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A dressed-state rate-equation model is used to describe the Autler-Townes effect that is produced by a
resonant 100% amplitude-modulated field driving a two-level resonance. The purpose of using this model is to
give an intuitive interpretation of the rather complex absorption spectra that are produced when a weak probe
field couples this strongly driven transition to a third atomic state. We obtain analytic expressions for the
positions, strengths, and widths of the components of the absorption spectra, which are in excellent agreement
with experimentally obtained spectra presented in the accompanying paper@S. Papademetriou, following paper,
Phys. Rev. A53, 997 ~1996!#.

PACS number~s!: 42.50.Hz, 32.80.2t

I. INTRODUCTION

When a sufficiently intense monochromatic laser field
drives a two-level atomic resonance the resonant coupling
changes the atomic structure by strongly mixing the upper
and lower levels. This change is evident in the well-known
three-peaked fluorescence spectrum of such an atom@1–4#.
If one of the resonantly coupled levels is probed by tuning a
second low-intensity laser in the vicinity of the transition
frequency between this resonantly coupled level and a third
level in the atom, the Autler-Townes doublet spectrum is
observed@5–12#, similarly demonstrating the effect of the
intense resonant laser field on the atomic levels.

The three-peaked fluorescence spectrum and the doubly
peaked Autler-Townes spectrum are conveniently understood
in terms of a dressed-state formalism@13–15# in which one
finds the eigenstates of the atom coupled to the strong reso-
nant field and then calculates the spectrum for transitions
both among and to these dressed states. The resonant cou-
pling splits the bare or uncoupled states by an amount pro-
portional to the strength of the field, the Rabi frequency.

The nature of the dressing is quite dependent on proper-
ties of the strong resonant field. Some experiments have been
performed studying the effects, on the driven atom, of finite
laser bandwidth@16–19# and phase jumps@20#. Recently, an
experiment has been carried out studying the fluorescence
spectrum in a case in which the intense resonant field is not
monochromatic but instead is bichromatic in the form of an
amplitude-modulated~AM ! field with the resonant carrier
suppressed@21#. The spectrum was much more complex with
many lines of various strengths separated by the modulation
frequency. The number of peaks in the spectrum increased
with increasing field strength and the widths of neighboring
peaks in the spectrum were observed to alternate between
narrow and broad.

Subsequent theoretical analyses of the fluorescence spec-
trum @22#, using the Bloch-vector formalism@23–25# and the
dressed-state approach@26#, have been able to qualitatively
account for the observed phenomena. The dependence of the
strength of individual lines and the number of components in
the spectrum on the single-field or time-averaged Rabi fre-
quency was reproduced. The nonlinearities introduced by the

intense driving field were seen to cause harmonics of the
modulation frequency to manifest themselves in a nontrivial
fashion in variables related to atomic observeables, such as
the fluorescence spectrum.

The widths of neighboring peaks in the spectrum of the
inelastically scattered light were predicted to alternate as
functions of the field strength. In addition, at every odd peak
in the spectrum an elastically scattered subharmonic of the
modulated driving field@27# contributes to the experimen-
tally observed linewidths. The experiment of Zhuet al.was
unable to resolve these contributions to the linewidths.

The Autler-Townes spectrum is a direct probe of the
strongly driven atomic resonance that avoids the complica-
tion of the elastically scattered spectral components. In the
following paper we report a measurement of the Autler-
Townes absorption spectrum for an intense 100% AM driv-
ing field @28#. In the saturating regime the observed lin-
ewidths may be interpreted solely in terms of transition rates
between dressed levels.

In this article we present a dressed-state calculation of the
Autler-Townes absorption spectrum that offers an intuitive
interpretation of the location and widths of the many peaks
in the spectrum. We calculate an analytic expression for the
spectrum for a number of three-level atomic configurations.

II. ATOM-PLUS-FIELD SYSTEM

Initially, we consider a beam of atoms with two nonde-
generate energy eigenstates, a ground stateua& and a dipole-
connected excited stateub&, which has a natural widthGb
and is situated\vba aboveua& in energy. This beam is irra-
diated at right angles by an intense bichromatic laser with
equal amplitude modes of frequencyvL6d, which hence-
forth we shall refer to as the6 modes~see Fig. 1!. The
atoms interact with the laser field for a timeT that is much
greater than the natural lifetimeGb

21 of the excited atomic
state, i.e.,GbT@1.

We set the ground-state energy of our system equal to
zero for convenience and consider only the case in which the
average laser frequency is equal to the atomic resonance fre-
quencyvL5vba . We assume that the6 modes are large-
amplitude coherent states for which the initial average num-
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ber of photons in both modes isN0 and the width of the
distribution of the number of photons aboutN0 is AN0 such
thatN0@AN0@1. We further restrict our problem by consid-
ering only modulation frequenciesd that are much smaller
than the average laser frequency but still many times greater
than the natural width of the excited atomic state

vL@d @Gb , ~2.1!

such that the field amplitude experiences many modulation
periods within an atomic lifetime. For optical transitions,
where vba /Gb;108, this condition is not very restrictive
and includes regimes in which the atom responds nonadia-
batically to the modulated field.

The bare states of this system are the eigenstates of the
uncoupled atom-plus-field Hamiltonian

Ĥ05\vbaŝbb1\~vL1d!â1
† â11\~vL2d!â2

† â2 ,
~2.2!

where ŝbb is the atomic projection operator for the state
ub& and â6(â6

† ) are the annihilation~creation! operators for
the quantized6 field modes. These states can be written as
product statesua,N1 ,N2&, where aP$a,b% labels the
atomic state andN6P$0,1,2, . . . % designate the number of
photons in the6 field modes. The bare eigenenergies can be
found from the solutions of the eigenvalue equations

Ĥ0ua,N1 ,N2&5\@~N11N2!vL

1~N12N2!d#ua,N1 ,N2&, ~2.3a!

Ĥ0ub,N18 ,N28 &5\@~N18 1N28 11!vL

1~N18 2N28 !d#ub,N18 ,N28 &. ~2.3b!

It is evident from the above equations that the set of states
$ua,N1 ,N2&, ub,N18 ,N28 &%, whereN11N25N18 1N28 11
5N, form a manifold of 2N11 states that are quasidegen-
erate in energy, with energiesE5N\vL1n\d[EN1n\d,
wherenP$0,61,62, . . . ,6N%. This manifold of states is
separated from neighboring manifolds by an energy\vL ,
while neighboring states within a manifold are separated by

\d. The state space therefore separates naturally into sub-
spacesEN with dimension 2N11, which can be said to con-
tain states representingN elementary excitations of the atom
and the laser fields~see Fig. 2!. It is convenient to relabel the
bare states with angular-momentum-like notationuN,n& with
NP$0,1,2, . . .% andnP$0,61,62, . . . ,6N%, such that

u2N11,2n11&[ua,N1n11,N2n&, ~2.4a!

u2N11,2n&[ub,N1n,N2n&, ~2.4b!

u2N,2n&[ua,N1n,N2n&, ~2.4c!

u2N,2n11&[ub,N1n,N2n21&, ~2.4d!

as suggested by the eigenvalue equation

Ĥ0uN,n&5~EN1n\d!uN,n& ~2.5!

and orthonormality condition

^N,nuN8,n8&5dn,n8dN,N8 ~2.6!

of the uncoupled system. It is useful to note that manifolds
with an even number of excitations (2N) and those with an
odd number of excitations (2N11) are distinct, i.e.,
u2N,0&5ua,N,N& while u2N11,0&5ub,N,N&, and we
should anticipate the need to consider them separately in our
treatment to follow.

In the electric-dipole and rotating-wave approximations
the atom and the laser fields are coupled by the interaction
Hamiltonian

V̂AL5
\V0

2
@ â1

† ŝ21ŝ1â2#1H.c., ~2.7!

whereŝ1(ŝ2) is the atomic raising~lowering! operator and
V0 is the vacuum Rabi frequency, which we assume to be
real. V̂AL represents energy conserving processes and there-
fore only couples states within a given manifold. The non-
zero interaction matrix elements can be shown to couple only
neighboring states

FIG. 1. Three-level atomic cascadeua&↔ub&↔uc& with an in-
tense 100% AM field (vL6d) resonantly pumping the lower
ua&↔ub& transition and a weak field (vp) probing theub&↔uc&
transition.

FIG. 2. Uncoupled eigenstates of the two-level atom-plus-AM-
field system.
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^2N11,2n61uV̂ALu2N11,2n&5
\V0

2
AN6n11, ~2.8a!

^2N,2n61uV̂ALu2N,2n&5
\V0

2
AN7n. ~2.8b!

In theEN manifold the interaction matrix elements range
in magnitude from\V0 /2 to \V0AN/2. If the number of
photons scattered from the laser field, which is of the order
GbT, is much smaller than the range over which the average
number of photons in the6 modes is relatively constant, i.e.,
AN0@GbT, then we may neglect the variation in the magni-
tude of the interaction matrix elements within and among
neighboring manifolds and set them equal to\ times half the
classical single-field Rabi frequency\V/2[\V0AN0/2. We
further assume that the manifolds about theE2N0

, where the
initial state of the system is centered, are effectively infinite
dimensional.

In the EN subspace the coupled atom-plus-field Hamil-
tonian ĤAL5Ĥ01V̂AL can therefore be represented in the
bare basis by the matrixĤAL5ENÎ1\M̂ , where Î is the
identity matrix and

M̂53
�

2d V/2

V/2 d V/2

V/2 0 V/2

V/2 2d V/2

V/2 22d

�

4 .
~2.9!

The dressed states and energies are the eigenstates and
eigenenergies ofĤAL that follow directly from the eigenvec-
tors and eigenvalues of the symmetric tridiagonal matrix
M̂ .

The eigenvalues ofM̂ are found by solving the character-
istic equation det@M̂2l Î #50. The periodicity along the
diagonal of the infinite dimensional matrixM̂ suggests
that det@M̂2l Î #5det@M̂2(l1md) Î #, wheremP$0,61,
62, . . .%. Therefore, ifl (0) is a given eigenvalue ofM̂ ,
thenl (m)5l (0)1md are also eigenvalues. The symmetry of
M̂ implies that TrM̂50 or, equivalently, that the sum of the
eigenvalues ofM̂ is zero such thatl (0)50 andl (m)5md.
The dressed energies are therefore

EN
~m!5EN1m\d, mP$0,61,62, . . .%. ~2.10!

The corresponding dressed states~represented with rounded
kets! are found from the eigenvalue equation

M̂ uN,m)5l~m!uN,m), ~2.11!

whereuN,m) can be expanded in the bare basis

uN,m)5 (
n52`

`

an
~m!uN,n&. ~2.12!

Equations~2.11! and~2.12! lead to the three-term recurrence
relation

Van11
~m! 1Van21

~m! 22~m2n!dan
~m!50. ~2.13!

The Bessel function recurrence relation@30#

xJn11~x!1xJn21~x!22nJn~x!50 ~2.14!

suggests that

an
~m!}Jm2n~V/d!. ~2.15!

It can be verified with the use of well-known Bessel function
identities@30# that

uN,m)5 (
n52`

`

Jm2n~V/d!uN,n& ~2.16!

such that

ĤALuN,m)5EN
~m!uN,m) ~2.17!

and

~N,muN8,m8!5dmm8dNN8. ~2.18!

It is evident from Eqs.~2.5! and ~2.17! that the bare and
dressed energy spectra are identical for a two-level resonance
dressed by a bichromatic field with equal amplitude modes
and a resonant average frequency~Fig. 3!. If the mode am-
plitudes are imbalanced and/or the average frequency is de-
tuned from resonance, then in the limit of effectively infinite-
dimensional manifolds the periodicity ofM̂ suggests that the
spectrum then consists of pairs of eigenvalues separated by
2d, i.e., l ( i ,m)P$l (0)12md,l (1)12md% with l (0)1l (1)

5d @25,29#. l (0) andl (1) will in general depend upon the
field strengths and detunings. Signatures of this eigenspec-
trum have been recently observed in the Autler-Townes ab-
sorption spectrum with a fully AM pump field and a detuned
average frequency@28#.

III. DRESSED-STATE TRANSITION RATES

We now consider the interaction of the dressed atom with
the empty modes of the electromagnetic field in order to
calculate the spontaneous transition rates from the dressed

FIG. 3. Dressed eigenstates of the two-level atom-plus-AM-field
system.
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states. This coupling induces changes in the atomic state
from ub& to ua& while leaving unchanged the number of pho-
tons in the laser fields. Given that the dressed states are non-
degenerated@Gb , the transition probability per unit time
between two states is proportional to the square of the dipole
moment connecting the states. This can be shown to be non-
zero only between states in neighboring manifolds as the
atom scatters laser photons into the empty modes of the field.
With Eqs. ~2.4! and ~2.16! and Bessel function summation
formulas@30# the dipole moment connectingu2N11,m) to
u2N,m8) can be calculated to be

mm8m5~2N,m8um̂u2N11,m!

5
mab

2
@dm8m1~21!mJm82m~2V/d!#. ~3.1!

The transition rate fromu2N11,m) to u2N,m8) is therefore

Gm8m5
Gb

4
@dmm81~21!mJm82m~2V/d!#2. ~3.2!

Similarly, the dipole moment connectingu2N,m) to
u2N21,m8) is

mm8m5~2N21,m8um̂u2N,m!

5
mab

2
@dm8m2~21!mJm82m~2V/d!# ~3.3!

such that the transition rate fromu2N,m) to u2N21,m8) is

gm8m5
Gb

4
@dmm82~21!mJm82m~2V/d!#2. ~3.4!

The total transition rate out ofu2N11,m) is then given by

Gm5 (
m852`

`

Gm8m5
Gb

2
@11~21!mJ0~2V/d!# ~3.5!

and the total transition rate out ofu2N,m) is given by

gm5 (
m852`

`

gm8m5
Gb

2
@12~21!mJ0~2V/d!#. ~3.6!

From the definition of the dressed states it can be seen that
states with a greater contamination of the excited stateub&
are more unstable than others, as expected.

It is clear from Eqs.~3.5! and~3.6! that, unlike in the case
of a monochromatic laser field, the dressed-state transition
rates differ between manifolds of even and odd numbers of
excitations. The dynamics of even and odd manifolds should
therefore be treated separately in order to properly character-
ize an atom dressed by a 100% AM field as we anticipated in
Sec. II. This distinction has recently been made in the litera-
ture @26#.

IV. DRESSED-STATE POPULATIONS

The rates of change of the dressed-state populations may
be described by population rate equations in the secular limit
(d@Gb) of the master equation describing the evolution of

the dressed-atom density operatorr̂AL(t) @15#. If the popu-
lations of the dressed states are defined as

Pm~N;t ![„N,mur̂AL~ t !uN,m…, ~4.1!

then the rates of change for the populations in manifolds
with an odd and even number of excitations can be written
respectively as

d

dt
Pm~2N11;t !52GmPm~2N11;t !

1 (
k52`

`

gmkPk~2N12;t !, ~4.2a!

d

dt
Pm~2N;t !52gmPm~2N;t !1 (

k52`

`

GmkPk~2N11;t !.

~4.2b!

The above infinite set of coupled first-order differential equa-
tions appears rather intractable, but fortunately in our calcu-
lation of the absorption spectrum we will only require
knowledge of the sums of all the populations of levels with
the same total transition rates or natural widths in the dressed
basis.

There are two characteristic dressed-state natural widths,
which we define asG1[G2m5g2m11 and G2[G2m11
5g2m , such that

G65
Gb

2
@16J0~2V/d!#. ~4.3!

If we define the reduced populations

P1~ t ![(
N

(
m52`

`

P2m~2N11;t !1P2m11~2N;t !, ~4.4a!

P2~ t ![(
N

(
m52`

`

P2m11~2N11;t !1P2m~2N;t !, ~4.4b!

where P6 are the total populations in states with widths
G6 , then Eqs.~4.2! reduce to

d

dt
P1~ t !52~G12G!P1~ t !1~G22G!P2~ t !, ~4.5a!

d

dt
P2~ t !52~G22G!P2~ t !1~G12G!P1~ t !, ~4.5b!

where we have defined

G[
Gb

8
@12J0~4V/d!#. ~4.6!

These equations can be solved simply in the quasistation-
ary regime to which we have restricted our consideration
(AN0@GbT@1) to give

P6
ss5

G72G

Gb22G
5
1

2 S 17
4J0~2V/d!

31J0~4V/d! D . ~4.7!
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From Eqs.~4.5! we see that in the steady state the number
of transitions from states with a widthG1 to those with a
width G2 is balanced by the number of transitions in the
opposite direction to achieve a condition of detailed balance.
It can also be shown that in the steady state the total popu-
lation in manifolds of an even or odd number of excitations
approach 1/2, as do the sums of populations of dressed states
uN,m) with even and odd quantum numbersm.

V. ABSORPTION OF A WEAK PROBE

We now introduce a third atomic stateuc& with a natural
width Gc , which is situated\vcb aboveub&. We assume that
vcb is not degenerate with any frequencies in the dressed
system and that the modulation frequency is large compared
to Gc . If we perturbatively dipole coupleuc& to ub& with a
weak monochromatic probe laser field we can neglect any
broadening or frequency shifts. The probe laser will induce
changes in the atomic state fromub& to uc& while the number
of photons in the AM field will remain unchanged.

The statesuc,N1 ,N2&, which are coupled to the dressed
manifolds of states form degenerate manifolds of states
themselves. It can be shown from dipole selection rules that
only statesuc,N1 l ,N2 l &, from what we shall label as the
Ec,2N11 manifold, can couple to states within theE2N11

manifold and only statesuc,N1 l ,N2 l21& within the
Ec,2N manifold can couple to states within theE2N manifold,
wherelP$0,61,62, . . .% ~see Fig. 4!.

To first order in the probe interaction the steady-state
cross section, as a function of the probe frequency, for ab-
sorbing a photon and causing a transition from a dressed
state in theEN manifold to a state in theEc,N manifold is
proportional to the product of the population difference be-
tween the two states and the square of the dipole moment
between the two states with a width equal to the sum of the
widths of the two states@31#. The cross section in the steady
state as a function of the probe laser frequency is therefore

s~vp!5
4p2vcbumbcu2

\c (
N

(
m,l52`

`

Pm
ss~2N!

3Jm22l21
2 ~V/d!L~2l112m;gm!

1
4p2vcbumbcu2

\c (
N

(
m,l52`

`

Pm
ss~2N11!

3Jm22l
2 ~V/d!L~2l2m;Gm!, ~5.1!

where we have calculated the dipole matrix elements

~2N11,mum̂uc,N1 l ,N2 l &5mbcJm22l~V/d!, ~5.2a!

~2N,mum̂uc,N1 l ,N2 l21&5 mbcJm22l21~V/d! ~5.2b!

and represented the normalized Lorentzian with a full width
at half maximum ~FWHM! of g1Gc centered about
Dp[vp2vcb5kd by

L~k;g![
1

2p

~g1Gc!

@Dp2kd#21@~g1Gc!/2#2
. ~5.3!

The frequency separation of the statesuc,N1 l ,N2 l &
and u2N11,m) is vcb12ld2md and the separation of
the states uc,N1 l ,N2 l21& and u2N,m) is
vcb1(2l11)d2md, where m,lP$0,61,62, . . .%. The
probe laser will therefore be resonant with an infinite num-
ber of independent (2d@Gb ,Gc) transitions for any fre-
quency vp'vcb1kd where kP$0,61,62, . . .% ~see
Fig. 4!.

If we consider a given probe frequencyvp'vcb12kd,
then the steady-state absorption cross section about this reso-
nance can be written

s2k~vp!5aP1
ssJ2k

2 ~V/d!L~2k;G1!, ~5.4!

where we have made use of Eqs.~4.4! and represented the
constant factors bya. Similarly for a probe frequency
vp'vcb1(2k11)d the steady-state absorption cross sec-
tion is

s2k11~vp!5aP2
ssJ2k11

2 ~V/d!L~2k11;G2!. ~5.5!

The total absorption cross section as a function of the probe
field frequency is therefore

s~vp!5a (
k52`

`

P2
ssJ2k11

2 ~V/d!L~2k11;G2!

1a (
k52`

`

P1
ssJ2k

2 ~V/d!L~2k;G1!. ~5.6!

We have used the condition that all of the transitions are well
separated (d@Gb ,Gc) in order to incoherently sum the indi-
vidual cross sections above. The above expression suggests a
simple labeling scheme for the absorption resonances
whereby the resonance atvp5vcb1kd is labeled thekth
resonance.

The system we have used above corresponds to a three-
level cascade. In a similar manner the absorption cross sec-
tion can be calculated for the analogous transition in aL or

FIG. 4. Weak probe transitions from the dressed eigenstates to a
third atomic leveluc&.
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V system or for the lower transition of a three-level cascade,
the upper transition of which is being resonantly driven by
the AM field. The spectra of the absorption cross sections
will retain the same form as Eq.~5.6!, but the population
differences, dipole moments, and linewidths will vary de-
pending upon the particular configuration. For example, if
the probe coupled the unstable stateuc& to stateua& instead
of to stateub&, in a V configuration, then the even and odd
resonances would switch widths and population weightings,
while the oscillator strengths of resonances would remain
unchanged. For the other two cases the population would be
pumped into or remain in the third level so that all the reso-
nances would have equal population weightings such that
line strengths would be directly observable from the peak
heights in the absorption spectrum.

VI. DISCUSSION

In Fig. 5 we have plotted the expression in Eq.~5.6! for
the AM Autler-Townes absorption spectrum. We have used
experimentally realistic parameters corresponding to the
3S1/2↔3P3/2↔4D5/2 three-level cascade in Na such that
Gb /2p510 MHz andGc /2p53.15 MHz with a modula-
tion frequencyd/2p540 MHz. These spectra show excel-
lent agreement with plots generated by a matrix continued-
fraction steady-state solution of the three-level optical Bloch
equations with a strong fully AM pump field and weak probe
field. The agreement improves for large values of the ratio
d/Gb , which we have assumed in our calculation. We have
also compared our solution to recently obtained experimental
observations of the Autler-Townes effect for an atom in an
AM field and have found very good qualitative and quanti-
tative agreement@28#.

In Fig. 4 we see that the absorption spectra consist of
many resonances always separated by the modulation fre-
quency. For increasing pump intensities the number of ab-
sorption resonances increases. In fact, for a given Rabi fre-
quency all of the absorption resonances lie within a

frequency range approximately equal to what would have
been the peak separation of the Autler-Townes spectrum for
an unmodulated pump 2V. There will therefore be roughly
2V/d resonances.

We have plotted the absorption spectrum for a large value
of V/d520 along with the envelope of the values of the
peak oscillator strengthsJDp /d

2 (V/d) in Fig. 6. We see that in

the limit of V@d the population weightingsP6 approach
1/2 and spectrum is well described by peaks of aproximately
equal width at the integer values ofk5Dp /d with strengths
Jk
2(V/d), i.e., a comb of equally spaced peaks separated by

d under the envelopeJDp /d
2 (V/d). This envelope has a

modulated structure for values ofDp<V that peaks at
Dp'V and falls off rapidly forDp.V.

It is clear from our expression that the absorption spec-
trum directly reflects the alternation in width of the dressed
states. Even resonances have a FWHM ofG11Gc and odd
resonances have a FWHM ofG21Gc , whereG6 are oscil-
lating functions of 2V/d. The relative widths of the even
and odd components of the spectrum oscillate 180° out of
phase with each other as a function of the modulation index
~see Fig. 5 of Ref. 13! and approach the same value
Gc1Gb /2 for large values ofV/d and at the zeros of
J0(2V/d). The alternation in the widths of the resonances
can be interpreted in the dressed-state picture as being a con-
sequence of selection rules that dictate that for the even reso-

FIG. 7. Time-averaged population of levelub& versusV/d. The
steady-state integrated probe absorption cross section is propor-
tional to the time-averaged population of the probed atomic state.

FIG. 5. Probe absorption cross section in arbitrary units versus
detuningDp in units of modulation frequenciesd with d/Gb54 and
Gb /Gc53 for ~a! V/d51, ~b! V/d515, and~c! V/d530.

FIG. 6. Histogram of absorption cross section and a scaled plot
of JDp /d

2 (V/d) in arbitrary units versus detuningDp in units of
modulation frequenciesd with d/Gb54 and Gb /Gc53 for
V/d520.
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nances the probe only interacts with dressed states with
widths G1 and for odd resonances the probe interacts with
G2 dressed states only.

We can gain further insight into the effect of an intense
fully AM pump field on a two-level resonance by integrating
the expression in Eq.~5.6! over the frequency range of the
probe laser to obtain the total integrated absorption cross
section. This can be shown to be proportional to the steady-
state population of the atomic stateub& averaged over a
modulation period, i.e.,

E s~vp!dvp5ab5a
1

2 S 12
4J0

2~2V/d!

31J0~4V/d!
D . ~6.1!

In this expression, which we have plotted in Fig. 7, we see
evidence of the subharmonic Rabi resonances where the abil-
ity of the driven atom to absorb the probe is maximized to
the saturation level@32#. These resonances occur at the zeros
of J0

2(2V/d) where dressed-state transition rates are equal
G65Gb and hence the populationsP6

ss become equal. At

each resonance another higher-order parametric absorption
process becomes significant; another harmonic of the modu-
lation frequency appears and more peaks arise in the probe
spectrum.

VII. CONCLUSION

In conclusion, we note that we have obtained an analytic
expression, via the dressed state formalism, for the 100%
AM Autler-Townes spectrum in the intense field limit when
the modulation frequency is much greater than the natural
width of the strongly driven transition. Within this formalism
we have found a simple interpretation of the absorption spec-
trum in terms of transitions between dressed states and un-
coupled bare states.
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