) is obtained by subtracting2from the Ci21,7ADDN(a,N) ) 5.1,y (5.27

sum, that is, by dropping the final carry bit. That is why our
MADD routine does not bother to compute this final bit.  (see Fig. 1Dand actgfor b<<N) according to
We call our mod\ addition routine ADDN; it acts as

OADDN(a,N)jz; 51.:]b)40)1]0)
ADDN(a,N)[zg 6.1,5:10) 5/0)1]0), L£).A. Ly TR/ BIE/LI Y

—|b)gll=L/A\(a+b<N));|b+ L Na(modN)), . b 4ll=L/\(a+b<N));|b+ L Aa(modN)),,
(5.25
—|b)gll=LA(a+b=N))s[b+ L Aa(modN)),
[Here the notatiohn=£/\(a+b<N) means that the qubit
reads 1 if the statemeni/\(a+b<N) is true and reads 0 —[0) 5|0)4|b+ £Aa(modN)).,

otherwise] If enabled, this operator computes
a-+b( mod\); if not, it merely copiesb.” ADDN is con-

structed from MADD and XLT according to b+ LAa(mocN)) 40)]0),. (529

ADDN(a,N) £} 5.1,y Here, in Eq.(5.28, we have indicated the effect of each of
the successive operations in Ef.27). We can easily verify
=MADD (2“+a~N,a)[z) 5,7, XLT(N=@)[z1 51,  that applying ADDNN—a,N){.5.1,4 t0 the second-to-last
(5.26 line of Eq. (5.28 yields the preceding line. If the enable
string £ is false, the verification is trivial, fob<N. (It was
(see Fig. 9. Note that XLT uses and then clears Keits of in order to ensure that this would work that we needed the
scratch space in the registpr,, before MADD writes the XLT operation to be enabled by.) WhenZ is true, we need

modN sum there. only observe thaN—a+[b+a(modN)]<N if and only if
The ADDN routine can be viewed as the computation ofa+b=N (assuming thab<<N).
an invertible function(specified by thec numbersa and The SWAP operation in Ed5.27) is not a genuine quan-

N) of theq numberb. [Note that the output of this function tum operation at all; it is a mereelabeling of the [); and
|)7 registers that is performed by tletassicalcomputer. We
have included the SWAP because it will be convenient for
"Thus, if ADDN is not enabled, Eq.(5.29 is valid only for ~ the sum to be stored in the, register when we chain to-
b<N. We assume here and in the following that N is satisfied; gether OADDN'’s to construct a multiplication operator. We
in the evaluation of the modular exponential function, our operatorssee that OADDN uses and then cleKrs 1 qubits of scratch
will always be applied tay numbers that satisfy this condition. space.
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L L L L
0, N — 0,
-1 L
OADDN = ADDN ADDN b
sum __| L b sum = I
(a, N) 0 (N-a, N) /\ (@aN) |0

FIG. 10. Theoverwritingmod\ addition operator OADDN,N) (when enabledadds thec numbera to theq numberb and then erases
b. The “swapping of the leads” is a classical operation, not a quantum gate. OADDN uses and theiKeldalsts of scratch space; this
scratch space is suppressed on the left-hand side of the figure.

E. Multiplication mod N elementary multiplication operator EMUL that multiplies a
We have already explained in Sec. IV D how mbthul- € numbera by a single qubiby:
tiplication can be constructed from conditional nbaddi- EMUL(@)1z;.1.,:|bo)1|0) = |bo)a| £Aaby) .,

tion. Implementing the strategy described there, we can con-
struct a conditional multiplication operator MULN that acts
according to which is constructed according to

K—-1
MULN(aiN)[[L]]B,y,l,ﬁ:|b>ﬁ|0>7|0>1|0>5 EMUL(a)[[[;HlyE H if (azl) C[[El]] y
—>|b) 4| £/\ab( modN)),|0)10)s.  (5.29 =0 (531

Now we can construct MULN as
If enabled, MULN computes the product niédof the c

numbera and theq numberb; otherwise, it acts trivially. MULN (a,N)izj,5,7,1.6

We could construct MULN by chaining togethes K-1
OADDN operators. The first ADDN loadab,, the second =[] OADDN[2a( modN),NJjz.5].y1.5
addsa2b,, the third addsa2?b,, and so on. But we can i=1 Bil 7t

actually save a few elementary operations by simplifying the

first operation in the chain. For this purpose we introduce an X EMUL(@) 21,5,y (5.32
by by
L
bl bl
EMUL
b, b, o,
a
OADDN
(2a, N) So
OADDN F
(2%, N) s,
S L L
2
- b — MULN b
product | fa,N) I /)

FIG. 11. The modl multiplication operator MULN&,N) (when enabledcomputesab(modN), wherea is ac number andb is aq
number; it is constructed by chaining togetter 1 OADDN operators and one EMUL operator.
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L L
OMULN
product (@N) b
L L
product -1
XOR XOR MULN MULN
0 — /\ @!,N) >< (a, N)

FIG. 12. The overwriting madd multiplication operator OMULN4,N) (when enabledcomputesab(modN) and then erases thg
numberh. The XOR gates at the er@hen enabledswap the contents of the two registers. OMULN uses and then clé&afsl2qubits of
scratch space, of which onkg bits are indicated in the figure.

(see Fig. 1L Note that the computation of' @ mod\) is  |ab(modN)),. To verify Eq.(5.33 when OMULN is not
carried out by the classical computélt can be done effi- enabled, we need to know that MULN, when not enabled,

ciently by “repeated doubling.)’ acts according to
As long asa andN have no common divisdthe greatest
common divisor of & N)=1], the operation of multiplying MULN (a,N){z1),5,.1.5:10) gl D),/0)1]0) 5
by a(modN) is invertible. In fact, the multiplicative inverse
a~Y(modN) exists and MULNG) is inverted by MULN —10)4/0),10)[0).5- (536

(a ). Thus we can use the .tr'Ck dlscusseq in Sec. VB tOThough Eq«(5.36) does not follow directly from the defining
constrgct an overwriting version of the multlpllcat]on opera- 5 tion of MULN specified in Eq(5.29), it can be seen to be
tor. This operator, denoted OMULN, acts according to a consequence of Eq&.32 and(5.28. Note that the com-
) putation ofa™! is performed by the classical computéFhis
OMULN(@,N)yz1,p,7.1.5:10)5/0),0)4]0) 5 is, in fact, the most computationally intensive task that our
| L/\ab(modN)\/~ L/\b)4/0),]0)1]0) 5. classical computer will need to perform. _
We will require the OMULN operator with an enable
(533 string £ that is only a single qubit. Thus the construction that
we have described can be implemented on our enhanced ma-
chine. So constructed, the OMULN operator usasd then
clearg 2K+ 1 qubits of scratch space. This amount is all of
_ the scratch space that will be required to compute the modu-
OMULN(@,N)iz],5,7,1,6=XORy],5,yXORy £}, 5.5 lar exponentigl function. | i
XMULN Y a 1, N)z].,.515 If we wish to construct OMULN on the basic machine
(using controlled-NoT's with k=0,1,2), there are several
XMULN(a,N)jzp 5515 (539 alternatives. One alternativéhat requiring the fewest el-
_ . L ementary gatgsis to use two additional qubits of scratch
(see Fig. 12 Here the(conditiona) XOR operation is space (K + 3 scratch qubits altogethefThen, when MULN
L—1 calls for OADDN with two enable bits, we use one of the
_ ) scratch qubits to store the logicalib of the two enable bits.
XORﬂﬁﬂvaﬁziﬂo Cie,a1.p°18)alb)g=[8) o[ b®(@NL)) 6, Now OADDN with one enable bit can be called instead,
(5.39 where the scratch bit is the enable liBee Fig. 13. When
OADDN eventually calls for MUXFA with a single enable
where® denotes bitwise addition mod2. It is easy to verify bit, we can use the second extra scratch qubit to construct
that, when enabled, OMULN acts as specified in &333); MUXFA" as in Eq.(5.13 and Fig. 5. Of course, another
the two XOR'’s at the end are needed to svxjrﬂp)ﬂ and alternative is to use the Barene al. identity Eq. (5.14

Note that OMULN acts trivially when not enabled. It can be
constructed as
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by by
---L

.0

bl bl N 1
; \ ; \ EMUL

LT \J

b, b, L0
; ; a
L/ L/ OADDN

- (2a, N) S,
OADDN
(2%a, N) s,
S L L
2
| MULN’ b
product | {a, N) I/

FIG. 13. The modified madd multiplication routine MULN (a,N) uses simpler elementary gates than those used by MULN, but MULN
requires an extra bit of scratch space. Instead of calling the OADDN routine with two enable bits, Mlsi\stores theanp of the two
enable bits in the extra scratch bit. Then OADDN with one enable bit can be called instead, where the scratch bit is the enable bit.

repeatedly to expand all the controlfedoT and con- plication, or more efficiently, using fast multiplication tricks.

trolled*-NoT gates in terms of controlléeNoT gates with ~Fortunately, only one inverse need be computed: the

k=0,1,2. Then we can get by withk2+-1 bits of scratch x~2s, like thex?s, are calculated by repeated squaring.

space, but at the cost of sharply increasing the number of Actually, it is possible to reduce the number of quantum

elementary gates. gates somewhat if theioT and the first OMULN in Eq.
(5.38 are replaced by the simpler operation

F. Modular exponentiation
(Caocﬂaoﬂ,ﬁoc%) X EMUL(X)%’B . (5.39

The operator EXPN that computes the modular exponen-
tiation operator can now be constructed from the conditionalt is easy to verify that this operator has the same action on
overwriting multiplication operator, as outlined in Sec. IV E. the state|a0)ao|0>,3 as OMULN(X,N)[[%]] 8 yl«?CBO- With

Its action is this substitution, we have defined the EXPN operation whose
complexity will be analyzed in the following section.
EXPNOGN) 4, ,5,1,5:18)510)410),/0)1/0) 5 ety y J
—|a)y [x3(modN)) 4|0),/0)1|0) 5. (5.37 VI. SPACE VERSUS TIME

Now that we have spelled out the algorithms in detail, we
can count the number of elementary quantum gates that they
use.

(Recall that|)* denotes a register that Is qubits long;N
andx areK-bit ¢ numbers). It is constructed as

EXPN(X,N) 4. 5.y,1,5
L-1
H ' OMULN[xzi(mod\l),N][[ai]],ﬁy%m Cﬁo We will use the notation
e [OPERATOR=[C,C1,Cy,C3,C4] 6.1)

A. Enhanced machine

(5.38
) ) o to indicate that OPERATOR is implemented usicgNOT
(Fig. 14. Note that theC is necessary at the beginning 10 gates ¢, controllednoT gates,c, controlled-NOT gates,
set the registey) ; to 1 (not 0). The classical computer must ¢, controlled®-NoT gates, anct, controlled*-NOT gates on
calculate each? and each inverse™ 2. The computation of the enhanced machine or
x~1(modN) can be performed using Euclid’s algorithm in
O(K?) elementary bit operations using grade school multi- [OPERATOR=[co,Cy,C2] (6.2
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a EXPN a
. N
x%(mod N) (x N) 0
AL 1y— Ay % a ) )
OMULN OMULN OMULN
(L) ] __@_
xe x? N (x2,N) (x, N)

Flip first qubit.

FIG. 14. The mobl exponentiation operator EXPXN) computes<®( modN), wherex is aK-bit ¢ number andh is anL-bit g number.
It is constructed by chaining together LOMULN operators améda The 2K+ 1 qubits of scratch space used BXPN are suppressed in
the figure. The first OMULN in the chain can be replaced by a simpler operation, as discussed in the text.

to indicate that OPERATOR is implemented usiggNOT By plugging in the number of elementary gates used by
gatesc; controlledNOT gates, ana, controlled®-NoT gates MUXFA, MUXHA, LT, EMUL, and XOR, we can find the

on the basic machine. By inspecting the network constructedumber of controlle-NoT gates used in the EXPN network.

in Sec. V, we see that the following identities hold: For largeK, the leading term in our expression for the
number of gates is of order LK Only the MUXFA and LT
operators contribute to this leading term; the other operators
make a subleading contribution. Thus

[EXPN]=(L—1)[OMULN[y]+[ EMUL]

+[controlledNOT]+ 2[ NOT],

[EXPN]=(4LKZ MUXFA ]+ 8LK[LT])[ 1+ O(1/K)].
[OMULN3;]=2[MULN ]+ 2[XOR ], (6.5)

We will now discuss how this leading term varies as we
change the amount of available scratch space or replace the
enhanced machine by the basic machine.

The numbers of elementary gates used by MUXFA and
by LT actually depend on the particular values of the classi-
cal bits in the binary expansions ofx2%(mod\N) and
2K—N+2ix*2(modN), where j=1,...K—1 and
i=0,1,...L—1. We will estimate the number of gates in
two different ways. To count the gates in the worst case, we
always assume that the classical bits take values that maxi-
These equations just say that OMUY, say, is con- mize the number of gates. To count in the average case, we
structed from 2MULNy;'s and 2XORy's and so forth. The make the much more reasonable assumption that the classi-
subscript{ ] indicates the length of the string of enable bits @l bits take the value 0 with probabiliyand take the value

for each operator. By combining these equations, we find thé With probability 3.

following expression for the total number of elementary For example, in the case of the implementation of
gates called by our EXPN routine: UXFA [, on the enhanced machine described in Eqg.

(5.12, counting the operations yields

[MULN{47]= (K —1)[ OADDN;5;]+[EMUL{y;],
[OADDN;2;]=2[ ADDN; ]+ [ controlled-NoT],
[ADDN;5;]=[MADD 2]+ [XLT ],
[MADD 3] = (K —1)[ MUXFA 2]+ [MUXHA 3],

[XLT5]=2[LT]+[ controlled-NoT]. (6.3

[EXPN]=(L—1){4(K— 1) MUXFA 5] +4(K—1)
X[MUXHA 5]+ 8(K—1)[LT]+4(K—1)

[MUXFA(0,0)5,]=[0,1,1,0,0,

[MUXFA(1,1)5,]=[0.,1,2,1,Q,
X[ controlled-NoT] + 2(K — 1)[ controlled-NOT]
+2[EMUL41] +2[ XOR ]} [MUXFA(0.D)>]=[0,1,1.1.3,

+[EMUL]+[controlledNnoT]+2[NOT]. (6.4 [MUXFA(1,0]=[2,1,1,1,3 (6.6
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and thus trolled2-NOT to store theanD of the two enable bits in the
worst_ extra scratch qubit and then call OADDRY instead, with the
[MUXFA2)] (21,213, scratch bit as the enable bit. The extra controlle s that
compute and clear thenD bit do not affect the leading be-
. (6.7) havior of the count of elementary gates. The only effect on
the leading behavior is that MUXFA; can be replaced by

That is, the worst case is thmaximumin each column and MUXFA 1y, for which
the average case is tmae_anof each Colur_n_n. When we quote [MUXFA[l]]worst: [2,2,2,1,0,
the number of gates without any qualification, the average

1 531
=1

ave_ -z -
[MUXFA[5]%=| 5.1, 7. 7.5

case is meant. Similarly, for the LT operation described in 1571
Eqg. (5.23, we have [MUXFA ]%%= E,Z,Z,E,O}. (6.12
worst_ _
[LT] [K,2X=300, Hence we find
133 5 EXPN]Yorst = LK?[16,8,24,4,0{ 1+O(1K
[LT]ave: K— E,E,EK_ E,0,0 . (6.8) [ ]enhanced}Q+2_ [ 1O ’ ,@[ + ( )],
EXPNIan: =LK?[10,5,19,2,[1+O(1/K
Note that LT uses no controlléeNoT or controlled"-NOT [ lenhancear +2 [10,519,2,0(1+0(14 ()E]S 13
gates and so can be implemented as above on the basic ma- '
chine. and
Now, from Eq.(6.5), we find the leading behavior of the
number of gates used by the EXPN routine: [EXPN] s e, ;= 240LK?[ 1+ O(1/K)],
[EXPN]gthancedr+1= LK’[16,4,24,4.3 1+ O(1/K)], [EXPNJ2/epuses  =186LKY[1+O(1/K)]. (6.14
[EXPN]gnrancear + 1= LK?[10,4,17,3,2[ 1+ O(1/K)], The precise count in the average case is

(6.9

where the subscript enhanceld;21 serves to remind us that ) )
this count applies to the enhanced machine wikh2l qu- — 141K 34K +21, XK
bits of scratch space. A conveniefthough quite crude
“one-dimensional” measure of the complexity of the algo-
rithm is the total number of laser pulses required to imple- ave pulses )
ment the algorithm on a linear ion trap, following the scheme ~ [EXPNlennancedie+2= (L —1)(186K“—238K +99)

of Cirac and Zoller. Assuming 1 pulse for moT and 5

2k+3 pulses for a controllédnoT, k=1,2,3,4, we obtain +IK+7. (6.15

[EXPN]2Xﬁanced,K+2: (L - 1)[1(]<2_ 14K +4,5K2+ 10K

—4K+2,01+[2,5K+1,0,0,0,

Note that, in this version of the algorithm, no controfied

worst pulses  _ 2
[EXPNlennancedg + 1= 296LKT 1+ O(1/K)], NOT gates are needed.

[EXPN]Zxﬁfﬁése%}H:198LK2[1+O(1/K)]. (6.10 B. Basic machine
[The estimate for the worst case is not obtained directly from Now we consider the basic machine, first witk 2 3 bits

Eq. (6.9); instead we assume that MUXFA is always calledof scratch space. We use one of our extra scratch bits to
with the argumentd,=1,2a;=0): this maximizes the num- combine the enable bits for OADDN as explained above.
ber of pulses required, though it dqes not maximi;e the numThe other extra bit is used to replace MUXPRA by the

b_er o_f controlled-NoOT gates] Including the subleading con- yersion MUXFA{&] given in Eg. (5.13: MUXFA '['1] uses
tributions, the count of gates and pulses used by our networky the gates available on the basic machine. The new count

in the average case is is
[EXPN]Ghhanced+1= (L — 1)[10K*— 14K +4,4K*+ 8K [MUXFA/;]""*=[2,2,4),
—12,1K?- 36K +22,3K?~3,K? 17 11
—4K+2]+[2,tK+1,0,0,0, [MUXFA@LI™=|3:2: 7 (618
[EXPN]g\éﬁ;J#c'z%SK+1:(L_1)(1gg<2_27(](+93) The LT operation need not be modified, as it requires no

controllecf-NoT or controlled*-NOT gates. We therefore find
+ 3K+7. (6.11
[EXPNJiget x+ 3= LK?[16,8,33[ 1+ O(1K)],
By allowing one extra qubit of scratch space, we can re-
duce the complexitymeasured in laser pulsesomewhat. [EXPN]pueicx+3=LK?[10,7,23[1+O(1/K)]
When MULN;,; calls for OADDN;,;, we may use a con- (6.17
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and [EXPNIbasex +1=LK?[16,4,76[ 1+ O(1/K)],
[EXPNJpese X555 280LKY 1+ O(1/K)], [EXPN]2S, x+ 1= LKX10,4,49[ 1+ O(1/K)]
(6.29
[EXPN]2eP3eeS =206 LKX[1+O(1/K)].  (6.18 and
With the subleading corrections we have in the average case [Expl\l]\év;)srisé’%ufcles: 568LK2[ 1+ O(1/K)],
ave —(1 _ 2_ 2
[EXPNIbasicx = (L= DI10K"— 14K +4, K+ 6K [EXPNJRPYSes =373 LK 1+O(1K)].  (6.26

2 1
—12,2K"— 42K+ 25]+[2,;K+1,0], Including the subleading corrections the count in the average

case is
[EXPN]2EPYeS = (L — 1) (208K 2— 278K+ 119 + 3K + 7.
(6.19 [EXPN]2%ec x+ 1= (L—1)[10K2— 14K + 4,4K>+ 8K

We can squeeze the scratch space downke-2 bits if —12,4K2—76K+30]+[2,5K+1,0],
we replace MUXFA,; by MUXFA(Y; given in Eq.(5.19,
which does not require an extra scratch bit. The gate counfEXPN]EYS P4 = (L —1)(37K2— 506K+ 154 + 3 K+7.

becomes (6.27)
[MUXFAE”H]WO’SE[Z,Z,G], Our results for the average number of gates and pulses are
summarized in the following table:
[MUXFA” ]ave:[E E 1_5} (6.20 Basic Enhanced
[1] 2 1 4 l 1 .
Scratch Gates Pulses Gates Pulses
so that we now have 2K+1 [10,4,49 373 [10,4,17,3,2 198
2K +2 [10,5,27 224 [10,5,19,2,0 186
[EXPN]fean x 4 ,=LK?[16,8,40[ 1+ O(1/K)], 2K+3 [10,7,29 206
(6.28
[EXPN]pacic x+2=LK?[10,5,27[ 1+ O(1/K)] Each entry in the table is the coefficient of EKthe leading
(6.2)  term) in the number of gates or pulses, where the notation for
the number of gates is that defined in E@s1) and(6.2). Of
and course, the numbers just represent our best effort to construct
worst pulses_ 5 an efficient network. Perhaps a more clever designer could
[EXPN]pasic x +2 = 316LK1+O(1/K)], do better.
[EXPN]EZI‘Z@,‘E'(S?2=224 LK1+ O0(1K)]. (6.22 C. Unlimited space

. . ._The gate counts summarized in E(5.28 provide a
The precise count of gates and pulses in the average C"jlse“lcfciase study” of the tradeoff between the amount of scratch

ave _ 2 2 space and the speed of computation. But all of the algorithms
[EXPNIpasic,x 2= (L= DII0KT = 14K +4, 5K+ 10K described above are quite parsimonious with scratch space.
— 14,272~ 50K + 29 + [ 2,5K + 1,0], We will now consider how increasing the amount of scratch
space considerably allows us to speed things up further.
First of all, recall that our OADDN routine calls the com-
[EXPNIveR9eeS=(L—1)(224K?>—314K+130+ 3K+7.  parison operator LT four times, twice running forward and
(6.23  twice running in reverse. The point was that we wanted to
clear the scratch space used by LT before MADD acted, so
To squeeze the scratch space by yet another bit, we mugiat space could be reused by MADD. But if we were to
abandon the extra bit used by MULN. We then construcincrease the scratch space Ky-1 bits, it would not be
MUXFA[; by expanding the controll€dNoT and necessary for LT to run backward before MADD acts. In-
controlled-NOT gates in terms of controllédNoT gates, as  stead, a modified OADDN routine could clear the scratch

discussed in Sec. V B. We find that space used by LT and by MADD, running each subroutine
only twice (once forward and once backward
[MUXFAE”Z’]]WorSE[Z,l,la, Thus, with adequate space, we can replace(&&) with

37 (6.24) (6.29

=
Using this observation, we can modify our old network on
therefore, the enhanced machireith 2K+ 2 bits of scratchto obtain

. [EXPN]=(4LKZ MUXFA 1]+ 4LK[LT])[ 1+ O(1/K)].
[MUXFAE’Q]]"’“’E:[Q,L }



54 EFFICIENT NETWORKS FOR QUANTUM FACTORING 1059

[EXPN]gnhanceds+1= LK*[6,5,13,2,0[ 1+ O(1/K)], pared to K+1 in our best previous effort The price we
pay is that the computation slows down considerably.
[EXPN]ZXﬁE#C'SeZ}H:140LK2[1+O(1/K)], (6.30 The key to adding without scratch space is to work from
left to right instead of right to left. It is sufficient to see how
about 25% faster. to add a single-bit numbera, to a K-bit g numberb,

To do substantially better requires much more space. Opebtaining a K+ 1)-bit g number. Of course, if the classical
timized for speed, our algorithms will never clear the scratchbit is 0, we do nothing. If the classical bit is 1, we perform
space at intermediate stages of the computation. Insteadddition by executing the pseudocode
EXPN will carry out of order LK additions, filling new space

each time a comparison is performed or a sum is computed. if b 1=bg_p=---=b;=bo=1, flip by,
Once the computation of?(mod\) is complete, we copy . .
the result and then run the computation backward to clear all if bx_2=bg-3=---=by=be=1, flip bx_y,

the scratch space. But with altogethet K ADDN’s, each
involving a comparison and a sum, we fill about 2 ¢ubits

of scratch space. Combining the cost of running the gates
forward and backward, we have

[EXPNJ[EXPN1]=(2LK?[ MUXFA 4]
+2LK[LTD[1+O(1/K)]  (6.3D

|f blzbozl, ﬂ|p b2,

|f bozl, ﬂ|p bl!
and therefore

flip by. (6.33

ave _ 2 E 1_3
[EXPNlenhanced, 21ce=LK®| 35, 5 LO[[1+ O(LK)],

2 Thus the operator

[EXPNIG: tncee oce=7TOLKI 1+ O(LK)], (6.32  ADD(ag)p, s=if (2p=1)

another factor of 2 improvement in speed. c.C ...C I
For asymptotically largeK, further improvements are Bo~1Bol Ay 1By - B2l Br—1~1B0 By - - Br—1l. Bk

possible, for we can invoke classical algorithms that multiply (634
K-bit numbers in time less tharO(K?). The fastest :

known, the Schehage-Strassen algorithm, requires has the action

O(K logK loglogK) elementary operation$25]. It thus ADD ) b b+ n

should be possible to perform modular exponentiation on a (20) .10} [B) =1 (0 + @0)ic) g [0 a°>ﬁ'6 3
guantum computer in a time of order LK I§doglogK. We (639

have not worked out the corresponding networks in detail oft flls the K+1 qubits g |)s with the (K+1)-bit sum
K

determined the precise scratch space requirements for sugh : :
an algorithm. B+a0. To add aK-bit ¢ numbera to the K-bit g number

b, we apply this procedure iteratively. After addirg to
o b, we add a; to the K-—1)-qubit number
D. Minimal space bk_1bk_2- - - bybs, then adda, to the (K —2)-qubit number
Now consider the other extreme, where we disregardk-1Pk-2---bsb,, and so on. Thus the computation of
speed and optimize our algorithms to minimize space. Since+a requires in the worst cas@ {111 - - 11) a total num-
addition is an invertible operation, it is possible to constructber of operations
a unitary overwriting addition operator that adde aumber
to a g number and replaces tlienumber addend with the [ADD(a)]=[K,K,K=1K=2,...,2,1, (6.3
sum. But the construction of our OADDN operator involved
two stages: first we performed the additiefthoutoverwrit-  that is, K NOT'S, K controllednoT's, K—1 controlled-
ing the input and then ran the addition routine backward taNOT'S, ..., 2 controlle ~*-NoT's, and 1 controlled-NoT.
erase the input. Thus our overwriting OADDN routine for In the average casavhere half the bits o are zerg, only
adding aK-bit ¢ number to aK-bit g number (mo#ll) re-  half of these gates need to be executed. For the Cirac-Zoller
quiredK+1 bits of scratch space. device, figuring X+3 laser pulses for a controllé\oT
There is no reason in principle why this scratch spacewith k=1 and one pulse for aoOT, this translates into
should be necessafyhough eliminating it may slow down % K(2K?+ 15K +19) laser pulses for eadh-bit addition, in
the computation In fact, we will show that it is possible to the worst case, or, in the average case,
add without using any scratch space at all. Of course, we will
still need a comparison bit to perform nidcaddition. And [ADD]ﬁ‘geSE,”;ff,%% K3+ S K2+ 8 K. (6.37
there is no obvious way to eliminate the need foK it
scratch register that stores partial sums when we multiplyWe can easily promote this operation to a conditional ADD
Still, using overwriting addition, we can construct an EXPN with | enable bits by simply adding the enable qubits to the
operator that requires just+ 1 bits of scratch spacegom-  control string of each gate; the complexity then becomes
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3 31 -ing (2X—N+a) to b; the final carry bit will be 1 only for
K2+ St 1—2) K,(I=1. a+b=N. Thus we can use the overwriting addition opera-
(6.39 tion ADD in place of LT to fix the value of the select bit and
' then use a multiplexed version of ADD to complete the
modN addition. Following this strategy, we construct an
We will need to add mad. But if we can add, we can overwriting modN adder that uses just one qubit of scratch
compare. We can do the comparison\bf a andb by add-  space according to

1 5
—|+ =

1
ave pulses_ — 3+
[ADDyj] K3+| 51+

no scratch 6

OADDN’ (a,N)jz) .4,
EADD(a)[[L]]’BK 'BMADD ’(N—a,ZK—a)MH,BK 'BADD(ZK— N+a)[[£]]”3K B |0>BK|b>BH|O>BK|b+,C/\a(mom))B .
(6.39

Here each ADD operation computes i+ 1)-bit sum as Several observations allow us to reduce these resources
above, placing the final carry bit in the qulb);gK; however, substantially further. First of all, we notice that, for any posi-
MADD ’ Computes a<_b|t sum: |t is a mu'tip'exed adder tiVe integerX W|th x<15 and the gl’eatest common diVisor Of
that addsN—a if the select bit|), reads 0 and adds (%15)=1 (e, for x=12478111314), we have

2K—a if the select bit reads 1. The construction of MADD x“=1(mod15). Therefore,
follows the spirit of the construction of MADD described in x@= x28130- (7.
Sec. V B. In the average case, the number of laser pulses ’
required to implement this OADDNoperation is only the last two bits of are relevant in the computation of
x2. Hence we might as well choode=2 instead ofL =8,
[OADDN[’l]]‘i‘VSeCf;{'CSﬁS: K3+ (2 1+ B)K2+ (L1 + &)K. which reduces the number of elementary operations required
(6.40 by a factor of about 7(Even if the value ofL used in the
evaluation of the discrete Fourier transform is greater than 2,
The construction of the modular exponentiation operatotthere is still no point in usindg.>2 in the evaluation of the
EXPN from this OADDN operator follows the construction modular exponential function.
described in Sec. V. Thus, using the expression EO{PN] Second, we can save on storage spéamed improve
in terms of[OADDN;,;] implicit in Eqg. (6.3, we find that  speed by noting that the overwriting addition routine de-
with K+ 1 qubits of scratch space, the EXPN function can bescribed in Sec. VI D is reasonably efficient for small values
computed, in the average case, with a number of laser pulses$ K. ForK=4 andL =2, we need 11 qubits of storage and

given by an estimated 1406 laser pulses.
For N=15, the above is the most efficient algorithm we
[EXPN]2vepulses: (| —1)(I K4+ 32 K3+ £ K2- ¥ K) know that actually computes® on the quantum computer.
We can do still better if we are willing to allow the classical
+ 2K+7. (6.41 computer to perform the calculation &f. Obviously, this

strategy will fail dismally for large values d¢€: the classical
For small values oK (K<7), fewer pulses are required than calculation will require exponential time. Still, if our goal is

for the algorithms described in Secs. VI A and VI B. merely to construct the entangled state
1 a
VIl. N=15 Zﬂzg |a);|x3(modN)),, (7.2

As we noted in Sec. Il F, Shor’s factorization algorithm
fails if N is even or a prime powelN=p¢, p prime). Thus  while using our quantum computational resources as spar-
the smallest composite integét that can be successfully ingly as possible, then the classical computatioxis the
factored by Shor's method N=15. Though factoring 15 is most efficient procedure for smal.
not very hard, it is amusing to consider the computational So we imagine thak<<15 with the greatest common di-
resources that would be needed to solve this simplest ofisor of (x,15)=1 is randomly chosen and that the classical
guantum factoring problems on, say, a linear ion trap. computer generates a “lookup table” by computing the four-

Appealing to Eq.(6.11), with K=4 andL=2K=8, our  bit numberx®(mod15) fora=0,1,2,3. The classical com-
average case estimate of the number of laser pulses requirpdter then instructs the quantum computer to execute a se-
on a machine with altogeth&+ L + (2K +1)=21 qubits of quence of operations that prepares the state(Eg). These
storage is 15 284. With 22 qubits of storage, our estimat®perations require no scratch space at all, so arhyK =6
improves to 14 878 pulses. With another three quis  qubits of storage are needed to prepare the entangled state.
total), we can use the technique described in Sec. VIC to The worst casémost complex lookup tabjes x=7 or
achieve a further improvement in speed. 13. The lookup table fok=7 is the following:
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a 7%(mod15) EXPN'(X,N), 5

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 0 0 =Cray 018,01y @ o0.8,C1e 1.7 0.186Clay gl 850 8,C

1 1 1 1 0 1

a Qo b3 b, by bo 79
HereCis & 1.5, for example, is a gate that flips the value

1% 0l P2
(7.3 of qubit B, if and only if both qubita; and qubite, have the

value zerorather than onésee the Appendix Each custom

An operator gate in Eq(7.9) can be implemented with seven laser pulses.
Hence, compared to Eq7.5), we save four pulses and the

EXPN(x=7N=15), 5:[a)+|0) g—|a);|7%(mod13), state Eq(7.2) can be prepared with just 32 pulses.

To complete the task of “factoring 15,” it only remains
(7.4 to perform the Fourier transform on the input register and

that recreates this table can be constructed as read it out. The measured value, the result of our quantum

computation, will be a non-negative integex 2" satisfying

EXPN(X’N)“vBECalc[[alvao]]rﬁlcaoc[[alv“oﬂxﬁzcal Y _ —(mtegeb (7.10
2t ro :
XC[[alv“oﬂvﬁocaocﬂalvaoﬂvﬁacﬁzcﬁo' . .
wherer is the order ok modN (r =4 in the caseN=15 and
(7.9 x=7) and the integer takes a random value ranging from 0 to

r—1.[Here the probability distribution foy is actually per-

The twoNOT’s at the beginning generate a table that is all 1'sfectly peaked at the values in E(..10, because divides

in the By and B, columns and all 0's in thed; and B3 2%.] Thus, if we perform the Fourier transform with=2,
columns. The remaining operations fix the one incorrect enthe result fory is a completelyandomnumber ranging over
try in each row of the table. Thus we have constructed ay=0,1,2,3.(Even so, by reducing/4 to lowest terms, we

EXPN operator with complexity succeed in recovering the correct value ofith probability
1/2)
[EXPN(7,15]=[6,0,4; (7.6) It is a bit disappointing to go to all the trouble to prepare

the state Eq(7.2) only to read out a random number in the
end. If we wish, we can increase the number of qubitsf

it can be implemented with 34 laser pulses on the CiraCye innyt registerthough the EXPN operator will still act

ZoII(_ar device_. Sinpe two additione.ll.pulses suffice to Prépargnly on the last two qubis Then the outcome of the calcu-
the input register in the superposition state lation will be a random multiple of 2" 2. But the probability
of recovering the correct value ofis still 1/2.
13 Once we have found=4, a classical computer calculates
Eazo |a); (7.7) 74+ 1=3 5(modN), which are, in fact, the factors of
N=15. Since the_=2 Fourier transform can be performed
usingL (2L —1)=6 laser pulses on the ion trap, we can fac-
before EXPN acts, we need 36 laser pulses to prepare thgr 15 with 38 pulsegnot counting the final reading out of

entangled state Eq7.2). _ . the devicg. For values ok other than 7 and 13, the number
The EXPN operator constructed in BG.5) acts trivially  of pulses required is even smaller.

on the inputg numbera. Of course, this feature is not nec-
essary; as long as the output state has the right correlations VIIl. TESTING THE FOURIER TRANSFORM
between thd)?, and|), registers, we will successfully pre-
pare the entangled state Ed.2). By exploiting this obser-
vation, we can achieve another modest improvement in th?1
complexity of EXPN; we see that a

In Shor's factorization algorithm, a periodic functi¢time
odular exponential functignis computed, creating en-
nglement between the input register and the output register
of our quantum computer. Then the Fourier transform is ap-
plied to the input register and the input register is read. In

Clay agl 85C aoClay agl 8,C @, Clay ,agl. 5, Sec. VIl we noted that a simple demonstration of this proce-
dure(factorization of 1% could be carried out on a linear ion
Xcaocﬂal,aoﬂ,ﬂlcﬁzcﬁo (7.8 trap, requiring only a modest number of laser pulses.

Here we point out an even simpler demonstration of the
applied to the input Eq(7.7) also produces the output Eq. principle underlying Shor’s algorithm. Consider the function
(7.2), even tho_ugh it flips _the value af;. Compared to Eq. f((a)=a(mod2). 8.1
(7.5, we do without the finaNoT gate and hence save one
laser pulse. We can do better still by invoking the “customEvaluation of this function is very easy, since it merely cop-
gates” described in the Appendix; another implementationies the lastK bits of the argumenta. A unitary operator
of the EXPN operator is MOD 5« that acts according to
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MODzK:|a>’;|o>’8lﬁ|a>z|a(m0d2<)>lg (8.2 rithms (as measured by the total number of laser pulses re-
quired.
can be constructed as To see how these generalized gates can be constructed

using the ion trap, we note first of all that if we apply an
MODZKECﬂaK,lﬂ,BK,l' ) 'C[[al]],ﬁlc[[ao]],ﬁo 8.3 appropriately tuned 3 pulse (instead of ar pulse to the

, o , _ ith ion? then the operatioW(),, defined in Eq.(3.1) is
(where|)? is anL-qubit register and0) ; is a K-qubit reg- replaced by

isten. TheseK controlledNOT operations can be accom-

plished with &K laser pulses in the ion trap. Including the 19)i10)cm—|9)i|0)
. . . . . ~(|) I cm. I c.m.
L single qubit rotations needed to prepare the input register, Wohon: . (A1)
then, the entangled state 1€)i0)cm—i19)il1em.
1 2t-1 (whose nontrivial action differs by a sign from that of
02 > |a)tla(mod2)),, (8.9 W(;I))hor‘)' With ngon andWl([,'ﬁon we can construct an alterna-
a=0 tive conditional phase gate
can be generated withks+ L pulses. _ . U, B
Now we can Fourier transform the input register VED=WH VOWE [ e)i| n)j> (= 1) 7] €)i| ),
[L(2L—1) pulse$ and read it out. Since the period Df (A2)
f divides 2, the Fourier transform should be perfectly o ) )
peaked about values gfthat satisfy that acts nontrivially only ife=1 and»=0. With an appro-
priate change of basis, this conditional phase gate becomes
y=2""KX(integey. (8.5 _ L
Cﬂi—ﬂ.z[u(i)]*lv(j,i)u(i)
Thus, yk_1,.-...Y1,Yo Should be identically zero, while ! . _ o
Yi-1,---Yk+1.Yk take random values. =[UDT W VOWR UD:]€)] ),
The very simplest demonstration of this typ& =2,
K=1) requires only three ions. Sinde has period 2, the =|e)ilno ed D (A3)

two-qubit input register, after Fourier transforming, should » ) o
read y,=randomy,=0. This demonstration can be per- & modified controlledtoT gate that flips the target qubit if
formed with 13 laser pulse@ot counting the final reading and only if the control qubit readsero[compare Eq(3.7)].

out) and should be feasible with current technology. Like the controlledvoT gate, then,Cyiy; can be imple-
mented with five laser pulses. Following the discussion in

Sec. Il C, it is straightforward to construct a modified con-
trolled“-NOT gate with a specified custom control string, for
We thank Al Despain, Jeff Kimble, and Hideo Mabuchi anyk=1.
for helpful discussions and encouragement. This research As a simple illustration of how a reduction in complexity
was supported in part by DOE Grant No. DE-FG03-92-can be achieved by using custom gates, consider the full
ER40701 and in part by the California Institute of Technol-adderFA(a) defined by Eqgs(5.4) and (5.6) and shown in
ogy. Fig. 2. We can replace FA) by the alternative implementa-
tion
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APPENDIX: CUSTOM GATES
. ) o FA'(a=1)1 5 =Cy1j 2Cy1 2 3C (Ad)
In the algorithms that we have described in this paper, we L2821 2308

have used the controlléeNoT operator as our fundamental
guantum gate. Of course, there is much arbitrariness in thi ) for the gate to act nontrivially This saves on&oT gate,

choice. For example, instead of the operatdf,, . i+ and hence one laser pulse, compared to the implementation

which flips qubit] if and only if qubitsiy, . .. i, all take the  in Eq. (5.6). Another example of the use of custom gates is
value 1, we could employ a gate that flips qubif and only  described in Sec. VII.

if i4i,...1 is some other specified string &f bits. This

generalized gate, Iiké[[il _____ il itself, can easily be imple-

mented on, say, a linear ion trap. We remark here that using®Alternatively, we can implemerﬁlggonwith a pulse if the laser
such custom gates can reduce the complexity of some alg@hase is appropriately adjusted.

where the indicates that gubit must have the value (hot
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