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In view of recent successful evaporative cooling experiments reaching temperatures in the nK range, we
discuss ground-state two-body inelastic and three-body decay rates of dilute cold atomic gas samples at
ultralow temperatures. We present theoretical low-temperature two-body decay rates in alkali-atom systems
using recently obtained information on two-body potentials. The rates show an oscillating structure as a
function of temperature and magnetic field which can be understood in terms of the interference of initial and
final radial waves.

PACS number~s!: 32.80.Pj,42.50.Vk

The recent breakthrough@1# in the ongoing attempts to
realize the Bose-Einstein condensed phase in a dilute quan-
tum gas by evaporative cooling~see also Refs.@2–4#! makes
it increasingly important to predict the rates of the two-body
inelastic and three-body collisional decay mechanisms of the
gas density in theT→0 temperature limit, since these are
expected to control primarily the lifetime of the condensate.
Some recent work addresses this question@5,6#. In this paper
we present some results for two-body inelastic collisional
rates forT→0, calculated by a rigorous quantum-mechanical
approach and using recently obtained information on two-
body potentials. A discussion is also devoted to three-body
decay in this limit.

Let us first discuss the inelastic decay rate due to two-
body exchange collisions. As an example we consider the
transitions

~1,21!1~2,11!→~1,21!1~1,11!

→~1,0!1~1,0! ~1!

due to exchange collisions in either7Li, 23Na, or 87Rb, using
the notation (f ,mf) for single-atom hyperfine states. The
processes~1! may be of importance as a loss mechanism in
gravitational Sisyphus cooling@7,8#: they are exothermal
and, moreover, the final (1, 0) and (1,11) states are high-
field seeking. Figure 1 shows the energy dependence of the
rate constants of processes~1! before thermal averaging at
zero magnetic field, calculated by means of the quantum-
mechanical coupled-channels method using the triplet and
singlet Na-Na potentials of Refs.@9,10#. Note that the rates
go to a finite limit for the collision energyE in the entrance
channel going to 0. This is in agreement with Wigner’s
threshold law@11#. Previously,~finite! values for the same
T50 relaxation rates were obtained by our group in the case
of spin-polarized hydrogen@12,13#. If one would apply the
semiclassical approximation, expected to be valid at higher
energy@14#, to describe the radial motion at ultralow colli-
sion energies in the initial channel, one would obtain a rate
going to infinity asE21/2 ~see also Fig. 3 below!. This is also
the conclusion of Ref.@5#. Note that the quantum suppres-
sion effect indicated in that paper is a relative suppression of
the rigorous quantum rates compared to semiclassical values.
It is not an absolute suppression in the sense that quantum

rates go to zero forT→0. In this connection it is of interest
to point to an important difference of three-dimensional~3D!
quantum reflection with that of ultracold atoms against a
superfluid helium film, which is essentially a 1D scattering
phenomenon. Although thes-wave radial Schro¨dinger equa-
tion in 3D has the same fundamental form as the 1D Schro¨-
dinger equation, the quantum reflection phenomenon is dif-
ferent in 3D and 1D. This can be illustrated most easily by
comparing the scattering of a wave with a long wavelength
and an amplitude of 1 by a hard object in 1D and 3D. In 1D
the destructive interference of the reflected wave with the
incoming one strongly reduces the total wave amplitude with
respect to 1 within a distance of the order of the wavelength.
In 3D the scattered wave spreads out isotropically, so that the
strong destructive interference extends only over a small
fraction of a wavelength. Quantitatively this follows for gen-
eral potentials from the expression (1/kr)sink(r2a) for the
total wave function in the region just outside the scatterer,
which goes to the finite value 12a/r for k→0, whereas the
total wave in 1D will behave like sink(z2a), going to zero as
k (z2a).

Next we turn to the process of relaxation of the doubly
polarized atomic states due to the magnetic dipolar spin-spin
interaction. The rate constant for this process is given by

FIG. 1. Exchanges-wave ~upper curves! and d-wave ~lower
curves! relaxation rates Gi→ f for the processes (2,
11)1(1,21)→(1,11)1(1,21) and (2,11)1(1,21)→(1,0)
1(1,0) in Na as a function of energy in the initial channel.
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Gi→ f5
pmkf

~2p\!3
E dk̂f uTfi~kW f ,kW i !u2, ~2!

with kW i andkW f the initial and final wave vectors. In Eq.~2!
the normalization of theT-matrix element is taken to be such
that its lowest-order form in terms of the interatomic inter-
action is

Tfi
0~kW f ,kW i !5E ~eik

W
f•r

W
!*Veik

W
i•r

W
d3r . ~3!

Treating the weak dipolar interactionVd to first order and the
central~singlet-triplet! potential to infinite order, we have

Tfi~kW f ,kW i !5E uf* ~kW f ,rW !Vdui~kW i ,rW !d3r , ~4!

whereui anduf are distorted waves. In Eqs.~3! and ~4! we
have suppressed the spin degrees of freedom in the notation.
Now consider as an example the transition

~2,12!1~2,12!→~2,12!1~2,11! ~5!

at a fieldBÞ0. In this case bothui anduf are pure triplet
waves withl i50 and l f52. For smallki , kf remains finite
andui(kW i ,rW) goes to an isotropic function in the radial range
where the dipolar transition takes place and is given by the
above function (1/kr)sink(r2a)'12a/r. As a consequence,
Tfi andGi→ f go to a finite constant, again in agreement with
Wigner’s threshold law@11# and Ref.@5#.

The rate of the process~5! for Na is presented in Fig. 2,
together with those of all other possible final channels. At
higher collision energiesd-wave and higher partial-wave
contributions would have to be added as in Fig. 1, but we
leave them out since they are not relevant for the ultralow
temperatures under consideration. The oscillating behavior
that is seen in Fig. 2 for some of the final channels is analo-
gous to that for atomic hydrogen@15,16# and is most easily
understood by approximating the distorted waves by plane
waves,

Tfi~kW f ,kW i !;r 205E j 2~kfr !
1

r
j 0~kir !dr, ~6!

and expanding the radial integral in powers ofki /kf @15#:

r 205
1

3 S 12
ki
2

kf
2 1 ••• D , ~7!

which leads to

Gi→ f~B,T!;ADe~B!F12
9kBT

4De~B!
1 ••• G . ~8!

In Fig. 3 we compare the quantum-mechanical dipolar rate of
Fig. 2 for the specific process~5! with that in the semiclas-
sical approximation, i.e., using radial WKB wave functions.
Clearly, at ultralow energies the semiclassical rate goes to
infinity as E21/2, overestimating the quantum rate by more
than two orders of magnitude at 1 mK and more than three at
1 mK.

In Fig. 4 the relaxation rates for zero temperature as a
function of magnetic field are shown, calculated by the full
coupled-channels method. In agreement with~2! processes
for which the exothermal energyDe(B) goes to 0 for
B→0 have a negligible phase-space available for decay, so
that their rate goes to 0@see, also, Eq.~2!#. The oscillations
in some of the channels are again due to the interference of
initial and final radial wave functions, as described previ-
ously in Eq.~6!. The exactB-field locations of the oscilla-
tions in the coupled-channel results can be reproduced by
taking triplet distorted waves in the radial integralr 20, i.e.,
the oscillations depend on the specific properties of the trip-
let potential. In Fig. 5 we give the same field-dependent di-
polar rates for7Li. A comparison of the present rates for Na,
calculated with the recently obtained potentials and accumu-
lated radial phase@9,10#, with results in an earlier publication
@17# shows that the dominant rates differ by less than one
order of magnitude. Understandably, the weaker transitions
are more sensitive to potentials.

We now turn to three-body recombination. The possibility
that the rate for this process might show a suppression phe-
nomenon, as a consequence of which it would vanish for
T→0, has been considered recently@6#. This result would be
inconsistent with the results of the work in our group on
spin-polarized atomic hydrogen several years ago@18#, in

FIG. 2. Dipolar relaxation ratesGi→ f for the doubly polarized
(2,12) Na gas forB5 1 mT as a function of energy. The symbols
( f 1,mf 1

)1( f 2 ,mf 2
) denote the final collision channel.

FIG. 3. Dipolar relaxation rateG(2,12)1(2,12)→(2,11)1(2,12) for
B5 1 mT calculated with semiclassical approximation~dashed line!
and with a quantum-mechanical calculation~solid line!.
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which the zero-energy limit of the three-body collisional
wave function was calculated for three doubly spin-polarized
hydrogen atoms by solving the Faddeev equations rigorously
for E50. The resulting wave function has finite values for
the three atoms at relative distances, where it should vanish
according to the prediction of Ref.@6#. To discuss the low-
energy limit let us take the rate constant expression for three-
body dipolar recombination@18#,

Li→ f5
pmkf

6~2p\!3
E dk̂f uTfi~v lmkW f ,kW iKW i !u2, ~9!

analogous to Eq.~2! with v lm the quantum numbers of the
final diatom rovibrational state,kW f the final relative atom-
diatom wave vector, andkW i ,KW i the initial Jacobi wave vec-
tors. To first order inVd, Tf i is given by an integral,

Tf i5E uf* ~v lmkW f ,rW !Vdui~kW ,rW !d6r ~10!

in 6D configuration space. The plane-wave parts of theui
anduf functions are normalized as exponential plane waves.
In particular, aseikW •rW for ui with kW the 6D initial wave vec-
tor. Reference@6# points out that the suppression of the initial
wave would take place already in the free case because of the

positive 6D centrifugal term 15/8mr2 occurring in the 6D
radial wave equation for the lowest hyperspherical partial
wave. It should be noted, however, that in the low-energy
approximation the free waveui

0 is again isotropic and equal
to 8J2(kr)/(kr)2 ~see also the plane-wave expansion in any
dimension in hyperspherical coordinates in Ref.@19#!. For
k→0 this function tends to 1 as it should. However, the
solution of the 6D radial wave equation, which is normalized
as a sine function at infinity, is equal toJ2(kr)(kr/2)1/2, and
this indeed tends to 0 in the limitk→0 for fixed finiter.

In summary, we have presented predictions for low-
temperature two-body decay rates in alkali-atom systems us-
ing recently obtained information on two-body elastic colli-
sion properties. The dipolar decay rates show an oscillating
structure as a function of temperature and magnetic field,
which find their origin in the relative displacements of the
oscillation patterns in thel i50 initial and l f52 final radial
wave functions with varyingkf ~or ki and kf). Finally we
also discussed the behavior of the three-body recombination
rate in the zero-energy limit.
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schappelijk Onderzoek.
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