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We present an optical implementation of a twisted Landau-Zener model for which local aspects of the
geometric phase strongly influence the transition amplitude. The transition amplitude is influenced by an
interference effect caused by the interplay between geometric and dynamic phases.

PACS number~s!: 32.80.Bx, 03.65.Bz, 34.10.1x

I. INTRODUCTION

A geometric phase is, by definition, the phase change of a
state function due to the curvature of a specific path followed
in parameter space. Usually the geometric phase is consid-
ered for a closed path; therefore it is often expressed as a
closed circuit integral in parameter space@1,2#. Such an ex-
pression is explicitly time independent and brings out the
global properties of path followed in the parameter space.
The interest in this paper is, however, not in such global
aspects of the geometric phase but rather in its local aspects.
These local aspects, i.e., the contribution of geometric phase
to the state function that arises for an open path, may
strongly influence transition phenomena as pointed out by
Berry @3# and others@4,5#.

As an example, consider a two-level system for which the
two adiabatic eigenstates perform an avoided crossing. As-
sume that, due to the particular curvature of the correspond-
ing path in parameter space, the adiabatic eigenstates acquire
an opposite geometric phase which changes in time. Since a
time-dependent phase corresponds to an energy shift, the en-
ergy difference between the two adiabatic eigenstates is ef-
fectively changed. According to familiar dynamical Landau-
Zener arguments this results in a change in the transition
amplitude.

In the original paper by Berry@3# this change is math-
ematically described in the adiabatic limit by multiplying the
dynamical transition amplitude by a so-called geometric am-
plitude factor. In the adiabatic limit transitions are exponen-
tially weak and the geometric amplitude factor is of the order
unity. Experimental results in this limit have been presented
in Ref. @6#. Recently it was shown that the derivation given
by Berry is unnecessarily restrictive@4,5#. In the general case
the effect of the geometric phase on the transition amplitude
can no longer be described as a simple multiplicative factor
but manifests itself in an intertwined way with the dynamical
evolution. In this paper we report on the experimental obser-
vation of the very pronounced features in the transition am-
plitude induced in this general case by the geometric phase.

II. TWISTED LANDAU-ZENER MODEL

We consider an optical implementation of thetwisted
Landau-Zener~LZ! model@3#, which is characterized by the
following Hamiltonian,

H twist5S at Dexp$2 if~ t !%

Dexp$1 if~ t !% 2at D . ~1!

We will refer to f(t) as the twist function. Note that the
twisted LZ model is not merely an academic construction for
illustrating geometric influences on transition amplitudes; in
fact it is the natural generalization of the highly valuable
conventional Landau-Zener model@f(t)50#. The inclusion
of the twist function in the LZ model does not change the
adiabatic energy levelsE6(t); however, it does induce cur-
vature in the path followed in parameter space. For two-level
systems it is convenient to introduce as coordinates of the
parameter spaceX(t), Y(t), Z(t), defined through

H~ t !5S Z~ t ! X~ t !2 iY~ t !

X~ t !1 iY~ t ! 2Z~ t !
D . ~2!

The path followed in parameter space by the conventional
LZ model is a straight line, indicated in Fig. 1~a! by the
dotted line. In this case no geometric effects can occur. For
the twisted LZ model the path is winding and unwinding in
parameter space as shown in Fig. 1~a! by the solid curve@for
f(t)5bt2#. The winding motion gives rise to opposite
geometric-phase contributionsg6 to the two adiabatic eigen-
statesu1& and u2& of H twist . Expressions for the geometric
phases are obtained using the Schro¨dinger equation and the
adiabatic approximation@1#. In the two-level case defined by
H twist they are given by

g6~ t !5
1

\E0
t K 6U ddt8U6 L dt85

1

2E0
t

ḟ~ t8!
at8

E6
dt8, ~3!

FIG. 1. Hamiltonian curves for~a! the conventional Landau-
Zener model~dotted line!, and for the twisted Landau-Zener model
in the case off(t)5bt2 ~solid curve!; ~b! the Gaussian twisted
Landau-Zener model.
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where the overdot denotes a derivative with respect to time.
At this point we should mention that although this paper

deals with classical optical experiments the occurrence of\
in the formulas is not disturbing. We merely choose to adopt
the familiar quantum-mechanical two-level description in
terms of energy levels instead of frequency levels. Using the
well-known relationE5\v allows for a simple transforma-
tion of the quantum-mechanical to the classical formulation.

By making a time-dependent transformation to a frame
comoving withf(t), hereafter referred to as the winding
frame, the geometric phases can be expressed as dynamical
phases@3#. After the transformation the Hamiltonian has the
same form as the conventional LZ model and the geometric
effects now manifest themselves in the adiabatic energy lev-
els,

E68 56A~Z2 1
2\ḟ!21X21Y2. ~4!

Primed quantities refer to quantities in the winding frame. To
describe the influence off(t) on the transition amplitude we
employ the Dykhne-Davis-Pechukas~DDP! method @7# in
the winding frame. This method is, just like the derivation of
the geometric phase, based on the adiabatic approximation
and is therefore suited to incorporate effects of geometric
origin. According to the adiabatic assumption transitions be-
tween adiabatic energy levels can only occur at positions
where the adiabatic energy levels are degenerate. For
avoided crossing models there do not exist such positions for
real values of time. However, the essence of the DDPmethod
is that by continuation of adiabatic following into the com-
plex time plane there do exist such degeneracies at points
tc . These points come in conjugate pairs, and are the branch
points of the square-root expression forE68 .

For the real symmetric Hamiltonian in the winding frame
the adiabatic ‘‘evolution’’ ofuC8(t)& from t50, where we
assume thatuC8(0)&5u1&, to the branch pointt5tc , reads

uC8~ tc!&5expH 2
i

\E0
tc
E18 ~ t !dtJ u1&. ~5!

Since the time is complex valued, the exponent in Eq.~5! no
longer describes a pure phase factor. Instead it also describes
damping if the branch point is chosen in the lower half of the
time plane. Subsequent integration along an infinitesimal
small circle around the square-root branch pointtc provides a
minus sign, which is the same as interchanging the labels of
the adiabatic eigenstates attc . Note that this minus sign
accomplishes the actual transition. It can also be interpreted
as a geometric phase of6p @1#. Integration along the return
path to the real time axis gives the same exponential factor as
in Eq. ~5!. The total transition probabilityP is now given by
exp$2G%, with

G52
4

\
ImE

0

tc
E18 ~ t !dt. ~6!

III. INTERFERENCES

Our key point is that Eq.~4! has more than one pair of
branch points for twist functions which fulfill the physical
requirement of possessing a finite value att→6` @5#. In
this situation there are several ways in which the initial state
u1& can end up in the final stateu2&, hence interference
terms will arise in the expression for the total transition prob-
ability P. Only branch points for which the corresponding
G@ see Eq.~6!# is relatively small will significantly contribute
to P @8#. We introduce for our experiments the following
‘‘physical’’ twist function

f~ t !5m„12exp$2~ t/a!2%…, ~7!

with m anda real valued. We will refer to this model as the
Gaussian twisted Landau-Zener model. The path followed in
parameter space is drawn in Fig. 1~b!. In the parameter re-
gion relevant for our experiment the transition phenomena
are dominated by three pairs of branch points as shown in
Fig. 2.

The transition probability is expected to show interference
phenomena similar to the transition probability for a se-
quence of three avoided crossings. An analytical expression
for the transition probability, using the DDP method in the
primed frame and taking into account the three nearest pairs
of branch points shown in Fig. 2, is obtained as follows. For
an incoming wave functionuC i&, the outcoming wave func-
tion uC f&, i.e., the wave function after passing the sequence
of crossings, is determined by

uC f&5U~ t3!U~ t2→t3!U~ t2!U~ t1→t2!U~ t1!uC i&, ~8!

whereU(t1→t2) andU(t2→t3) represent free propagation
along the real time axis in between the positions of the
branch points, andU(t i) ( i51,2,3) represent the passage of
the branch points. As expressions forU(t1→t2), and simi-
larly for U(t2→t3), we find

FIG. 2. The dots indicate the three pairs of branch points which
dominate the transition phenomena for the Gaussian twisted
Landau-Zener model (a50.44 MHz/ms, D50.33 MHz,a51 ms,
andm55.4 rad!. The asterisk denotes the complex conjugate.
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U~ t1→t2!5S expH 2
i

\E Re@ t1#

Re@ t2#

E18 dtJ 0

0 2expH 2
i

\ERe@ t1#

Re@ t2#

E18 dtJ D , ~9!

and forU(t i)

U~ t i !5S F12UexpH 2
2i

\ E
Re@ t i #

t i* E18 dtJ U2G1/2 expH 2i\ E
Re@ t i #

t i
E18 dtJ

expH 2
2i

\ E
Re@ t i #

t i* E18 dtJ eicF12UexpH 2i\ E
Re@ t i #

t i
E18 dtJ U2G1/2D , ~10!

where

E18 5AS at2
1

2
\ḟ D 21D2, ~11!

with f given in Eq. ~7!. The off-diagonal elements of
U(t i) are obtained from Eq.~6!. The diagonal elements are
calculated by noting that when the probability for making a
transition isP, then the probability for not making a transi-
tion is 12P. Hence the amplitude for not making a transi-
tion is a phase factor timesA12P. A point of concern is that
U(t) should be unitary. This can be achieved by an appro-
priate choice ofc. The choice ofeic521 fulfills this re-
quirement.

The analytical results for the final transition probabilityP
for different values forL are plotted in Fig. 3~circles con-
nected by the solid curve 1!. For comparison we also plotted
the conventional LZ curve~dotted curve 2!. The most sig-
nificant difference between the two curves is the presence of
a local minimum inP for the twisted Landau-Zener curve,
which is a clear indication of the presence of interferences.

IV. EXPERIMENTAL DEMONSTRATION

For our experiments we used an optical two-level system
which is schematically shown in Fig. 4. The mapping of the
optical two-level system to a quantum-mechanical two-level
system has been discussed in previous publications@9#. Here
we will present only a brief outline of the mapping. The two
optical levels are formed by two orthogonal polarization
states of a single longitudinal mode of an optical ring cavity.
The instantaneous polarization eigenstates correspond to the
two adiabatic energy eigenstates of the general two-level
Hamiltonian given by Eq.~2!. The two eigenstates are deter-
mined by three birefringent elements in the form of electro-
optic modulators~EOM’s!, placed inside the optical cavity.
To calculate these eigenstates the Jones matrix formalism is
used@10#. The birefringences of the three EOM’s form, after
a simple linear transformation, the three coordinatesX, Y,
and Z of the parameter space. They can be controlled by
applying electric voltages to the EOM’s so that any path in

FIG. 3. The circles connected by curve 1 are the analytical re-
sults for the final transition probabilityP for different values for
L, in the case of the Gaussian twisted Landau-Zener model. Curve
2 is the conventional Landau-Zener curve.

FIG. 4. Schematic drawing of the optical part of the setup. The
acronyms used are AOM for acousto-optic modulator,P for polar-
izer, EOM for electro-optic modulator, PZT for piezoelectric ele-
ment, NPBS for nonpolarizing beam splitter, and APD for ava-
lanche photodiode.
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the parameter space of the general two-level model can be
traced experimentally.

The initial state of the optical two-level system is pre-
pared by a single-frequency He-Ne injection laser with a
well-defined polarization. Using a piezoelectric-transducer-
mounted mirror~PZT!, the ring cavity is tuned into reso-
nance with the injection light. At a certain intracavity inten-
sity the injection light is switched off by an acousto-optic
modulator~AOM!, and the actual experiment starts. Within
the cavity decay time the path in parameter space shown in
Fig. 1~b! is implemented by the time-dependent voltages ap-
plied to the EOM’s. We designed a polarization-independent
He-Ne light amplifier to enhance the cavity decay time to
approximately 10ms, which is sufficiently long to realize
such an experiment. The dynamics of the intracavity field is
measured by analyzing the polarization of light that leaks out
through one of the cavity mirrors.

Two typical experimental results are shown in Fig. 5. The
horizontal axis is the time axis wheret50 is chosen to co-
incide with t50 in Fig. 2. Plotted on the vertical axis is the
normalized intensity of the1 polarization,ua1(t)u2. The1
polarization coincides with the injection polarization. We
analyze the system in the diabatic, i.e., the uncoupled, basis.
Since the diabatic and adiabatic bases coincide far away
from the crossing region we can determine the transition
probability P between the adiabatic states from the diabatic
population on the right-hand side of Fig. 5.

Curve 1 of Fig. 5 shows the experimental results for the
conventional LZ model in the near adiabatic region
(P50.02!. Note that the oscillating structure after the
avoided crossing att50 indicates that in the crossing region
the adiabatic eigenstates of the system are superpositions of
the1 and2 polarization.

Curve 2 is the time trace ofua1(t)u2 for the Gaussian
twisted LZ model corresponding to the branch points plotted
in Fig. 2. It clearly illustrates the influence of the three pairs

of branch points of which the real parts are indicated by the
dotted vertical lines att50 andt560.93ms. The values for
a andD are the same as for curve 1. Therefore, all differ-
ences between the time traces 1 and 2 are exclusively the
consequence of the twist function. The dotted curves show
the numerically obtained traces which are in good agreement
with the experimental traces.

As explained in Sec. III, the occurrence of a sequence of
three avoided crossings is expected to give rise to interfer-
ence phenomena in the transition probability. To measure
these interferences we performed a series of Gaussian
twisted LZ experiments for different values forD. The ex-
perimental data for the final transition probabilityP between
the adiabatic energy levels is plotted as function of the adia-
baticity parameterL[a/2pD2 in Fig. 6. There is a good
agreement between our experimental data~square points!
and the numerical results~dashed curve!. There is also rough
agreement between our experimental data and the approxi-
mated analytical results~circles connected by dotted curve!
obtained in Sec. III. In particular, the interference phenom-
enon is clearly illustrated by the minimum atL'3.

V. CONCLUSIONS

We have experimentally demonstrated that a single
avoided crossing can behave as a sequence of avoided cross-
ings due to the presence of geometric phases. Interference
between the successive crossings strongly influences the
transition probability. In particular, we introduced the Gauss-
ian twisted Landau-Zener model and compared the transition
properties to those of the conventional Landau-Zener model.

We supported our experimental results by numerical
simulations and by analytical calculations based on the DDP
method. The numerical results are in good agreement with
the experimental results whereas the analytical results show

FIG. 5. Experimental results: curve 1 shows the time trace of
ua1(t)u2 for the conventional Landau-Zener model,a50.44 MHz
ms21, D50.33 MHz; curve 2 shows the time trace for the Gaussian
twisted Landau-Zener model for the same values fora andd and
for a51ms,m55.4 rad. The dotted curves show the corresponding
traces obtained by numerical simulations. The vertical dotted lines
indicate the time positions that correspond to the real parts of the
branch points shown in Fig. 2.

FIG. 6. The square points are the experimentally obtained val-
ues for the final transition amplitudeP as function ofL. Experi-
mentallyL has been changed by varyingD, while a50.49 MHz
ms21, a50.72 ms, andm53.0 rad were kept constant. The dashed
curve represents the corresponding numerical results. The circles
connected by the dotted curve are the corresponding analytical re-
sults as obtained in Sec. III under the approximation that only the
three nearest pairs of branch points to the real time axis are taken
into account.
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only a qualitative agreement. The reason that only rough
agreement is obtained in the analytical case is probably due
to the fact that we took only the three nearest pairs of branch
points in the primed frame into account, and that interference
phenomena are rather sensitive to the small variations in the
system.

Our experimental results were obtained for an optical sys-
tem in which the polarization dynamics of the light can be
described by a Schro¨dinger-like equation. The observed ef-
fects of geometric origin are to be expected also in, e.g.,
atomic and molecular collision experiments or in two-level
atom~or spin-1/2! experiments in which a complex coupling

gives rise to a twist function. In the case of two-level atoms
such a twist function can, for example, be realized by apply-
ing electromagnetic fields which are frequency modulated
@11#.
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