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The effect of plasma fluctuations on transverse spatial coherence of x-ray lasers is investigated. Hose type
~random! transverse displacements of the x-ray lasing medium induced by pump-laser nonuniformities are
considered in detail. Such displacements lead to decreased transverse coherence via reduced gain discrimina-
tion from mode coupling. This effect may be related to a previously reported insensitivity of transverse
coherence to laser length in neonlike selenium at 206 and 210 Å@Trebeset al., Phys. Rev. Lett.68, 588
~1992!#.

PACS number~s!: 42.50.Ar, 42.55.Vc, 42.60.Da, 52.25.Nr

Improving the transverse spatial coherence of x-ray lasers
remains an essential goal in realizing their utility for biologi-
cal imaging or x-ray holography@1#. Previous experimental
studies of a selenium x-ray laser at 206 and 210 Å have
shown that the time-integrated spatial coherence perpendicu-
lar to the foil is equivalent to that of a quasimonochromatic
spatially incoherent disk source with diameter ranging from
100 to 600mm @2#. The associated transverse coherence
length at the output of the laser spans only 0.2–1.3mm,
which is an order of magnitude smaller than required for
practical holographic studies. Efforts are underway to im-
prove coherence and x-ray fluence by using multipass archi-
tectures@3# along with curved targets for reducing x-ray
losses due to refractive defocusing@4#.

Methods used to understand spatial coherence include
modal analyses@5–7#, numerical solutions of the paraxial
wave equation@8#, ray optics estimates@9,10#, and Wentzel-
Kramers-Brillouin ~WKB! approximations@11–13#, all of
which predict generally increasing coherence with laser
length. However, in Trebeset al. @2# the observed coherence
length was lower by a factor of 5 compared to theory and
failed to improve as the length of the laser increased. Pro-
posed causes for the lower-than-expected coherence are
time-averaged source motion@2# and measured off-axis peak
radiation intensity profiles where coherence is argued to be
lower @12#. However, these explanations fail to predict a lack
of coherence improvement when the laser length is in-
creased.

In this paper we generalize the modal approach to include
fluctuation-induced mode coupling for exploring the inter-
play between laser-induced~random! source motion and gain
length saturation as a possible explanation for the observed
limitation on transverse coherence in Nova x-ray laser ex-
periments.

We concentrate on one particular class of fluctuation that
may be present in Nova two-beam x-ray laser experiments. A
thin ~'750-Å! CH-backed target foil is irradiated on both
sides by separate uncorrelated pump laser beams, each with a
nearly 10–15% speckle intensity variation@14#. These inten-
sity variations are correlated over distances along the line
focus on the order of a speckle width~or diffraction-limited
spot size! l s52fl and persist over the duration of x-ray las-
ing ~'200 psec!. The line-focusing architecture employs
f /4.3 ~'f /4.4! optics across~along! the line focus, givingl s
on the order of 10mm. The random intensity fluctuations, in
turn, can imprint at early-time small transverse~horizontal!
displacementsx0(z) of the x-ray lasing medium from the
target symmetry axis, wherez is along the line focus. These
displacements are associated with ‘‘hose-type’’ fluctuations,
as shown in Fig. 1. We can estimate the magnitude ofx0(z)
using a simple inverse bremsstrahlung absorption model
valid at early times before the plasma density becomes sub-
critical. If an imposed intensity imbalance on the two sides
of the foil is given byDI , then a net pressure imbalance
locally arises across the foil~distributed over a speckle
width! and is given byDP'ntsDI /c. Here,n5neiv pe

2 /v2

is the inverse bremsstrahlung absorption rate,nei is the
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FIG. 1. Diagram of hose-type fluctuations of lasing~positive
gain! medium induced by laser nonuniformities.
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electron-ion collision rate,vpe is the plasma frequency,
v52pc/l, andts is the duration of the intensity imbalance.
Using momentum balance, we find x0/ l s'
(nts)(DI /I )(I t s

2/crals)/2, wherea is the foil half-width,
andr is the lasant mass density. For a Ne-like Se x-ray lasing
plasma withra'431025 g/cm2, DI /I'0.15, ts'200 ps,
n.531011 sec21 (Te'1.5 keV!, I'731013 W/cm2, we ob-
tain x0/ l s on the order of 0.1. This estimate is in satisfactory
agreement with LASNEX hydrodynamic simulations@15#.

An important dimensionless parameter characterizing the
effect of such hose-type random fluctuations of the lasing
medium on transverse coherence is obtained below in Eq.
~10! from a modal analysis@5–7# of the laser electric field:
s f54l s^(dx0/dz)

2&/g0a
2, whereg0 is the x-ray laser gain

strength, angular brackets denote ensemble averaging, and
dx0 /dz56A^x0

2&/ l s is an assumed random telegraph signal
~RTS! bivalued variable@16#. Usingg0'4 cm21 anda'100
mm ~at 400 psec! we finds f to be on the order of 0.1. As we
now show, this level of fluctuations in Nova two-beam x-ray
lasing plasmas is sufficiently large to greatly reduce trans-
verse coherence.

We now analyze in detail the role of hose-type fluctua-
tions on degrading transverse coherence in x-ray lasers. Our
starting point is the modal analysis of previous work@5–7#
generalized to include variations in thez direction through
the ~normalized! hose-type transverse variable:
x̃5[x2x0(z)]/a. The field equation in the paraxial approxi-
mation, after neglecting the spontaneous noise source term,
reads

F ]2

] x̃2
22i

]

]z
2Fe„hĥ~x!2 i ĝ~ x̃!…GE~ x̃,z!50, ~1!

where Fe5kg0a
2 is the ~z-independent! effective Fresnel

number,k is the free-space longitudinal wave number of the
electric fieldE, h5h0/g0 measures the refraction strength,ĥ
is the normalized transverse electron density profile,ĝ is the
normalized transverse atomic gain profile, andz is normal-
ized to ka2. We next expand the laser electric field
E( x̃,z)5Sncn(z)un( x̃) and define the density matrix
rnn8(z)[cncn8

* , whereun( x̃) satisfies the transverse eigen-
mode equation

F d2

dx̃2
2Fe„hĥs~ x̃!2 i ĝs~ x̃!…Gun~ x̃!52Enun~ x̃!, ~2!

written in terms of square profiles, i.e.,ĥs ,ĝs51 for ux̃u<1
and zero otherwise. The appropriatepositive gain eigen-
modes are

un~ x̃!5NnH cos~anx̃! ~even parity! ux̃u<1

sin~anx̃! ~odd parity! ux̃u<1

Ane
6 ibnx̃ ux̃u.1

~3!

where the 1 ~2! sign is for x̃.1 (x̃<21),
Nn5(11 i /bn)

21/2, a n
25b n

22Fe(h2 i ), n5$0,1,...,nmax%,
andAn is obtained from the continuity condition atx̃561.
Using the fact that the eigenfunctions of the square profile
generate a complete set@17#, we expandE( x̃,z) in Eq. ~1!

for a general potential in terms of square profile eigenmodes,
giving with the use of Eq.~2!,

(
n

F22i
]

]z
2Fe~hDĥ2 iDĝ!2EnGcn~z!un~ x̃!50,

~4!

whereDĥ5ĥ2ĥs , Dĝ5ĝ2ĝs , and the eigenvalueEn5b n
2

is independent ofx̃. Next, we multiply Eq.~4! by um( x̃) and
use the biorthonormal condition,*un( x̃)um( x̃)dx̃5dmn , to
give

d

dz
cm1(

n
~2Lmn1Kmn!cn50, ~5!

where Lmn5 iEndmn/21Dmn5Lnm , Dmn5Fe/2)*( ihDĥ
1Dĝ)um( x̃)un( x̃)dx̃ describes departures from square den-
sity and gain profiles, andkmn5*um( x̃)[ ]un( x̃)/]z]dx̃
describes the coupling between themth andnth modes due
to fluctuations. In matrix form, Eq.~5! becomesdC/dz
1(2L1K)C50. To solve for the matrixC, we diagonalize
L using the eigenvalue equation,Lv l5| lv l , wherev l is an
eigenvector,|l is the corresponding eigenvalue, andv l sat-
isfies the orthonormality condition:v lv l 85d l l 8. Defining a
matrixR with $v l% as columns and a diagonal matrix| with
eigenvalues$| l% along the diagonal, we haveLR5R|. De-
fining thereducedstate vectorC(1)[RTC and using the ma-
trix form of Eq. ~5! we obtain dC(1)/
dz1(2|1K (1))C(1)50, whereK (1)5RTKR, andRT5R21

denotes the transpose ofR. The reduced density matrix

rnn8
(1)

5cn
(1)cn8

(1)* then satisfies the following equation:

d

dz
rnn8

~1!
2|nn8rnn8

~1!
52(

l
@Knl

~1!r ln8
~1!

1Kn8 l
~1!*rnl

~1!#, ~6!

FIG. 2. Plot of modal eigenstate gain: ln@rnn
(1)(L)/r nn

(1)(0)]/g0L
for ten even-parity modes in a truncated parabolic medium,
ĝ,ĥ512 x̃2; ux̃u,1, versus gain-length productg0L for Fe5100,
h510, s f50.1. The integern51,...,10 labels the parabolic eigen-
states in ascending order of Re~|n!.
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where|nn85|n1|n8
* . We proceed to solve Eq.~6! by first

solving forrnn8
(1) , iterating the right-hand-side~rhs! and then

taking ensemble averages. We first employ forrnn8
(1) an en-

velope representation,rnn8
(1)

5 r̃nn8e
|nn8z, and we assume the

following decoupling@18# and an exponential form for the
correlation function:

^Knl
~1!~z!Kn8 l 8

~1!
~z8!r̃mk~z8!&

.^Knl
~1!~z!Kn8 l 8

~1!
~z8!&^r̃mk~z8!&

5^Knl
~1!~z!Kn8 l 8

~1!
~z!&e2qf ~z2z8!^r̃mk~z8!&, ~7!

which holds exactly for RTS@16#. Continuing as in Ref.@18#,
we next carry out the integration overz8, using r̃nn8(z8)
. r̃nn8(z), and then transform back fromrnn8 to rnn8

(1) . Upon

redefiningrnn8
(1) [^rnn8

(1) &, we finally obtain for the ensemble-
averaged field equation

d

dz
rnn8

~1!
~z!2|nn8rnn8

~1!
~z!

5(
l ,l 8

H ^Knl
~1!Kll 8

~1!&

qf1| l 82| l
r l 8n8

~1!
~z!1

^Kn8 l
~1!*Kll 8

~1!* &

qf1| l 8
*2| l*

rnl8
~1!

~z!

1^Kn8 l 8
~1!*Knl

~1!&F 1

qf1| l2|n
1

1

qf1| l 8
*2|n8

* Gr l l 8
~1!

~z!.

~8!

To choose a cutoffl M for the number of eigenmodes~of both
parities!, we first include only modes that contribute signifi-
cantly to the rhs of Eq.~8!, i.e., u|n2|n8u!qf . A physical
~and generally more restrictive! criterion follows from ex-
cluding those modes that refract out of the lasing plasma@7#,
Im~|n)<Feh /2. For example, the truncated parabolic profile
used below~for Fe5100, h510! can be shown to require
about 30 modes.

For square profile eigenstates, we easily find, using Eq.
~3!,

^Knl
~1!Kn8 l 8

~1! &54^~dx0 /dz!
2&F ana lan8a l 8

~an
22a l

2!~an8
2

2a l 8
2

! G . ~9!

Using Eq.~9! in Eq. ~8! with the conditionu|n2|n8u!qf ,
reintroducing unnormalized units, and usingqf>1/l s , we ob-
tain a convenient parametrization for the strength of the fluc-
tuation terms appearing on the rhs of Eq.~8!:

s f54l s^~dx0 /dz!
2&/g0a

254^x0
2&qf /g0a

2. ~10!

We now evaluate Eq.~8! for several values ofs f , assum-
ing equal occupation for each staternn8 at smallg0z and
usingrnn8

(1)
5S l l 8Rnl

T r l l 8Rl 8n8
* . We use the modal representa-

tion for the electric field correlation function,I c( x̃1 ,x̃2 ;z)
5Snn8rnn8(z)un( x̃1)un8

* ( x̃2), and we define a transverse co-
herence length as the distancexc over which the absolute
value of the complex coherence factorm
5uI c(0, x̃)/AI c(0,0)I c( x̃,x̃)u drops from unity atx̃c50 to
sin~1!'0.84. Truncated parabolic profiles for the gain and

electron density profiles are considered:
ĝ,ĥ512 x̃2, ux̃u,1. In the following, we consider a spec-
trum of l M520 modes~10 even and 10 odd! as a satisfactory
compromise between computational accessibility and a
meaningful characterization of the role of fluctuations on co-
herence.

In Fig. 2 we display how the normalized modal ‘‘gain
coefficients,’’ i.e., ln@rnn

(1)(L)/rnn
(1)(0)# /g0L, evolve with in-

creasing gain length product: negative gain modes become
positive gain modes while strongly growing modes undergo
some reduction in amplification. These features clearly sug-
gest how fluctuations may degrade coherence through re-
duced gain discrimination. In addition, the possibility for
overall gain reduction exists for larger values ofs f . This is
particularly important for rounded transverse gain profiles

FIG. 3. Mutual coherence profiles for several values of the fluc-
tuation strength parameters f versus normalized transverse coordi-
nate x̃ for gain-length productg0L510, Fe5100, h510, and
l M520. Gainĝ and electron density profilesĥ are as in Fig. 2.

FIG. 4. Coherence lengthx̃c versus gain-length productg0L for
several values of fluctuation strength parameters f and off-axis
transverse coordinatex̃150, 0.4. Parameters, spectrum and profiles
are as in Fig. 3.
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that have a fewer number of strongly growing modes com-
pared to the case of a square profile~which we have also
analyzed but not presented!.

In Fig. 3 are shown coherence profilesm for several val-
ues ofs f . We note how strongly the coherence is degraded
for s f as small as 0.02 with coupling between only 20
modes.~For l M530 ands f50.1, x̃c is further reduced by
10%!.

In Fig. 4 we plot the coherence length versus gain length
product. Again, the trend towards limitation of coherence
with increasing gain-length product is quite evident. Also
from Fig. 4 we see that this feature persists for off-axis co-
herence (x̃1Þ0!, which is more representative of Nova co-
herence experiments@2#. This insensitivity tox1 is expected
because of the generalrnn8(z) dependence of transverse co-
herence, which saturates with increasing laser length. An in-
sensitivity of transverse coherence length to laser length is
seen in Nova coherence experiments@2#, but the associated
large values ofFe ~'4800! andh ~'100! render unwieldy a
quantitative study due to the prohibitively large number of
modes (l M'300!. However, a similar~and even stronger!
effect is expected based on properties of the mode spectrum
for large Fresnel number where a group of strongly bound
states exchanges gain strength with a larger number of in-
creasingly coupled [K nn

(1)'n2s f , see Eq.~9!# set of weakly
bound or low gain modes.

The parameter space considered in this paper, i.e.,
Fe5100,h510, is associated with satisfactorily large coher-
ence lengths for x-ray holography in the absence of fluctua-
tions. Becauses f is on the order of 0.1 in Nova experiments,
substantial degradation of transverse coherence from fluctua-
tions is expected.

An obvious means of testing the role of laser nonunifor-
mities on saturated coherence in Nova two-beam x-ray laser
experiments is to implement various amounts of beam
smoothing. Random phase plates@5# and smoothing by spec-
tral dispersion@19# are generally not effective in the near
field of the laser; e.g., asalong a line focus, and alternative
smoothing techniques are needed. One technique is to super-
impose several parts of the beam~as in a segmented wedge
array @20#, for example! to homogenize the line focus. An-
other approach is to use plasma buffering for smoothing of
laser nonuniformities@21#. In these ways it may be possible
to reduces f to below 0.01 and achieve greatly improved
transverse coherence.
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