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Collective laser cooling of two ions moving in a trapping potential is studied theoretically in the limit when
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intensities describing the effects of dipole-dipole interaction and super- and subradiance on the cooling dy-
namics.
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I. INTRODUCTION

Many-body and collective atomic phenomena are pres-
ently of central interest in the investigation of trapped and
laser cooled atoms@1#. In the context of ion traps, recent
experiments have reported the storage of a few tens of ions
in linear and ring traps, as well as the formation of ion crys-
tals @2–5# ~see@6# for a recent review!. The purpose of this
paper is to study theoreticallycollectiveeffects in laser cool-
ing in the simple system of two ions moving in a trapping
potential@7#. ~For two unbound atoms, see@8#.! We are par-
ticularly interested in a situation in which the two ions are
close together at a distance comparable to or smaller than the
wavelength of the exciting laser light. This research is moti-
vated in part by recent progress in building microtraps
@9,10#, which have an extremely strong confining potential
for the ions and thus force the ions to small distances@11#.

Collective effects in laser cooling of trapped ions manifest
themselves both in the external and internal dynamics. First,
the Coulomb interaction couples the motion of the ions in the
trap. Thus the ions perform oscillations corresponding to the
collective eigenmodes of the ions around their equilibrium
positions, resulting from the Coulomb repulsion and the trap-
ping force. Second, for distances comparable to the wave-
length of the light, the internal structure of the two ions
forms a ‘‘quasimolecule,’’ where the dipole-dipole interac-
tion couples and splits the unperturbed atomic levels. In ad-
dition this interaction modifies the atomic spontaneous decay
rate, leading to the formation of a superradiant and a subra-
diant ~metastable! manifold with a radiative decay constant
that is larger or smaller than the unperturbed single-atom
decay width, respectively@12#.

Many-particle laser cooling is one of the most active sub-
jects in atom physics. With recent developments and the ap-
pearance of new techniques, very low temperatures at high
densities have been achieved during the last few years@13#.
One of the goals of this branch of physics is to observe

quantum statistical effects related to the bosonic or fermionic
nature of the atomic sample@1#. At the conditions required to
observe these phenomena, atom-atom interactions become
important. In fact, it has been predicted and observed that
with the usual laser cooling techniques dipole-dipole interac-
tions lead to extra heating forces at sufficiently high densities
@14,15#. For neutral atoms the interplay between cold atomic
collisions and laser cooling is an extremely complex theo-
retical problem@16#. In contrast to the case of neutral atoms,
laser cooling of two interacting ions in a trap provides a
theoretically tractable but nonetheless experimentally realiz-
able model system, which can provide important insights on
our way to understanding more complex many-body sys-
tems. From the theoretical point of view, the two-ion system
has the advantage that ions at sufficiently low temperatures
perform only small oscillations around their equilibrium po-
sitions. This allows an expansion in terms of a small param-
eter, which corresponds basically to the ratio of the ampli-
tude of the oscillations to the wavelength of the laser
exciting an internal transition~Lamb-Dicke limit @17#!. The
cooling of vibrational modes of trapped-ion clusters has al-
ready been studied by Javanainen@18#. For the case of two
ions, we go beyond that analysis by including dipole-dipole
interaction. This interaction is reflected in the cooling rates
and final temperatures. Thus, from the experimental point of
view, two trapped ions constitute a unique system in which
basic dipole-dipole interactions and super- or subradiant ef-
fects @19,20# can be studied in detail without the complica-
tions due to short-range interactions in atomic collisions and
quantum statistical effects.

The paper is organized as follows. In Sec. II, a qualitative
overview and some of the basic results are given, stressing
the differences in comparison with the single-atom case. In
Secs. III and IV, they are derived in more detail. In Sec. V we
give a deeper analysis of the results. Finally, Sec. VI contains
a summary of the main results.

II. OVERVIEW

The purpose of this section is to give a qualitative over-
view and summary of the essential physics of laser excitation
and cooling of two ions in a trap. We are particularly inter-
ested in the case in which the two ions are at a distance
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smaller than the laser wavelengthl so that dipole-dipole
interaction between the ions and modification of the ion life-
time ~superradiance! are important. For comparison with the
two-ion case we start with a brief review of laser cooling of
a singletrapped ion@17#. A detailed derivation of our results
for two ions, based on a master-equation treatment, will be
presented in the following sections.

A. Single-ion laser cooling

Let us consider an ion with ground and excited states
ug&, ue& ~possibly degenerate!; transition frequencyv0; and
spontaneous decay rate 2g. The ion moves in a harmonic
trap centered atx50, with frequenciesnx,y,z along the three
principal axes. We will denote the corresponding oscillator

states by un&5unx ,ny ,nz&, with quantum numbers
nu50,1, . . . (u5x,y,z). The ion is excited by a laser beam
of frequencyvL , which induces transitions between ground
and excited levels, and also changes the motional state. In
the low-intensity limit ~below saturation!, the atom spends
most of its time in its ground stateug&. In this case it is
simple to derive rate equations that describe the change of
the motional state after an absorption or spontaneous-
emission cycle . They are given by@21,17#:

d

dt
pm5 (

nÞm
~Gm←npn2Gn←mpm!, ~1!

wherepn5^nu^gurug&un& is the population of levelun&, and
the transition rates from levelun& to um& are

Gm←n52g
3

8p (
l51,2

E dV k̂U^mu^gue2 ik•x[el~ k̂…–D†#
1

Heff2En
HL~x!ug&un&U2. ~2!

In this equation,HL is the Hamiltonian describing the atom-
laser interaction, andHeff is the free effective ~non-
Hermitian! Hamiltonian for the free evolution of the ion in
the trap, including the decay of the excited-state population
due to spontaneous emission. The energy of the state
un&ug& is En , i.e., H effun&ug&5Enun&ug&. The position op-
erator is denoted byx, andD is the dipole operator for the
transition from the ground to the excited levels. Finally,k
andel are the wave vector and a unit vector corresponding
to polarizationl of each spontaneously emitted photon, re-
spectively. The interpretation of the transition amplitude is
simple if one reads it from right to left: the ion initially in its
ground internal state and in the oscillator stateun& is excited
by absorbing laser light, and after free evolution it returns to
the ground state by emitting a spontaneous photon. The rates
are summed~integrated! over the possible polarizations~di-
rections! of the spontaneously emitted photon. Given the de-
pendence on the position operator ofe2 ik•x and HL , the
oscillator state changes to the stateum& because of the recoil
in the absorption and emission processes.

In current experiments with single ions, the motion of the
trapped atom is restricted to a region of space that is small
compared to the laser wavelength, so that the Lamb-Dicke
limit holds @17#. In this case, formula~2! can be further sim-
plified by expansion ofe2 ik•x andHL aroundx50, includ-
ing terms up to first order,

Gm←n52g
3

8p (
l51,2

E dV k̂uel~ k̂!•@b2 id~ k̂!#u2, ~3!

where

b[^mu^guD†
1

Heff2En
HL

~1!ug&un&, ~4a!

d„k̂)[^mu^guD†~k•x!
1

Heff2En
HL

~0!ug&un&. ~4b!

HereHL
(0) (HL

(1)) denotes the zeroth-~first-! order expan-
sion of the atom-laser interaction Hamiltonian~for a detailed
definition see the following section!. In the Lamb-Dicke
limit the quantum oscillator state can change only by61.
For example, considering how the motion can change along
the directionp5x,y,z, there are two kinds of rates: the rate
Gnp11←np

describes heating processes, whileGnp21←np
cor-

responds to cooling. In particular,b andd are directly related
to the amplitudes corresponding to the following two pro-
cesses@17#:

~i! The trap state is changed during the excitation by the
laser (ug;np&→ue;np61&) and remains unchanged in the
subsequent spontaneous emission (ue;np61&→ug;np61&).
This corresponds to a heating-cooling process.

~ii ! The laser excites the atom without affecting the trap
state (ug;np&→ue;np&), which is changed in a subsequent
spontaneous emission (ue;np&→ug;np61&) of a photon with
direction k̂ and polarizationel( k̂…. This is a diffusion pro-
cess.

Since the two different amplitudes in Eq.~3! are added,
there is, in principle, interference between these two chan-
nels. However, the cross term of the square is an odd func-
tion of the integration variablek̂, and therefore it vanishes
upon doing the integration overdV k̂ . That is, when averag-
ing over all possible spontaneous emission processes, the
interference disappears.

On the other hand, since the matrix elements
^np61uxunp& and ^np61uHL

(1)unp& contain factorsAnp11
or Anp, the rates have the formGnp11←np

5(np11)Ap1 ,

Gnp21←np
5npAp2 . The coefficientsAp6 completely deter-

mine the dynamics and the steady state of the ion in the trap
@17#. In particular, cooling takes place along thep direction
if Ap2.Ap1 . This occurs for red~negative! laser detunings
D[vL2v0 , since in that case the laser absorption process
in which the ion decreases the oscillator quantum number is
closer to resonance than the one increasing it. It is then easy
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to see that there are two regimes in laser cooling of a trapped
ion: ~i! for g.np we are in the regime of Doppler cooling
where the final energy of the ion is of the order of\g; ~ii ! for
g,np the two motional sidebands at2D6np50 are well
resolved~sideband cooling limit!, and the ions can be cooled
to the vibrational ground state. In either case the steady state
is a thermal distribution~Bose-Einstein distribution! @17,22#
with an average phonon number of

^np&5
Ap1

Ap22Ap1
. ~5!

B. Two ions in a trap: Basic concepts

1. Equilibrium position

We consider now two ions of massm and chargee con-
fined in a trap. The trapping potential is again assumed to be
harmonic and the~single-ion! oscillation frequencies along
the x, y, andz axes are denoted bynx,y,z , respectively. We
define center-of-mass and relative coordinates as follows:

R8[
1

A2
~x~1!1x~2!!, r 8[

1

A2
~x~1!2x~2!!. ~6!

The equilibrium position for the center-of-mass coordinates
will be at R850, and for the relative coordinate it is deter-
mined by balancing the Coulomb potential with the trapping
force; i.e., it is given by the minimum of

U~r 8!5
m

2(
i

n i
2r i8

21
b

ur 8u
~7!

with b5e2/4pe0A2. For nz,nx , ny the minimum of
U(r 8) will be located on thez axis at r085r 08êz, with
r 085(b/mnz

2)1/3. Thus, the classical equilibrium positions for
the two ions are obtained fromR850, r 85r08 as

X~1,2!5
1

A2
~06r08!56

r 08

A2
êz , ~8!

with equilibrium distanceuX(1)2X(2)u5A2r 08[r 0 .

2. Spectroscopy of the two-ion system for fixed positions

We consider now a situation in which the ions are fixed at
their equilibrium positions. For the internal structure we as-
sume a~dipole-allowed! angular momentumj g50→ j e51
transition. This is motivated by our interest in the role of the
laser polarization in laser cooling, and this is the simplest
model to display these effects. The atomic states of the
two ions a51,2 are labeled by ug,m50&a and
ue,m50,61&a , with m Zeeman quantum numbers. For the
internal quantum states of the two ions we will adopt the
notation ua;b&[ua&1ub&2 . For a large distance such that
a[kr0@1 ~with k5v0 /c), the two ions essentially do not
interact. With decreasinga the degeneracy of the~bare!
states, where one of the ions is in the ground state, and the
other ion is in the excited state, is lifted by the dipole-dipole
interaction. The dipole-dipole coupling also modifies the
spontaneous lifetime of the ions@23#. For reasons that will

become clear in the context of Fig. 6~b! below we discuss
this interaction employing the excited-state basis
$ueu&,u5x,y,z,%, defined in terms of angular momentum
eigenstates as uez&5ue,m50&, uex&5(ue,m521&
2ue,m51&)/A2, and uey&5 i (ue,m521&1ue,m51&)/A2.
Thus the eigenenergies and eigenstates of this two-ion sys-
tem, in a frame rotating at the laser frequency, are

Eg;g50 ug;g&,

Eu,6152\D6dEu2 i\gu,61

for uu,6&[~ ueu ;g&6ug;eu&!/A2, ~9!

Eei ;eu
522\D2 i2\g uei ;eu&

@see Eq.~34! below#. Here 2g is the decay rate of each atom,
D5v L2v0 is the detuning, and the level shiftsdEu and
widthsgu,61 are given in Sec. III@see Eq.~34! below#.

In Fig. 1 we have plotted this level configuration for the
two-ion system. The level shifts and decays of the interme-
diate levels are indicated on the figure, too. We note that in
the limit of small distances,a→0, theuu,21& states become
metastable while the spontaneous emission rate of the state
uu,11& doubles. This is related to the well-known collective
effect of sub- and superradiance@23#. A graph of the shift
dEu /(2\g) and decay rate 2gu,61 /(2g) as a function of the
scaled distancea5kr0 is shown in Fig. 2. In this figure we
have marked by a vertical dotted line the point corresponding
to a52p/8, which we have chosen as the ‘‘standard’’ dis-
tance for most of our plots below. We have chosen this rela-
tively small distance in order to make the collective effects
clearly visible.

We consider now laser excitation with linear polarization
in the directionu5x, y, or z. Thus, the laser can couple the
ground state ug;g& only to the excited two-ion states
uu,61& given in Eq. ~9!. The corresponding coupling
strengths also depend on the propagation direction of the
laser, as well as on the interatomic distance. For example,
when the laser propagates along thex axis, only the states
ux,11& can be excited~for processes without phonon inter-
actions!. This is due to the fact that both ions see the same

FIG. 1. Level structure for two two-level atoms (0→1 transi-
tion!. ‘‘ . . . ue;e& . . . ’’ represents the nine doubly excited states.
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laser phase, and therefore the state excited must be symmet-
ric under interchange of the label indices of the ions. On the
other hand, for a propagation direction along thez axis, the
relative phase seen by the ions depends on their separation
a5kr0 , which enters the coupling matrix element from the
ground to the excited state.

3. Small oscillations around the equilibrium positions

The center-of-mass motion is governed by a harmonic
potential with unperturbed trap frequenciesnx,y,z . When the
oscillation amplitudes of the ions around their equilibrium
positions are small, one can use a linearized analysis for the
relative motion coordinates. In this case, the eigenfrequen-
cies aren rx,ry5Anx,y

2 2nz
2, n rz5A3nz where the first two

frequencies correspond to a shearing motion perpendicular to
the ion axisr08 , and the third frequency is associated with an
oscillation along thez axis. These eigenoscillations of the
center-of-mass and relative motion are readily quantized. We

will denote the corresponding oscillator states by
unxnynz ;nrxnrynrz& with quantum numbers nu ,nru
50,1,2, . . . (u5x,y,z).

A necessary condition for the linearization in the relative
motion to be valid is the smallness of the parameter

zu5A \

2mn ru
Yr 0[h ru /a!1, ~10!

which is the ratio of the ground-state width of theu compo-
nent to the equilibrium distance of the ions as given by the
Coulomb repulsion. By virtue ofe2/4pe05a\c, wherea is
the fine-structure constant,a'1/137, the equilibrium dis-
tance can be expressed asr05(2a\c/mnz

2)1/3 and therefore

zu5~\nz /a
2mc2!1/6221~nz /n ru!1/2. ~11!

Thus, as long as the trap frequency can be considered small
compared to optical frequencies, the parameterszu are small.
Therefore one can safely use the linearized analysis to de-
scribe the motion in terms of harmonic oscillators for both
center-of-mass and relative coordinates@24#. Our model also
neglects the micromotion: this assumes that the~collective!
ion oscillation frequencies are much smaller than the applied
external rf driving frequencies. In the present model calcula-
tion, this is consistent with the lowest-order Lamb-Dicke ex-
pansion for the laser-ion and dipole-dipole interaction~see
Ref. @25# for a discussion of the micromotion on laser cool-
ing!.

C. Two ions in a trap: Laser cooling

In order to study the cooling in the system of two ions, we
proceed in a similar way as that for a single trapped ion. We
first find the rate equations in the low-intensity limit. Second,
we expand the transition rates in the Lamb-Dicke limit, and
identify the physical processes that are involved in these
transitions. By including the dipole-dipole interaction, we
will go beyond the analysis presented previously by Jav-
anainen@18#.

1. Low-intensity limit

In the low-intensity limit, the trap populations evolve
much slower than the coherences between trap states or
the internal degrees of freedom, which therefore can be adia-
batically eliminated. This leads in second-order perturbation
theory to the rate equations~1!, where now pn5
^nu^g;gurug;g&un& is the population of levelug;g&un&, and
the rates are given by

Gm←n52g
3

8p (
l51,2

E dV k̂U^mu^g;gu (
a51,2

e2 ik•x~a!
[el~ k̂…–D~a!†#

1

Heff~x
~1!2x~2!!2En

HL~x
~1!,x~2!!ug;g&un&U2. ~12!

FIG. 2. Level shiftsdEx,z ~a! and modified linewidthsgu,61 ~b!
for the singly excited statesux,61& anduz,61& as a function of the
scaled distancea5kr0 . G[2g.
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The form of this equation is similar to that of Eq.~2!, but
now we are summing over contributions from both atoms, in
which the superscripta51,2 specifies the first and second
ion, respectively. Furthermore, now the free effective Hamil-
tonianHeff includes the dipole-dipole interactions, which de-
pend explicitly on the position operator for the relative mo-
tion. We note that the motional state can now also change
because of dipole-dipole interaction.

2. Lamb-Dicke limit

Similar to the single-ion case, we assume that the oscilla-
tion amplitudes of the center-of-mass and relative motion
around their equilibrium values are much smaller than the
laser wavelength; i.e., the Lamb-Dicke parameters~propor-
tional to the ratio of the ground-state width of the oscillators
to the optical wavelength! are small:

hu,ru5kA \

2mnu,ru
!1, ~u5x,y,z!. ~13!

In this paper we are interested in the case in which the ions
are closer than a wavelength, since it is there that two-
particle effects become important. This regime requires large
trap frequencies, and therefore the Lamb-Dicke limit is valid.
Then we can expand the rates~12! in terms of theh ’s. To
second order in the Lamb-Dicke parameters, the transition
rate ~12! from staten to statem is

Gm←n52g
3

8p (
l51,2

E dV k̂uel~ k̂!•@b1c2 id~ k̂!#u2,

~14!

where

~b,c,d!5 (
a51,2

e2 ik•X~a!
~b~a!,c~a!,d~a!!, ~15!

and we have defined

b~a![^mu^g;guD~a!†
1

H eff
~0!2En

HL
~1!ug;g&un&, ~16a!

c~a![^mu^g;guD~a!†
1

H eff
~0!2En

~2H12
~1!!

1

Heff
~0!2En

3H L
~0!ug;g&un&, ~16b!

d~a!~ k̂![^mu^g;guD~a!†@k•~x~a!2X~a!!#
1

Heff
~0!2En

HL
~0!

3ug;g&un&, ~16c!

with H12
(1) the first-order expansion of the dipole-dipole inter-

action. The rates are different from zero only ifm differs
from n by 61 in exactly one out of the six vibrational
modes:um&[unx61 nynz ;nrxnrynrz&, etc. In the following
we will use the notationum&[u . . .np61 . . . &, where the
index p5x,y,z,rx,ry ,rz. With this notation the formulas
look very similar to those of the single-ion case. In particu-
lar, for um&[u . . .np11 . . . & the transition rate has the form
Gm←n5(np11)Ap1, whereAp1 is a constant independent

of np . Similarly, Gm←n5npAp2 if um&[u . . .np21 . . . &.
Cooling occurs in modep if Ap2.Ap1 , and the resulting
distribution is again thermal, with an average phonon num-
ber given in Eq.~5!.

The physical interpretation of these terms can be read off
as in the single-ion case. Now, there are three contributions:

~i! Vectorsb describe processes in which the atom-laser
interaction takes the system from the ground level to an ex-
cited state and changes the number of quanta in the oscillator
p. A spontaneous emission leads back to the ground state
without changing the oscillator states@Fig. 3~a!#. This is
analogous to the process described byb in the single-ion

FIG. 3. Processes in second-order perturbation theory for pho-
non creation or annihilation by laser excitation of some state
u•,21&; similarly via u•,11&.
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case, which led to cooling for negative detunings from reso-
nance.

~ii ! Vectorsd refer to the atom-laser interaction taking the
system from the ground to an excited level without changing
the oscillator states. A subsequent spontaneous emission
leads back to the ground state and changes the number of
quanta in the oscillator statep @Fig. 3~b!#. As in the single-
atom case, this is a diffusion process giving equal contribu-
tions toAp1 andAp2 .

~iii ! Vectorsc stand for processes in which the atom-laser
interaction takes the system from the ground to an excited
level without changing the oscillator states. The dipole-
dipole interaction changes the number of quanta in the oscil-
lator statesp and possibly couples to a different excited state.
A spontaneous emission leads back to the ground state with-
out changing the vibrational quantum numbers@Fig. 3~c!#.
There is no analogue for this in the single-atom case. It can
therefore be expected that this process leads to novel physi-
cal effects when compared to laser cooling of a single ion.

It is worth mentioning that process~iii ! does not contrib-
ute to the modification of the center-of-mass motion since it
is due to the dipole-dipole interaction, which depends on the
relative position of the ions. On the other hand, for the rela-
tive motion it can have important consequences in the cool-
ing process. In particular, it gives rise to the possibility of
having transverse cooling, i.e., cooling of they andz com-
ponents by a laser propagating in thex direction. Apart from
that, the corresponding amplitude of this process can inter-
fere with the other processes leading to the enhancement or
the decrease of the cooling rate. This depends on whether the
interference is constructive or destructive. These kinds of
phenomena are entirely due to two-atom interactions, and
therefore they have no analogue in the single-ion case, where
there are no interference effects in the Lamb-Dicke limit. In
the following we briefly summarize the most relevant results
in terms of the coefficientsAp6 , which, as mentioned above,
completely determine the properties of the cooling process.
Note that to reach the regime in which the atoms are closer
than an optical wavelength, one needs very strong trap fre-
quencies. In this case, not only is the Lamb-Dicke limit ful-
filled but also we are typically in the strong confinement
limit, where the trap frequencies are larger than the sponta-
neous decay rate. Thus, in this regime we expect to find,
among other phenomena, sideband cooling for negative de-
tunings close to the trap frequency of the corresponding
mode.

D. Two ions in a trap: Results and discussion

The results for laser cooling of two ions in a trap depend
on several parameters. On the one hand, there are six modes
of motion ~center-of-mass and relative motion! that display
different ~cooling! dynamics. Depending on the specific ge-
ometry of the problem~the directions of laser propagation
and polarization!, only part of these modes are excited by the
atom-laser interaction. On the other hand, given a specific
polarization of the laser—for example, linear along the di-
rectionu—only the internal excited sublevelsue;u& can be
excited. Finally, laser cooling depends on the specific param-
eters, such as the laser detuningD, the trap frequencies

nx,y,z , spontaneous decay rate 2g, and the distance between
the equilibrium positions of the ions~which is characterized
by the parametera!.

Given the numerous possibilities for the geometry of the
atom-laser interaction, we will discuss here a few cases that
display the basic phenomena in the problem. A more detailed
discussion is given in Sec. V. As mentioned above, there are
mainly two differences between laser cooling of two ions
with respect to the single-ion case:~i! in the case of two ions
the dipole-dipole interaction leads to level shifts and changes
the decay rates;~ii ! the dipole-dipole interaction is respon-
sible for a physical process that changes the motion of the
ions. In this respect, the center-of-mass modes have a differ-
ent behavior than the relative motion modes, since~ii ! ap-
plies only to the latter. Here we will first describe cooling of
the center-of-mass modes, and then we will analyze the more
complicated case of the relative modes.

1. Center-of-mass motion

Let us concentrate on the situation in which the laser
propagates along thez axis with linear polarization along the
x axis. We first consider the case in which the ions are far
apart from each other (a5kr0.1). Under these circum-
stances, the shifts and rates due to dipole-dipole interaction
are very small, and therefore the ions behave independently
@18#. Laser cooling is then almost identical to the single-ion
case. In Fig. 4~a! we have plotted the coefficientAz6 ~solid
and dashed lines, respectively! for the z component of the
center-of-mass mode as a function of the laser detuning.
Here, we have taken a laser propagating in thez direction
with polarization along thex axis. As in the single-ion case,
for red ~negative! detuningsAz2.Az1 ~i.e., there is cool-
ing!, whereas for blue~positive! detunings there is heating.
Maximum cooling rates occur atD52nz , which corre-
sponds to the sideband cooling regime, whereby each time
that one of the ions absorbs a laser photon its motional quan-
tum state decreases by 1. The width of the resonances ap-
pearing in the figure are of the order ofg since they are
related to the spontaneous-emission process. Obviously, the
motion along the other two directionsx,y is not cooled by
the laser~only heated because of the diffusion accompanying
each spontaneous emission!.

When the ions are closer together (a5kr0,1) superradi-
ant effects are reflected in the cooling process. For example,
in Fig. 4~b! we have plottedAz6 ~solid and dashed lines,
respectively! for a scaled ion separationa52p/8. Now, each
of the peaks has split into a doublet, separated by 2dEx /\
@compare Eq.~9!#. The narrow peaks correspond to excita-
tion of the stateux,21& whereas the broad ones belong to the
superradiant stateux,11&. Thus, the widths of the peaks are
given bygx61 , respectively. Laser cooling occurs for nega-
tive detunings~close to the lower motional sideband!, and it
is maximum at D6dEx /\52nz . ~Remember that
D5vL2v0 denotes the detuning of the laser with respect to
the unperturbed atomic frequency. Hence, the detunings with
respect to the levelsux,61& are D7dEx /\ etc. Since the
level shiftsdEu /\ are small compared to the trap frequen-
cies in our examples, the lower sideband resonances
D7dEx /\52nz still occur atD'2nz .) Cooling can be
understood as before since the lower sideband excitations of
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the sub- and superradiant states do not interfere; cf. Sec. V C.
As mentioned before, for the center-of-mass motion only the
vectorsb @process of Fig. 3~a!# andd @process of Fig. 3~b!#
contribute to the ion dynamics. The process of Fig. 3~a! leads
to sideband cooling whenever the laser frequency is close to
one of the two lower sideband resonances~in the figure,
those that couple to the statesux61;n21&). The process of
Fig. 3~b! leads to diffusion. On the other hand, in contrast to
the single-ion case, the heights of the peaks~i.e., the ampli-
tudes of these processes! depend on the particular geometry
of the laser excitation. Since each of the vectorsb andd is
the sum of two other vectors related to the spontaneous emis-
sion in each individual ion, the amplitudes depend on the
relative phase between these terms. This is the basis for sub-
and superradiant behavior@cf. Eqs.~A4!, ~A5!, and ~A8! in
Appendix A #.

2. Relative motion

We concentrate now on a discussion of the relative motion
of the ions. The interesting case is again when the ions are
close, a5kr0,1. Now the resonances appear around de-
tuningsD.0,6n rx,ry ,rz . In addition to the phenomena dis-

cussed in the case of the center-of-mass modes, there is an
extra process that takes place@Fig. 3~c!#, which is due to the
position dependence of the dipole-dipole interaction. Here
we will concentrate on the physical consequences of this
process.

We assume that the laser propagates along they axis,
linearly polarized along thex direction. Because of the po-
larization, laser excitation couples the ground stateug;g&
only to the statesux,61&. Furthermore, for the processes in
which the motional quantum numbers do not change in the
excitation step, and for this configuration, the laser light
couples the ground stateug;g& only to the stateux,11&,
since for this configuration the laser phase seen by both ions
is the same and therefore the excited state must be symmetric
under interchange of the labels that number the ions. For
processes in which the excitation is accompanied by the cre-
ation or annihilation of a phonon of relative motion, the re-
verse holds: for them, only the stateux,21& can be excited
with the present laser configuration.

In Fig. 5 we have plotted the coefficientsArx6 @Fig. 5~a!#,
Arz6 @Fig. 5~b!#, andAry6 @Fig. 5~c!# as a function of the
detuning fora52p/8. First note that even if the laser is
propagating along they direction, thex andz components of
the relative motion coordinate can be cooled for negative
detunings. At first sight, this is quite surprising since the
photons absorbed by the ions~which are the ones that can be
controlled—through an appropriate detuning—in the single-
ion case! can only change the motion along they component.
In other words, for therx and rz components only the dia-
grams of Figs. 3~b! and 3~c! contribute~i.e., the vectorb is
identically zero!. Thus, the physical reason of this transverse
cooling is not related to the momentum transfer in the ion-
laser interaction. It is rather due to the dipole-dipole interac-
tion since this interaction does not explicitly depend on the
direction of the laser propagation. Thus, it is the diagram of
Fig. 3~c! that is responsible for this effect, i.e., the vectorc in
the rate given in Eq.~12!. Note that cooling of thery direc-
tion is dominated by sideband cooling since in that caseb
Þ0.

For close to zero detunings@see Figs. 5~a! and 5~b!#, the
mode rx is heated (Arx,1.Arx2), whereas the moderz is
cooled (Arz,1.Arz2). Let us analyze in more detail the ex-
citation processes mediated by dipole-dipole interaction@Fig.
3~c!#. In the first stage, the system of ions is excited by laser
absorption to the stateux,11;n& starting fromug;g;n&. In
the next step, the oscillator state is changed because of the
dipole-dipole interaction. Depending on which relative mo-
tion mode is changed (rx or rz! the corresponding transition
is ux,11;nrx&→uz,11;nrx61& @Fig. 6~b!# or ux,11;
nrz&→ux,11;nrz61& @Fig. 6~a!#, respectively. That is, the
dipole-dipole interaction may change the atomic polarization
when inducing transitions that change the motional state.
Spontaneous emission takes the atoms back to the ground
internal states without changing the vibrational quantum
numbers. Thus, the change of the quantum numbernrx is
accompanied by a change of polarization. This in turn is
responsible for the different behavior in therx and rz com-
ponents. Aside from all that, now the amplitudesc andd can
interfere, even after integrating over spontaneously emitted
photons. This interference leads to modifications in the cen-
tral peak, depending on the relative phase of these two am-

FIG. 4. Cooling and heating coefficientsAz2 ~solid curve! and
Az1 ~dashed curve! for the z component of center-of-mass motion
of two ions. Laser configurationV(x)5êxe

ikzV/2. ~a! Large equi-
librium distance:a520p; ~b! small distance:a52p/8. At the cen-
tral peaks the dotted and dashed lines overlap.G[2g.
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plitudes. These effects will be discussed in more detail in
Sec. V. We will show there that the contribution of the
dipole-dipole termc relative to the sideband cooling and
diffusion amplitudesb andd is given by the dimensionless
parameter 9g/(npa

4), which for the parameters in our ex-

ample is of the order of 15%.
Finally, Fig. 5~c! showsAry ,6 as a function of the detun-

ing. In this case, while the sideband cooling-heating ampli-
tudebÞ0, we have the dipole-dipole termc50, so that this
is similar to the single-ion case. Because of polarization se-
lection rules, the only possible processes are
ug;g;nry&→ux,21;nry61&→ug;g;nry61& ~which leads to
sideband heating-cooling atD1dEx /\56n ry) and
ug;g;nry&→ux,11;nry&→ug;g;nry61& ~which leads to dif-
fusion forD.0). The central peak in Fig. 5~c! is so small as
to be invisible on the chosen scale. This is due to a combi-
nation of the following factors:~i! the occurrence of a term
1/gx,11

2 at resonance, which is smaller than the 1/gx,21
2 term

in the sideband resonances via the stateux,21&, and~ii ! the
fact that in processes with creation or destruction of a pho-
non of relative motion, the decay of the stateux,11& is
slowedby collective effects; see Appendix A. As in the case
of the center-of-mass motion, the amplitudesb, c, and d
depend on the specific geometry of the laser excitation.

In the following section we turn to a detailed mathemati-
cal analysis of the two-ion model. Further examples and re-
sults will be presented in Sec. V.

III. MODEL

We consider two ions confined in a three-dimensional har-
monic trap, interacting with a laser field. The master equa-
tion for the density operator of both the internal and external
degrees of freedom of the ions can be derived after eliminat-

FIG. 5. Cooling and heating coefficientsAx,y,z2 ~solid curve!
andAx,y,z1 ~dashed curve! for the x, y, andz components of rela-
tive motion of two ions. Laser configurationV(x)5êxe

ikyV/2.
G[2g.

FIG. 6. Processes resulting from dipole-dipole interaction in the
cooling of ~a! z, and ~b! x component of relative motion for laser
light polarized in thex direction.
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ing the quantized electromagnetic reservoir, resulting in

ṙ5S 2
i

\
heffr1

i

\
rheff

† D1L recr. ~17!

Hereheff is an effective non-Hermitian Hamiltonian that in-
cludes both the free effective HamiltonianH eff and the in-
teractionHL with the laser

heff5Heff1HL ~18!

Heff5HA1Hext1H111H12, ~19!

andL recr is the recycling term related to spontaneous emis-
sion. In the following subsections we give the expressions
for each of the Hamiltonians appearing in Eq.~18!, as well as
for the recycling term.

A. External degrees of freedom

In the absence of a laser field, the dynamics of the ions is
determined by the external harmonic potential and the Cou-
lomb repulsion. The Hamiltonian describing the external de-
grees of freedom of the ions is then given by

Hext5 (
a51,2

Fp~a!2

2m
1
1

2
m~nx

2x~a!21ny
2y~a!21nz

2z~a!2!G
1

e2

4pe0ux„1…2x~2!
u
. ~20!

Herem is the ion mass;e is the charge;nx,y,z are the trap
frequencies along thex, y, and z, respectively; and
x(a)[(x(a),y(a),z(a)) and p(a) are position and momentum
operators of iona, respectively.

Here we are interested in the last stages of laser cooling.
In this situation, the ions undergo small oscillations around
their ~classical! equilibrium positions. If we assume that the
trap frequency along the z axis is smaller than each of the
other two frequencies (nz,nx,y), in equilibrium the ions will
lie on the z axis, as given in@Eq. ~8!#. By expanding the
Coulomb potential around the equilibrium position and keep-
ing terms up to second order in small displacements around
these positions, HamiltonianHext becomes~up to a constant
corresponding to the minimum value of the potential at the
equilibrium point!

Hext5
P82

2m
1
1

2
m (
u5x,y,z

nu
2Ru8

21
p82

2m

1
1

2
m (
u5x,y,z

n ru
2 ~r u82r u08 !2. ~21!

Here,R 8 andr 8 are the center-of-mass and relative position
operators defined in Eq.~6!, P8 andp 8 are the corresponding
conjugate momenta, andr08 is the relative position at the
equilibrium point, as given in Sec. II B. Thus, the motion can
be described in terms of six modes, which are decoupled in
the absence of other interactions. The eigenfrequencies for
the center-of-mass modes coincide with the original trap fre-
quencies, whereas those for the relative modes are
n rx,ry5Anx,y

2 2nz
2, n rz5A3nz .

Quantizing the six harmonic oscillators, we introduce cre-
ation and annihilation operatorsbru

† ,bru (u5x,y,z) for the
modes of relative motion, which allows us to express

r u85r 0u8 1A \

2mn ru
~bru

† 1bru! ~22!

andbu
† ,bu (u5x,y,z) for the center-of-mass motion, which

results in

Ru85A \

2mnu
~bu

†1bu!. ~23!

Disregarding the constant term, we obtain

Hext5
m

2 (
u5x,y,z

nu
2bu

†bu1
m

2 (
u5x,y,z

n ru
2 bru

† bru . ~24!

B. Internal degrees of freedom

We assume that the internal structure of the ions can be
described as a two-level system. Its ground and excited state
are separated by\v0 and are possibly degenerate. We will
denote byk[v0 /c the corresponding wave number. These
levels are excited by a laser field of frequencyvL close to
v0 . Using a frame rotating at the laser frequency, the free
Hamiltonian for the internal degrees of freedom of the ions is

HA52\D (
a51,2

Pe
~a! , ~25!

wherePe
(a)5(mue,m&aa^e,mu is the projector onto the ex-

cited states of atoma, andD5vL2v0 is the laser detuning.
The non-Hermitian Hamiltonian

H1152 i\g (
a51,2

Pe
a ~26!

describes the decrease of the excited states population due to
spontaneous emission for each of the two ions, with 2g the
spontaneous decay rate.

Although the formalism developed in this paper applies to
any particular internal transition, we will focus most of our
discussion on a simple situation corresponding to a
j g50→ j e51 transition. This system is the simplest one that
allows us to study different laser polarizations. The atomic
internal states are thenug& andue,m& (m521,0,1). Using a
Cartesian basis, the excited state can also be expressed as
uez&5u1,0&, uex&5(u1,21&2u1,1&)/A2, uey&5 i (u1,21&
1u1,1&)/A2.

C. Atom-laser interaction

In the dipole and rotating-wave approximation, the inter-
action of the laser light with the ions is given by

HL52 (
a51,2

E~1 !~x~a!!•m~a!1H.c., ~27!

whereE(1)(x… is the positive-frequency part of the laser field
at positionx, andm(a) is the dipole moment of iona.
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Defining, as usual, the atomic excitation operator for at-
oms a as D(a)5Pe

(a)m(a)Pg
(a)/ua^eima

(a)ig&au, we express
the atom-laser Hamiltonian in the general form

HL5\ (
a51,2

V~x~a!!•D~a!1H.c. ~28!

By keeping unspecified the vectorV, our formalism will be
valid for any laser configuration. However, for most of our
discussion we will assume that the laser beam configuration
corresponds to a plane traveling wave with linear polariza-
tion along theu axis. In this case,

V~x!5
V

2
eikL•xêu , ~29!

wherekL is the laser wave vector,êu is the unit vector along
theu direction, andV is the Rabi frequency.

D. Dipole-dipole interaction

The dipole-dipole interaction part of Hamiltonian~18! is
given by

H1252 i\g (
aÞb

@ f ~d!D~a!
•D~b!†

1g~d!~D~a!
• r̂ !~D~b!†

• r̂ !#, ~30!

which results from the elimination of the quantized electro-
magnetic reservoir. It describes the atom-atom interaction
when one of the atoms is in the ground state and the other in
an excited state. In~30!,

r5x~1!2x~2!, r̂5
r

ur u
, d5kur u, ~31!

and f andg are the familiar functions

f ~d!5 3
2 Fsin~d!S 1d2

1

d3D1cos~d!
1

d2G
1 i 32 Fcos~d!S 2

1

d
1

1

d3D1sin~d!
1

d2G ,
~32a!

g~d!5 3
2 Fsin~d!S 2

1

d
1

3

d3D2cos~d!
3

d2G
1 i 32 Fcos~d!S 1d2

3

d3D2sin~d!
3

d2G ;
~32b!

cf. @23#.
Dipole-dipole interaction causes level shifts and modifi-

cations in the spontaneous-emission rates~i.e., in the level
widths!. This is very easy to show when the atoms are fixed
~for example! at their equilibrium positions. To this aim we
replace the operatorsd and r̂ in ~30! with c numbers. Setting
a[kr0 (r 0 being the inter-ion distance in equilibrium!, and
taking into account that in equilibrium the ions lie on thez
axis, we obtain

H12
~0!52 i\g (

aÞb
@ f ~a!D~a!

•D~b!†1g~a!Dz
~a!Dz

~b!†#.

~33!

We denote byua;b&[ua&1ub&2 the state in which atom 1 is in
state ua& and atom 2 is in stateub&. Let us consider the
specific case of aj g50→ j e51 transition. Then there is a
unique ground stateug;g&, and the action of the Cartesian
components of the dipole moment operators is
Du
(1)ug;b&5ueu ;b&, u5x,y,z, and similarly for atom 2

(u5x,y,z). Hence the states ug;g&, uu,6&
[(ueu ;g&6ug;eu&)/A2, and uei ;eu& are eigenstates of
HA1H111H12

(0) , with respective eigenvalues 0,
\@2D2 ig7 ig„f (a)1duzg(a)…#, and \(22D2 i2g) @see
Eq. ~9!#. Thus, the imaginary parts off (a) andg(a) result in
level shifts, while their real parts modify the lifetimes of the
singly excited states. In particular, in the limit of small dis-
tance a→0, the uu,2& states become metastable since
lima→0Re@ f (a)#51 and lima→0 Re@g(a)#50 ~cf. Fig. 2!.
We define

Eu,61[2\D6dEu, ~34a!

dEu[\g Im@ f ~a!1duzg~a!#, ~34b!

and

gu,61[g6g Re@ f ~a!1duzg~a!#. ~35!

E. Recycling term

The last term of master equation~17! is

L recr52g
3

8pE dV k̂ (
l51,2

(
a,b51,2

e2 ik•x~a!
@el~ k̂…–D~a!†#r@el~ k̂…–D~b!#eik•x

~b!
, ~36!

where*dV k̂ stands for integration over the unit sphere, ande1( k̂),e2( k̂) form a set of polarization vectors orthogonal tok̂.
This ‘‘recycling’’ term describes the return of an atom from an excited to a ground state, accompanied by a momentum kick.
It can be rewritten as

L recr52g
3

8pE dV k̂ (
a,b51,2

e2 ik•x~a!
@D~a!1

•rD~b!2~ k̂•D~a!1
!r~ k̂•D~b!!#eik•x

~b!
. ~37!
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IV. RATE EQUATIONS

Master equation~17! is difficult to solve, even numeri-
cally. However, if one restricts it to the low-intensity limit it
can be converted into a set of rate equations, after elimina-
tion of the excited internal levels. This equation can be fur-
ther simplified if one takes into account that in the final
stages of laser cooling the oscillation amplitudes of the ions
are much smaller than the laser wavelength~Lamb-Dicke
limit !.

In the low-intensity limit~small Rabi frequencyV of the
incident laser light, so that there are no saturation effects! the
trap populations evolve much slower than the coherences
between trap states or the internal degrees of freedom, which
therefore can be adiabatically eliminated. This leads in
second-order perturbation theory to a rate equation for the
trap populations of the form~1!. There the transition rates
Gm←n are given in Eq. ~12!, where we have defined
Heff5HA1Hext1H111H12 and En is the unperturbed en-
ergy of the atomic ground state with oscillator stateun&:
Heffug;g&un&5Enug;g&un&.

In the Lamb-Dicke limit, the Lamb-Dicke parameters de-
fined in ~13! are much smaller than 1. It is therefore conve-
nient to expand the ratesGm←n in the h ’s and keep the
lowest-order contributions. The leading contribution in ex-
pression~12! is second order in such an expansion. In order
to get that, it suffices to expand up to first order the three

operators:e2 ik•x(a), 1/(Heff2En), andHL . In the following
we carry out that task. First,

e2 ik•x~1,2!
5e2 ik•X~1,2!F12 i(

u
k̂u

1

A2
@hu~bu

†1bu!

6h ru~bru
† 1bu!#G . ~38!

In order to get the result for 1/(Heff2En) we use

1

Heff2En
5

1

Heff
~0!2En

1
1

Heff
~0!2En

~2H12
~1!!

1

Heff
~0!2En

1•••,

~39!

where

Heff
~1!52 i\g (

aÞb
(
u

@du,z„a f8~a!D~a!
•D~b!†

1ag8~a!Dz
~a!Dz

~b!†
…1~12du,z!g~a!~Du

~a!Dz
~b!†

1Dz
~a!Du

~b!†!#A2
h ru

a
~bru

† 1bru!. ~40!

Note that this last is an expansion in terms of the parameter
zu5h ru /a @see Eq.~10!# rather thanh ru .

Finally, we find for the atom-laser interaction

HL
~0!5\ (

a51,2
V~X~a!!•D~a!1H.c, ~41a!

HL
~1!5\ (

a51,2
~q~a!

•¹!V~X~a!!•D~a!1H.c., ~41b!

whereq(a)[(x(a)2X(a)); i.e.,

qu
~1,2!5

1

A2
S hu

k
~bu

†1bu!6
h ru

k
~bru

† 1bru! D . ~42!

Substituting all these results of the expansion in the ex-
pression for the rates, we find Eq.~14!. As stated in Sec. II,
the vectorsb, c, andd appearing in this expression have a
very intuitive interpretation in terms of physical processes,
where one laser photon is absorbed and spontaneously re-
emitted.

Next we evaluate the matrix elements involved in the
definitions of the vectorsb, c, andd given in ~16!. To this
aim we first note that the ratesGm←n are different from zero
only if m differs fromn by 61 in exactly one out of the six
vibrational modes:um&[unx61 nynznrxnrynrz&, etc. Thus
we concentrate on transitions that change one specific mode
p (5x,y,z,rx,ry ,rz); i.e., for an initial trap state
un&5unxnynznrxnrynrz&, the final state is assumed to be
um&5u•••np61•••&. For the sake of a short notation, we
find it convenient to denote byu the corresponding direction
of this mode. That is, forp5x or p5rx, we will haveu5x,
etc. Furthermore, we will use the vector

d̃~a![^mu^g;guD~a!1
kqu

~a!
1

Heff
~0!2En

HL
~0!ug;g&un& ~43!

instead ofd (a) ~note thatd(a)5 k̂ud̃
(a), while d̃(a) does not

depend on the integration variablek̂).
Upon inserting projectors onto the subspace of singly ex-

cited states, in vectorsb(a), c(a), andd̃(a) there can be iden-
tified the contributions belonging to the various intermediate
internal statesu j ,s&:

b~a!5
1

2A2
hp^mu~bp1bp

†!un& (
j5x,y,z

(
s561

êjs
a21

1

k S ]Vj

]u
~X~1!!1@sg~p!#s

]Vj

]u
~X~2!! D

Ej ,s /\2 ig j ,s6np
, ~44a!
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d̃~a!5
1

2A2
hp^mu~bp1bp

†!un& (
j5x,y,z

(
s561

êj@sg~p!s#a21
Vj~X

~1!!1sVj~X
~2!!

Ej ,s /\2 ig j ,s
, ~44b!

where the sign in sg(p) distinguishes between center-of-mass and relative motion:

sg~p![H 1 if pP$x,y,z%

21 if pP$rx,ry ,rz%.
~45!

The vectorsc(a)50 are nonzero only for relative motion. Ifp5rz we have

c~a!5
1

A2
hp^mu~bp1bp

†!un& (
j5x,y,z

(
s561

êjs
aig„f 8~a!1d jzg8~a!…

Vj~X
~1!!1sVj~X

~2!!

~Ej ,s /\2 ig j ,s6np!~Ej ,s /\2 ig j ,s!
, ~46!

whereas ifp5rx,ry ,

c~a!5
1

A2
hp^mu~bp1bp

†!un& (
s561

saig
g~a!

a S êu Vz~X
~1!!1sVz~X

~2!!

~Eu,s /\2 igu,s6np!~Ez,s /\2 igz,s!

1êz
Vu~X

~1!!1sVu~X
~2!!

~Ez,s /\2 igz,s6np!~Eu,s /\2 igu,s!
D . ~47!

While thea dependence of the vectorsb(a), c(a), andd̃(a) is
nontrivial, simple rules hold for the terms involving singly
excited states that are all symmetric (s51) or all antisym-
metric (s521). To show this we define

bs
~a!5

1

2A2
hp^mu~bp1bp

†!un& (
j5x,y,z

êjs
a21

3

1

k S ]V

]u
~X~1!!1sg@~p!s#

]V

]u
~X~2!! D

Ej ,s /\2 ig j ,s6np
~48!

and similarlycs
(a) , d̃s

(a) . Then one finds

bs
~2!5sbs

~1! , cs
~2!5scs

~1! , d̃s
~2!5sg~p!sd̃s

~1! . ~49!

These relations will hold approximately for the vectors
b(a), c(a), d̃(a) themselves if the laser is tuned to resonance
~either central line or an upper or lower sideband! for some
intermediate stateu j ,s&.

V. DISCUSSION

In the following discussion it is first demonstrated how
level shifts and lifetime modifications resulting from the
zeroth-order dipole-dipole interactionH12

(0) show up in cool-
ing and heating rates. As a next step, we investigate how the
first-order dipole-dipole termH12

(1)—the c contributions in
Eq. ~14!—can give rise to cooling or heating. Then we turn
to the interferences of different processes.

In the examples, we mostly study single-plane traveling
waves, e.g.,

V~x!5
V

2
êxe

ikz ~50!

for a wave inz direction with a linear polarization inx di-
rection,V being the Rabi frequency. In most examples be-
low, the equilibrium distance of the ions are chosen 1/8 of
the wavelength, i.e.,a52p/8. The trap frequencies are cho-
sen in the strong binding regime:nx5120g, ny5100g, and
nz580g, which result inn rx540A5g'89.4g, n ry560g,
and n rz580A3g'138.6g. While the basic results have al-
ready been outlined in Sec. II, the following analysis aims at
a deeper understanding of several more technical points.

A. Collective effects in sideband cooling and diffusion

Fig. 4 displays the cooling and heating coefficientsAz2 ,
Az1 for thez component of center-of-mass motion in a plane
traveling wave in thez direction, which is linearly polarized
in the x direction. As pointed out in Sec. II D 1, for a small
equilibrium distance (a52p/8), each resonance is split into
two lines, corresponding to the statesux,s&, s561. They
are shifted with respect to each other by 2dEx /\'5.12g.
Thes521 resonances are visibly narrower than thes511
ones since gx,21'0.12g is much smaller than
gx,11'1.88g. Their different heights result from three ef-
fects: ~i! the different energy denominators account, at reso-
nance, for a factor ofgx,11

2 and gx,21
2 , ~ii ! the laser field

couples differently tos521 ands511 states; see~44a!;
and~iii ! there are collective effects in the spontaneous deex-
citation step that enhance or decrease the rates for the differ-
ent processes. As discussed in Appendix A, this last effect is
different for center-of-mass modes, as opposed to modes of
relative motion, if a phonon is created or annihilated in the
spontaneous deexcitation. For phonons of a center-of-mass
mode, spontaneous emission from a stateu•,11& is en-
hanced, and that from a stateu•,21& is decreased, whereas
for phonons of relative motion it is the other way around;
namely, spontaneous emission from a stateu•,21& is en-
hanced, and that from a stateu•,11& is decreased. For the
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central peaks in Fig. 4~b!, e.g., the narrow line is higher than
the broad one because of the different energy denominators;
see~i! above. The difference in height is somewhat reduced
by the collective effects@~iii ! above#. But for a mode of
relative motion, the last effectincreasesthe difference be-
cause there it is the antisymmetric (s521) state that decays
faster~if the deexcitation is accompanied by a phonon anni-
hilation or creation!. This is why the heights of the central
peaks for narrow and broad resonances differ much less in
Fig. 4~b! ~center-of-mass motion! than, e.g., in Fig. 7~a!
~relative motion!.

B. Cooling via dipole-dipole terms

Since the amplitude resulting from the dipole-dipole in-
teraction c(a) contains the vibrational frequency6np , it
gives rise to, in general, different contributions toAp1 and
Ap2 if p is a mode of relative motion. Therefore, a net cool-
ing ~or a net heating! via these processes is possible. This
was illustrated in Figs. 5~a! and 5~b! ~see the discussion in
Sec. II D 2!. With the formalism developed in Sec. III C, we
can now discuss in a more quantitative way the explanation
given in Sec. II D 2 for the fact that the excitation without

change of phonon number involves only the stateux,11&,
not ux,21&; the excitation of the latter involves@see Eqs.
~44b!, ~46!, and ~47!# Vj (X

(1))2Vj (X
(2)), which vanishes

for the chosen configuration, namely,V(x)5êxe
ikyV/2.

Similarly it can be shown with the help of Eq.~44a! that for
modery there is a nonvanishingb contribution~the sideband
cooling-heating amplitudes! involving only the states
ux,21&, the excitation of which is accompanied by phonon
creation or annihilation.

A qualitative difference between the two casesp5rx in
Fig. 5~a! andp5rz in Fig. 5~b! arises from the fact that for
p5rz, only one of the singly excited states is involved, but
two in the casep5rx. In the first case, the relevant factor in
~46! containing the laser detuning@cf. ~34!# is

1

~Ex,11 /\2 igx,116n rz!~Ex,11 /\2 igx,11!
. ~51!

When the laser is detuned so as to obtainEx,11 /\57n rz
~the upper or lower sideband resonance!, this becomes

1

2 igx,11~7n rz2 igx,11!
, ~52!

the modulus of whichdoes notdepend on the sign in front of
n rz . In the second case, insertingEz,11 /\57n rx into

1

~Ez,11 /\2 igz,116n rx!~Ex,11 /\2 igx,11!
~53!

@cf. ~47!# yields

1

2 igz,11~2g Re„g~a!…7n rx2 igx,11!
, ~54!

the modulus of whichdoesdepend on the sign in front of
n rx . As a result, the peaks inAp2 at the lower sideband and
in Ap1 at the upper one are of equal magnitude forp5rz
@Fig. 5~b!#, but not forp5rx @Fig. 5~a!#.

The importance of the dipole-dipole induced amplitude
c(a) in comparison with the other amplitudesb(a),d(a) can be
estimated as follows. For simplicity, let us assume that all
terms involving the laser field and its derivatives are of equal
order of magnitude. The amplitudesb(a) andd(a) of the side-
band and diffusion processes have just one energy denomi-
nator; the amplitudesc(a) have two different energy denomi-
nators, at least one of which will always be out of resonance,
and they have the matrix elements ofH12 in the numerator.
For a!1, the latter are of the order of 9ga24. Hence, for a
laser detuning that makes one of the energy denominators
resonant, the resonant component ofc(a) differs in magni-
tude from the same component ofb(a) or d(a) ~whichever is
resonant!, under the above assumption, roughly by a factor
of 9g/(npa

4). The denominator scales;r 0
5/2; therefore the

process mediated by dipole-dipole interaction of Fig. 3~c!
can be significant in the cooling process for small ion dis-
tances.

C. Discussion of interferences

Whenever there is more than one term contributing to the
same Cartesian component in the total amplitude

FIG. 7. Cooling and heating coefficientsArz2 ~solid curve! and
Arz1 ~dashed curve! for the z component of relative motion. Laser
configuration~a! V(x)5êxe

ikzV/2; ~b! V(x)5êx(e
ikz22eiky)V/2.

L marks the height of the central peak of the dashed line.
G[2g.
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b1c2 i k̂ud̃, there is the possibility of an interference of the
processes involved. It is called a constructive interference if
the net contribution to the transition rate is bigger than the
sum of the contributions calculated separately from each of
these processes, and a destructive one in the opposite case.

In the single-ion case, interference of the amplitudes for
sideband and diffusion processes vanishes when the integral
over all possible directions of spontaneous emission is per-
formed. A similar argument holds for certain interferences in
the two-ion case. Recall that each of the amplitudesb, c, and
d is a sum of terms involving different intermediate states
u j ,s& @see Eqs.~44a!, ~44b!, ~46!, and~47!# and deexcitation
via different atomsa @see Eq.~15!#. The contributions be-
longing to a certain intermediate state obey the rules~49!
with the appropriate signs. For the two-ion case, the result
of the integration over emission directions is given in Eqs.
~A1! and ~A2!. With their help it can be shown that for
pP$rx,ry ,rz%, processes involving intermediate states
u•,s561& with different s do not interfere. For p
P$x,y,z%, two processes that both contribute tob ~or both to
d) do not interfere if they involve intermediate states with
different symmetrys, while a process inb does not interfere
with a process ind if they involve the same s.

In the strong binding limitg!np , which is of interest
here, at any central line or sideband resonance, all interfer-
ences between processes in theb(a), on the one hand, and
thed(a), on the other hand, are insignificant in comparison to
the corresponding squared amplitudes because of the pres-
ence of two different energy denominators, one of which will
always be out of resonance in the interference term. Thus
these interferences are suppressed by a factor ofg/np if the
laser-field dependent terms are again supposed to be of equal
magnitude. Therefore, the only significant interferences seem
to be the ones between a process inc(a) and another one in
b(a) or d(a), if the parameter 9g/(npa

4) derived above is not
too small.

The influence of interferences shows up in Fig. 7~a!,
which displays the heating and cooling coefficientsArz6 for
the relative motion in thez direction as a function of laser
detuning. The narrow peaks inArz2 at the lower sideband
and inArz1 at the upper one involve the excitation of the
ux,21& state. The difference in height of these two peaks is
due to the fact that inArz2 , at the lower sideband, there is
destructiveinterference of the ordinary sideband cooling pro-
cess due to dipole-dipole interaction, while the peak in
Arz1 at the upper sideband is enhanced byconstructivein-
terference.

The occurrence of interference is discussed in more detail
in Appendix B. In particular, it is investigated there to what
extent the laser configuration has an influence on whether the
interference is destructive or constructive.

VI. CONCLUSIONS

In this paper we have studied the effects of dipole-dipole
interaction in laser cooling. We have considered the case of
two ions confined in a three-dimensional harmonic trap in-
teracting with a laser field. We have derived a set of rate
equations that describe the cooling process in the low-
intensity and Lamb-Dicke limits. For inter-ion distances
smaller than the wavelength of the internal transition, the

effects of dipole-dipole interaction are reflected in the cool-
ing process. First, this interaction causes level shifts and
modifies the decay rates. Second, the gradient of the dipole-
dipole potential also changes the motional state. The first
effect results in the appearance of pairs of sidebands in the
coefficientsA6 ~i.e., in the cooling rates!, each of them cor-
responding to cooling via the excitation of a symmetric or
antisymmetric state. The second effect leads to novel phe-
nomena, such as the possibility of transverse cooling or in-
terferences with processes resulting from dipole-dipole inter-
action. Typically this effect tends to be a small correction.
For the center-of-mass modes, only the first effect shows up.
For the relative motion modes both effects occur. We have
illustrated these phenomena in a particular case: an internal
j g50→ j e51 transition. We have considered excitation by
laser fields with linear polarization, with different geom-
etries. The results that we have shown will occur in any
given transition. While the equilibrium distance ofl/8 cho-
sen in our examples is small compared to current experimen-
tal values, we assume that experimental progress in ion trap-
ping will allow us to observe the predicted effects in the
future. On the other hand, we believe that the present analy-
sis may be useful to other studies of laser cooling with neu-
tral atoms.

Finally, we would like to comment on the fact that
throughout this paper we have considered a time-
independent harmonic trap, whereas in the rf traps used in
experiments ~e.g., @9#! the trapping potential is time-
dependent, leading to the well-known micromotion. The fre-
quency of this micromotion,V, is typically much larger than
the resulting effective trap frequenciesn j ~except for experi-
ments that explore the boundary of the stability region of
such a trap! and also larger than the frequencies of relative
motion, n r j , j5x,y,z. An analysis of the influence of mi-
cromotion on the laser cooling of a single ion@25# has shown
that the basic features remain the same, but additional side-
bands shifted byV are introduced. We expect this to hold in
the two-ion case, too. All these sidebands are well separated
because of the relationsV@n j ,n r j@g, where the last in-
equality is the sideband limit assumed at the outset. There-
fore, for laser detunings belowV, the features discussed in
this paper should be found even in a trap with micromotion.
For larger detuning, additional resonances will show up.
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APPENDIX A: EVALUATION OF INTEGRALS

In this appendix we evaluate the integral over the direc-
tion of spontaneous emission in our expressions for cooling
and heating rates and discuss the enhancement or slowing
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down of decay in the deexcitation step resulting in the limit
a→0. In the following, the abbreviationv(a)[b(a)1c(a) is
used.

Upon evaluating the integral, the transition rate~12! be-
comes ~i! in the caseu5z, i.e., for the z component of
relative or center-of-mass motion

Gm←n52g
3

8pE dV k̂S U (
a51,2

e2 ik•X~a!
~v~a!2 i k̂ud̃

~a!!U22U k̂– (
a51,2

e2 ik•X~a!
~v~a!2 i k̂ud̃

~a!!U2D
52gS (

a51,2
H uv~a!u21

2

5
ud̃~a!u22

1

5
ud̃z

~a!u2J 12 Re@ f ~a!#Re~v~1!
•v~2!* !12 Re@g~a!#Re~vz

~1!vz
~2!* !

1
3

8
~c21c4!2 Re~ d̃~1!

•d̃~2!* !2
3

8
~2c213c4!2 Re~ d̃z

~1!d̃z
~2!* !

1
3

8
~s11s3!2 Re~v~1!

•d̃~2!*2v~2!
•d̃~1!* !

1
3

8
~2s113s3!2 Re~2vz

~1!d̃z
~2!*1vz

~2!d̃z
~1!* ! D ~A1!

or ~ii ! in the caseu5x,y

Gm←n52g
3

8pE dV k̂S U (
a51,2

e2 ik•X~a!
~v~a!2 i k̂ud̃

~a!!u22uk̂– (
a51,2

e2 ik•X~a!
~v~a!2 i k̂ud̃

~a!!U2D
52gS (

a51,2
H uv~a!u21

2

5
ud̃~a!u22

1

5
ud̃u

~a!u2J 12 Re@ f ~a!#Re~v~1!
•v~2!* !12 Re@g~a!#Re~vz

~1!vz
~2!* !

1
3

32
~3c022c22c4!2 Re~ d̃~1!

•d̃~2!* !2
3

32
~2c016c225c4!2 Re~ d̃z

~1!d̃z
~2!* !

2
3

16
~c022c21c4!2 Re~ d̃u

~1!d̃u
~2!* !

1
3

8
~s12s3!2 Re~2vz

~1!d̃u
~2!*1vz

~2!d̃u
~1!*2vu

~1!d̃z
~2!*1vu

~2!d̃z
~1!* ! D ~A2!

where

c0[E
21

1

cos~ax!dx, ~A3a!

c2[E
21

1

x2 cos~ax!dx, ~A3b!

c4[E
21

1

x4 cos~ax!dx, ~A3c!

s1[E
21

1

x sin~ax!dx, ~A3d!

s3[E
21

1

x3 sin~ax!dx. ~A3e!

In terms of these,

Re@ f ~a!#5
3

8
~c01c2!512

1

5
a21••• ,
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Re@ f ~a!1g~a!#5
3

4
~c02c2!512

1

10
a21••• .

Note that forv(2)56v(1), which holds approximately at a resonance for some stateuu,61&,

2gS (
a51,2

uv~a!u212 Re@ f ~a!#Re~v~1!
•v~2!* !12 Re@g~a!#Re~vz

~1!vz
~2!* ! D 52gx,61~ uvx

~1!u21uvy
~1!u2!12gz,61uvz

~1!u2,

~A4!

which makes apparent the modified decay rate of the stateuu,61&. It simply means that the final spontaneous emission
~without change of the motional quantum number! in processes~a! and ~c! of Fig. 3 occurs at a rate of the appropriate
2gu,s .

For the final spontaneous emissionwith change of the motional quantum number in process~b! of Fig. 3, a similar
phenomenon occurs. Here we consider center of mass and relative motion separately. IfGm←n describes the creation or
annihilation of a center-of-mass phonon~i.e.,mu5nu61 for a certainuP$x,y,z%) and the laser is tuned to resonance for some
stateu•,61&, thend̃(2)56d̃(1) holds approximately. We further distinguish betweenu5z andu5x,y.

~i! For u5z, Eq. ~A1! contains

2gS (
a51,2

F25ud̃~a!u22
1

5
ud̃z

~a!u2G1
3

8
~c21c4!2 Re~ d̃~1!

•d̃~2!* !2
3

8
~2c213c4!2 Re~ d̃z

~1!d̃z
~2!* ! D

52gF45ud̃~1!u2S 16
15

16
~c21c4! D2

2

5
ud̃z

~1!u2S 16
15

8
~2c213c4! D G ~A5!

Since

lim
a→0

15

16
~c21c4!51, ~A6!

lim
a→0

15

8
~2c213c4!51, ~A7!

we have enhanced and decreased decay rates for the upper and lower sign, respectively.
~ii ! Similarly, for u5x,y the rate~A2! contains

2gS (
a51,2

F25ud̃~a!u22 1
5 ud̃u

~a!u2G1
3

32
~3c022c22c4!2 Re~ d̃~1!

•d̃~2!* !

2
3

32
~2c016c225c4!2 Re~ d̃z

~1!d̃z
~2!* ! D2

3

16
~c022c21c4!2 Re~ d̃u

~1!d̃u
~2!* !

52gF45 ud̃~1!u2S 16
15

64
~3c022c22c4! D2

2

5
ud̃u

~1!u2S 16
15

16
~c022c21c4! D7

3

16
ud̃z

~1!u2~2c016c225c4!G , ~A8!

which, by virtue of

lim
a→0

15

64
~3c022c22c4!51, ~A9!

lim
a→0

15

16
~c022c21c4!51, ~A10!

lim
a→0

2c016c225c450, ~A11!

gives rise to enhanced and decreased decay rates.

If Gm←n describes the creation or annihilation of a phonon
in one of the modes of relative motion~i.e.,mru5nru61 for
a certainuP$x,y,z%) and the laser is tuned to resonance for
some stateu•,61&, then d̃(2)57d̃(1) holds approximately.
Hence, the above conclusions hold with the upper and lower
sign exchanged: spontaneous emission from a stateu•,21&
is enhanced, and that from a stateu•,11& is decreased.

APPENDIX B: INTERFERENCES

In this appendix, the interference of the amplitudec of the
dipole-dipole–induced process with the amplitudesb andd
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of the sideband cooling-heating and diffusion processes is
investigated.

1. Interference of the b„a… and c„a… terms

It can be shown by using~49! and~14! or ~A1! and~A2!
that whether thej components of theb(a) and thec(a) inter-
fere constructively or destructively depends on the relative
phase ofbj

(1) and cj
(1) , i.e., the phase ofbj

(1)cj
(1)* . In the

following we investigate to what extent this phase can be
chosen by adjusting the laser configuration.

The laser-field dependence of this phase is contained in

S ]Vj

]z
~X~1!!2s

]Vj

]z
~X~2!! D @Vj* ~X~1!!1sVj* ~X~2!!# ~B1!

for p5rz, with the laser tuned to the upper or lower side-
band resonance of stateu j ,s&, and in

S ]Vu

]u
~X~1!!2s

]Vu

]u
~X~2!! D @Vz* ~X~1!!1sVz* ~X~2!!# ~B2!

or

S ]Vz

]u
~X~1!!2s

]Vz

]u
~X~2!! D @Vu* ~X~1!!1sVu* ~X~2!!# ~B3!

for p5ru,uP$x,y%, with the laser tuned to the upper or
lower sideband resonance ofuu,s& or uz,s&, respectively. In
the following, ~B1!, ~B2!, and~B3! are discussed fora!1.

(a) Case p5rz. For s521, ~B1! becomes

S ]Vj

]z
~X~1!!1

]Vj

]z
~X~2!! D @Vj* ~X~1!!2Vj* ~X~2!!#. ~B4!

The last factor can be expressed as

Vj* ~X~1!!2Vj* ~X~2!!5r 0FReS ]Vj

]z
~zreêz! D

1 i ImS ]Vj

]z
~zimêz! D G* , ~B5!

where the intermediate argumentszReêz , zImêz lie between
the equilibrium positions of the two ions:zRe,z Im
P(2r 0/2,r 0/2). By continuity of the derivative,~B4! has
phase 0 in the limitr 0→0, provided that (]Vj /]z)(0)Þ0.
Therefore, apart from this last condition, for small equilib-
rium distances the relative phase in the interference term
under consideration does not depend on the laser configura-
tion.

In evaluating the phase of the other factors, it will be
noted that for small a, the imaginary part in
f 8(a)1d jzg8(a) dominates and thatnp@g j ,21 . Note that
the sign of Im@ f 8(a)1d jzg8(a)# is different for j5x,y, on
the one hand, andj5z, on the other. Forj5x,y, the result is
destructive interference at the lower sideband and construc-
tive interference at the upper sideband. This is illustrated in

Fig. 7~a!, with the laser chosen along thez axis and polarized
in x direction: the peak inArz2 at the lower sideband is
smaller than the one inArz1 at the upper sideband. Taking
into account the matrix elements for the laser interaction, we
see that the amplitudec has only about 6% of the size of the
amplitude b, which results for the peaks in a ratio of
@(110.06)/(120.06)#2'1.27. Forj5z, the interference is
constructive at the lower sideband and destructive at the up-
per one.

For s511, ~B1! becomes

S ]Vj

]z
~X~1!!2

]Vj

]z
~X~2!! D @Vj* ~X~1!!1Vj* ~X~2!!#.

~B6!

The first factor can be expressed as

]Vj

]z
~X~1!!2

]Vj

]z
~X~2!!5r 0 ReS ]2Vj

]z2
~zreêz! D

1 i ImS ]2Vj

]z2
~zimêz! D ~B7!

which holds for somezRe,zImP(2r 0/2,r 0/2). In the limit of
small distances,~B6! therefore has a phase of'p if
]2Vj /]z

2(0) has the opposite phase ofVj (0), as is thecase
for asingleplane~running or standing! wave. In this case the
same statement about destructive and constructive interfer-
ences at the upper or lower sideband holds as that found for
s521, the phase ofp in ~B6! being compensated by the
sign of the matrix element ofH12. But for more general laser
fields, ]2Vj /]z

2(0) does not necessarily have the opposite
phase ofVj (0). Thus constructive interference at the lower
sideband resonance for the stateux,11&, e.g., can be ob-
tained by use oftwo traveling waves. Fig. 7~b! gives results
for two traveling waves in thez and in they directions, both
polarized in thex direction and with appropriate phases so as
to yield Vx(x);(eikz22eiky), thus ensuring that
]2Vx /]z

2(0) has the same phase asVx(0). In agreement
with the above discussion, the peak inArz2 at the lower
sideband resonance for stateux,11& is clearly discernible in
Fig. 7~b!, while it was almost completely suppressed in Fig.
7~a!. For the peak values ofArz1 at the upper sideband reso-
nance for stateux,11&, it is the other way around, as pre-
dicted. Also in agreement with the prediction, the peak val-
ues at the lower and upper sideband resonances for state
ux,21& do not differ appreciably in Figs. 7~a! and 7~b!.

(b) Case p5rx,ry . An analysis as above yields in the
limit of small a that the laser-field dependence of the phase
is determined by

]Vu

]u
~0!

]Vz*

]z
~0! ~B8!

@from ~B2!# or

]Vz

]u
~0!

]Vu*

]z
~0! ~B9!

@from ~B3!#. Here, even with only one traveling plane wave,
different phases can be obtained by appropriately choosing
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its direction and polarization. To show this, let
k5(kx ,ky ,kz) and e5(ex ,ey ,ez) denote the directions of
wave vector and polarization. Then the above phases are
given bykukzeuez* andkukzeu* ez . Sincek•e50, the general
form of the polarization vector ise5w1(2ky ,kx,0)
1w2(2kxkz ,2kykz ,kx

21ky
2) and hence~choosingu5x!

kxkzexez*5~kx
21ky

2!~2w1w2* kxkykz2uw2u2kx
2kz

2!,

kxkzex* ez5~kx
21ky

2!~2w1*w2kxkykz2uw2u2kx
2kz

2!,

and similarly for u5y. By adjusting the parameters
kx ,ky ,kz ,w1 ,w2 , these expressions can be given various
phases; in particular they can be made positive or negative at
will.

2. Interference of b„a… and d„b… terms

Interferences between dipole-dipole interaction~ampli-
tude c) and diffusion processes~amplituded) occur when-
ever the laser is tuned to the central resonance for some
intermediate stateu j ,s&. The interference ofc andd is less
obvious than the one ofc andb becaused depends on the
integration variablek̂, while b and c do not. Nevertheless,
interference ofc andd can be discussed by using the explicit
formulas ~A1! and ~A2!. The terms of interest here are the
ones involving somecj

(1)dj
(1)* . ~Note that we have

v j
(a)'cj

(a) at a central resonance and that~49! can be used to
expressdj

(2) in terms ofdj
(1) .) It is apparent in~A1! and~A2!

that their importance is limited because of factorss1 or s3 ,
which vanish in the limita→0 @see~A3d! and~A3e!. From
~44b!, ~46!, and~47! it follows that the laser direction~s! and
polarization~s! enter via

uVj~X
~1!!1sVj~X

~2!!u2, ~B10!

the phase of which is always 0. The evaluation of the re-
maining factors at the central resonance for stateu j ,s& yields
the following result in the limit of smalla ~cf. below!.

For p5rx,ry and any value ofj , or for p5rz and j5z,
the interference is destructive inAp2 and constructive in
Ap1 . For p5rz and j5x,y, the interference is constructive
in Ap2 and destructive inAp1 . In deriving these above
statements it was assumed that inf 8(a), f 8(a)1g8(a), and
g(a), the imaginary parts are bigger in modulus than the real
parts, which holds for smalla.

3. Interference far from any resonance

The previous discussion focused on the effect of interfer-
ences at some resonance. If the laser is detuned between the
resonances, the cooling and heating coefficients decrease by
orders of magnitude. The theoretical analysis becomes more
complicated because contributions involving different states
may then be equally important. Nevertheless we would like
to mention a qualitative difference in comparison with the

single atom case: there, for any negative laser detuning, the
cooling coefficientA2 is bigger than the heating coefficient
A1 , and the reverse holds for any positive detuning. This is
no longer true in the two-ion case, as becomes apparent
when Fig. 7~a! is replotted by using a logarithmic scale; see
Fig. 8~a!. The occurrence ofAr32,Ar31 ~heating! for cer-
tain negative detunings and ofAr31,Ar32 ~cooling! for
some positive ones can be traced to the interference term

~ 1
2s11

1
2s3!Re~v

~1!
•d~2!*2v~2!

•d~1!* ! ~B11!

in ~A1!. In Fig. 8~b! the resulting average phonon number
^nrz& is plotted. It summarizes the effects discussed above:
the existence of two local minima at the lower sideband re-
flects the splitting of the resonance by the dipole-dipole in-
teraction. There is a region where cooling is possible~to a
certain extent! with a close to zero or even a blue laser de-
tuning, and, as predicted, there is an interval where no cool-
ing is possible in spite of a red laser detuning.

FIG. 8. ~a! Same as Fig. 7~a!, using a logarithmic scale.~b!
Average phonon numbers resulting in steady-state regime from
Arz2 ~solid curve! andArz1 ~dashed curve! in ~a!. G[2g.
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