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Collisional two- and three-body decay rates of dilute quantum gases at ultralow temperatures

A. J. Moerdijk and B. J. Verhaar
Eindhoven University of Technology, Box 513, 5600 MB Eindhoven, The Netherlands
(Received 28 July 1995

In view of recent successful evaporative cooling experiments reaching temperatures in the nK range, we
discuss ground-state two-body inelastic and three-body decay rates of dilute cold atomic gas samples at
ultralow temperatures. We present theoretical low-temperature two-body decay rates in alkali-atom systems
using recently obtained information on two-body potentials. The rates show an oscillating structure as a
function of temperature and magnetic field which can be understood in terms of the interference of initial and
final radial waves.

PACS numbels): 32.80.Pj,42.50.Vk

The recent breakthrougkL] in the ongoing attempts to rates go to zero fof — 0. In this connection it is of interest
realize the Bose-Einstein condensed phase in a dilute quate point to an important difference of three-dimensiof3db)
tum gas by evaporative coolirigee also Ref§2—4]) makes quantum reflection with that of ultracold atoms against a
it increasingly important to predict the rates of the two-bodysuperfluid helium film, which is essentially a 1D scattering
inelastic and three-body collisional decay mechanisms of thehenomenon. Although thewave radial Schidinger equa-
gas density in thel—0 temperature limit, since these are tion in 3D has the same fundamental form as the 1D Schro
expected to control primarily the lifetime of the condensatedinger equation, the quantum reflection phenomenon is dif-
Some recent work addresses this quesitif]. In this paper ferent in 3D and 1D. This can be illustrated most easily by
we present some results for two-body inelastic collisionalcomparing the scattering of a wave with a long wavelength
rates forT— 0, calculated by a rigorous quantum-mechanicaland an amplitude of 1 by a hard object in 1D and 3D. In 1D
approach and using recently obtained information on twothe destructive interference of the reflected wave with the
body potentials. A discussion is also devoted to three-bodyncoming one strongly reduces the total wave amplitude with
decay in this limit. respect to 1 within a distance of the order of the wavelength.
Let us first discuss the inelastic decay rate due to twoin 3D the scattered wave spreads out isotropically, so that the
body exchange collisions. As an example we consider thstrong destructive interference extends only over a small
transitions fraction of a wavelength. Quantitatively this follows for gen-
eral potentials from the expression Kf)sink(r—a) for the
(1,-1)+(2,+1)—(1,-1)+(1,+1) total wave function in the region just outside the scatterer,
which goes to the finite value-1a/r for k—0, whereas the
—(1,00+(1,0) (1) total wave in 1D will behave like skfz—a), going to zero as
k (z—a).
due to exchange collisions in eithéri, 2Na, or 8’Rb, using Next we turn to the process of relaxation of the doubly
the notation f,m;) for single-atom hyperfine states. The polarized atomic states due to the magnetic dipolar spin-spin
processe$l) may be of importance as a loss mechanism ininteraction. The rate constant for this process is given by
gravitational Sisyphus cooling7,8]: they are exothermal
and, moreover, the final (1, 0) and (d1) states are high-

field seeking. Figure 1 shows the energy dependence of the 109 1,0+(1,0)

rate constants of process€l before thermal averaging at 10-12 an+«a,-y
zero magnetic field, calculated by means of the quantum- _ /
mechanical coupled-channels method using the triplet and =~ 1014 /
singlet Na-Na potentials of Reff9,10]. Note that the rates g //

go to a finite limit for the collision energf in the entrance ",’T 10416 v
channel going to 0. This is in agreement with Wigner's 1,0+, 7
threshold law[11]. Previously,(finite) values for the same 10-18 /,/ (1,1)+(1,-1)
T=0 relaxation rates were obtained by our group in the case /

of spin-polarized hydrogefl2,13. If one would apply the 1020 I T O /A S R T
semiclassical approximation, expected to be valid at higher 213 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
energy[14], to describe the radial motion at ultralow colli-

sion energies in the initial channel, one would obtain a rate log,, E (K)

going to infinity asE ~ 2 (see also Fig. 3 belowThis is also

the conclusion of Ref[5]. Note that the quantum suppres-  F|G. 1. Exchanges-wave (upper curves and d-wave (lower
sion effect indicated in that paper is a relative suppression ofurveg relaxation rates G; ,; for the processes (2,
the rigorous quantum rates compared to semiclassical values.1)+(1,—1)—(1,+1)+(1,—1) and (2:+1)+(1,—1)—(1,0)
It is not an absolute suppression in the sense that quantum(1,0) in Na as a function of energy in the initial channel.
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FIG. 2. Dipolar relaxation rate€, . for the doubly polarized FIG. 3. Dipolar relaxation rat&z 1 2)+ (2,+2)-(2,+ 1)+ (2,+2) for
(2,+2) Na gas foB= 1 mT as a function of energy. The symbols B=1 mT calculated with sem_lclassmal approxlmat(dashed ling
(fl’mf1)+(f27mf2) denote the final collision channel. and with a quantum-mechanlcal CalCUlatmlld |Ine).

mmk; A I and expanding the radial integral in powerskofk; [15]:
Gi_i=—=——3| dk¢Ts(ks,k)|?, 2
i—f (Zﬁﬁ)sf f| fl( f |)| ( ) )
! ( TN ) )
. - - e . r20:— - R I

with k; andk; the initial and final wave vectors. In ER) 3 Efz
the normalization of th&-matrix element is taken to be such _
that its lowest-order form in terms of the interatomic inter- which leads to
action is

Gi_,f(B,T)N\/AG(B)

1 8

9kgT }

Tﬁ(lzf,l?i)=J (ekr-Ty* vk Tl 3 4M€(B)

In Fig. 3 we compare the quantum-mechanical dipolar rate of

Fig. 2 for the specific proceg$) with that in the semiclas-

sical approximation, i.e., using radial WKB wave functions.

o o o Clearly, at ultralow energies the semiclassical rate goes to
Tr(Ks ,ki)=f uf (k¢ ,r)Vau; (ki ,r)dr, (4)  infinity as E~*2, overestimating the quantum rate by more

than two orders of magnitude at 1 mK and more than three at
whereu; andu; are distorted waves. In EqE3) and (4) we 1 pK. . ]
have suppressed the spin degrees of freedom in the notation. In Fig. 4 the relaxation rates for zero temperature as a

Treating the weak dipolar interactioff' to first order and the
central(singlet-triple} potential to infinite order, we have

Now consider as an example the transition function of magnetic field are shown, calculated by the full
coupled-channels method. In agreement wWh processes
(2,+2)+(2,+2)—(2,+2)+(2,+1) (5)  for which the exothermal energe(B) goes to 0 for

_ ] ) B—0 have a negligible phase-space available for decay, so
at a fieldB+0. In this case botly; andus are pure triplet  that their rate goes to [bee, also, Eq(2)]. The oscillations
waves withl;=0 andl{=2. For smallk;, k; remains finitt  in some of the channels are again due to the interference of
andu;(k; ,r) goes to an isotropic function in the radial range initial and final radial wave functions, as described previ-
where the dipolar transition takes place and is given by theusly in Eq.(6). The exactB-field locations of the oscilla-
above function (14r)sink(r—a)~1—alr. As a consequence, tions in the coupled-channel results can be reproduced by
T andG;_ ¢ go to a finite constant, again in agreement withtaking triplet distorted waves in the radial integra, i.e.,
Wigner’s threshold law11] and Ref[5]. the oscillations depend on the specific properties of the trip-

The rate of the proced$) for Na is presented in Fig. 2, let potential. In Fig. 5 we give the same field-dependent di-
together with those of all other possible final channels. Atpolar rates for’Li. A comparison of the present rates for Na,
higher collision energiesl-wave and higher partial-wave calculated with the recently obtained potentials and accumu-
contributions would have to be added as in Fig. 1, but wdated radial phasf9,10], with results in an earlier publication
leave them out since they are not relevant for the ultralowW17] shows that the dominant rates differ by less than one
temperatures under consideration. The oscillating behaviasrder of magnitude. Understandably, the weaker transitions
that is seen in Fig. 2 for some of the final channels is analoare more sensitive to potentials.
gous to that for atomic hydrogdi5,16 and is most easily We now turn to three-body recombination. The possibility
understood by approximating the distorted waves by planghat the rate for this process might show a suppression phe-
waves, nomenon, as a consequence of which it would vanish for

L T—0, has been considered recerjhy. This result would be
A L. inconsistent with the results of the work in our group on
Tilky ki) rzo_f Jakir) Fio(kir)dr, © spin-polarized atomic hydrogen several years g, in



53 COLLISIONAL TWO- AND THREE-BODY DECAY RATES OF ... R21

B (T) B (T)
102 1o 10% 107 10+
: ALD+LD LD+1,D)
104 (LD+22) 104
A,D+2,2)
- - a1+
< )
B 10" .E 10-16 A,1)+(2,1)
2 &)
< ‘,,’T_ @+,
4 <)
10-19 10-18 (1,0)+(2,2)
2042,2)
10.21 1 | T 10‘20 L
1 10 1 10
1+B/B, 1+B/B,
FIG. 4. Zero-temperature dipolar relaxation ra@s. ¢ for the FIG. 5. Zero-temperature dipolar relaxation ra@s.; for the

doubly polarized(2,+2) Na gas as a function of magnetic field. doubly polarized(2,+2) “Li gas as a function of magnetic field.
Horizontally the quantity & B/B with Bo=a/fiy, = 0.0316 Tis  Horizontally the quantity & B/B, with By=a/# y,=0.0143 T is
plotted logarithmically. The symbolsf{,m; )+(f,,m¢) denote  piotted logarithmically. The symbolsf{,m; )+ (f,,m;) denote
the final collision channel. the final collision channel.

which the zero-energy limit of the three-body collisional ositive 6D centrifugal term 1548p2 occurring in the 6D
wave function was calculated for three doubly spin-polarizeq, jiq| wave equation for the lowest hyperspherical partial
hydrogen atoms by solving the Faddeev equations rigorously,.\ .« |t should be noted, however, that in the low-energy
for E=0. The resulting wave function has finite values for proximation the free wave? is again isotropic and equal
the three atoms at relative distances, where it should vani 83,(kp)/(xp)? (see also tr;e plane-wave expansion in any

according to the prediction of Reff6]. To discuss the low- dimension in hyperspherical coordinates in R@]). For

Egg;ggigg}gﬁtezirfgiézgfﬁéﬁe constant expression forthree';_>0 this function tends to 1 as it should. However, the

solution of the 6D radial wave equation, which is normalized
armkg - o as a sine function at infinity, is equal dg(xp) (xp/2)*2, and
LHFWJ dk| Ts(vimke  kiKi)|%, (9)  this indeed tends to 0 in the limit— 0 for fixed finite p.

In summary, we have presented predictions for low-
analogous to Eq2) with vIm the quantum numbers of the €mperature two-body decay rates in alkali-atom systems us-
final diatom rovibrational statdEf the final relative atom- M9 recently _obtalned mformauon on two-body elastic .COH."

_ . . . sion properties. The dipolar decay rates show an oscillating
diatom wave vector, ank;,K; the initial Jacobi wave vec- girycture as a function of temperature and magnetic field,

tors. To first order iV, Ty; is given by an integral, which find their origin in the relative displacements of the
oscillation patterns in thg =0 initial and|;=2 final radial
Tfizf u¥ (vimks ,p)Vau;(x,p)d%p (100 wave functions with varyind; (or k; andk;). Finally we
also discussed the behavior of the three-body recombination

in 6D configuration space. The plane-wave parts of ihe rate in the zero-energy limit

andu; functions are normalized as exponential plane waves. This work is part of a research program of the Stichting
In particular, as'** for u; with « the 6D initial wave vec- voor Fundamenteel Onderzoek der Materie, which is finan-
tor. Referencé6] points out that the suppression of the initial cially supported by the Nederlandse Organisatie voor Weten-
wave would take place already in the free case because of tteehappelijk Onderzoek.
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