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We show that the occupation probabilities of the energy eigenstates excited in a wave packet moving in an
arbitrary one-dimensional potential can be determined directly from the time-averaged position distribution.
The sampling functions are the derivative of the product of the usual eigenfunctions and the linearly indepen-
dent~non-normalizable! solutions of the Schro¨dinger equation for the same energy eigenvalue. This is the same
structure as those for the harmonic-oscillator case.
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The ultimate goal of measurements in quantum mechanics
is the determination of the density operatorr̂ of a statistical
ensemble of systems previously produced by some reproduc-
ible means. A complete set of measurements should deter-
mine all the density-matrix elements. As early as 1933 Pauli
asked the question whether the Schro¨dinger wave function
could be uniquely determined from given probability distri-
butions of position and momentum if the quantum system
were known beforehand to be in a pure state@1,2#. It is now
well known that for any wave function of definite parity the
Pauli problem is not uniquely solvable@2#. Somewhat later
Feenberg@3# could show that for one-dimensional problems,
in principle, the wave functionc(x,t) can be reconstructed
from positional observations; that means from the position
distribution P(x,t)5uc(x,t)u2. Specifically he proved that
the values ofP(x,t0) and (]P/]t)(x,t0) at any given time
t0 uniquely determinec(x,t) itself apart from a trivial global
phase factor. But what can be said if the quantum state is a
mixed state described by the density operatorr̂, and even
more interesting, does there exist a constructive algorithm
for reconstructing the quantum state? This problem has at-
tracted much interest in recent years in quantum optics
@4–22#.

Following a proposal by Vogel and Risken@5#, Smithey
et al. @13# were the first to determine the density matrix of a
single-mode field from the reconstructed Wigner function,
which in turn was reconstructed from the measured quadra-
ture component distributions in balanced homodyne detec-
tion. A balanced homodyne detector@23# utilizes the interfer-
ence of the signal field and a strong local oscillator, which
has an adjustable phaseQ and measures the probability dis-
tributionsw(xQ ,Q) for the quadrature componentxQ of the
signal field, which are just marginal distributions of the cor-
responding Wigner function. One observes that the measured
quadrature component distributions are nothing else but the
time-dependent position distributions of the fictitious har-

monic oscillator associated with the quantized electromag-
netic field @see Eqs.~1,10!#. This experimental work stimu-
lated theoretical studies@14–21# to develop algorithms to
reconstruct the density-matrix elements directly from the
measured histograms of homodyne data. The quadrature
component distribution can be written in the form@19,21#

w~xQ ,Q!5(
mn

rmnhm~xQ!hn~xQ!ei~n2m!Q, ~1!

where hn(x) are the well-known energy eigenfunctions of
the harmonic oscillator in position representation described
by Hermite functions ~e.g., @26#! and rmn denotes the
density-matrix elements with respect to these eigenstates.
Clearly, the reconstruction of the density matrix in the Fock
basis from the measured quadrature component distributions
requires a set of pattern functionsFkl(xQ ,Q) that is bi-
orthonormal@19#
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dQ wmn~xQ ,Q!Fkl~xQ ,Q!5dkmd ln ~2!

to the set of functions

wmn~xQ ,Q!5hm~xQ!hn~xQ!ei~n2m!Q. ~3!

It turns out that the functionsFkl are just proportional to the
derivative of the product of~normalized! eigenfunctions with
a non-normalizable solution of the Schro¨dinger equation for
the harmonic oscillator@19,20#. If one is interested solely in
the photon statistics~diagonal density-matrix elements! the
knowledge of the phase-averaged quadrature component dis-
tributions alone is sufficient, as has been experimentally
demonstrated@18#.

In this paper we show that with respect to the diagonal
density-matrix elementsrnn all statements made for the har-
monic oscillator are perfectly true also for anharmonic one-
dimensional potentials if instead of the phase-averaged
quadrature component distributions time-averaged position
distributions are used@24#. One-dimensional problems are of
interest, not only as the quantization of a single-mode elec-
tromagnetic field relies on the one-dimensional harmonic po-
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tential, but also because, after some appropriate manipula-
tions, in a variety of problems one is led to equations of
motion that correspond to the one-dimensional Schro¨dinger
equation. As one example we mention the diatomic molecu-
lar vibrations@25#.

Let us consider the wave packet of a particle of massm
moving in a one-dimensional potentialV(x). The time evo-
lution of its wave function is governed by the Schro¨dinger
equation

i\
]

]t
c~x,t !5S 2

\2

2m

]2

]x2
1V~x! Dc~x,t !. ~4!

An arbitrary time-dependent~square-integrable! wave func-
tion can be expanded in terms of the stationary solutions

cn~x,t !5un~x!e2 ivnt, ~5!

where the functionsun(x) that can be chosen as real func-
tions @26# form an orthonormal set of energy eigenfunctions
of the time-independent Schro¨dinger equation

d2

dx2
un~x!5@U~x!2«n#un~x!, ~6!

belonging to the scaled energy eigenvalues«n
5(2m/\)vn . Here we have adopted the notationU(x)
5(2m/\2)V(x) for the scaled potential. We assume
throughout this paper that the potentialV(x) is asymptoti-
cally increasing on both sides faster than some positive pow-
ers of the modulus of the position that guarantees the pres-
ence of only a discrete spectrum of energy eigenvalues. From
a practical point of view it is also sufficient to suppose that
for arbitrary potentials only eigenstates of the discrete energy
spectrum are excited, so that we may consider these states as
a complete basis for our purposes. It is known that the energy
eigenvalues belonging to the discrete spectrum of the one-
dimensional Schro¨dinger equation are nondegenerate@26#.
Since the Schro¨dinger equation is a second-order differential
equation to each normalized eigenfunctionun(x) of the dis-
crete spectrum, there exists a second linearly independent
solution to the same eigenvalue, which is, however, non-
normalizable. The time-dependent solution of the Schro¨-
dinger equation~4! havingc(x,0)5(ncnun(x) as the initial
state at timet50 can be represented as a linear superposition
of the stationary states~5!

c~x,t !5(
n

cnun~x!e2 ivnt. ~7!

Clearly, the composite structure ofc(x,t) leads to quantum-
mechanical interference. Indeed, the probabilityP(x,t) that
the particle can be found at timet with positionx is given by

P~x,t !5uc~x,t !u25(
m,n

cmcn* um~x!un~x!ei~vn2vm!t. ~8!

Only the terms withm5n are time independent and the ex-
pansion coefficientucnu2 in front of them determines the
probability with which the energy eigenstateuun& is excited

in the wave packet~7!. In the case where the particle is in a
mixed state described by the density operatorr̂, formula ~8!
generalizes to

P~x,t !5(
m,n

rmnum~x!un~x!ei~vn2vm!t, ~9!

where rmn5^umuruun& are the density-matrix elements in
the energy eigenstate basis.

For the harmonic-oscillator potential to which the quanti-
zation of a single-mode electromagnetic field is reduced, we
havevn2vm5(n2m)v with v as the angular frequency of
the harmonic oscillator, and expression~9! simplifies to

P~x,t !5(
m,n

rmnum~x!un~x!ei~n2m!vt. ~10!

Translated into the language of quantum opticsP(x,t) is
nothing but the quadrature component distribution~1! of a
single-mode electromagnetic field. We just have to identify
vt in ~10! with the phaseQ of the strong local oscillator in
the balanced homodyne detection scheme and the eigenfunc-
tionsun(x) with hn(x). This is based on the fact that for the
harmonic-oscillator potential the position distributions of the
particle at timet may be obtained as marginal distribution
from the rotated Wigner function of the initial statec(x,0)
since the rotated coordinates just reflect the motion of the
harmonic oscillator.

Next we follow @18,24# and ask the analogous question:
What information can be obtained from the time-averaged
position distributions? If we average the position distribu-
tions ~9! over timesT large compared with the periods of all
difference frequencies occurring in the expansion~9!, we
immediately find the expression

P̄~x!5
1

TE0
T

dt P~x,t !5(
n

rnnun
2~x!

for T@ maxS 2p

uvn2vmu D , ~11!

which only depends on the diagonal density-matrix elements.
Note that there is a whole class of quantum states that leads
to just this form of~time-independent! position probability
distributions. These are the states that are described by a
statistical mixture~incoherent superposition! of the energy
eigenstates, so that the density matrix is purely diagonal.
Obviously, in this case all time dependence vanishes. Such
distributions are characteristic for particles in thermal equi-
librium or, for example, for incoherently excited vibrational
wave packets in molecules. But the same also holds true for
initially coherently excited wave packets after sufficiently
strong purely phase-destroying relaxation.

The reconstruction of the diagonal elements of the density
matrix from the time-averaged position distribution~11! re-
quires a set of functions that is biorthonormal to the func-
tions un

2(x). The aim of this Rapid Communication is to
show that the known structure of the pattern functions for the
determination of the diagonal elements of the density matrix
in the harmonic-oscillator case holds true for anharmonic
potentials as well. The proof is based on the fact that the
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product yn(x)5vn
(1)(x)vn

(2)(x) of two arbitrary solutions
vn
(1)(x) and vn

(2)(x) of the stationary Schro¨dinger equation
~6! for the same energy eigenvalue«n obeys the following
anti-self-adjoint ordinary differential equation of third order,

S d 3

dx3
24@U~x!2«n#

d

dx
22

dU~x!

dx D yn~x!50, ~12!

as can be easily verified. Now, by multplication of Eq.~12!
by f m(x)5um

2 (x), of the adjoint equation forf m(x) by
yn(x), and subtraction of this equation from the first, which
effectively leads here to an addition, we find

05
d

dx H f md 2yn
dx2

2
d fm
dx

dyn
dx

1
d 2f m
dx2

yn

24SU~x!2
«n1«m

2 D f mynJ
12~«n2«m!S f mdyndx

2
d fm
dx

ynD . ~13!

We now specialize in this equationyn(x)5gn(x)
5un(x)vn(x), where vn(x) is any solution of the Schro¨-
dinger equation~6!. In particular, vn(x) can be a second
linearly independent solution to the nondegenerate eigen-
value«n , which is therefore a non-normalizable one. Then,
integrating over allx and assuming that the asymptotic be-
havior of the involved functionsyn(x) ensures that the
boundary values vanish, we get

052~«n2«m!E
2`

1`

dxS f mdgndx
2
d fm
dx

gnD . ~14!

In fact, the structure of the relevant terms being the product
of at least three normalizable solutions and at most one non-
normalizable solution leads to the supposed asymptotic be-
havior. The integral in~14! can be different from zero only in
the case«m5«n and one finds withf m(x)5um

2 (x) and
gn(x)5un(x)vn(x),

E
2`

1`

dxS um2 d

dx
~unvn!2~unvn!

d

dx
um
2 D

5dmnE
2`

1`

dx un
2S un ddxvn2vn

d

dx
unD

5dmnW~un ,vn!E
2`

1`

dx un
2 . ~15!

Herein,W(un ,vn) denotes the Wronskian

W~un,vn!~x!5un~x!
d

dx
vn~x!2vn~x!

d

dx
un~x!

5W~un,vn!~x0!, ~16!

which is independent ofx for arbitrary solutionsun(x) and
vn(x) of the stationary Schro¨dinger equation~6! for the same

energy eigenvalue«n ~see, e.g.,@26#! and depends only on
the solutions involved. From~15! it follows by partial inte-
gration and by using the presupposed normalization of the
eigenfunctionsun(x)

E
2`

1`

dx um
2 d

dx
~unvn!5

1

2
W~un ,vn!dmn

S E
2`

1`

dx un
251D . ~17!

The WronskianW(un ,vn) is vanishing if the two solutions
un(x) and vn(x) are linearly dependent and is nonvanish-
ing if they are linearly independent. Therefore, to get
the biorthonormality of the functions um

2 (x) and
(d/dx)@un(x)vn(x)# in ~17!, the function vn(x) must be
chosen as a solution of the Schro¨dinger equation~6! that is
linearly independent of the normalized solutionun(x) with a
proportionality factor such that the Wronskian in Eq.~17!
becomes equal to 2, i.e.,

E
2`

1`

dx um
2 d

dx
~unvn!5dmn

SW~un ,vn!52, E
2`

1`

dx un
251 D . ~18!

Thus vn(x) is a non-normalizable solution of the Schro¨-
dinger equation~6!. Obviously, an arbitrary multiple of the
normalized solutionun(x) can be added to the non-
normalizable solutionvn(x) without changing the bi-
orthonormality relation~17! since the Wronskian remains
preserved. As a result the diagonal matrix elementrnn of the
density operator in the energy representation can be deter-
mined by the formula

rnn5E
2`

1`

dx P̄~x!
d

dx
@un~x!vn~x!#, ~19!

whereP̄(x) is the time-averaged position distribution~11!.
In conclusion, we have shown that the known structure of

the pattern functions used in the tomographic reconstruction
of the photon statistics holds true also for the motion of a
particle in an arbitrary one-dimensional potential. Specifi-
cally, we proved that the occupation probabilities of energy
eigenstates excited in a wave packet moving in an arbitrary
one-dimensional potential can be directly sampled from the
time-averaged position distribution of the particle. The sam-
pling functions are the derivative of the product of the
usual eigenfunctions and the linearly independent~non-
normalizable! solutions of the Schro¨dinger equation belong-
ing to the same energy eigenvalue.
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