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We analyze the three-dimensional dynamic expansion of a weakly interacting Bose-Einstein condensate in a
harmonic trap when the spring constants of the confining potential are instantaneously reduced. Our results are
compared with experimental observations from a condensate of87Rb atoms.

PACS number~s!: 03.75.Fi

The recent demonstrations of Bose-Einstein condensation
in magnetic alkali-metal vapor traps using rubidium@1#,
lithium @2#, and sodium@3# are a result of the tremendous
progress in magnetic and optical techniques for trapping and
cooling neutral atoms over the last few years@4,5#. One rea-
son that the observation of a condensate is a significant
achievement in atomic physics is that it is one of the most
interesting demonstrations of the wave nature of matter.
Once a weakly interacting condensate is formed in a finite
system, any dissipation, including background loss pro-
cesses, will induce a symmetry breaking for the many-
particle ground-state wave function and generate a well-
defined phase for the condensate that diffuses slowly over
time @6#. This is analogous to the coherence property of the
laser in which photons are stimulated into a resonant mode
of a cavity. The ability to evaporatively cool an atomic vapor
into the regime of significant quantum degeneracy leads to
the possibility for a number of new kinds of experiments
designed to probe novel light scattering and atomic interfer-
ence effects@7#. In order to model the condensate evolution,
it is usually necessary to consider not only the quantum sta-
tistics, but also ground-state collisions that introduce an in-
trinsic nonlinearity into the dynamics. Photons do not usually
interact directly so that this is one difference between a
Bose-Einstein condensate and an optical laser. In addition the
condensate energies are resonant in all three dimensions of
the confining potential.

In the recent experiment, the spatial extent of the conden-
sate arose from the interplay between two potentials. A mag-
netic trap was used to generate a time-averaged harmonic
confining potential with equal spring constants in the two
dimensions defining the horizontal plane, and a spring con-
stant that was approximately eight times larger in the vertical
direction. A second effective potential was formed from the
intrinsic self-interaction due to ground-state collisions. This
interaction energy is proportional to the local average density
of the condensate wave function since the ground-state scat-
tering length for the isotope of rubidium used is very much
less than the characteristic de Broglie wavelength for the
center-of-mass motion of the atom at the trap temperature.
This allows a shape-independent approximation to be made
for the interaction between ground-state atoms@6#. The
steady-state wave function is then self-consistent and an it-
erative method can usually be used to find its form.

A procedure for deriving this self-consistent ground state
in the case of one dimension and in the isotropic three-
dimensional situation has been previously demonstrated us-

ing a time-dependent solution of the nonlinear Schro¨dinger
equation@8#. In this calculation, the wave function was ini-
tialized to the ground state of the harmonic potential and the
nonlinearity increased adiabatically. Although the experi-
mental configuration in which condensation was observed is
neither one dimensional nor isotropic, this approach may be
extended to two dimensions to describe the expansion phase
of the experiment by taking advantage of the rotational sym-
metry about the vertical axis. The light scattering properties
of the condensate are predicted to be a sensitive function of
the atomic density and so there is considerable motivation
for determining the condensate number. The trap was opened
by reducing the spring constants in all three dimensions be-
fore the probe field was introduced in order to reduce the
density and increase the size of the cloud. The initial expan-
sion rate would have depended on the number of atoms in
the original condensate because of the self-consistent field.
Modeling the ballistic expansion allows us to calculate this
effect. It is also interesting to evaluate the relative size of the
collisional nonlinearity from the experimental parameters
since the interactions may strongly influence the spatial and
temporal correlation functions for the condensate amplitude
and therefore the diffusion of the macroscopic phase.

The evolution of the condensate wave functionc(r,t)
may be described by the nonlinear Schro¨dinger equation
known as the Ginzburg-Pitaevskii-Gross equation@9#
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where r5(x,y,z) is the displacement from the trap center
andm is the mass. The harmonic potential may be written as

V(r)5 1
2mv2(x21y21ez2) wheree is the ratio of the verti-

cal (z direction! and horizontal spring constants. The nonlin-
earity is proportional to both the number of atomsN and to
U054p\2a/m, which characterizes the interaction and is
defined in terms of the ground-state scattering lengtha. Us-
ing the circular cylinder coordinate system (r ,u,z) with
x5rcosu andy5rsinu we take the case in which the wave
function is invariant with respect to changes inu. The spatial
scale for the ground state of the trap in the horizontal plane is
l5A\/(2mv), so we may scale the coordinatesr5r / l and
z5z/ l and rewrite Eq.~1! in the dimensionless form
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wheret5vt is the time anda5a/ l is the scattering length.
This form is suitable for integration using an appropriate
numerical method. The wave function w(r,z)
5 lAlrc(r,z) must be normalized at all times by satisfying
the condition

2pE uw~r,z!u2drdz51, ~3!

since Eq.~2! contains a nonlinear term.
For small numbers of atoms, the self-consistent wave

function may be found by inserting a time-dependent prefac-
tor f (t)5@12cos(pt/tr)#/2 in front of the term containing
N and choosing the ramp timet r to be long compared to the
oscillation time of the ground state of the trap. At the start of
the calculation, the wave function should be initialized to the
ground energy eigenstate for the bare harmonic oscillator,

w~r,z!5SAer2

8p2 D 1/4e2~r21Aez2!/4. ~4!

An alternative method suitable for larger numbers of atoms
is to insert f (t) in front of the terms]2/]2r, ]2/]2z, and
1/r2 in Eq. ~2!. This corresponds to increasing the kinetic
energy contribution adiabatically. The appropriate initial
wave function is then the energy eigenstate derived from
considering the time-independent equation with only the har-
monic potential and self-interaction terms@10#
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This leads to the initial wave function

w~r,z!5S r„m2 1
4 ~r21ez2!…

8pNa
D 1/2 ~6!

where

m5S 158 AeNa D 2/5 ~7!

is found from Eq.~3!. The number of condensate atoms we
have to consider in order to model the experiment turns out
to be in the intermediate regime where both methods can be
applied independently to provide a consistency check.

In order to expand the trap for probing, a nonadiabatic
change in the spring constants of the harmonic potentials was
made in the experiment. The resulting cloud increased in size
and rapidly reached the region where the phase-space density
decreased below the critical value required for the presence
of a condensate. Evidence that a condensate had been created
in the original trap was inferred from the size and shape of
the expanded cloud. In order to compare with the experimen-
tal result, the initial evolution from the self-consistent wave

function may be simulated by abruptly decreasing the oscil-
lation frequencies inV(r). The resulting cloud will then ex-
pand due to both the change in the confining force as well as
the repulsive self-interaction.

The Ginzburg-Pitaevskii-Gross equation for the mean
field can only be used when particle fluctuations do not sig-
nificantly affect the macroscopic dynamics. The effect of
fluctuations at zero temperature can be characterized by the
populations of the fundamental excitations about the mean-
field solution that scale with the parameterna3 wheren is
the atomic density@11#. Although in the case of liquid helium
this parameter may approach unity, in the magnetic trapping
of a dilute vapor it is typically small and for our situation is
of order 1025. Fluctuations can therefore be neglected in the
establishment of the condensate density distribution. Alterna-
tive arguments based on a cluster expansion and the small-
ness of the collision frequency relative to frequencies asso-
ciated with the mean field and the trap give comparable
results. The same applies to the expansion phase when the
trapping potential is reduced, since in this case the density
decreases rapidly and the dynamics are dominated by free-
particle trajectories. The temperature of the cloud we analyze
prior to expansion is very close to zero and much less than
the critical temperature at which the condensate starts to
form since the noncondensed part has been mostly evapo-
rated away. We are therefore not concerned with critical fluc-
tuations at the phase transition temperature@11#. The conden-
sate fraction is near unity and dissipation, arising from
collisions with above condensate atoms, is strongly sup-
pressed. The validity of the expansion model is limited to the
initial transient regime where it is applied since dissipation in
the expanded trap is not included. Eventually the cloud will
thermalize in the new potential, but this occurs on a long
time scale~set by the time between collisions in the very low
density cloud and inelastic collisions with the background
gas!.

The spatial distribution in the (x,z) plane was recorded
after a time corresponding to approximately a quarter cycle
of the oscillation in the horizontal dimension of the expanded
trap. The absorption of a weak probe pulse propagating in
they direction was observed through a telescope with a cam-
era. The camera pixel resolution corresponded to approxi-
mately 4.2mm in the original cloud. We model the detection
process by integrating the wave-function density we calcu-
late through they direction,

F ~x,z!5E
2`

`

dyuc~x,y,z!u2. ~8!

The distributionF (x,z) can be compared with the camera
image in which each pixel is a measure of the integrated

TABLE I. Values of the model parameters.

Original trap Expanded trap

e 8 0.25
v 51 s21 26 s21

l 2.7mm 3.7mm
N 2000 2000
a 5.2 nm 5.2 nm
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column density through the atomic cloud. The experimental
parameters that enter into the model are indicated in Table I.
The number of atoms is estimated from the optical density
associated with the amount of probe absorption. The ground-
state scattering length for spin-polarized87Rb atoms has re-
cently been measured and is believed to be accurate to
615% @12#.

In Fig. 1, we illustrate the application of the two methods
for deriving the self-consistent wave function. The wave
function may be initialized to the distribution given in Eq.
~4! as illustrated in Fig. 1~a! and the nonlinear term adiabati-
cally increased to produce the wave function shown in Fig.
1~c!. Alternatively, we may initialize the wave function to the
distribution given in Eq.~5! as shown in Fig. 1~b! and in-
crease the kinetic energy terms. This produces the same
wave function given in Fig. 1~c! to good numerical agree-
ment. From this result it is evident that the kinetic energy
terms, harmonic potential terms, and the self-interaction po-
tential, are all important in establishing the self-consistent
wave function for these parameters. Tests of the numerical
method are provided by checking that the final distribution is
not sensitive to the grid spacing on which the wave function
is stored, to the time step used for the integration, or to the
adiabatic ramp time. The number of grid points was
2563512 with equal grid spacing in the two dimensions, and
40 000 equal time steps were taken giving a computation
time of a few hours on a workstation. The propagation algo-
rithm used was the Crank-Nicholson differencing method in
which an alternating direction implicit algorithm was used to

switch between the two dimensions@13#. In all of the contour
diagrams in this paper, we have drawn 20 equally spaced
contours from the minimum up to the maximum value.

In Fig. 2 we show the result of evolving the wave function
in Fig. 1~c! for a timet53.07 corresponding to 60 ms in the
expanded trap. The numerical result may be compared with
the experimentally observed condensate distribution shown
in Fig. 3. The evaporative cooling process in this case was
continued to the point at which the cloud contained almost
no isotropic thermal component and was almost purely con-
densate atoms. The spring constants were then reduced to the
same values used in the simulation and the image recorded
after the same expansion time.

The comparison between the wave function derived from
the nonlinear Schro¨dinger equation and the experimental re-
sult shows a number of notable features. The aspect ratio
found by dividing the width of the density distribution in the
x direction by that in thez direction is almost the same in
both cases. This ratio is a property of the ground state of the
quantized harmonic oscillator perturbed by the self-field and
provides good evidence that the observed cloud evolved
from a condensate. In contrast, the thermal component which
was recorded in other images@1,14# gives a density feature at
larger distances that is circular. The overall spatial extent of
the expanded wave function for 2000 atoms is also consistent
with the observed condensate. In Table II we indicate the full
widths at half maximum in the two dimensions calculated for
different numbers of condensate atoms. The zero atom simu-
lation corresponds to the limit in which the mean field can be
neglected. The tighter confinement in the vertical direction of
the original trap corresponds to a higher zero point energy in
that direction. Consequently, the ground state contains a
range of momentum components that is larger vertically than
horizontally. This translates to an increased vertical spread-

FIG. 1. The two ways of deriving the self-consistent wave func-
tion.

FIG. 2. The evolved density distributionF (x,z) found by
evaluating the self-consistent wave function for 2000 atoms,
abruptly reducing the spring constants for the harmonic potential,
and expanding for 60 ms.

FIG. 3. The experimental image of the rubidium condensate
observed on the camera after an expansion time of 60 ms.

TABLE II. Full width at half maximum for the experimental
results and simulated data showing the dependence of the expansion
on the condensate number. The experimental widths have an uncer-
tainty of order 3mm.

Dz (mm! Dx (mm!

Experiment 36 15
0 atom simulation 29.3 12.3
1000 atom simulation 35.6 12.6
2000 atom simulation 38.4 13.1
3000 atom simulation 40.4 13.6
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ing in the evolved density distribution even in the absence of
particle interactions. However, the aspect ratio for the calcu-
lation omitting the mean field is less than that observed in the
experiment. The effect of the mean field on establishing the
self-consistent ground state can clearly be seen even for this
relatively small condensate.

The spatial and temporal diffusion properties of the con-
densate phase are dependent on the strength of the interac-
tion between condensate atoms. For 2000 rubidium atoms,
our model gives the maximum of the interaction energy at
the peak density to be only 20% larger than the zero-point
energy for the harmonic confining potential. This result is
significant because it indicates that it may be possible to
access different kinds of parameter regimes from the stan-
dard trap geometries. Adiabatically expanding the trap by
reducing the spring constants would lead to a regime in
which the spatial coherence of the condensate is determined

almost entirely by the ground-state size. This linear regime is
required for proposals for an atom laser designed to generate
a coherent beam of atoms in analogy with the normal laser
for photons@15#. Alternatively, by ramping up the trap, as
was actually done in the experiment, the effect of the non-
linearity can be increased until the spatial coherence of the
condensate is determined primarily by collisions. The situa-
tion is then much closer to that of an infinite homogeneous
system since the confining potential may play an important
role only at the boundaries.
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