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Autler-Townes effect for an atom in a 100% amplitude-modulated laser field.
l. A dressed-atom approach
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(Received 27 September 1994; revised manuscript received 12 Octobegr 1995

A dressed-state rate-equation model is used to describe the Autler-Townes effect that is produced by a
resonant 100% amplitude-modulated field driving a two-level resonance. The purpose of using this model is to
give an intuitive interpretation of the rather complex absorption spectra that are produced when a weak probe
field couples this strongly driven transition to a third atomic state. We obtain analytic expressions for the
positions, strengths, and widths of the components of the absorption spectra, which are in excellent agreement
with experimentally obtained spectra presented in the accompanying[Baftapademetriou, following paper,

Phys. Rev. A53, 997 (1996)].

PACS numbs(s): 42.50.Hz, 32.80-t

[. INTRODUCTION intense driving field were seen to cause harmonics of the
modulation frequency to manifest themselves in a nontrivial
When a sufficiently intense monochromatic laser fieldfashion in variables related to atomic observeables, such as
drives a two-level atomic resonance the resonant couplinthe fluorescence spectrum.
changes the atomic structure by strongly mixing the upper The widths of neighboring peaks in the spectrum of the
and lower levels. This change is evident in the well-knowninelastically scattered light were predicted to alternate as
three-peaked fluorescence spectrum of such an fterd].  functions of the field strength. In addition, at every odd peak
If one of the resonantly coupled levels is probed by tuning dn the spectrum an elastically scattered subharmonic of the
second low-intensity laser in the vicinity of the transition modulated driving field27] contributes to the experimen-
frequency between this resonantly coupled level and a thirgally observed linewidths. The experiment of Zaual. was
level in the atom, the Autler-Townes doublet spectrum isunable to resolve these contributions to the linewidths.
observed[5-12], similarly demonstrating the effect of the =~ The Autler-Townes spectrum is a direct probe of the
intense resonant laser field on the atomic levels. strongly driven atomic resonance that avoids the complica-
The three-peaked fluorescence spectrum and the doubtipn of the elastically scattered spectral components. In the
peaked Autler-Townes spectrum are conveniently understoofbllowing paper we report a measurement of the Autler-
in terms of a dressed-state formali$i8—15 in which one  Townes absorption spectrum for an intense 100% AM driv-
finds the eigenstates of the atom coupled to the strong resing field [28]. In the saturating regime the observed lin-
nant field and then calculates the spectrum for transitionswidths may be interpreted solely in terms of transition rates
both among and to these dressed states. The resonant cdagtween dressed levels.
pling splits the bare or uncoupled states by an amount pro- In this article we present a dressed-state calculation of the
portional to the strength of the field, the Rabi frequency. Autler-Townes absorption spectrum that offers an intuitive
The nature of the dressing is quite dependent on propeinterpretation of the location and widths of the many peaks
ties of the strong resonant field. Some experiments have beém the spectrum. We calculate an analytic expression for the
performed studying the effects, on the driven atom, of finitespectrum for a number of three-level atomic configurations.
laser bandwidtti16—-19 and phase jump0]. Recently, an
experiment has been carried out studying the fluorescence Il. ATOM-PLUS-FIELD SYSTEM
spectrum in a case in which the intense resonant field is not
monochromatic but instead is bichromatic in the form of an Initially, we consider a beam of atoms with two nonde-
amplitude-modulatedAM) field with the resonant carrier generate energy eigenstates, a ground $tgtend a dipole-
suppressef21]. The spectrum was much more complex with connected excited stafe), which has a natural widtf',
many lines of various strengths separated by the modulationd is situated w,, above|a) in energy. This beam is irra-
frequency. The number of peaks in the spectrum increasediated at right angles by an intense bichromatic laser with
with increasing field strength and the widths of neighboringédqual amplitude modes of frequenay * 6, which hence-
peaks in the spectrum were observed to alternate betwed@rth we shall refer to as the- modes(see Fig. 1 The
narrow and broad. atoms interact with the laser field for a tinfethat is much
Subsequent theoretical analyses of the fluorescence spegreater than the natural lifetimig; * of the excited atomic
trum[22], using the Bloch-vector formalish23—25 and the  state, i.e.I',T>1.
dressed-state approaf®6], have been able to qualitatively =~ We set the ground-state energy of our system equal to
account for the observed phenomena. The dependence of tkero for convenience and consider only the case in which the
strength of individual lines and the number of components iraverage laser frequency is equal to the atomic resonance fre-
the spectrum on the single-field or time-averaged Rabi frequencyw, = w,,. We assume that the: modes are large-
guency was reproduced. The nonlinearities introduced by themplitude coherent states for which the initial average num-
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I la> FIG. 2. Uncoupled eigenstates of the two-level atom-plus-AM-
field system.

FIG. 1. Three-level atomic casca{i#)«|b)«|c) with an in- )
tense 100% AM field ¢ +3) resonantly pumping the lower 70. The state space therefore separates naturally into sub-

|a)«|b) transition and a weak fielde(,) probing the|b)«|c)  Spaces’y with dimension N+ 1, which can be said to con-
transition. tain states representing elementary excitations of the atom

and the laser field&see Fig. 2 It is convenient to relabel the
ber of photons in both modes I, and the width of the bare states with angular-momentum-like notafilnn) with
distribution of the number of photons abdug is YNy such  Ne{0,1,2, ..} andne{0,£1,+2, ... ,*N}, such that
thatNgy> \/N—0> 1. We further restrict our problem by consid-

ering only modulation frequencie$ that are much smaller [2N+1,2n+1)=|a,N+n+1,N—n), (2.439
than the average laser frequency but still many times greater
than the natural width of the excited atomic state |2N+1,2n)=|b,N+n,N—n) (2.4b
w >6>Ty, (2.1
|2N,2n)=|a,N+n,N—n), (2.49

such that the field amplitude experiences many modulation
periods within an atomic lifetime. For optical transitions,

where w,, /Ty~ 10, this condition is not very restrictive 2N,2n+1)=[b,N+n,N—n—1), (2.4d
and includes regimes in which the atom responds nonadia-
batically to the modulated field. as suggested by the eigenvalue equation
The bare states of this system are the eigenstates of the
uncoupled atom-plus-field Hamiltonian |:|0|N,n>=(EN+ n# 8)|N,n) (2.5

Ho=fiwpa0pp+ i w + 8)ala, +h(w —sala_, _ y
0= wpa0pp T i@ +0)a 8 +hi(w — o)A (2.7  and orthonormality condition

where oy, is the atomic projection operator for the state (N,n|N",n"y= 8, o O n (2.6)
|b) anda. (al) are the annihilatioricreation operators for

the quantizedt field modes. These states can be written asyf the uncoupled system. It is useful to note that manifolds
product states|a,N, ,N_), where ac{a,b} labels the yith an even number of excitations Xg and those with an
atomic state andl.. €{0,1,2 . . .} designate the number of o4g number of excitations (2+1) are distinct, i.e.,
photons in thex field modes. The bare eigenenergies can befZN,O): |a,N,N) while |2N+1,0)=|b,N,N), and we

found from the solutions of the eigenvalue equations should anticipate the need to consider them separately in our
~ treatment to follow.
Hola,N ,N_)=A[(N;+ +N_)w In the electric-dipole and rotating-wave approximations
+(N,—N_)8]|a,N, ,N_), (2.33 the atom and the laser fields are coupled by the interaction
Hamiltonian

S 7o T
+(N,—N")&8]|b,N, ,N"). (2.3b VALZTO[a+U,+U+a,]+H.C., 2.7

It is evident from the above equations that the set of states
{la,N, ,N_), |[b,N’ ,N")}, whereN,+N_=N’'+N"+1  whereo, (o) is the atomic raisinglowering operator and
=N, form a manifold of N+1 states that are quasidegen- }, is the vacuum Rabi frequency, which we assume to be
erate in energy, with energids= N7 w| +nfi §=Ey+n# S, real. V,, represents energy conserving processes and there-
wherene{0,+1,+=2, ... ,=N}. This manifold of states is fore only couples states within a given manifold. The non-
separated from neighboring manifolds by an enetigy; , zero interaction matrix elements can be shown to couple only
while neighboring states within a manifold are separated byeighboring states
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<2N+1,2ni1|VAL|2N+l,2n):TO\/Nin+l, (2.89 6:::
Epr K 12N+1, m)
. 7O,
(2N,2n£ 1|V [2N,2n) = —>|NFn. (2.8b
(3

In the # manifold the interaction matrix elements range
in magnitude from#i (/2 to th\/ﬁlz. If the number of
photons scattered from the laser field, which is of the order e X 12N, m)
I',T, is much smaller than the range over which the average N ’
number of photons in thee modes is relatively constant, i.e.,
\/N_0>FbT, then we may neglect the variation in the magni-
tud_e of t.he lnter_actlon matrix elements Wlt_hm and among FIG. 3. Dressed eigenstates of the two-level atom-plus-AM-field
neighboring manifolds and set them equakttimes half the
classical single-field Rabi frequenhﬁ/ZEﬁQo\/N—o/Z. We
further assume that the manifolds about thg, , where the  Equationg(2.11) and(2.12 lead to the three-term recurrence
initial state of the system is centered, are effectively infiniterelation
dimensional.

In the #y subspace the coupled atom-plus-field Hamil- Qa(l; +0Qaf; —2(m-n)say"=0. (213
tonian Hy =Ho+V, can therefore be represented in the
bare basis by the matrikl,, =Eyl +AM, wherel is the

system.

The Bessel function recurrence relati@0]

identity matrix and XJn+1(X) +XJIn—1(X) —2nJ(x) =0 (2.14
[ l suggests that
20 Q2 Mo J —(Q1S) (2.19
ayocd - . .
QR 5 QR nooTmen
~ Qe o0 Qe It can be verified with the use of well-known Bessel function
M= A2 -5 Q2 ' identities[30] that
ar -25 =
INm)= > Jnn(Q/3)IN,n) (2.16
i " (29  such that
The dressgd states and energies are the eiggnstates and l:iALlN,m)=E§\.m)|N,m) (2.17
eigenenergies dfi,; that follow directly from the eigenvec-
tors and eigenvalues of the symmetric tridiagonal matrixand
M.
The eigenvalues d¥ are found by solving the character- (N,mIN",m") = Sy Siun- (2.18

istic equation déM —AI]=0. The periodicity along the ¢ i evident from Egs(2.5 and (2.17) that the bare and
diagonal of the infinite dimensional matriM suggests gressed energy spectra are identical for a two-level resonance
that defM —N1]=defM—(A+md)I], whereme{0,=1,  dressed by a bichromatic field with equal amplitude modes
+2,...}. Therefore, ifA(®) is a given eigenvalue oM,  and a resonant average frequerEig. 3. If the mode am-
then\(M=\(+ms are also eigenvalues. The symmetry of plitudes are imbalanced and/or the average frequency is de-
M implies that TM =0 or, equivalently, that the sum of the tuned from resonance, then in the limit of effectively infinite-
eigenvalues oM is zero such thak(@=0 and\(M=ms.  dimensional manifolds the periodicity ™ suggests that the

The dressed energies are therefore spectrum then consists of pairs of eigenvalues separated by
26, i.e, NOEMecMHO12msAB+2ms} with A©@©+1 @)
E\"=En+mis, mef{0,x1,%2,...}. (210 =5[2529. A and\® will in general depend upon the

] ) field strengths and detunings. Signatures of this eigenspec-
The corresponding dressed statespresented with rounded ym have been recently observed in the Autler-Townes ab-

ketg are found from the eigenvalue equation sorption spectrum with a fully AM pump field and a detuned
~ average frequenc)28].
MIN,m)=X\M™|N,m), (2.11 ge frequency2s]
where|N,m) can be expanded in the bare basis IIl. DRESSED-STATE TRANSITION RATES
o We now consider the interaction of the dressed atom with
IN,m)= E a(m)|N ny. (2.12 the empty modes of the electromagnetic field in order to
’ nSe " ' calculate the spontaneous transition rates from the dressed
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states. This coup_ling induces changes in the atomic stat@e dressed-atom density operafoy (t) [15]. If the popu-
from |b) to |a) while leaving unchanged the number of pho- |ations of the dressed states are defined as
tons in the laser fields. Given that the dressed states are non-

degenerated>T,, the transition probability per unit time I(N;t)=(N,m[pa (t)|N,m), (4.9
between two states is proportional to the square of the dipole ] ] ]
moment connecting the states. This can be shown to be no#2€n the rates of change for the populations in manifolds
zero only between states in neighboring manifolds as thavith an.odd and even number of excitations can be written
atom scatters laser photons into the empty modes of the fiel@eSpectively as

With Egs. (2.4) and (2.16) and Bessel function summation

formulas[30] the dipole moment connectif@N+1,m) to —TI,(2N+1;t)= =T, [T (2N+1;t)

[2N,m’) can be calculated to be dt

[

Mo m=(2N,m’|x|2N+1,m) + Y yudl(2N+2:1),  (4.2a
k=—o

= Byt (= D) (20/8)]. (3.1) .

d
Gm(2Ni) == yll(2N;) + 2 Tl I 2N+ 13t).
k=—o
(4.2b

The transition rate froni2N+1,m) to |2N,m’) is therefore

Form= Zb[émmr (1™ -m(2Q/8)]1%. (3.2  The above infinite set of coupled first-order differential equa-
tions appears rather intractable, but fortunately in our calcu-

Similarly, the dipole moment connecting2N,m) to lation of the absorption spectrum we will only require

|2N-1,m') is knowledge of the sums of all the populations of levels with
' the same total transition rates or natural widths in the dressed
M= (2N—1,m’| &|2N,m) basis.

There are two characteristic dressed-state natural widths,
which we define asl'  =I',,=7yo,ms1 and I'_=T5001

_ Hab —(—1)™
= [Omm— (—1)"J —m(2Q/6)] 3.3 = ¥>m, Such that

such that the transition rate frofaN,m) to [2N—1,m’) is Ty
[L=—>[1=30(20/8)]. (4.3

_ Iy m 2
Yrm= g [Omm = (= D)™ (2010 B4 define the reduced populations

The total transition rate out 2N+ 1,m) is then given by >
P+(t)z% mz Mom(2N+1;0) + Mo 1(2N;1), (448

Fn= 3 Ton= 2L+~ 1M(20/0)] (35

m=—o ©
P.()=2> X Toni1(2N+1;0)+TIn(2N;t), (4.4
and the total transition rate out (#N,m) is given by N m=-—c
* T, where P.. are the total populations in states with widths
Y= D Vrm= 7[1—(—1)f“30(29/5)]. (3.6) TI'., then Egqs(4.2) reduce to
m=-ow

From the definition of the dressed states it can be seen that%m(t): —(T.-D)P.(H)+T_-T)P_(1), (4.59
states with a greater contamination of the excited state
are more unstable than others, as expected. d
Itis clear from Eqs(3.5) and(3.6) that, unlike inthe case  —p ()= —(I'_—T)P_(t)+(I', —T)P. (1), (4.5
of a monochromatic laser field, the dressed-state transition dt
rates differ between manifolds of even and odd numbers of i
excitations. The dynamics of even and odd manifolds should’here we have defined
therefore be treated separately in order to properly character-

ize an atom dressed by a 100% AM field as we anticipated in = E[1_30(4Q/5)]_ (4.6)
Sec. Il. This distinction has recently been made in the litera- 8
ture[26].

These equations can be solved simply in the quasistation-
ary regime to which we have restricted our consideration
(\/N_0>I‘bT> 1) to give

The rates of change of the dressed-state populations may
be described by population rate equations in the secular limit pss_ I's—I" E( - 430(202/5)
(6>T'p,) of the master equation describing the evolution of = I'y=2I 2 3+39(4Q/6))"

IV. DRESSED-STATE POPULATIONS

4.7
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12N+1, n) X J2_,(Q18) Z(2l—-m;T ), (5.1)

where we have calculated the dipole matrix elements

T

(2N+1,m|z|c,N+1,N=1)= prp I (Q/S), (5.2a

/ lc, N+I, N-1-1>
W (2N,m|@fc,N+I,N=1=1)= pycIm 2 -1(Q/6) (5.2b

P

Il

and represented the normalized Lorentzian with a full width
I2N, n) at half maximum (FWHM) of y+I'. centered about
Ap=wp— wp=kd by
FIG. 4. Weak probe transitions from the dressed eigenstates to a
third atomic levelc). 1 (y+Ty)

A= g Ry KO [(y+ T2

(5.3

From Eqgs.(4.5 we see that in the steady state the number
of transitions from states with a width, to those with a ; .
width T'_ is balanced by the number of transitions in theand 2N+1,m) is wey*216—ms and the separation of

ST . g ) the states |c,N+I,N—I—-1) and |2N,m) is

opposite direction to achieve a condition of detailed balance(.u +(21+1)5-ms, where m,|e{0,+1,+2 V. The
H _Cb - ’ ] y— Ly — &y g
It can _also b? shown that in the steady state the tot_al POpuprobe laser will therefore be resonant with an infinite num-
lation in manifolds of an even or odd number of excitations, - ¢ independent (&T,.,T,) transitions for any fre-
approach 1/2, as do the sums of populations of dressed Stat&aency o-~wrtks whebréa Cke{O +1 42 1 (see
IN,m) with even and odd quantum numbers Fig. 4). pTeb T

The frequency separation of the statesN+I,N—1)

If we consider a given probe frequenay,~ wc,+ 2Kk4,
then the steady-state absorption cross section about this reso-
V. ABSORPTION OF A WEAK PROBE nance can be written

We now introduce a third atomic stafte) with a natural ool wp) = aP$I5(Q8) £(2K;T ), (5.9

width I"., which is situated: above|b). We assume that
© @b 1) H/here we have made use of E@4.4) and represented the

w¢p IS Not degenerate with any frequencies in the dresse nstant factors b Similarlv for a probe frequenc
system and that the modulation frequency is large compare%O ye. y P q y

to I'.. If we perturbatively dipole couplgc) to |b) with a ;)g;ig)cb+(2k+1)6 the steady-state absorption cross sec-
weak monochromatic probe laser field we can neglect any
broadening or frequency shifts. The probe laser will induce onr1(wp)=aP¥35 1 (Q/8) #(2k+1;T_). (5.5
changes in the atomic state frdiw to |c) while the number
of photons in the AM field will remain unchanged. The total absorption cross section as a function of the probe
The stategc,N, ,N_), which are coupled to the dressed field frequency is therefore
manifolds of states form degenerate manifolds of states "
themselves. It can be shown from dipole selection rules that _ 5512 . .
only statesc,N+1,N—I), from what we shall label as the "(“’p)‘“kzx P=3241(Q/ 6) Z(2k+ 1T )
Zeon+1 Manifold, can couple to states within thé,y.
manifold and only stategc,N+I,N—I—1) within the
Z¢.on Manifold can couple to states within thgy manifold,
wherel €{0,=1,+2, ...} (see Fig. 4
To first order in the probe interaction the steady-staté/Ve have used the condition that all of the transitions are well
cross section, as a function of the probe frequency, for abseparated§>1"y,,I'.) in order to incoherently sum the indi-
sorbing a photon and causing a transition from a dressedidual cross sections above. The above expression suggests a
state in theZy manifold to a state in the¢’. y manifold is  simple labeling scheme for the absorption resonances
proportional to the product of the population difference be-whereby the resonance ai,= w¢,+kd is labeled thekth
tween the two states and the square of the dipole momemesonance.
between the two states with a width equal to the sum of the The system we have used above corresponds to a three-
widths of the two stateg31]. The cross section in the steady level cascade. In a similar manner the absorption cross sec-
state as a function of the probe laser frequency is therefordion can be calculated for the analogous transition i ar

©

> PSIA(Q8) A (2kT,). (5.6

+a
k
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g‘“ (© FIG. 6. Histogram of absorption cross section and a scaled plot

2-:‘? of Jip,g((l/&) in arbitrary units versus detuning, in units of
modulation frequenciess with 6/I'y=4 and I',/T'.=3 for
Q/6=120.

6 4 -2 0 2 4 6
Probe Detuning A, (units of §) frequency range approximately equal to what would have
been the peak separation of the Autler-Townes spectrum for
FIG. 5. Probe absorption cross section in arbitrary units versu@&n unmodulated pump(2. There will therefore be roughly
detuningA , in units of modulation frequencieswith 6/T",=4 and 2Q)/ 6 resonances.
Iy /T.=3 for (8 Q/6=1, (b) Q/5=15, and(c) Q/5=30. We have plotted the absorption spectrum for a large value
of /6=20 along with the envelope of the values of the

V system or for the lower transition of a three-level cascadepeak oscillator strength]% ,5(Q/8) in Fig. 6. We see that in
p

the upper transition of which is being resonantly driven by. he limit of Q> s th |ati iahti h
the AM field. The spectra of the absorption cross sectiont e limit o the population weighting® .. approac

9/2 and spectrum is well described by peaks of aproximately
will retain the same form as Ed5.6), but the population : : :
iferences, Gipole moments, and newtns wil vary ce- S wih at the neger values b 4,/5 with stengths
pending upon the particular configuration. For example, i’r‘]k T quafy sp P P y

2 .
the probe coupled the unstable sthtg to state|a) instead & under the envelope]Ap,g(Qlé). This envelope has a
of to state|b), in a V configuration, then the even and odd modulated structure for values af,<( that peaks at
resonances would switch widths and population weightingsd,~€ and falls off rapidly forA,>€Q.
while the oscillator strengths of resonances would remain It is clear from our expression that the absorption spec-
unchanged. For the other two cases the population would bium directly reflects the alternation in width of the dressed
pumped into or remain in the third level so that all the reso-States. Even resonances have a FWHM of+T'; and odd
nances would have equal population weightings such tha€sonances have a FWHM bf +I'c, wherel'.. are oscil-
line strengths would be directly observable from the peaKating functions of 2)/5. The relative widths of the even

heights in the absorption spectrum. and odd components of the spectrum oscillate 180° out of
phase with each other as a function of the modulation index
VI. DISCUSSION (see Fig. 5 of Ref. 13 and approach the same value

_ o I'.+Ty/2 for large values ofQ)/6 and at the zeros of
In Fig. 5 we have plotted the expression in E8.6) for  J,(2Q/8). The alternation in the widths of the resonances
the AM Autler-Townes absorption spectrum. We have use@an be interpreted in the dressed-state picture as being a con-

experimentally realistic parameters corresponding to theequence of selection rules that dictate that for the even reso-
38,/ 3P3p—4Dg), three-level cascade in Na such that

I'y/27w=10 MHz andI'./27=3.15 MHz with a modula-
tion frequencys/27+=40 MHz. These spectra show excel-
lent agreement with plots generated by a matrix continued-
fraction steady-state solution of the three-level optical Bloch
equations with a strong fully AM pump field and weak probe
field. The agreement improves for large values of the ratio
oIT'y, which we have assumed in our calculation. We have
also compared our solution to recently obtained experimental

e
n

N
'S

Time-averaged IT,
o =]
=3 =]

observations of the Autler-Townes effect for an atom in an o1

AM field and have found very good qualitative and quanti- 0.0 ]

tative agreemerii28]. 0 5 10 15 20
In Fig. 4 we see that the absorption spectra consist of Rabi Frequency € (units of §)

many resonances always separated by the modulation fre-

quency. For increasing pump intensities the number of ab- FIG. 7. Time-averaged population of levél) versusQ/é. The
sorption resonances increases. In fact, for a given Rabi fresteady-state integrated probe absorption cross section is propor-
qguency all of the absorption resonances lie within ational to the time-averaged population of the probed atomic state.
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nances the probe only interacts with dressed states witkach resonance another higher-order parametric absorption

widthsI', and for odd resonances the probe interacts wittprocess becomes significant; another harmonic of the modu-

I'_ dressed states only. lation frequency appears and more peaks arise in the probe
We can gain further insight into the effect of an intensespectrum.

fully AM pump field on a two-level resonance by integrating

the expression in Eq5.6) over the frequency range of the

probe laser to obtain the total integrated absorption cross

section. This can be shown to be proportional to the steady- In conclusion, we note that we have obtained an analytic

state population of the atomic stafb) averaged over a expression, via the dressed state formalism, for the 100%

VII. CONCLUSION

modulation period, i.e.,

1 4Jg(29/5)
fo(wp)deZab:aE 1_W' €.

AM Autler-Townes spectrum in the intense field limit when
the modulation frequency is much greater than the natural
width of the strongly driven transition. Within this formalism
we have found a simple interpretation of the absorption spec-
trum in terms of transitions between dressed states and un-

In this expression, which we have plotted in Fig. 7, we se&oupled bare states.
evidence of the subharmonic Rabi resonances where the abil-

ity of the driven atom to absorb the probe is maximized to
the saturation levdl32]. These resonances occur at the zeros
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