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Plasma fluctuations and x-ray laser transverse coherence
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The effect of plasma fluctuations on transverse spatial coherence of x-ray lasers is investigated. Hose type
(random transverse displacements of the x-ray lasing medium induced by pump-laser nonuniformities are
considered in detail. Such displacements lead to decreased transverse coherence via reduced gain discrimina-
tion from mode coupling. This effect may be related to a previously reported insensitivity of transverse
coherence to laser length in neonlike selenium at 206 and 2]Urdbeset al, Phys. Rev. Lett68, 588
(1992].

PACS numbsg(s): 42.50.Ar, 42.55.Vc, 42.60.Da, 52.25.Nr

Improving the transverse spatial coherence of x-ray lasers We concentrate on one particular class of fluctuation that
remains an essential goal in realizing their utility for biologi- may be present in Nova two-beam x-ray laser experiments. A
cal imaging or x-ray holographjl]. Previous experimental thin (=~750-A) CH-backed target foil is irradiated on both
studies of a selenium x-ray laser at 206 and 210 A haveides by separate uncorrelated pump laser beams, each with a
shown that the time-integrated spatial coherence perpendicyearly 10-15% speckle intensity variatifi¥]. These inten-
lar to the foil is equivalent to that of a quasimonochromaticsity variations are correlated over distances along the line
spatially incoherent disk source.W|th diameter ranging fromsgcys on the order of a speckle widtbr diffraction-limited
100 to 600 um [2]. The associated transverse coherenc%pot size¢ | ;=2f\ and persist over the duration of x-ray las-
length at the output of the laser spans only 0.2—48, 4 (=200 pset The line-focusing architecture employs
wh|cr_1 is an order Qf mag.nltude smaller than required .forf/4'3(%f/4.4) optics acrosgalong the line focus, giving
practical holographic studies. Efforts are underway to 'M"5n the order of 1Qum. The random intensity fluc,tuationsS in
prove coherence and x-ray fluence by using multipass archj[— . '

tectures[3] along with curved targets for reducing x-ray d%;n,laccinmggnzz?t gf‘ ;H:')Tfasr';:s"i;raﬁ\e/gfﬁ r!‘ngmat)he
losses due to refractive defocusip. P 0 y 9

Methods used to understand spatial coherence includ rget symmetry axis, Wh?'B'S alpngﬂthe line fo“cus. These
modal analyse$5—7], numerical solutions of the paraxial |splacem<_ants_ are associated ywth hose—type_ fluctuations,
wave equatioi8], ray optics estimatel®,10], and Wentzel- as'shown in Fig. .1. We can estimate the magmtud'[eo()i)
Kramers-Brillouin (WKB) approximations[11-13, all of  UsSing a S|mplle inverse bremsstrahlung absorptlon model
which predict generally increasing coherence with lasevalid at early times before the plasma density becomes sub-
length. However, in Trebest al.[2] the observed coherence critical. If_ an mposed intensity imbalance on th(=T two sides
length was lower by a factor of 5 compared to theory and®f the foil is given byAl, then a net pressure imbalance
failed to improve as the length of the laser increased. Prolocally arises across the folldistributed over a gpeczkle
posed causes for the lower-than-expected coherence addth) and is given byAP~wvr Al/c. Here,v=reiw e
time-averaged source moti¢@] and measured off-axis peak 1S the inverse bremsstrahlung absorption ratg, is the
radiation intensity profiles where coherence is argued to be
lower[12]. However, these explanations fail to predict a lack
of coherence improvement when the laser length is in-
creased.

In this paper we generalize the modal approach to include
fluctuation-induced mode coupling for exploring the inter- ,,
play between laser-inducéthndom source motion and gain
length saturation as a possible explanation for the observed
limitation on transverse coherence in Nova x-ray laser ex-
periments.

Fluctuating boundary gain<0

L
gain<0
*Electronic address: amendtl@linl.gov
"Electronic address: moshe@black.bgu.ac.il FIG. 1. Diagram of hose-type fluctuations of lasifpsitive
*Electronic address: rlondon@IInl.gov gain medium induced by laser nonuniformities.
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electron-ion collision ratew,e is the plasma frequency, for a general potential in terms of square profile eigenmodes,

w=2mc/\, andr is the duration of the intensity imbalance. giving with the use of Eq(2),

Using momentum  balance, we  find xy/ls~

(v7o) (Al (1 72/cpaly)/2, wherea is the foil half-width, J ~

andp is the lasant mass denS|ty For a Ne-like Se x-ray lasing 2 { 2i ——Fel 7Ah—iA§) —Ey|ca(2)un(X)=0,

plasma W|thpa~4>< 1075 glen?, Al/1~0.15, 7,~200 ps, 4
r=5x10" sec! (T,~1.5 keV), | =7x 10" W/cn?, we ob- @

tain xo/ls on the order of 0.1. This estimate is in satisfactory

agreement with LASNEX hydrodynamic simulatiofis].

An important dimensionless parameter characterizing th
effect of such hose-type random fluctuations of the lasin
medium on transverse coherence is obtained below in E¢.
(10) from a modal analysi§5—7] of the laser electric field:
o¢=4l((dx,/d2)?)/goa®, whereg, is the x-ray laser gain
strength, angular brackets denote ensemble averaging, and
dxg/dz==* \/(xc%)/lS is an assumed random telegraph signal
(RTS) bivalued variabld16]. Usinggo~4 cm *anda~100  where Amn=IEn8md2+ Din=Anm» Dmn=F2)/ (i nAh
um (at 400 pserwe find o to be on the order of 0.1. As we +Ag)um(x)un(x)dx describes departures from square den-
now show, this level of fluctuations in Nova two-beam x-raysity and gain profiles, andk,,,=Jum(X)[du,(X)/9z]dx
lasing plasmas is sufficiently large to greatly reduce transgescribes the coupling between timth andnth modes due
verse coherence. to fluctuations. In matrix form, Eq(5) becomesdC/dz

We now analyze in detail the role of hose-type fluctua-+ (— A + K)C=0. To solve for the matrixC, we diagonalize
tions on degrading transverse coherence in x-ray lasers. OW using the eigenvalue equatiop,= X,v,, wherey, is an
starting point is the modal analysis of previous wéB-7]  eigenvectory; is the corresponding eigenvalue, amdsat-
generalized to include variations in tlzedirection through isfies the orthonormality conditioru,v,'=é&,/. Defining a
the  (normalized  hose-type transverse variable: matrix R with {v,} as columns and a diagonal matrixwith
X=[x—x0(2)]/a. The field equation in the paraxial approxi- eigenvaluegx,} along the diagonal, we haveR=RX. De-
matlon after neglectlng the spontaneous noise source terrﬂnmg thereducedstate Vectoc 1) —RTC and usmg the ma-
reads trix form of Eq. (5) we obtain dC®/
dz+(—x+KM)cW=0, whereK=R'KR, andR"=R*
denotes the transpose ®&. The reduced density matrix

(1) —c(l)c(l) then satisfies the following equation:

whereAh=h—h,, Ag=3— g5, and the eigenvalug,= 32
és independent ok. Next, we multiply Eq.(4) by u,,(X) and
se the biorthonormal conditiorf,u,(X)un(X)dX= &pp, to

d
— Cnt 2 (— At Ky =0, (5)
dz n

? . . .
5z~ 21 -~ Fe(7h(X) —ig(x)) |[E(X,2)=0, (1)
where F .= kgoa2 is the (z-independent effective Fresnel d
numberk is the free-space longitudinal wave number of the — M _x z K +KWD

C : A Prny o= [KiDpin+ /p](6)
electric fieldE, »=hy/g, measures the refraction strengfth, dz Pont S Fn nt Fin H Pl
is the normalized transverse electron density profjles the
normalized transverse atomic gain profile, anté normal-
ized to ka’. We next expand the laser electric field 08 ——r—rrrrr

E(X,2)=2,cn(2)u,(X) and define the density matrix
pnn,(z)zcnc:, , Whereu,(X) satisfies the transverse eigen- 06
mode equation
0.4
9 c
d A - ~ ‘®©
W_Fe(nhs(x)_lgs(x)) Un(X): —EnUn(X), (2) _U’ 0.2
. 3
written in terms of square profiles, i.é,,gs=1 for |x|<1 S i
and zero otherwise. The approprigb@sitive gain eigen- 0.2
modes are [
5 o 04 F
codayX) (even parity |X|<1 ;
. B v . ~\ "0.6- ' a3 sl ' PR
U (%) =N, sin(a,X) (odd parity |X|<1 3) o1 ” 10
A et B I%|>1 Gain length g L
where the + (—) sign is for x>1 (x<-1), FIG. 2. Plot of modal eigenstate gain{(L)/pH(0)1/goL

=(1+i/By) "™ af=Br—Fd(n—i), n={0,1,...Nmad,  for ten even-parity modes in a truncated parabolic medium,
andA, is obtained from the continuity condition &&= *1.  §h=1-%% |X|<1, versus gain-length produgpL for F,=100,
Using the fact that the eigenfunctions of the square profiley=10, 04=0.1. The integen=1,...,10 labels the parabolic eigen-
generate a complete sgt7], we expandE(X,z) in Eqg. (1)  states in ascending order of ®Rg).
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where?(nn,=7(n+7(§,. We proceed to solve Ed6) by first 12 e e T T
solving fOfpSn), , iterating the right-hand-sidghs) and then
taking ensemble averages. We first employ ,f{f;;), an en- o 1 -._‘\."i‘f N
velope representatiop'", = p,e*n'?, and we assume the Q 1 T—
foIIowmg decoupl|ng[18] and an exponential form for the o 08 [N 5=0.02 NG ) p
correlation function: 2 . ~o ]
Q 96 | >
1 ~ o \ 4
(K@K (2)pmd2)) = a
=1 \
(1) ~ 5 04T 6=0.1 ]
=(Kqi Z)K /|I )X pm2')) = ~ \
[ “ ;
=KW @K (2)e WD Gy, (D) °2 1 ~. !
G'=1 ]
which holds exactly for RT$16]. Continuing as in Ref.18], 0 ot o= 4=
we next carry out the integration ovef, using py.(z') 0 02 ~ 04 06 08 1
= pnn(z, and then transform back fropy,, to pffn), . Upon X

redefiningpﬁﬂ),5<pﬁﬂ),>, we finally obtain for the ensemble-

averaged field equation FIG. 3. Mutual coherence profiles for several values of the fluc-
tuation strength parametet; versus normalized transverse coordi-
nate X for gain-length productg,L =10, F,=100, »=10, and

(1)
Iw=20. Gaing and electron density profllds are as in Fig. 2.

d
dZ Pnnr(z)_xnn pnn’(z)

(K <1>K<1,)) <K(l K(l,)*> electron gensity profiles are considered:
=> [ L pD (2)+ ot 7 pB(2) g,h=1-%2, |X|<1. In the following, we consider a spec-
L At A=K qe+ AL —AF " trum of | M—20 modeg10 even and 10 odds a satisfactory
compromise between computational accessibility and a
kWK N 1 (1) meaningful characterization of the role of fluctuations on co-
(K K5 PR A ) P (2). herence.
(8) In Fig. 2 we display how the normalized modal “gain

coefficients,” i.e., Ifip(L)/pP(0)]/goL, evolve with in-
creasing gain length product: negative gain modes become
positive gain modes while strongly growing modes undergo
some reduction in amplification. These features clearly sug-
(and generally more restrictiyecriterion follows from ex- gest how fluctuations may degrade coherence through re-
cluding those modes that refract out of the lasing plaffia duced gain discrimination. In addition, the possibility for
Im(x,)<F¢n /2. For example, the truncated parabolic profile overall gain reduction exists for larger valuesmf. This is
used below(for F,=100, »=10) can be shown to require particularly important for rounded transverse gain profiles
about 30 modes.

For square profile eigenstates, we easily find, using Eq. 1

3),

To choose a cutoffy, for the number of eigenmodésf both
paritieg, we first include only modes that contribute signifi-
cantly to the rhs of Eq(8), i.e.,|X,— X,/|<q;. A physical

o aqanrap
n |)( n’

Using Eq.(9) in Eq. (8) with the condition|x,,— X,/|<qs,
reintroducing unnormalized units, and usipg=1/¢, we ob-
tain a convenient parametrization for the strength of the fluc-
tuation terms appearing on the rhs of £8).

o =4l((dxo/d2)2)/goa®=4(x3)q; /gaZ.

We now evaluate E(8) for several values of; , assum-
ing equal occupation for each statg,, at smallgyz and 001 boe v v v o v 1y 0y,
usingpgln),=2”,RLp”,Rl*,n, . We use the modal representa- 0 2 4 6 8
tion for the electric field correlation functiony(X,X,;2) Gain length g L
=30 pan (D Un(X1) U, (X,), and we define a transverse co-

[

(KK = «m%ma% 9

ozl,)

Coherence length X

(10

10

herence length as the distangg over which the absolute
value of the complex coherence factoru

=1.(0,X)/V1:(0,0)l .(X,X)| drops from unity atx.=0 to

FIG. 4. Coherence length, versus gain-length produgtL for
several values of fluctuation strength parametgrand off-axis
transverse coordinate =0, 0.4. Parameters, spectrum and profiles

sin(1)~0.84. Truncated parabolic profiles for the gain andare as in Fig. 3.
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that have a fewer number of strongly growing modes com- The parameter space considered in this paper, i.e.,
pared to the case of a square profilehich we have also F_ =100, =10, is associated with satisfactorily large coher-
analyzed but not presented _ ence lengths for x-ray holography in the absence of fluctua-
In Fig. 3 are shown coherence profilesfor several val-  tions. Because; is on the order of 0.1 in Nova experiments,
ues ofay. We note how strongly the coherence is degradegubstantial degradation of transverse coherence from fluctua-
for of as small as 0.02 with coupling between only 20tjons is expected.
m%des.(For Im=30 andoy=0.1, X, is further reduced by An obvious means of testing the role of laser nonunifor-
10%). ) ] mities on saturated coherence in Nova two-beam x-ray laser
In Fig. 4 we plot the coherence length versus gain lengthy, yeriments is to implement various amounts of beam
product. Again, the trend towards limitation of COherencesmoothing Random phase plafé$and smoothing by spec-
¥V'th |Epre25|ng ga'?#erggh pro:juct IS qlu;tefewdfent.'Alsotral dispersion[19] are generally not effective in the near
rom Fig. & we see that this feature persists for ol-axis Coyo 4 of the laser; e.g., aslong a line focus, and alternative
herence %,#0), which is more representative of Nova co- . . . .
smoothing techniques are needed. One technique is to super-

herence experimen{&]. This insensitivity tox, is expected . | ts of the b . ted wed
because of the genera),r(z) dependence of transverse co- impose several parts of the bedas In a segmented wedge
array [20], for examplé to homogenize the line focus. An-

herence, which saturates with increasing laser length. An in® ) . .
sensitivity of transverse coherence length to laser length iSther approach is to use plasma buffering for smoothing of

seen in Nova coherence experimef} but the associated laser nonuniformitie$21]. In these ways it may be'possible
large values of . (~4800 and 5 (~100) render unwieldy a to reduceos; to below 0.01 and achieve greatly improved
quantitative study due to the prohibitively large number oftransverse coherence.

modes (,,~300. However, a similarand even stronggr

effect is expected based on properties of the mode spectrum Useful discussions with S. Dixit and R. Ehrlich are grate-
for large Fresnel number where a group of strongly boundully acknowledged. This work was performed under the
states exchanges gain strength with a larger number of irauspices of the U.S. Department of Energy by the Lawrence
creasingly coupledP{%@nzof, see Eq(9)] set of weakly Livermore National Laboratory under Contract No. W-7405-
bound or low gain modes. ENG-48.
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