PHYSICAL REVIEW A VOLUME 53, NUMBER 4 APRIL 1996

Determination of occupation probabilities from time-averaged position distributions
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We show that the occupation probabilities of the energy eigenstates excited in a wave packet moving in an
arbitrary one-dimensional potential can be determined directly from the time-averaged position distribution.
The sampling functions are the derivative of the product of the usual eigenfunctions and the linearly indepen-
dent(non-normalizablgsolutions of the Schidinger equation for the same energy eigenvalue. This is the same
structure as those for the harmonic-oscillator case.
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The ultimate goal of measurements in quantum mechanicsionic oscillator associated with the quantized electromag-
is the determination of the density operafoof a statistical —netic field[see Eqs(1,10]. This experimental work stimu-
ensemble of systems previously produced by some reprodutated theoretical studiegl4—21] to develop algorithms to
ible means. A complete set of measurements should detereconstruct the density-matrix elements directly from the
mine all the density-matrix elements. As early as 1933 Paulineasured histograms of homodyne data. The quadrature
asked the question whether the Salinger wave function component distribution can be written in the fofd®,21]
could be uniquely determined from given probability distri-
butions of position and momentum if the quantum system
were known beforehand to be in a pure sfdi2]. It is now
well known that for any wave function of definite parity the
Pauli problem is not uniquely solvabJ@]. Somewhat later where h,(x) are the well-known energy eigenfunctions of
Feenberd3] could show that for one-dimensional problems, the harmonic oscillator in position representation described
in principle, the wave function)(x,t) can be reconstructed by Hermite functions(e.g., [26]) and p,,, denotes the
from positional observations; that means from the positiordensity-matrix elements with respect to these eigenstates.
distribution P(x,t) =|#(x,t)|?. Specifically he proved that Clearly, the reconstruction of the density matrix in the Fock
the values ofP(x,tg) and (@P/dt)(x,tg) at any given time basis from the measured quadrature component distributions
to uniquely determinei(x,t) itself apart from a trivial global requires a set of pattern functiods(xq,®) that is bi-
phase factor. But what can be said if the quantum state is arthonormal[19]
mixed state described by the density operatprand even
more interesting, does there exist a constructive algorithm e W
for reconstructing the quantum state? This problem has at- Jﬂc dxe Jo d® Wy(Xe,0)F(Xe ,0)=dkmdin (2
tracted much interest in recent years in quantum optics
[4-22. to the set of functions

Following a proposal by Vogel and Risk¢B], Smithey
et al.[13] were the first to determine the density matrix of a Winn(Xe ,0) =hm(Xe)hn(Xe)e' "™, ®)
single-mode field from the reconstructed Wigner function,
which in turn was reconstructed from the measured quadrat turns out that the functions,, are just proportional to the
ture component distributions in balanced homodyne deteaderivative of the product afnormalized eigenfunctions with
tion. A balanced homodyne detec{@3] utilizes the interfer- a non-normalizable solution of the Schinger equation for
ence of the signal field and a strong local oscillator, whichthe harmonic oscillatof19,20. If one is interested solely in
has an adjustable phageand measures the probability dis- the photon statisticédiagonal density-matrix elementthe
tributionsw(xq ,®) for the quadrature componexy, of the  knowledge of the phase-averaged quadrature component dis-
signal field, which are just marginal distributions of the cor-tributions alone is sufficient, as has been experimentally
responding Wigner function. One observes that the measuretbmonstratedl18].
guadrature component distributions are nothing else but the In this paper we show that with respect to the diagonal
time-dependent position distributions of the fictitious har-density-matrix elements,,, all statements made for the har-

monic oscillator are perfectly true also for anharmonic one-
dimensional potentials if instead of the phase-averaged

W(Xe ,®>=;n PmnNm(Xe)hn(Xe) €™M0 (1)
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tential, but also because, after some appropriate manipulaa the wave packef7). In the case where the particle is in a
tions, in a variety of problems one is led to equations ofmixed state described by the density operatoformula(8)
motion that correspond to the one-dimensional Sdimger  generalizes to

equation. As one example we mention the diatomic molecu-

lar vibrations[25]. (o

Let us consider the wave packet of a particle of mass P(x,t)=m2m Pmrtim(X)Un(X)€ln™ s, ©)
moving in a one-dimensional potenti(x). The time evo-
lution of its wave function is governed by the Schimger  where pmn:<um|p|un> are the density-matrix elements in
equation the energy eigenstate basis.

For the harmonic-oscillator potential to which the quanti-
zation of a single-mode electromagnetic field is reduced, we
havew,— w,=(n—m)w with o as the angular frequency of
the harmonic oscillator, and expressi@ simplifies to

J
i (D)= = 5=z F V) [h(x,). 4

An arbitrary time-dependerisquare-integrabjewave func-
tion can be expanded in terms of the stationary solutions P(x,t)=2 po i (X)U(X) @i~ mot, (10)
. m,n
Pn(X,t) =Up(x)e"n', (5

Translated into the language of quantum optiR&,t) is
where the functionsi,(x) that can be chosen as real func- nothing but the quadrature component distributi@n of a
tions[26] form an orthonormal set of energy eigenfunctionssingle-mode electromagnetic field. We just have to identify
of the time-independent Schdimger equation ot in (10) with the phase of the strong local oscillator in
the balanced homodyne detection scheme and the eigenfunc-
tionsu,(x) with hy(x). This is based on the fact that for the
harmonic-oscillator potential the position distributions of the
particle at timet may be obtained as marginal distribution
belonging to the scaled energy eigenvalues, from the rotated Wigner function of the initial staigXx,0)
=(2m/t)w,. Here we have adopted the notatidh(x) since the rotated coordinates just reflect the motion of the
=(2m/%?)V(x) for the scaled potential. We assume harmonic oscillator.
throughout this paper that the potentia{x) is asymptoti- Next we follow[18,24] and ask the analogous question:
cally increasing on both sides faster than some positive powhat information can be obtained from the time-averaged
ers of the modulus of the position that guarantees the pregosition distributions? If we average the position distribu-
ence of only a discrete spectrum of energy eigenvalues. Froiions (9) over timesT large compared with the periods of all
a practical point of view it is also sufficient to suppose thatdifference frequencies occurring in the expansi@h we
for arbitrary potentials only eigenstates of the discrete energimmediately find the expression
spectrum are excited, so that we may consider these states as

2
2 Un(¥)=[U(X) ~en]un(x), (6)

a complete basis for our purposes. It is known that the energy — (T 2

eigenvalues belonging to the discrete spectrum of the one- P(x)= Tfo dt P(X't):; Prnlin(X)
dimensional Schuinger equation are nondegenerffs|.

Since the Schidinger equation is a second-order differential for T> m@{ 2m ) (12)
equation to each normalized eigenfunctigy{x) of the dis- |on— |/’

crete spectrum, there exists a second linearly independent ) . )
solution to the same eigenvalue, which is, however, nonWhich only depends on the diagonal density-matrix elements.
normalizable. The time-dependent solution of the SchroNote that there is a whole class of quantum states that leads
dinger equatior4) having ¢(x,0)= = ,C,Un(X) as the initial 0 just this form of (time-independentposition probability
state at time=0 can be represented as a linear superpositiodistributions. These are the states that are described by a
of the stationary state) statistical mixture(incoherent superpositiprof the energy
eigenstates, so that the density matrix is purely diagonal.
_ Obviously, in this case all time dependence vanishes. Such
P(x,H) =2 cuup(x)eient, (7)  distributions are characteristic for particles in thermal equi-
n librium or, for example, for incoherently excited vibrational
wave packets in molecules. But the same also holds true for
initially coherently excited wave packets after sufficiently
strong purely phase-destroying relaxation.
The reconstruction of the diagonal elements of the density
matrix from the time-averaged position distributi¢il) re-
— 2_ * i(0n— @mt quires a set of functions that is biorthonormal to the func-
POt =[] gﬁ CmCn Un(X)Un(x) - ® tions u?(x). The aim of this Rapid Communication is to
show that the known structure of the pattern functions for the
Only the terms withm=n are time independent and the ex- determination of the diagonal elements of the density matrix
pansion coefficienic,|? in front of them determines the in the harmonic-oscillator case holds true for anharmonic
probability with which the energy eigenstdte,) is excited potentials as well. The proof is based on the fact that the

Clearly, the composite structure ¢{x,t) leads to quantum-
mechanical interference. Indeed, the probabilityk,t) that
the particle can be found at tintevith positionx is given by
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product y,(x)=vM(x)v?(x) of two arbitrary solutions energy eigenvalue, (see, e.g.[26]) and depends only on
vM(x) andv{®(x) of the stationary Schidinger equation the solutions involved. Frorl5) it follows by partial inte-

(6) for the same energy eigenvalag obeys the following ~9ration and by using the presupposed normalization of the
anti-self-adjoint ordinary differential equation of third order, €igenfunctionau,(x)

3 d dux e 1
G2~ MU0 —enl—2——|ya(0 =0, (12) | g (o) = 3 W 00) 3

+ oo
as can be easily verified. Now, by multplication of Efj2) ( J dx uﬁ=l). (17)
by fm(x)=u2(x), of the adjoint equation forf(x) by -

yn(x), and subtraction of this equation from the first, which

effectively leads here to an addition, we find The WronskianW(u,,v,,) is vanishing if the two solutions

u,(x) andv,(x) are linearly dependent and is nonvanish-

d d?, df,dy, d2f, ing if they are linearly independent. Therefore, to get
O:& mHZ  dx dx @ In the biorthonormality of the functionsu?(x) and
(d/dX)[up(X)va(x)] in (17), the functionv,(x) must be
_4( U(x)— ent Sm)f y ] chosen as a solution of the ScHimger equation(6) that is
2 m7n linearly independent of the normalized solutigg(x) with a
d df proportionality factor such that the Wronskian in HG.7)
+2(8n_8m)( fm%_ d_)r(nyn)_ (13 becomes equal to 2, i.e.,
L . . . +o d
We now specialize in this equationy,(X)=gs(X) f dx Uﬁ]—(unvn)=5mn
=up(X)va(X), wherev,(x) is any solution of the Schro —o dx

dinger equation(6). In particular,v,(x) can be a second %

linearly independent solution to the nondegenerate eigen- (W(Un-vn)ZZ, f dx Uﬁzl)- (18

valuee,, which is therefore a non-normalizable one. Then, o

integrating over alk and assuming that the asymptotic be-

havior of the involved functionsy,(x) ensures that the Thusv,(x) is a non-normalizable solution of the Schro

boundary values vanish, we get dinger equatior(6). Obviously, an arbitrary multiple of the
o dg, df normal@zed solutionun(x) can be added .to the non-

0=2(£n_8m)f dx<fm_n__mgn)_ (14) normallzable_z solut|_onvn(x) _W|thout changmg the b_|-

—o dx  dx orthonormality relation(17) since the Wronskian remains

preserved. As a result the diagonal matrix elemgptof the

In fact, the structure of _the relevan_t terms being the prOdUCEiensity operator in the energy representation can be deter-
of at least three normalizable solutions and at most one nonyined by the formula

normalizable solution leads to the supposed asymptotic be-
havior. The integral if{14) can be different from zero only in fe _d
the casee,=e¢, and one finds withfm(x)=u2m(x) and pnn:f dx P(X)d—[un(x)vn(x)]- (19
9n(X) = Un(Q)vn(X), - X

+

e d d whereP(x) is the time-averaged position distributi¢hl).
f dx( uﬁ‘d_x(u“v”)_(u”v“)d_x urzn> In conclusion, we have shown that the known structure of
‘°° the pattern functions used in the tomographic reconstruction
o d d of the photon statistics holds true also for the motion of a
:5an dx uﬁ(und—xvn—vnd—xun) particle in an arbitrary one-dimensional potential. Specifi-

cally, we proved that the occupation probabilities of energy
o eigenstates excited in a wave packet moving in an arbitrary
= SmnW(u, ,vn)J dx uﬁ (15 one-dimensional potential can be directly sampled from the
- time-averaged position distribution of the particle. The sam-
pling functions are the derivative of the product of the
Herein,W(u,,v,,) denotes the Wronskian usual eigenfunctions and the linearly independémbn-
normalizablé solutions of the Schidinger equation belong-

d d i i
W(un,vn)(x)=un(x)&vn(x)—vn(x)&un(x) ing to the same energy eigenvalue.

=W(up,v,)(Xo), (16) The authors thank U. Leonhardt, H. Paul, and M. G.

Raymer for valuable discussions and U. Leonhardt and

which is independent af for arbitrary solutionau,(x) and M. G. Raymer for communicating their results before publi-
vn(x) of the stationary Schabinger equatiori6) for the same  cation.
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