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Ground state of a weakly interacting Bose gas of atoms in a tight trap
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We study properties of the ground state of a bosonic gas of atoms in a tight trap. The atoms interact via
model molecular potentials that may have either positive or negative scattering lengths. We discuss the possi-
bility of Bose-Einstein condensation in such a system. We show that when the size of the trap becomes
comparable to the correlation length of the condensate, stable Bose-Einstein condensation might occur inde-
pendent of the sign of the scattering length.

PACS numbds): 03.75-b, 67.40-w, 32.80.Pj, 42.50.Vk

I. INTRODUCTION amplitude to be constant in this limit. Heuristically, the bare
atom-atom potential/(R— R’) is then replaced by aeffec-
Recently there has been a great deal of interest in experfive zero-rangepotential[14]
mental realization of the Bose-Einstein condens@EC)
[1-5] in various systems of trapped and cooled atdBis S B S BRSSP
These studies have already led to the remarkable observation V(R=R)=Ver(R-R)=BSR-R). @
of Bose-Einstein condensation in the rubidium vapd}.
Evidence of BEC in a lithium gas with attractive interactions
has also been report¢d]. Two of the major questions con-
cerning the physics of such systems ékewhat is the char-
acter of atom-atom interactions, af®) what is their role in
the formation of the condensate? é:f d*RV(R). ®))
The above two questions can be addressed either for ho-
mogeneous gases or for spatially confined systems. In the ~ 5 ) )
homogeneous case, a lot of systematic studies, especialli this caseB=4m%"ag/M with M the atomic mass and
concerning questioil), have been carried out. The atom- 88 denotes 'the .scatterlng amplitude calculated under the
atom interactions were studied with model potentials or mord0rn approximation. More generally, one sets
accurately with Born-Oppenheimer molecular potentials. For ~
spin polarized hydrogen molecular potential curves are B=4nfi’ag/M. 4
known accurately enough that the low-eneggwave scat-
tering lengthsa,. can be computed with confidence. They areThe simple heuristic arguments presented here can be de-
positive and represent overall repulsive interactifis For ~ rived more rigorously within the framework of many-body
alkali metals the problem is much more complex, since théheory[15]. To this aim one employs a so-call@dmatrix
molecular potential curves which can typically support manyapproximation, which consists of a resummation of tdut-
bound states are not known precisely. Some of the atomder diagrams in the calculation of the single particle Green’s
(e.g., cesiumare believed to have a positia., [10] and  functions[16]. From this point of view the above formulated
some otherge.g., lithium) to have a negativey.[11]. question(1) can be answered provided the scattering length
The knowledge of the scattering length is essential for thés known.
description of atom-atom interactions at low energies. In One should stress, however, that in the original derivation
such a situation atom-atom interactions can be modeledf the effective potential Galitsk{i17] and Beliae\{18] as-
within a framework ofshape independent approximation sumed a bare hard core potential. The theory can be gener-
(SIA) [12], which implies that as the relative momentkrof ~ alized to the case of a potential which supports bound states
the scattering particles goes to zero, only sheave scatter- provided(a) it has a positive scattering lengttb) its effec-
ing is relevant and the-wave phase shiff, behaves afL3] tive ranger . is not too large. The latter requirement comes
from the fact that in order to neglect the momentum depen-

Note that such an effective potential leads automatically to
s-wave scattering only. If the bare potential is weak, and can
be treated using the Born approximation, one can set

B 1 2.2 dence of the scattering amplitudes for the momenta of the
tando /K= —asc~ Frerdsk + -, @ orderyngay, 0ne needs to have,aZs or<1. More generally,

one expects that for scattering at low but nonzero energy the
with r . denoting theeffective rangeof the potential. Since use of SIA would require the substitution of the zero-range
the range of the atom-atom interactions is believed to beffective potential2) by a finite-range potential. One of the
short in comparison to the typical length scale of variationsvays to do it is to represent the effective potential as a series
of atomic wave functions, one can in fact neglect the secondontaining derivatives of the Diraé function of increasing
term on the right-hand side of E¢l) and set the scattering order,
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Vei(R—R')=BS(R—R')—CV2§(R-R’)+---. (5  teractions are repulsive, allowing for BEC eve_réit_o [21].
Although our results are to a great extent univergal, in-

. , . dependent of the particular form of the atom-atom potential
Because of centrifugal symmetry of the potentig there is i, ‘rqer to illustrate them we present a modelMofBose

no first order term in Eq(5). The nonlocal terms in the  515ms in a harmonic trap interacting via an effective nonlocal
above expansion are due to the fact tfiaat nonzero ener- otential that can have an arbitrary scattering length, and
gies sca_l_tterl_ng amplltgde is energy d_ependent even fos the which reduces to the forngs) in the limit of low-energy
waves; (i) higher partial waves contribute. That means thatscattering. Since the effective potential does not have a zero
the coefficientC contains contributions of two kinds: those range, it accounts in principle for scattering of all partial
due to the energy dependence of thevave amplitude, waves. Interestingly, our model is analytically soluble at
Cs= Trﬁzaﬁgeﬁ/M, and those due to the scattering of higherT=0 in the mean field approximation. We show thatBas
partial waves. In this paper we examine the conditions unde¢hanges sign the system undergoes a phase transition from
which the expressiofb) has to be used instead @). Aswe  the weakly interacting gaseous pha&¥IG) to a high-
shall see, such conditions may occur in tight atomic traps. density(liquid or solid phase(HDP). In the WIG phase the
The problem of the validity of Eq2) is also related to the Standard SIA becomesxactin the largeN limit.
fact of whether one considers a homogeneous or inhomoge- The main result of this paper is, however, that for large,
neous system. The Galitskii-Beliaev theory was formulated?Ut finite, N there exists a finite region of parameters such
for the case of homogeneous gas. In such a case, and in tHat|B|=<Bg for which the system is in a new gaseous phase.
presence of repulsive interaction&e., B>0), the expres- Tgsbﬁge'rgaec’fogatﬁmsgisicgrrfr?gosr}gz g} ?hZ'tg%té?g ;‘f{g‘?ﬂn
son(s can e s t e tperaie s e conaensdf e e, comes amalr e e con
second derivative term in E@5) can then be neglected. On ensate correlation length [22]. We call this phase auper

L .~ weakly interacting gagSWIG), since the net effect of the
the other hand, it is not clear whether Eg) can be used in o mic interactions is repulsive, but particularly weak in this

tightly confined atomic traps, especially when the trap siz&)hase The SWIG can exist for both positive and negative
becomes comparable to the corre_latl_on length of the condeny| a5 ofB. The standard SIAEQ. (2)] is invalid in the
satel ;=1/\noas. The trap potential introduces then a nec- |G phase, and one has to use ). instead. Interest-
essary spatial dependence of the condensate wave functiqgly, however, the properties of the SWIG phase in the limit
such that the contribution of the second derivative term inof large N are determined by the values of the coefficients
Eqg. (5) might become relevant. One may thus ask if and hows andC, and in this sense do not depend on any other details
the presence of the trap affects the validity of E2). One  of the effective potential. We estimate that the critical tem-
can also ask whether Eq2) can be used for atom-atom perature for BEC in SWIG is higher than in WIG, and that
potentials that support many bound states sagés, in such  this phase can be realized experimentally in a laser cooled
a case, a rapidly varying function of the details of the potenBose gas in microtrap3].
tial [10], and can attain any value betweene and +«. In The paper is organized as follows. In Sec. Il we present
particular it may happen thai is close to zero. our model of a weakly interacting Bose gas in a tight trap
Even if the details of the atom-atom potential wereand discuss its properties &t=0 in one dimensiori1D) and
known, there would still remain the questid®) as to  3D.Although exact implementation of the ladder approxima-
whether BEC is possible for potentials with negatiyg, or ~ tion in the trap geometry seems to be hardly possible, we
for potentials that support bound states. These questior%mply define the model by specifying a particular phenom-
were recently addressed by Std@n] for the case of a ho- enological form of the effectlve_ atom-atom poten_tlal that
mogeneous gas. Stoof used H@) for both positive and would result from the resummation pf the Iadder.dlagram_s..
negativeé, and has shown that f@<0, BEC of a weakly We make several plausible assumptions about this potential:

int . L ible. Instead. th i d (i) we assume that it is redl.e., neglect the lifetime of the
Interacting gas 1S IMpossible. Instead, the systém undergoe asiparticles (ii) we assume that it has a short-range repul-

first order transition to a high-density phase. Bor0, BEC  gjye core, and, finallyjii) that it has a finite-range attractive
takes place at sufficiently low temperature and leads to dart. We use then a self-consistent Bogoliubov-Hartree
build up of the macroscopically coherent atomic field. In thetheory to describe the ground state of the model. Particular
critical caseB=0, one deals with the ideal Bose gas, for choice of the form of the effective potential allows us to
which BEC is still possible, but does not lead to the build upconstruct the ground state wave function analytically. In Sec.
of coherencecondensation occurs into a Fock state, rathedll we discuss the properties of the ground state in the limit
than a coherent stateln view of the recent experimental of a large number of atombl. We discuss there various
observation of BEC in lithium gas with a negative scatteringPhases of the system a@=0 as a function of the order
length[8], it is clear that Stoof’s result cannot have an un-parameter which turns out to be related to the value of the
limited range of applicability. scattering length, but depends also explicitly on the param-
The purpose of this paper is to shed more light on the twceters of the trap. Finally, in Sec. IV we discuss possibilities

questions formulated above for the case of tightly confinedf Physical realizations of the SWIG phase and present our

gases. More precisely, we address here two related questiorg2nclusions.
(a) Is the standard .SIA, Edq2), Stl|.| valid in t|ghtly confined Il. THE MODEL OF A WEAKLY INTERACTING
traps?(b) Is BEC in traps possible for potentials that are
. . . . BOSE GAS IN THE TRAP
overall attractive, i.e., have negatieg.? As we will show
below, for sufficiently small traps the second term in E). Let us start our discussion with a 1D model. We consider
becomes dominant, and ensures that effective atom-atom iN atoms of mas#$/ in the ground electronic state located in
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a harmonic trap of frequencw,. The second quantized obtained by double differentiation of Eq(7), where

Hamiltonian for such a system is 1:“2=1“2—2AF/B. Note thatB=BI%T'2, so that eithei or
52 g2 1 B can be regarded as control parameters. The depéxy,
T o= f dx\IfT(x)( >+ =M w2x2 W (x) which is expected to be an even functiorxpimust therefore
¢ 2M dx* " 2 have a general form
1 _ ~
+§f dxdX W)W (X" ) Ver(x—X )T (X" )P(X), p(x)=a— Bx*+ ycoshIx), 1D

©) where the parameters fulfill
whereW¥ (x) and¥'(x) are, respectively, the atomic annihi-
lation and creation operator fields that fulfill canonical ~) 5 )
bosonic commutation relation. The effective Hamiltonian in 2B+1"a=EI'*/(NB)+Maw{/(NB). (13

Eq. (6) is to be understood as resulting from the resummation

of the ladder diagrams and contains thus an effective intef~dditional constraints for, 5, and» are obtained from the
atomic potentialV «(x—x'). The effective potential repro- 'eduirements thata) p(x) fulfills the integral equation(7);

duces in the Born approximation exact scattering amplitude&) p(Xo) =0; (c) ffoxop(x)dx: 1 which, together with Egs.

of the original bare atom-atom potential. Strictly speaking,(12) and (13), determinex,. For f2>0, Xo is determined
the annihilation and creation operatoWs(x) and \I,'T(X), uniquely. For[2<0 there are in principle many possible
therefore describe annihilation and creationqufasiparti-  ggjutions. but only the smallest one assures ta)=0.

cles rather than the bare on¢s5]. In the mean field ap- Before we turn to the discussion of these solutions, let us

proximation, or the Bogoliubov-Hartree approximation prefly discuss the 3D case. Exploiting the same idea we
[24,29, one first replaces operator fields bynumber fields  ~gnsider the effective potential

and atT=0 seeks the minimum of the function@) under

the constraint that the number of atoms is fixed, Ver(R)=B&(R) — Aexg —TR)/R. (14)
Jdx¥T(x)¥(x)=N. Equivalently, one considers the mini- ¢

mization of the free energy functional.7=7  The attractive part of the potential has the form of the
—Efdx¥T(x)¥(x), whereE is the ground-state enerdgr,  Yukawa potential, and is a Green function of

alternatively, the many-body chemical potentidlhis leads

to the nonlinear Schbnger equatioiNLSE), which for the (V2-T?)exp—T'R)/R=—475(R). (15
case of a nonlocal atom-atom potentM{x—x') has an

integro-differential forn{15]. In the largeN limit the kinetic ~ Once again, in the limit of low-energy scattering this poten-
energy term in the above equation can be neglected provideihl reduces to the form of Eq5) with B=B—47A/T2,

the potential varies sufficiently slowlf26]. Then we obtain  C=47A/T'*. Note again that in general the potent{dh)

B=Mw?T'?%/(2NBI?), (12)

the integral equation accounts for scattering of all partial waves. As we shall see
1 below, however, in the limit of largdl the properties of the
(_thzszer dX' Ver(x—x")p(x) | W (x) = EW¥(x), system are determined fuII.y. by the asymptotic behavior of
2 @ Ve at R=0, or more specifically by the values & and
C

The densityp(R) in 3D (which must be rotationally in-
variant, regular aR=0, and vanish foR=R;) has to take
the form

with p(x)=|¥(x)|%/N the normalized density.
Now we specify the effective model potential to be

Vei(X) =B8(x) — Aexp(—T|x|). (8) ) .
p(R)=a— BR*+ 5sin('R)/R, (16
The potential consists of a zero-range repulsive core, and an  _ .
attractive part of range-1/T. It is real, i.e., we neglect pos- with [?=T2?—47A/B=I2B/B. The equations relating,
sible effects of the finite lifetime of the quasiparticles. In the 8, 7, E, andRy can be found using a method analogous to
low-energy scattering limit it reduces to the form of Ef)  that used in 1D. Note that it is easy to generalize our method
with I§=B—2A/F, C=2A/T3 to the case when the potential is a combination of several
The main reason in choosing the above fof@), apart (attractive or repulsiveYukawa terms with various ranges.
from its phenomenological plausibility, is that the nonlocal
part of the potential is a Green function of [ll. PROPERTIES OF THE GROUND STATE
FOR LARGE N
(d?/dx?—T?)exp(—T|x—x'|)=—2 8(x—x"). (9
For large (but finite) N the solutions of NLSE can be
One can thus seek the solution of EJ) in the interval divided into three classes describing three different phases
[ —Xg,Xo], i-€., such that¥(x)=0 for |x|=x,. Within the (state$ of the system. These solutions aneiversal(they do
interval [ —Xg,Xq], p(x) must fulfill not depend on the details of the effective potential, but only
) Mod® on the trap potential They can be classified by the critical
—fz)p(X)=(d—2—F2> (E_ WX ) (10 valueT’, of_ the_parametel_‘ (to be defined latgr _ _
dx ' For primarily repulsive atom-atom potentials with

2

dx?

NB 2NB
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2> 1~“§, atoms aflf =0 condense into the weakly interacting

gaseous phase. In the WIG phase the standard SIA is exact. '00.000

In 1D the solution becomep(x)=3(x3—x?)/(4x3), with

Xo=(3NBI'%/2M 0?I'2)3 and energyE =M w?x3/2. In 3D 10.000

the solution is p(R)=15(R32—R?)/(8wR3), with G

Ro=(15NBI?/4nMwil')%, andE=Mw?R%/2. In3Dus- & 19 §

ing semiclassical theor{28] we can estimate the critical = y

temperature for the condensation from the condition that the =  0-100 ? 7
density in the center of the trap should fulfill ¢ *
Np(0)A3=2.612, whereAr=h/\2wMkgT is the thermal 0.010 HOP -
de Broglie wavelength. Of course, this estimate makes sense *
since we expect that the density in the center of the trap at 0.001 5 X S S,
the critical point does not differ very much from the density 107 10 7 10 10% 100 107 107 10

at T=0. In the WIG phase, one can easily include correc- [or 7 (units of 1/a)

tions to our solutions coming from the kinetic energy term by
solving the NLSE iteratively26,27. FIG. 1. Dependence of the condensate $kgeon the control

~ ~ ~ a _ ; _ —-1_
For —I'2<I"?<I? the gas is in a critical state, which we parameteil” for N=10" with a=2 um. We have used =0.25

. . M, A= 164V gt Rare) /T With £V 4 Rar) = 10 Hz as discussed in
term a super weakly Interacung gas. Standard SIA cannot bﬁwe text. The line connected with open squares is the result for
used in this case and one has instead to usédtdn 1D the 2250, whi . T

. 2 2 5 . , while asterisks represent the points < 0.
solution  becomes p(x)=15(xg—x“)/(16xy),  with
Xo=(45NB/2M w?T'?) Y5 and energyE=M w?x3/6. In 3D

energy isE=—NBY2/T'q 2x,— 2tan(yxy)/y] and is now
the solution is gy YT 2x0 (rx0)! 7]

proportional toN. Similarly, in 3D the density isp(R)
p(R)=105R2— R?)%/(32nRY), 17 x[1—Rysin(yR)/Rsin(yR,) ], with R, determined from
YRl

with tar( 7RO): - (F2+ N’}/Z)(1+FRO)+F3RO.

(19

Ro= (525N B/47M w?T?)Y7 18 iy - . g
0= Mol (18 _ The critical value ofl" is obtained from the condition
and E=3M w?R%/10. Note that SWIG is a low-density gas- [¥o=1 in 1D andl':Ry=1 in 3D. We obtain(from the
eous phase in which the volume increases very slowly witfEXPressions for, andR, in the WIG)
the number of particles, as if the repulsion of particles were S 2 315
very weak. Paradoxically, the net effect of atom-atom inter- Ie/T'=(2Ma;/3NBI®)™, (20
actions is repulsive even with a negati® That is, of
course, the consequence of the fact that in this phase the
second(repulsivg term in Eq.(5) dominates over the first Physically, the above condition corresponds to the fact that

one. The density of atoms in the SWIG is larger than in th he spatial variations of the condensate density in the tra
WIG, so that the semiclassical estimate gives higher critic%) P Y P

temperature. This makes SWIG very interesting from the ex- ecome so significant that both terms in ). are compa-
) . . rable in the center of the trap,

perimental point of view.
Obviously, the fact that the density in the SWIG phase is 5 I

larger than that in the WIG phase suggests the possibility that [Bo(0)[~|Cp"(O)]. 22

neglecting the kinetic energy term in EQT) may be unrea-  ag e see from Eq420) and(21) the critical region shrinks
sonable in the SWIG phase. The kinetic energy correctiongN grows, but relatively slowly. The most important feature
comes essentially from the vicinity of the boundary, atsf the above formulas is that the size of the critical region

X=Xo in 1D, andR=R, in 3D. Fortunately, the density in (j e the region of SWIG phaseepends on the trap param-
the SWIG phase is continuous with the first derivative,eters. Our results are illustrated in Figs. 1 and 2.

whereas the wave function is continuous at those points in
the largeN limit. This allows us to prove rigorously that the
contribution of the kinetic energy in the SWIG phase is as-
ymptotically negligible(see Appendix A The main question is whether the SWIG phase can be
_ Finally, for a primarily attractive potential with realized experimentally. One possibility is to control the pa-
< —F§ the gas condenses into a high-density phase. In thimmeters of the atom-atom potential using external magnetic
case the use of the HamiltonigB) has to be questioned or electric fields[29]. Such control could, in principle, lead
since it contains only binary interactions. We also note thato a,~0, i.e., B=0. Another possibility is to decrease the
neglecting the kinetic energy term in E@) becomes inap- size of the atomic trap. The following estimate is for the 3D
propriate in this phase. Nevertheless, denofifg —I'?, the ~ model, withB—47A/T'?=4xh2%a, /M, andag= 2 nm,M
solution in 1D isp(x) [ 1—cos(yx)/cosfyxy)], with X, be-  being the mass of a cesium atom. We have defined a charac-
ing the smallest positive root of tap¢,)=—7y/I". For teristic length scale of the attractive part of the potential as
v<TI', x, becomes close ta/7y, and isN independent. The Ruu=[dRRV,(R)/[dRV,(R)=2T", and set it=0.5 nm.

[./T =(47Mw?/15NBI'%)7. (21)

IV. PHYSICAL REALIZATION OF THE SWIG PHASE
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fulfilled, nevertheless we think that fdg=Ry/3 the mean
25.00¢F T T ' T field theory should give a correct rough description of the
i . low-temperature physics of the atomic gas in a tight trap. We
have to admit, however, that corrections to the mean field
theory results might in this case be substantial.
Summarizing, we have presented a phenomenological
model of a Bose gas of trapped atoms, which interact via
effective potentials that can support bound states and have a
scattering length of arbitrary sign. We have found analytic
expressions describing the ground state of such a system in
the mean field approximation. In the regime of very small
scattering length, or very tight atomic traps, the ground state
7 exhibits properties different from those previously discussed
N [26]. We term the corresponding gaseous phase a super
weakly interacting gaseous phase, since the net effect of
FIG. 2. Dependences of the condensate Sig@n the number ~ atom-atom interactions is particularly weak in this phase.
of atomsN with other parameters the same as in Fig. 1. The lineThe€ SWIG phase exists even in the case of negative scatter-
connected with plus signs is the result fo+10 (WIG), while the NG lengths. We have discussed in detail scaling properties of
line connected with crosses is that fpe= 10 (HDP). The line con-  the SWIG phase, and possibilities of its experimental real-
nected with open squares is in the SWIG region With0.1 which  ization.
overlays the line connected with asterisks §or 0.1. The main qualitative result of our paper is that atoms with
attractive interactions can behave in tight traps as if they
f repel each other. The question is how general this result is. Is
it valid for small, but not very small traps, where the mean
field is still applicable, or can one extend it to the limit when
fiw, is much greater than the energy of atom-atom interac-
F‘[ions(i.e., the Lamb-Dicke limjt? To shed some light on this
hquestion we discuss the problem of two atoms in a harmonic
trap in Appendix B, and show that energy level shifts due to
atom-atom interactions of the sort discussed in the paper

we estimate that the gas at zero temperature will be in ihghange the sign as the trap tightens. In this sense our quali-

SWIG phase provided the number of atoms is not too large ative result can be extended to the mentioned limit, provided
: ¢orrections to mean field are appropriately treated.
sayN=<500. We note that the estimates depend very strongly pprop y
on the values oA andI’; used.
Of course, for such a value of, the critical temperature

for BEC is so low that it is hard to believe that it can be ACKNOWLEDGMENTS
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2.50 ¢

Ro (units of a)

We also seti V4 (Ra) equal to the characteristic energy o
interatomic binding~7 x 10'* Hz. With these numbers it is
easy to show thal/T" is indeed small=0.008. For a large
trap with trap frequency 10 Hz, and a ground-state siz
a=2 um, we are well abovéWIG) or below (HDP) the

critical region, depending on the sign of the scattering lengt
The situation is very much different, however, for a mi-
crotrap of frequency 0.1 MHz, ara=0.02 um. In this case

_ Even WithN<5_OO, however, one may question thg valid- APPENDIX A: KINETIC ENERGY CORRECTION

ity of our mean field theory. We expect the mean field ap- IN THE SWIG PHASE

proach to be valid when the condensate correlation length

I is much smaller than the condensate dge For as=2 We remind the reader that the first step of the Bogoliubov-

nm, a=20 nm, and the microtrap frequenay=0.1 MHz,  Hartree (BH) method consists in the minimization of the
direct application of Egs.(17) and (18) indicates that energy functional6) in which the operator® and¥' are
Ro=100 nm,ny=Np(0)=5%x10 cm~2, andl.,~30 nm. regarded as numbers. The minimum can always be looked
As we see, the size of the single atom ground staitehere  for using a variational method, and the density) together
comparable to, and in fact smaller thap, whereas the ac- with wave function¥;,(R) = VNp(R) is a good trial func-
tual size of the condensay is about three times larger than tion. We divide the energy functional into the kinetic and
I.. Although strictly speaking the condition<R, is not  potential parts. The real minimal energy fulfills
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Emin= MinZ[ ¥, W< 7 ¥ yiat» ¥ 1ial] #2 d2 Moe?r?
min vt in rial tria Hr: . m W"’ 2 +Veff( \/—I’) (BZ)
+ yfpo{qftrial vqurial] . (Al)

For bosonic atomgand without spih only even wave func-
At the same time, due to positiveness of the kinetic energytions of r are allowed. Also, onlyH, has eigenvalues that
o + depend on atom-atom interactions. In principle, one can eas-
Emin= Min. 7o ¥, ¥1]. (A2) " jly follow the dependence of the eigenvaluesHyf as func-
vt tions of w, . In the limit when% w, becomes larger than typi-
Elementary calculations yield that for the SWIG trial func- cal interaction energy, one expects that perturbation theory
tion with respect toV¢¢ should become valid.

The zeroth order eigenstates are the even harmonic oscil-
lator eigenfunctions with eigenenergiEg=7%w:n. The en-
ergy level shifts are given bxE,=(n|Vegn). Let us con-

(A3)  sider, in particular, the ground state shift,

2

trlal] NZM ZRZOCNSH for N—co.

=7ﬂkin[ Wtrial ’

On the other hand, ad— <, by the definition of¥ ;4 (R),

AE,=———Ae 2 erfqTal\2), (B3)
min 7 pof ¥, ¥ 1= 7ol P iat, ¥ {ia =NE,  (A4) V2ma
vt
with E=3M 02R2/10:<N27. We thus obtain with erfc( ) denoting the error function, ara \A/2M ;.
to Evidently, fora— 0, the energy shift becomes positites if
NE<Epnn<NE+O(N*7), (A5)  the atom-atom interactions were purely repuliveut re-

mains small in comparison to the zero point enefgy
which implies that asymptotically the kinetic energy term«1/a?. On the contrary, whea— o, the shift is either posi-

may be neglected, arf,=NE. tive or negative depending on the sign of the scattering
length, or in other words depending on the sign Bf
APPENDIX B: TWO ATOMS IN A TIGHT TRAP AEy,—(B—2AIT)/(y2ma)=B. When does the transition

In order to illustrate the main qualitative result of this from the region of negative shift to the region of positive

P : : - - shift take place? Obviously, this happens exactly when the

aper, we consider in this appendix two atoms interacting vig " ¢
So?entlal ® in a harmomcprfrap in 1D. The Sch]‘ungerg condition for the two-atom analog of the SWIG phase oc-
fyrs- To this aim we expand the error function up to the

relative distance variables. Denoting= (x1+x2)/\/_, second order term, and obtain

r=(x;—X,)/\2, the Hamiltonian becomesi=H+H,,

2A 1
where AExB— | 1= 57| =0, (B4)
#? d? Ma) s?
He=—"omaz® 2 BD  and thereford 2~ — 2A/(BI'a?).
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