
Theory of a coherent atomic-beam generator

A. M. Guzmán,* M. Moore, and P. Meystre
Optical Sciences Center and Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 7 September 1995!

We present a many-body theory of a driven and damped trapped gas of interacting bosons, and demonstrate
that one of the trap levels can become coherently populated, thereby leading to a coherent atomic-beam
generator, or ‘‘laser for atoms.’’ The specific system we consider consists of a sample of bosonic atoms
interacting via the near-resonant dipole-dipole interaction. The transverse center-of-mass motion of the atoms
is confined by a two-dimensional potential well created by an array of cooling laser beams, while their
longitudinal motion is quantized by a Fabry-Pe´rot for atoms. Under appropriate conditions, the dipole-dipole
selection rules lead to the simplification that only two quantized levels of atomic motion need to be considered
explicitly, the other levels being treated as reservoirs. One of the two levels is the ‘‘pump level,’’ while the
other is the one where atomic coherence builds up~the ‘‘lasing’’ level!. The master equation describing the
dynamics of these levels can be solved numerically, and its solution exhibits a ‘‘threshold behavior’’ with a
transition from super-Poissonian to Poissonian atom statistics in the ‘‘lasing mode.’’

PACS number~s!: 42.50.Vk, 03.75.Fi, 32.80.Pj, 42.50.Ct

I. INTRODUCTION

The fact that it now appears possible to optically manipu-
late atoms systems in mesoscopic quantum states, both lin-
early and nonlinearly, opens up exciting new avenues of in-
vestigation, from fundamental studies of the transition
between microscopic and macroscopic systems, to applied
topics such as the design and realization of a coherent atomic
beam generator, or ‘‘laser for atoms.’’ The goal of the present
paper is to propose and analyze in some detail such a device.

Several groups are actively studying coherent atomic-
beam generators. The schemes proposed so far can be
loosely separated into two categories: the first one considers
noninteracting atoms, or more precisely elastic collisions
only, and relies on the so-called ‘‘Bose enhancement factor’’
to coherently populate a given mode of some atomic trap or
resonator@1–3#. The neglect of inelastic atom-atom interac-
tions in these proposals raises serious questions about their
practicality. In contrast, the scheme that we propose relies
explicitly on inelastic atom-atom interactions to achieve
‘‘lasing.’’ As such, it is quite similar to the general proposal
by Hollandet al. @4#, although its specifics are substantially
different.

It should be noted at the onset that there is a fundamental
difference between Bose condensation@5,6# and a coherent
atomic-beam generator, the first one being an equilibrium
phenomenon while the second is predicted to occur in a
driven system. Hence, the coherence properties of the ‘‘atom
laser’’ are expected to be quite different from those of a Bose
condensate.

The coherent atomic-beam generator~CAB! that we pro-
pose is based on a generalization of the nonlinear optical
cavity recently analyzed in Ref.@7#, and relies explicitly on
the occurrence of long-range two-body collisions in its dy-
namics: The de Broglie waves resonator achieves the longi-

tudinal confinement of matter waves via a Fabry-Pe´rot for
atoms @8#, the end mirrors being formed, e.g., by focused
laser beams or by evanescent waves. In addition, transverse
confinement is achieved by the quasiharmonic wells gener-
ated by laser cooling beams. As shown, e.g., in Ref.@9#, even
if the cooling laser beams are detuned sufficiently far from
resonance to allow for the adiabatic elimination of the ex-
cited electronic states of the atoms, the ground-state trapped
atoms are subjected to a two-body dipole-dipole interaction
potential arising from their coupling to the vaccuum modes
of the electromagnetic field@10,11#. Due to their long-range
character these collisions present the significant advantage of
producing the nonlinearity required to achieve stimulated
amplification of the population of one of the cavity modes at
reasonably low densities. In addition, their cross section can
be tuned over several orders of magnitude by varying system
parameters including the atom-field detuning and the precise
geometry of the cavity. We will show how, in combination
with cavity losses, these two-body interactions permit one to
build a nearly Poissonian atomic distribution in one of the
cavity modes.

Section II presents our model, discusses the geometry of
the CAB cavity, and introduces the dipole-dipole interaction
between atoms. This interaction is considered in more detail
in Sec. III, where we show that it leads to selection rules that
permit one to restrict the dynamics of the system to just a
few cavity modes. Section IV discusses the CAB dynamics,
using second quantization to describe the evolution of the
occupation of the cavity modes of interest. The pump and
loss mechanisms are described by a master equation, which
is also introduced in that section. In Sec. V, we then turn to a
numerical solution of this master equation, and show that
‘‘laser’’ action can be achieved for quasirealistic choices of
parameters. Finally, Sec. VI is a summary and conclusion.

II. MODEL

We consider the matter waves resonator schematically
represented in Fig. 1. The atomic mirrors are separated by a
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distanceL along the 0z axis of atomic motion. The proper-
ties of a Fabry-Pe´rot for atoms operating in the quantum
regime have been previously discussed@8#. We consider ex-
plicitly the case of large detunings between the atomic tran-
sition under consideration and the light fields, so that the
excited atomic states can be adiabatically eliminated and we
need consider the atomic ground states only. This is impor-
tant if spontaneous heating, which is bound to be detrimental
to CAB operation, is to be minimized. For the appropriate
sign of the detuning, the light-induced atomic mirrors pro-
vide a repulsive potential for the center-of-mass motion of
ground-state atoms and lead to a quasidiscrete set of resonant
longitudinal modes for the atomic de Broglie waves. Their
number and tunneling losses depend on the height and width
of the potential barriers. In addition to this longitudinal trap-
ping, transverse confinement of the atoms is produced by
two counterpropagating lasers in a lini lin configuration@12#,
and is assumed to be uniform along 0z.

The cooling laser beams are assumed to produce a series
of quasiharmonic wells that transversally confine the atoms
to better than a wavelength, which has been achieved experi-
mentally @13–15#. For noninteracting atoms confined within
one such well, the low-lying eigenstates of center-of-mass
motion can be approximated by Hermite-Gaussian functions

xuv~x,y!5
1

WTA2u1vpu!v!

3expF2
x21y2

2WT
2 GHu~x/WT!Hv~y/WT!, ~1!

whereu and v are integers equal to zero or positive, with
corresponding eigenenergies

Euv5~u1v11/2!\VT . ~2!

Here\VT5A2U0ER, U0 is the depth of the optical poten-
tial, andER5\2kL

2/2M is the atomic recoil energy for the
cooling laser of wave numberkL . For simplicity, we neglect
the effects of gravity, which acts along 0x and shifts the
transverse equilibrium position of the atoms. We furthermore
approximate the longitudinal eigenstates of the resonator by
sinelike functions

f l ~z!5A2/Lsin~k l z!, ~3!

wherek l 5kl 2ıs l are complex wave numbers with

kl 5pl /L, ~4!

l being an integer. Their imaginary part accounts for losses,
due, e.g., to tunneling through the positive constants l . For
s l !kl , the corresponding eigenenergies are

El 5
@\k l #2

2M
5kL

22F S pl

L D 222ıs l kl GER . ~5!

A full set of quasibound states of center-of-mass motion of
the ~ground electronic state! atoms in the CAB cavity is
therefore given by

c l uv~r ,t !5xuv~x,y!f l ~z!exp@2ı~Ej1Euv!t/\#. ~6!

We assume in the following that the potential barrier pro-
vided by the atomic mirrors is lower than the energy of the
first excited transverse level, so that all trapped atoms are in
the ground stateu5v50 of transverse motion.

In contrast to those ‘‘atom laser’’ schemes that rely solely
on Bose enhancement to coherently populate one of the trap
levels @1–3#, our system uses explicitly two-body collisions
to achieve laser action. For the situation at hand, the domi-
nant source of atom-atom interactions is expected to be the
near-resonant dipole-dipole interaction, whereby a photon
spontaneously emitted by one atom is reabsorbed by a neigh-
boring one. This long-range interaction is expected to domi-
nate all other collisions at the densities we are interested in.
Since it is important to reduce spontaneous heating as much
as possible, the detuningD between the laser and atomic
transition frequencies must be kept quite large, in which case
the upper electronic levels can be adiabatically eliminated. In
this regime, the atoms experience the two-dimensional trans-
verse trapping potential@9#:

V~r !5
\uV~1 !~r !u2

4~D1ıg/2!
, ~7!

whereV (6)52m•E6/\ are the Rabi frequencies of the two
counterpropagating laser beams forming the transverse opti-
cal lattice,

E65E0@ êxcoskLy6ıêycoskLx#. ~8!

m is the dipole moment of the transition, andg is its natural
linewidth. In addition, ground-state atoms at the center-of-
mass locationsr andr 8 are subject to an effective two-body
dipole-dipole potential whose explicit form in the case of
two-level transitions is@9,11#

Vdd~r ,r 8!5
ı\

4~D21g2/4! FL~r2r 8!V~1 !~r !V~2 !~r 8!1
g/21ıD

g/22ıD
L~r2r 8!*V~2 !~r !V~1 !~r 8!2

uL~r2r 8!u2

g/22ıD
uV~1 !~r 8!u2G ,

~9!

where

L~r2r 8!5(
kl

F2pvk

\Ve
G u m•êklu2H Fpd~vk2vL!1PS ı

vk2vL
D Ge2ık•~r2r8!1PS ı

vk1vL
Deık•~r2r8!J . ~10!

Here, the indexl labels the two orthogonal field modes corresponding to each wave vectork, with polarization vectors
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êkl . In addition to the dipole-dipole potentialVdd , the dipole-dipole interaction also leads to additional contributions to atomic
damping and fluctuations that are ignored here. Expanding the many-particle Schro¨dinger field operator onto the eigenstates
basis of the resonator as

C~r !5(
l uv

c l uv~r !cl uv , ~11!

where the annihilation and creation operatorscl uv andcl 8u8v8
† satisfy the boson commutation relations

@cl uv ,cl 8u8v8
†

#5d l l 8duu8dvv8 ~12!

finally permits one to reexpress the second-quantized version of the dipole-dipole interactionVdd as

V̂dd5E drE dr 8C†~r !C†~r 8!Vdd~r ,r 8!C~r 8!C~r !5 (
j lmn

E drE dr 8c j* ~r !c l* ~r 8!Vdd~r ,r 8!cm~r 8!cn~r !cj
†cl

†cmcn

[ (
j lmn

Vjlmn , ~13!

where the indices are now composite indices including all three quantum numbers required to describe the center-of-mass state
of the atoms. Since we consider only the ground electronic state of the atoms, and only the ground state of transverse motion,
these labels actually label the longitudinal mode of motion.

III. SELECTION RULES

The selection rules obeyed by the dipole-dipole interaction are obtained by computing the matrix elementsVjlmn of the
dipole-dipole potential for the explicit form~8! of the laser fields used to achieve the transverse confinement of the atoms.
Integrating overr and r 8, going to the continuum limit (1/Ve)(k→(2p)23*d3k, whereVe is the quantization volume, and
integrating overk5uku and over the azimuthal anglef in reciprocal space yields then in the absence of losses

Vjlmn5
8

3
s0\GS kLL D 2e2kL

2WT
2/2kjklkmkncj

†cl
†cmcn E

0

p/2

sinucos2udue2kL
2WT

2sin2u/2@ I 0~kL
2WT

2sinu!11#

3
G j lmn~u!

@kL
2cos2u2~k j*1kn!

2#@kL
2cos2u2~k j*2kn!

2#
3

1

@kL
2cos2u2~k l*1km!2#@kL

2cos2u2~k l*2km!2#
, ~14!

whereu is the angle betweenk and thez axis, I 0 is a modified Bessel function of zeroth order,s0 is the saturation parameter

s05
V0

2/2

D21g2/4
, ~15!

whereV052E0umu/\ is the Rabi frequency, and

G j lmn~u!5H 0 if j1n andl1m have different parity

2@S ~sinu!1~21!~ j1n!sin~kLLcosu!# if j1n andl1m have the same parity
~16!

establishes selection rules between the various modes of the
resonator for the dipole-dipole interaction. The explicit form
of S (sinu) is

S ~sinu!5A2

p
ekL

2WT
2sin2u/2E

0

`

dxe2x2/2sin~kLWTxsinu!.

~17!

The expressions~14! and ~17! are still valid in the presence
of small lossess l !kl , and were obtained after disregard-
ing terms describing self-energy contributions to the dipole-
dipole interaction.

In order to analyze the impact of the resonance denomi-
nators in Eq.~14!, we introduce the parameters through
kLcosu5sp/L. ~Note that this parameter is normally non-
integer.! The leading term in the numerator of Eq.~14! has a
bell-shaped form as a function ofu in the interval
0<u<p/2, and its maximum lies aroundumax'p/4 for
WT<l/4. AsWT is increased the maximum moves towards
higher values ofu. This indicates that for transversally well-
confined atoms (WT<l/4), the dominant processes are those
for which cosu5cosumax'A2/2. Equation~5! shows that in
that case, and for negligible losses, the value
s52Lcosumax/l labels the longitudinal resonator mode of
energy equal to half the recoil energy of the atoms. Restrict-

53 979THEORY OF A COHERENT ATOMIC-BEAM GENERATOR



ing our discussion to cavity modes with quantum numbers
larger thans, we conclude then by inspection of the denomi-
nators in Eq.~14! that there are only two kinds of resonantly
enhanced processes, corresponding to eitherj2n56s or
l2m56s. In physical terms, this indicates that the domi-
nant matrix elements of the dipole interaction correspond to
resonantly enhanced processes satisfying the ‘‘momentum
conservation’’ condition

kj2kn56~kl2km!'kLcosumax. ~18!

The combinations of creation and annihilation operators as-
sociated with these elementary processes, as well as the cor-
responding changes in atomic center-of-mass energy, are
summarized in Table I.

The resonance condition~18! indicates that the energy
levels of the atomic resonator are predominantly coupled
within manifolds separated in momentum by the wave num-
ber (A2/2)kL , the coupling between manifolds being very
weak. This suggests a simple approach to the theory of a

‘‘laser for atoms,’’ where only one manifold is considered in
a first step. The contributions of the various manifolds can
subsequently be incoherently added if necessary, in a manner
reminiscent of inhomogeneously broadened laser theory. It
should be noticed that good transverse confinement is essen-
tial to this approach, since the momentum spacing between
levels within a manifold becomes smaller for weaker con-
finement.

The number of bound states to be considered in a particu-
lar manifold depends of course on the height of the Fabry-
Pérot potential barrier. Selective pumping into an excited
cavity mode belonging to a specific manifold could, for in-
stance, be achieved by resonant tunneling from a first stage
resonator fed from a cold atomic cloud via Sisyphus cooling
@12,16#. The output coupling could result, e.g., from turning
off the optical mirrors, a rather crude but effective type ofQ
switching.

We can estimate the value ofVjlmn by setting
cos2u'cos2umax in the denominator of Eq.~14!. With Eq.
~18!, and neglecting terms quadratic in the loss rates
g i5\s iki /M , yields

Vjlmn'2ı
\s0G

3L2
e2kL

2WT
2/2

cj
†cl

†cmcn
@~\g j /Ej !kj1~\gn /En!kn#@~\g l /El !kl1~\gm /Em!km#

uuV j lmnuu, ~19!

where the reduced dipole-dipole interaction matrix elementuuV j lmnuu is given by

uuV j lmnuu5E
0

p/2

sinudue2kL
2WT

2sin2u/2cos2u@ I 0~kL
2WT

2sinu!11#G j lmn~u!. ~20!

Terms of the form\g l in Eq. ~19! represent the energy
width of the Fabry-Pe´rot level l . We see, then, that the
strength of the dipole-dipole interaction depends on the spe-
cific cavity design through~i! the finite width of the Fabry-
Pérot levels arising from tunneling losses, which can be es-
timated by assuming a rectangular optical potential barrier
@17#; ~ii ! the intensity and detuning of the laser beams used
for the transverse confinement of the atoms which determine
the saturation parameters0; and finally ~iii ! the ratio of the
longitudinal to transverse dimensions of the cavity.

IV. MASTER EQUATION

Using as a guide the discussion of the preceeding sec-
tions, we consider a model of a CAB including two levels of
center-of-mass motion coupled to two separate reservoirs.
The ‘‘pump’’ level u3& is taken to be the highest bound level
of the resonator. It is pumped by a process sufficiently state
selective that pumping into other levels can be neglected. For
example, one possibility might involve a geometry consist-
ing of two coupled cavities separated by a potential wall

FIG. 1. Coherent atomic-beam generator cavity, illustrating the
longitudinal confinement achieved by two mirrors for atoms at po-
sitions z50 and z5L, as well as the transverse confinement
achieved by two pairs of counterpropagating lasers in lini lin con-
figurations.

TABLE I. Selection rules for the predominant dipole-dipole col-
lisions.

n,m.s DE/ER(l/2L)
2

l2m5s cn1s
† cm1s

† cmcn 2s212s(m1n)
j2n5s

l2m52s cn1s
† cm2s

† cmcn 2s222s(m2n)

l2m5s cn2s
† cm1s

† cmcn 2s212s(m2n)
j2n52s

l2m52s cn2s
† cm2s

† cmcn 2s222s(m1n)
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slightly lower than the external atomic mirrors. Pumping
would then result from the escape of atoms from the initially
filled ‘‘pump’’ cavity over this wall and into the initially
empty ‘‘laser’’ cavity. ~In that case, the levelu3& would
strictly speaking be shared by both cavities, but the two cavi-
ties could be considered as independent as far as their lower
levels are concerned, provided that intercavity tunneling can
be ignored.! Another possibility would involve quantum tun-
neling through the laser cavity mirrors, but the achievement
of a significant pump rate would imply a broadening of the
pump level that might not be acceptable.

As discussed earlier, the selectively pumped levelu3& is
predominantly coupled by the dipole-dipole interaction to a
manifold of levels separated in momentum by integers of
(A2/2)kL . From all collision processes satisfying the mo-
mentum resonance condition~18!, those associated with the
smallest energy defect dominate the dynamics, as sketched in
Fig. 2. Since elastic collisions do not change the populations
of the various levels involved and hence yield only fre-
quency shifts, the smallest relevant energy defects are
DE56ER . Collisions withDE51ER correspond to~a! the
annihilation of two atoms from stateu3&, the creation of an
atom in the continuum stateu4&, and the creation of one
atom in the resonator bound stateu2&: or ~b! the annihilation
of two atoms from stateu2& and the creation of atoms in
statesu3& and u1&. The energy defect2ER corresponds to
the reverse processes.

Since the levels in the manifold with energy higher than
that of levelu2& are by construction continuum levels, they
are characterized by a free space density of states, and hence
we proceed by treating levelu4& as part of a thermal reser-
voir. Physically, this indicates that we make the quite reason-
able assumption that once an atom has been excited to the
continuum, it irreversibly escapes from the system. Level

u1& is also treated as being part of a reservoir, this approxi-
mation resulting in this case from the observation that the
density of bound states of the resonator increases as we move
down the manifold in energy, a consequence of the quadratic
dependence of energy on center-of-mass momentum. For ex-
ample, for a cavity length of about 20 optical wavelengths,
the energy separation between bound levels near the bottom
of the potential well is about 231023ER . This is much
smaller than the energy defectER , so that near the bottom of
atomic Fabry-Pe´rot, the center-of-mass energy levels can in-
deed be approximated as a continuum. These approximations
lead to a simple ‘‘two-level CAB’’ model, where a pump
level u3& and a ‘‘lasing’’ level u2& are coupled to each other
as well as to two reservoirs symbolically labeledu1& and
u4& via near-resonant dipole-dipole collisions. In addition,
the pump levelu3& is selectively pumped, e.g., by tunneling,
and linear losses from the levelsu2& and u3& are also in-
cluded.

Adiabatically eliminating the reservoirsu1& andu4& in the
Born-Markov approximation readily leads then to the CAB
master equation

FIG. 2. Four-level scheme for a CBA generator. Levelu2& is the
‘‘lasing’’ level, level u3& is the pump level, and levelsu1& and u4&
are treated as parts of two Markovian reservoirs, as discussed in the
text. The collision processes with smallest energy defects are indi-
cated by arrows. Dashed arrows represent collision processes that
do not contribute to variations in level population. The energy de-
fect related to each family of processes is specified at the bottom of
the figure.

FIG. 3. ProbabilityP(n2) of havingn2 atoms in levelu2& as a
function of n2 and time. This plot is fora150.2, a457.5,
b250.5, b350.5, andL35600 ms21, all rates being in units of
ms21.

FIG. 4. ProbabilityP(n3) of havingn3 atoms in levelu3& as a
function ofn3 and time. All parameters as in Fig. 3.
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dr

dt
52

ı

\
@V̂dd12,r#1

a1

2
~2c3

†c2c2rc2
†c2

†c32c2
†c2

†c3c3
†c2c2r2rc2

†c2
†c3c3

†c2c2!

1
a4

2
~2c2

†c3c3rc3
†c3

†c22c3
†c3

†c2c2
†c3c3r2rc3

†c3
†c2c2

†c3c3!1
b2

2
~2c2rc2

†2c2
†c2r2rc2

†c2!

1FL3

2
1

b3

2 G~2c3rc3†2c3
†c3r2rc3

†c3!1
L3

2
~2c3

†rc32c3c3
†r2rc3c3

†!, ~21!

which describes the dynamics of the two-level CAB. The first term on the right-hand side of this equation, proportional to
V̂dd125V1212c1

†c2
†c1c21V2323c2

†c3
†c2c31H.c. does not contribute to the population dynamics of the CAB, as already discussed,

but can give rise to energy shifts. The next two terms describe the coupling to the reservoirs, whose strength is given by
a152pD(E1 /\)uV2213u2/\2 anda452pD(E4 /\)uV2433u2/\2 with D(E/\) being the reservoir density of states at the energy
E. Linear loss and pump rates have been phenomenologically added in their standard Lindblad form, withb i ,i52,3 being
linear loss rates andL3 being the constant pump rate of levelu3& @18#.

From the master equation~21!, we can readily derive equations of motion for the diagonal density matrix elements
corresponding to the probabilitiesPn2 ,n3

of having n2 and n3 atoms in levelsu2& and u3&, respectively. These coupled
equations have the form

dPn2 ,n3
dt

5a1@n3~n211!~n212!Pn212,n3212n2~n221!~n311!Pn2 ,n3
#1a4@n2~n311!~n312!Pn221,n312

2n3~n321!~n211!Pn2 ,n3
#1b2@~n211!Pn211,n3

2n2Pn2,n3
#1L3@n3Pn2,n3212~n311!Pn2,n3

#1~L31b3!

3@~n311!Pn2,n3112n3Pn2,n3
#. ~22!

V. DYNAMICS

In order to gain insight into the dynamics of the CAB, we
have numerically solved the system of equations~22!, as-
suming that at the initial timet50 the cavity is empty and
level u3& starts being pumped at the constant rateL35600
ms21. The numerical values of the dipole-dipole ratesa1
anda4 , as well as those of the linear losses, can be substan-
tially varied by modifying the cavity design, and we have
chosen values close to those believed to be experimentally
achievable. In our numerical work, we have varied the value
of a4 while keeping all other parameters constant.

Figure 3 shows an example of temporal evolution of the
system where the population of the ‘‘lasing’’ levelu2& builds

up to a steady state with atom statisticsP(n2)5(n3
Pn2 ,n3

reminiscent of the Poissonian photon statistics characteristic
of a single mode laser. Att50 the level is empty, and the
probability of having 0 atoms is 1. But when the pumpL3 is
turned on, the maximum of the probability distribution
P(n2) is shifted towardsn2'30 and a steady state is reached
where theP(n2) is approximately Poissonian. A qualitatively
different behavior is observed for the temporal evolution of
the probability P(n3)5(n2

Pn2 ,n3
of having n3 atoms in

level u3&, as shown in Fig. 4. This distribution becomes
wider with time, but its maximum remains atn350. In this
regime, the mean population in levelu3& remains low, and
smaller than the mean population in levelu2&.

The behavior of the system as a function ofa4 is summa-
rized in Figs. 5–8. The time evolution of the mean atomic
population^n2& of the ‘‘lasing’’ level is shown in Fig. 5. It
increases with time and eventually reaches a steady-state
value, which becomes larger with largera4 . Figure 6 shows
the normalized variance, or Fano factor

v25
^n2

2&2^n2&
2

^n2&
~23!

of the ‘‘lasing’’ mode u2& as a function of time and for vari-
ous values ofa4 . ~Figure 2 corresponds to the thick solid
line on this figure.! Large fluctuations occur for short times,
after which the system settles to a steady state. We observe
that for large enougha4 , v2 converges to a value approxi-
mately equal to 1, which corresponds to a Poissonian distri-
bution. For smaller values ofa4 , in contrast, the final atom
statistics in modeu2& is always super-Poissonian. Note also

FIG. 5. Mean atomic population̂n2& in the ‘‘lasing level’’ as a
function of time for various values ofa4 , as indicated in the figure.
All other parameters as in Fig. 3.
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the large transient fluctuations fora4 at the ‘‘threshold’’ be-
tween super-Poissonian and Poissonian steady-state atom
statistics.

For comparison, Fig. 7 shows the mean atomic population
^n3& in level u3&. We see that fora4 well below threshold,
the mean population̂n3& is quite large; since the coupling to
the reservoiru4& and to the lasing levelu2& is weak, level
u3& is not significantly depleted. Above threshold, in contrast,
the population of levelu3& remains very small. The normal-
ized variancev3 of this level is shown in Fig. 8. Even above
‘‘threshold,’’ where the atom distribution in levelu2& be-
comes Poissonian, the value ofv3 remains around 2, a sig-
nature of incoherent, super-Poissonian atom statistics.

VI. CONCLUSIONS

It has been realized for some time that two-body interac-
tions such as the near-resonant dipole-dipole interaction lead
to the appearance of nonlinear effects in atom optics. In this
paper, we have shown how this nonlinearity can be used in
the design of a coherent atomic beam generator, or ‘‘atom
laser.’’ The specific system we have considered involves the
use of the near-resonant dipole-dipole interaction between
atoms in atomic resonators selectively pumped, e.g., via

quantum tunneling. We determined that for transversally
well-confined atoms, dipole-dipole collisions are resonantly
enhanced when the atom-atom interactions involve momen-
tum changes equal to (A2/2)kL , kL being the photon mo-
mentum of the lasers used to excite their dipoles. Hence, as
the atoms collide their center-of-mass state moves up or
down the eigenenergies ladder of the resonators in steps in-
volving hundreds of resonator levels. This leads to the con-
siderable simplification that all cavity levels except a few can
effectively be treated either ignored or handled as a quasi-
continuum, and therefore to a model of a coherent atomic-
beam generator consisting of a ‘‘two-level’’ system coupled
to two reservoirs via the dipole-dipole interaction. The first
of these reservoirs describes levels near the bottom of the
Fabry-Pe´rot, while the other describes unbound levels. Nu-
merically solving the resulting master equation for the CAB
dynamics, we demonstrated that a steady state with Poisso-
nian population of the ‘‘lasing level’’ can be achieved if the
dipole-dipole coupling between the pump and laser levels is
strong enough.

There are still a number of open questions about the pro-
posed coherent atomic-beam generator, and they will be ad-
dressed in subsequent work. For instance, we have so far
concentrated only on the population of the various levels
involved, but other correlation functions, involving nondi-
agonal elements of the atoms’ density operator, promise to
yield important information about the coherence of the gen-
erated beam. Also, we have used the idea of threshold very
loosely here. Because the system under consideration has a
very small size — the mean atom numbers in the ‘‘lasing’’
mode are only 30 or so, no sharp threshold is expected in this
system. Yet, it will be interesting and useful to study the
transition between incoherent and coherent output in more
detail. Other aspects of our theory that require more attention
include the analysis of pump mechanisms and the assump-
tion that a number of cavity levels can be adequately treated
as reservoirs. This ansatz will need to be tested against more
detailed numerical work. Finally, we mentioned that the sys-
tem we have investigated produces a rather weak mean
population of the coherently populated cavity mode. It will
be well worth investigating ways to improve the CAB output
in the future.

FIG. 8. Temporal dependence of the normalized variancev3 of
the atom statistics in stateu3&. The various curves correspond to the
values ofa4 specified in the figure. All other parameters as in Fig.
3.

FIG. 6. Temporal dependence of the normalized variancev2 , or
Fano factor, of the atom statistics in stateu2&. The various curves
correspond to the values ofa4 specified in the figure. All other
parameters as in Fig. 3.

FIG. 7. Mean atomic population̂n3& of the pumping levelu3&
as a function of time for various values ofa4 , as indicated in the
figure. All other parameters as in Fig. 3.
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