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Using the knowledge of two-body collision properties that has recently become available, we estimate the
three-body recombination rate for doubly-spin-polarized ultracold gas samples of7Li, 23Na and87Rb on the
basis of the Jastrow approximation. We find that only recombination leading to the formation of the highest
two-body bound states is important. The rate for the highest bound level with zero angular momentum is found
to increase strongly with the absolute value of the two-body scattering length.

PACS number~s!: 32.80.Pj,42.50.Vk

I. INTRODUCTION

One of the main goals of neutral atom cooling and trap-
ping experiments is achieving the low temperatures and high
densities needed to obtain Bose-Einstein condensation
~BEC!. The past year has shown a rapid growth in phase
space density towards or even beyond the critical line of the
phase transition by several authors@1–4#. With the recent
breakthrough to BEC by Andersonet al. @1# it becomes of
increasing importance to explore the limits to BEC as im-
posed by inelastic two-body collisions and by three-body
recombination. In this paper we concentrate on the latter pro-
cess in a cold gas sample of doubly polarized atoms, leading
to the formation of triplet ground-state dimers and thus to
decay of the atomic density and to heating of the gas. During
the last decade much effort has been devoted to calculating
the three-body recombination rate constantL for doubly-
spin-polarized atomic hydrogen@5–8#. For the alkali atomic
species the only published calculation is the estimate in Ref.
@9# for Cs. We will now apply the same approximative
method to estimateL for cold gas samples of7Li, 23Na, and
87Rb making use of the recently obtained triplet collision
parameters for these alkali-metal atoms@10–13#. The infor-
mation obtained from an analysis@14# of experimental colli-
sional frequency shifts of the cesium atomic fountain clock is
not of sufficient accuracy to enable us to include Cs in our
calculations on the same footing as the above-mentioned al-
kali systems.

An important difference of the alkali-atom recombination
process with the previously considered case of atomic hydro-
gen is the existence of triplet two-body bound states of
alkali-metal atoms. This makes recombination possible in
three-body collisions without spin flip, enhancing the rate by
about ten orders of magnitude@9# with respect to that in H.

This paper is organized as follows. In Sec. II we describe
our method of calculation in more detail than in Ref.@9#,
starting with some general aspects of the three-body recom-
bination process, introducing the Jastrow approximation, and
describing the numerical approach. In Sec. III we present our
results. A summary and outlook is formulated in Sec. IV.

II. METHOD

A. Rate constant for recombination

We first introduce the notation to be used in the following.
Leaving out temporarily the identical-particle aspects, we as-

sume that in a collision of three initially free atoms 1, 2, and
3, particles 2 and 3 form a molecule in the final state, while
particle 1 remains free. It is then customary to use Jacobi
coordinatesrW,RW , whererW is the radius vector from 2 to 3, and
RW the radius vector from the center of mass of 2 and 3 to 1
~see Fig. 1!. The conjugate~Jacobi! momenta are

pW 5
1

2
~\kW32\kW2!, ~1!

qW 5
2

3
\kW12

1

3
~\kW21\kW3!, ~2!

where\kW i is the momentum of atomi .
We start from a rigorous expression for the transition

probability per unit of time for recombination in a three-body
collision, assuming normalization in a large six dimensional
~6D! volumeV 3V of the combinedrW andRW spaces:

vfi5(
v lm

(
qW f

2p

\
z^f f uV~r 12!1V~r 13!uC i

~1 !& z2d~Ef2Ei !.

~3!

FIG. 1. Coordinates used for three-body scattering. It is assumed
that particles 2 and 3 recombine.
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Hereuf f& is a stationary stateuwv lm& ^ uqW f& of a Hamiltonian
H1 obtained from the total HamiltonianH5H01V by sub-
tracting the interactions of particle 1 with the remaining par-
ticles,uwv lm& denoting a particular molecular bound state and
uqW f& a momentum eigenstate of atom 1 relative to the mo-
lecular center of mass. The stateuC i

(1)&[uC i
(1)(pW i ,qW i)& is

the rigorous three-body eigenstate including the sumV of all
interactions, which is asymptotically equal to the free state
upW i ,qW i& of three free atoms supplemented with outgoing scat-
tered parts. For the interaction operatorV we will consider
only a sum of~triplet! pair interactions,

V5V121V131V23. ~4!

The transition probability~3! is sometimes considered as a
rigorous variant of an approximate expression based on Fer-
mi’s golden rule, which would contain a continuum eigen-
state upW (1),qW & of H1 as an ‘‘unperturbed’’ state instead of
uC i

(1)&. Note that we omit the~trivial! electron-nuclear spin
parts in our notation.

We now take the limitV →` leading to ad-function
normalization of momentum eigenstates. Furthermore, we
take care of the identical-particles aspect by replacing
uC i

(1)& with a symmetrized state (1/A6)S uC i
(1)&, where

S is a sum of 3! permutations. By multiplying the rate by 3,
taking into account the three different final states with each
of the bound pairs 2-3, 1-3, or 1-2, the following transition
probability is found@6#:

vfi5
p

\

~2p\!6

V 2 (
v lm

E dqW f u^f f uV121V13uS C i
~1 !&u2

3d~Ef2Ei !. ~5!

In a gas ofN atoms we have (3
N). N3/6 three-particle sys-

tems, so that the decay rate equation is given by

dN

dt
523

N3

6
^vfi& therm. ~6!

Here ^ & therm stands for thermal averaging over all initial
states. Dividing by the volumeV we find the rate of decay
of the density:

dn

dt
52Ln3, ~7!

with L5^L(pW i ,qiW )& therm and

L~pW i ,qW i !5
m

6\2 ~2p\!7(
v lm

qfE dq̂f z^f f uV~r 12!

1V~r 13!uS C i
~1 !& z2. ~8!

The summation is over all triplet diatom states,qf is deter-
mined by energy conservation, while the integration is over
all directions ofqW f .

B. Zero-temperature limit and Jastrow approximation

We now make use of the fact that the initial state is one
with three ultracold atoms, the experimental temperatures in
the nK range being small relative to the two-body potentials
at the relevant radiir5O(a) in the initial channel as well as
to the binding energies of the two-body bound state domi-
nant in the final channels. This allows us to use theT→0
limit @15# which implies the replacementpW i5qW i50W in the
thermal average:L5L(0W ,0W ). Thus, to calculate the recom-
bination rate, only the triplet interaction potential, the bound-
state wave functions in this potential, and the three-body
scattering stateuS C i

(1)& for zero energy are needed. The
triplet potential and the bound states for this potential are, at
least for Li and Na, easily obtained since accurate potential
curves for the ground-state triplet interaction have been con-
structed@10,11#. The main problem is to find the three-body
scattering state, i.e., the solution of the Schro¨dinger equation
(H01V)uC i

(1)&5EuC i
(1)& for E50. In the past this state

has been calculated rigorously for the case of three hydrogen
atoms by means of the Faddeev formalism@6–8#. Even in
this case, where the triplet interaction has no bound states,
this turned out to be a tedious calculation. In Ref.@7# it was
found that the initial scattering state could be well approxi-
mated by a Jastrow-like product@16# of three two-atom zero-
energy scattering states,w0

(1) ~see Fig. 2!:

S uC i
~1 !&56w0

~1 !~r 12!w0
~1 !~r 23!w0

~1 !~r 31!~2p\!3/2. ~9!

Note that the Jastrow form~9! is rigorous when one of the
particles is sufficiently far away and that it also fulfills the
condition for Bose symmetry. To test the Jastrow approxima-
tion we compared the results for calculations of the recom-
bination rate in atomic hydrogen to the results of calculations
with the exact initial state for various values of the magnetic
field. The difference turned out to be at most 15%. Clearly,
because of the existence of many bound diatom states in the
triplet potential, the Jastrow approximation will be less ac-
curate in the case of alkali atoms. This will particularly be

FIG. 2. Two-atom zero-energy scattering state for23Na. Inset:
rapidly oscillating inner part.
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the case in the part of configuration space where all three
particles are close together. In this relatively small part of
space, however, the wave function oscillates rapidly and in
calculating the final matrix element these oscillations will
tend to integrate out.

On the basis of~9! the matrix element in the expression
for the rate constant can be written as

^f f uV~r 13!1V~r 23!uS C i
~1 !&

5E drWE dRW wv lm* ~rW !
e2 iqW f•R

W /\

~2p\!3/2
@V~r1!1V~r2!#

36w0
~1 !~r !w0

~1 !~r1!w0
~1 !~r2!~2p\!3/2, ~10!

where r65uRW 6rWu. Making use of the properties of the
spherical harmonicsYlm , three of the six integration vari-
ables, i.e., the Euler angles, defining the orientation of the
1-2-3 triangle in space~see Fig. 1! can be eliminated and we
are left with

^f f uV~r 13!1V~r 23!uS C i
~1 !&

596p2Ylm* ~ q̂f !

3~ i l !* E R2dR jl~qfR/\!E r 2drwv l* ~r !w0
~1 !~r !

3E dxPl~x!V~r1!w0
~1 !~r1!w0

~1 !~r2!d l ,even.

~11!

Here j l(qfR) is a spherical Bessel function,Pl(x) is a Leg-
endre polynomial, andx5cos(u) with u the angle between

rW andRW ~see Fig. 1!. From this expression it is clear that the
free atom in the final state has orbital angular momentum
quantum numbers equal tol and2m, which is easily under-
stood on the basis of angular momentum conservation: the
initial state has total orbital angular momentumL50 and the
dimer has quantum numbersl ,m. Note that theV(r1) and
V(r2) parts of ~10! compensate one another for oddl as
they should in view of the Bose symmetry under exchange of
atoms 2 and 3, while they are equal for evenl .

The expression~11! contains products of rapidly oscillat-
ing functions ~see Fig. 2!, which may easily give rise to
numerical problems without a careful choice of integration
variables. This indeed turns out to be the case: after carrying
out thex integration the integrand of ther integral shows for
each fixed value ofR rapid and ‘‘chaotic’’ oscillations which
are increasingly difficult to handle for increasing atomic
mass. Thex integral, for instance, involves simultaneous
variations of ther1 andr2 variables which distort the origi-
nal regular WKB-like oscillations of ther1 andr2 depen-
dent radial wave functions. As a way out, we take the mag-
nitude of the vectorsrW 1 andrW 2 as integration variables, as

well as the angleu8 between them:

^f f uV~r 13!1V~r 23!uS C i
~1 !&

596p2Ylm* ~ q̂f !~ i
l !* E r12dr1V~r1!w0

~1 !~r1!

3E r22dr2w0
~1 !~r2!E dx8 j l~qfR/\!wv l* ~r !w0

~1 !

3~r !Pl~x!, ~12!

with x85cos(u8). For the dominant bound dimer states close
to the continuum the functionswv l(r ) and w0

(1)(r ) show
almost identical fast oscillations, so that in ther interval
concerned the resulting local sin2 function can be replaced by

FIG. 3. IntegralGv l(r
1)5*r22dr2w0

(1)(r2)*dx8 j l(qfR/\)
3wv l* (r )w0

(1)(r )Pl(x) as a function ofr1 for the 23Na2 state
v515,l50.

TABLE I. Partial three-body decay rates for7Li.

Final state (v,l ) Binding energy~K!
Partial rateLv l

~cm6/s!

10,2 0.337 1.98310228

10,0 0.598 2.03310229

9,6 1.477 1.29310230

9,4 3.279 1.67310229

9,2 4.504 1.32310229

9,0 5.046 3.75310232

8,10 2.711 6.33310236

8,8 7.181 4.95310232

8,6 10.949 4.05310231

8,4 13.829 1.03310232

8,2 15.709 6.09310232

8,0 16.525 1.07310230

7,14 3.077 8.12310239

7,12 11.071 2.13310234

7,10 18.291 2.57310230

7,8 24.504 2.46310231

7,6 29.551 1.28310230

7,4 33.280 7.16310231

7,2 35.763 1.44310232

7,0 36.814 1.65310231
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1
2 . Furthermore, the expression~12! has the advantage that
the potentialV(r1) which would also disturb the regular
oscillations of the integrands of the previous integrations is
included in the last integration. Figure 3, which shows the
intermediate result of thex8 andr2 integrations, illustrates
the disappearance of the irregular oscillations achieved in
this way.

III. RESULTS

In Tables I and II the partial recombination rates are given
for the formation of each of the highest two-body bound
states of7Li and 23Na. The partial ratesLv l decrease with
increased binding energy and also show a systematic de-
crease at the highestl values considered. Both tendencies
can be understood by overlap arguments. Final states which
are weakly bound have optimal overlap with the initial state
of three slow atoms so that a weaker perturbation operating
in a larger part of space is sufficient to induce a transition.
For higher orbital angular momental the atoms are pushed to
larger distances, i.e., the Bessel functionj l is small in a
larger radial range, so that the overlap will decrease.

Next we turn to the recombination rate for87Rb, which is
of particular relevance in view of the recent successful BEC
experiment. The detailed potential curve for Rb is not yet
known, but we know the long range part (r.30a0) and the
locations of the highest bound states relative to the con-
tinuum from recent cold-atom photoassociation work
@12,13#. This allows us to calculate the three-body rate rather

reliably, since the recombination rate tends to be dominated
by contributions from larger interatomic distances. This is
confirmed by detailed calculations in which we compared
recombination rates for a number of differentr,30a0 parts
of the potential. The latter were obtained from anab initio
potential @17#, and adjusted to give correct values for the
scattering length and highest bound-state energies@13#. We
found L to vary by at most a factor of 3. In Table III we
present the resulting total recombination rates for7Li,
23Na, and 87Rb. Note that the decay rate for87Rb is pre-
dicted to be a factor of 50 smaller than that for the two other
atoms, which clearly is of great importance for Bose-Einstein
condensation experiments.

The fact thatL apparently depends only on the tail of the
potential might imply that it could be expressed as a simple
function of the scattering length. A simple dependence on
aT is indeed suggested by Eq.~12!. If the intermediate result
of thex8 andr2 integrations is considered as constant in the
relevant r1 region then the r1 integral
*r12dr1V(r1)w0

(1)(r1) is just the expression for the zero-
energyT matrix, which is equal to the two-body scattering
length. Detailed calculations show that the amplitude of the
intermediate result of thex8 and r2 integrations depends
only weakly on the scattering length for not too extreme
values of this latter quantity. A strong dependence of the total
L on the scattering length also follows from an even simpler
picture of the three-body collision than has been used in the
foregoing: the impulse approximation@18#. To facilitate
physical insight into this picture we turn to the inverse pro-
cess of recombination: breakup of a dimer by the collision

FIG. 4. Value of the partial recombination rateL15,0 divided by
the square of the scattering length as a function of the value of the
triplet scattering length.

TABLE II. Partial three-body decay rates for23Na.

Final state (v,l ) Binding energy~K!
Partial rateLv l

~cm6/s!

15,0 0.002 1.64310228

14,4 0.064 1.82310230

14,2 0.188 4.56310230

14,0 0.246 6.78310230

13,8 0.251 1.12310230

13,6 0.692 2.16310230

13,4 1.035 5.30310230

13,2 1.260 2.63310230

13,0 1.358 8.61310231

12,12 0.389 8.49310239

12,10 1.349 1.39310232

12,8 2.201 2.31310233

12,6 2.905 2.91310231

12,4 3.438 9.11310231

12,2 3.784 3.74310231

12,0 3.933 6.17310232

TABLE III. Total three-body decay rates.

Atom L ~cm6/s!

7Li 2.6 310228

23Na 2.0310228

87Rb 4310230

TABLE IV. Partial three-body decay rates for23Na with adjusted
potentials.

aT ~units ofa0) L15,0 ~cm6/s! L15,2 ~cm6/s!

106 1.7310228

47 1.0310229

25 9.8310235 3.3310233

7 1.0310230 8.4310230

-22 9.5310230 4.2310229

-88 5.3310229 3.2310227

-458 6.3310226 3.5310224
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with an atom, for which the transition amplitude is the com-
plex conjugate value. In the picture of the impulse approxi-
mation the dimer state is Fourier analyzed as a superposition
of all possible relative momentum eigenstates of the two
atoms. The ‘‘incident’’ atom is affected by each of the states
in the superposition separately and collides with one of the
atoms only. The transition amplitude to a particular free
three-atom state is then equal to the probability amplitude of
the dimer relative momentum state multiplied by a two-body
scattering amplitude@19#. Since at the relevant low tempera-
tures the latter is equal to the scattering length, the question
comes up as to what extentL is proportional toaT

2 . To
investigate this for23Na we varied the scattering length by
deepening gradually the inner part of the potential, thereby
shifting the radial nodes beyond this range, and calculated
the dominant partial recombination rateL15,0. The result is
shown in Fig. 4. Apparently, there is a considerable scatter
around theaT

2 dependence. In any case Fig. 4 shows convinc-
ingly that the recombination rate depends very sensitively on
aT with a tendency to rapidly growing rates for largeruaTu
values. We should stress, however, that it is certainly not the
scattering length alone which determines the order of mag-
nitude of the total recombination rate. As the potential is
made deeper, at some point it is possible to have a state with
l52 as the highest bound state. The partial decay to this
state then becomes the dominant process~see Table IV!.

IV. CONCLUSIONS

We have calculated the three-body decay rate for doubly-
spin-polarized ultracold gas samples of7Li, 23Na, and
87Rb based on two-body collision information which has re-
cently become available for the above atomic species on the
basis of spectroscopic data and cold-atom photoassociation
experiments. These atomic species play a key role in the
recent BEC experiments. Experimental results@1# indicate
that three-body recombination is an important process in
these experiments, the loss rate determining the lifetime of
the condensate probably being a result of this mechanism. In
view of the ultralow temperatures obtained experimentally
we approximate the rateL by that in theT→0 limit. L is a
sum over partial rates for formation of the various dimer
rovibrational states and is dominated by one or a few of the
highest bound states. Note that the recombination rate in a
Bose condensate has to be divided by six because of Bose
statistics@20#.
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