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We study properties of the ground state of a bosonic gas of atoms in a tight trap. The atoms interact via
model molecular potentials that may have either positive or negative scattering lengths. We discuss the possi-
bility of Bose-Einstein condensation in such a system. We show that when the size of the trap becomes
comparable to the correlation length of the condensate, stable Bose-Einstein condensation might occur inde-
pendent of the sign of the scattering length.

PACS number~s!: 03.75.2b, 67.40.2w, 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Recently there has been a great deal of interest in experi-
mental realization of the Bose-Einstein condensate~BEC!
@1–5# in various systems of trapped and cooled atoms@6#.
These studies have already led to the remarkable observation
of Bose-Einstein condensation in the rubidium vapor@7#.
Evidence of BEC in a lithium gas with attractive interactions
has also been reported@8#. Two of the major questions con-
cerning the physics of such systems are~1! what is the char-
acter of atom-atom interactions, and~2! what is their role in
the formation of the condensate?

The above two questions can be addressed either for ho-
mogeneous gases or for spatially confined systems. In the
homogeneous case, a lot of systematic studies, especially
concerning question~1!, have been carried out. The atom-
atom interactions were studied with model potentials or more
accurately with Born-Oppenheimer molecular potentials. For
spin polarized hydrogen molecular potential curves are
known accurately enough that the low-energys-wave scat-
tering lengthsasc can be computed with confidence. They are
positive and represent overall repulsive interactions@9#. For
alkali metals the problem is much more complex, since the
molecular potential curves which can typically support many
bound states are not known precisely. Some of the atoms
~e.g., cesium! are believed to have a positiveasc, @10# and
some others~e.g., lithium! to have a negativeasc @11#.

The knowledge of the scattering length is essential for the
description of atom-atom interactions at low energies. In
such a situation atom-atom interactions can be modeled
within a framework of shape independent approximation
~SIA! @12#, which implies that as the relative momentumk of
the scattering particles goes to zero, only thes-wave scatter-
ing is relevant and thes-wave phase shiftd0 behaves as@13#

tand0 /k52asc2
1

2
r effasc

2 k21•••, ~1!

with r eff denoting theeffective rangeof the potential. Since
the range of the atom-atom interactions is believed to be
short in comparison to the typical length scale of variations
of atomic wave functions, one can in fact neglect the second
term on the right-hand side of Eq.~1! and set the scattering

amplitude to be constant in this limit. Heuristically, the bare
atom-atom potentialV(RW 2RW 8) is then replaced by aneffec-
tive zero-rangepotential@14#

V~RW 2RW 8!→Veff~RW 2RW 8!5B̃d~RW 2RW 8!. ~2!

Note that such an effective potential leads automatically to
s-wave scattering only. If the bare potential is weak, and can
be treated using the Born approximation, one can set

B̃5E d3RWV~RW !. ~3!

In this caseB̃54p\2aB /M with M the atomic mass and
aB denotes the scattering amplitude calculated under the
Born approximation. More generally, one sets

B̃54p\2asc/M . ~4!

The simple heuristic arguments presented here can be de-
rived more rigorously within the framework of many-body
theory @15#. To this aim one employs a so-calledT-matrix
approximation, which consists of a resummation of thelad-
der diagrams in the calculation of the single particle Green’s
functions@16#. From this point of view the above formulated
question~1! can be answered provided the scattering length
is known.

One should stress, however, that in the original derivation
of the effective potential Galitskii@17# and Beliaev@18# as-
sumed a bare hard core potential. The theory can be gener-
alized to the case of a potential which supports bound states
provided~a! it has a positive scattering length,~b! its effec-
tive ranger eff is not too large. The latter requirement comes
from the fact that in order to neglect the momentum depen-
dence of the scattering amplitudes for the momenta of the
orderAn0asc one needs to haven0asc2 r eff!1. More generally,
one expects that for scattering at low but nonzero energy the
use of SIA would require the substitution of the zero-range
effective potential~2! by a finite-range potential. One of the
ways to do it is to represent the effective potential as a series
containing derivatives of the Diracd function of increasing
order,
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Veff~RW 2RW 8!5B̃d~RW 2RW 8!2C̃¹2d~RW 2RW 8!1•••. ~5!

Because of centrifugal symmetry of the potentialVeff there is
no first order term in Eq.~5!. The nonlocal terms in the
above expansion are due to the fact that~i! at nonzero ener-
gies scattering amplitude is energy dependent even for thes
waves;~ii ! higher partial waves contribute. That means that
the coefficientC̃ contains contributions of two kinds: those
due to the energy dependence of thes-wave amplitude,
C̃s5p\2asc

2 r eff /M , and those due to the scattering of higher
partial waves. In this paper we examine the conditions under
which the expression~5! has to be used instead of~2!. As we
shall see, such conditions may occur in tight atomic traps.

The problem of the validity of Eq.~2! is also related to the
fact of whether one considers a homogeneous or inhomoge-
neous system. The Galitskii-Beliaev theory was formulated
for the case of homogeneous gas. In such a case, and in the
presence of repulsive interactions,~i.e., B̃.0), the expres-
sion~2! can be used at zero temperature since the condensate
wave function is spatially constant. The contribution of the
second derivative term in Eq.~5! can then be neglected. On
the other hand, it is not clear whether Eq.~2! can be used in
tightly confined atomic traps, especially when the trap size
becomes comparable to the correlation length of the conden-
satel c51/An0asc. The trap potential introduces then a nec-
essary spatial dependence of the condensate wave function,
such that the contribution of the second derivative term in
Eq. ~5! might become relevant. One may thus ask if and how
the presence of the trap affects the validity of Eq.~2!. One
can also ask whether Eq.~2! can be used for atom-atom
potentials that support many bound states sinceasc is, in such
a case, a rapidly varying function of the details of the poten-
tial @10#, and can attain any value between2` and1`. In
particular it may happen thatasc is close to zero.

Even if the details of the atom-atom potential were
known, there would still remain the question~2! as to
whether BEC is possible for potentials with negativeasc, or
for potentials that support bound states. These questions
were recently addressed by Stoof@20# for the case of a ho-
mogeneous gas. Stoof used Eq.~2! for both positive and
negativeB̃, and has shown that forB̃,0, BEC of a weakly
interacting gas is impossible. Instead, the system undergoes a
first order transition to a high-density phase. ForB̃.0, BEC
takes place at sufficiently low temperature and leads to a
build up of the macroscopically coherent atomic field. In the
critical caseB̃50, one deals with the ideal Bose gas, for
which BEC is still possible, but does not lead to the build up
of coherence~condensation occurs into a Fock state, rather
than a coherent state!. In view of the recent experimental
observation of BEC in lithium gas with a negative scattering
length @8#, it is clear that Stoof’s result cannot have an un-
limited range of applicability.

The purpose of this paper is to shed more light on the two
questions formulated above for the case of tightly confined
gases. More precisely, we address here two related questions:
~a! Is the standard SIA, Eq.~2!, still valid in tightly confined
traps?~b! Is BEC in traps possible for potentials that are
overall attractive, i.e., have negativeasc? As we will show
below, for sufficiently small traps the second term in Eq.~5!
becomes dominant, and ensures that effective atom-atom in-

teractions are repulsive, allowing for BEC even ifB̃,0 @21#.
Although our results are to a great extent universal~i.e., in-
dependent of the particular form of the atom-atom potential!,
in order to illustrate them we present a model ofN Bose
atoms in a harmonic trap interacting via an effective nonlocal
potential that can have an arbitrary scattering length, and
which reduces to the form~5! in the limit of low-energy
scattering. Since the effective potential does not have a zero
range, it accounts in principle for scattering of all partial
waves. Interestingly, our model is analytically soluble at
T50 in the mean field approximation. We show that asB̃
changes sign the system undergoes a phase transition from
the weakly interacting gaseous phase~WIG! to a high-
density~liquid or solid! phase~HDP!. In the WIG phase the
standard SIA becomesexactin the largeN limit.

The main result of this paper is, however, that for large,
but finite,N there exists a finite region of parameters such
that uB̃u<B̃c for which the system is in a new gaseous phase.
This regime of parameters corresponds to a situation when
the bare size of the trap, i.e., the size of the single atom
ground state wave functiona, becomes smaller than the con-
densate correlation lengthl c @22#. We call this phase asuper
weakly interacting gas~SWIG!, since the net effect of the
atomic interactions is repulsive, but particularly weak in this
phase. The SWIG can exist for both positive and negative
values of B̃. The standard SIA@Eq. ~2!# is invalid in the
SWIG phase, and one has to use Eq.~5! instead. Interest-
ingly, however, the properties of the SWIG phase in the limit
of largeN are determined by the values of the coefficients
B̃ andC̃, and in this sense do not depend on any other details
of the effective potential. We estimate that the critical tem-
perature for BEC in SWIG is higher than in WIG, and that
this phase can be realized experimentally in a laser cooled
Bose gas in microtraps@23#.

The paper is organized as follows. In Sec. II we present
our model of a weakly interacting Bose gas in a tight trap
and discuss its properties atT50 in one dimension~1D! and
3D. Although exact implementation of the ladder approxima-
tion in the trap geometry seems to be hardly possible, we
simply define the model by specifying a particular phenom-
enological form of the effective atom-atom potential that
would result from the resummation of the ladder diagrams.
We make several plausible assumptions about this potential:
~i! we assume that it is real~i.e., neglect the lifetime of the
quasiparticles!; ~ii ! we assume that it has a short-range repul-
sive core, and, finally,~iii ! that it has a finite-range attractive
part. We use then a self-consistent Bogoliubov-Hartree
theory to describe the ground state of the model. Particular
choice of the form of the effective potential allows us to
construct the ground state wave function analytically. In Sec.
III we discuss the properties of the ground state in the limit
of a large number of atomsN. We discuss there various
phases of the system atT50 as a function of the order
parameter which turns out to be related to the value of the
scattering length, but depends also explicitly on the param-
eters of the trap. Finally, in Sec. IV we discuss possibilities
of physical realizations of the SWIG phase and present our
conclusions.

II. THE MODEL OF A WEAKLY INTERACTING
BOSE GAS IN THE TRAP

Let us start our discussion with a 1D model. We consider
N atoms of massM in the ground electronic state located in
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a harmonic trap of frequencyv t . The second quantized
Hamiltonian for such a system is

Heff5E dxC†~x!S 2
\2

2M

d2

dx2
1
1

2
Mv t

2x2DC~x!

1
1

2E dxdx8C†~x!C†~x8!Veff~x2x8!C~x8!C~x!,

~6!

whereC(x) andC†(x) are, respectively, the atomic annihi-
lation and creation operator fields that fulfill canonical
bosonic commutation relation. The effective Hamiltonian in
Eq. ~6! is to be understood as resulting from the resummation
of the ladder diagrams and contains thus an effective inter-
atomic potentialVeff(x2x8). The effective potential repro-
duces in the Born approximation exact scattering amplitudes
of the original bare atom-atom potential. Strictly speaking,
the annihilation and creation operatorsC(x) and C†(x)
therefore describe annihilation and creation ofquasiparti-
cles, rather than the bare ones@15#. In the mean field ap-
proximation, or the Bogoliubov-Hartree approximation
@24,25#, one first replaces operator fields byc-number fields
and atT50 seeks the minimum of the functional~6! under
the constraint that the number of atoms is fixed,
*dxC†(x)C(x)5N. Equivalently, one considers the mini-
mization of the free energy functionalF 5H

2E*dxC†(x)C(x), whereE is the ground-state energy~or,
alternatively, the many-body chemical potential!. This leads
to the nonlinear Schro¨dinger equation~NLSE!, which for the
case of a nonlocal atom-atom potentialV(x2x8) has an
integro-differential form@15#. In the largeN limit the kinetic
energy term in the above equation can be neglected provided
the potential varies sufficiently slowly@26#. Then we obtain
the integral equation

S 12Mv t
2x21NE dx8Veff~x2x8!r~x8! DC~x!5EC~x!,

~7!

with r(x)5uC(x)u2/N the normalized density.
Now we specify the effective model potential to be

Veff~x!5Bd~x!2Aexp~2Guxu!. ~8!

The potential consists of a zero-range repulsive core, and an
attractive part of range;1/G. It is real, i.e., we neglect pos-
sible effects of the finite lifetime of the quasiparticles. In the
low-energy scattering limit it reduces to the form of Eq.~5!
with B̃5B22A/G, C̃52A/G3.

The main reason in choosing the above form~8!, apart
from its phenomenological plausibility, is that the nonlocal
part of the potential is a Green function of

~d2/dx22G2!exp~2Gux2x8u!522Gd~x2x8!. ~9!

One can thus seek the solution of Eq.~7! in the interval
@2x0 ,x0#, i.e., such thatC(x)50 for uxu>x0 . Within the
interval @2x0 ,x0#, r(x) must fulfill

S d2dx2
2G̃2D r~x!5S d2dx2

2G2D S E

NB
2
Mv t

2x2

2NB D , ~10!

obtained by double differentiation of Eq.~7!, where
G̃25G222AG/B. Note thatB̃5BG̃2/G2, so that eitherG̃2 or
B̃ can be regarded as control parameters. The densityr(x),
which is expected to be an even function ofx, must therefore
have a general form

r~x!5a2bx21hcosh~ G̃x!, ~11!

where the parameters fulfill

b5Mv t
2G2/~2NBG̃2!, ~12!

2b1G̃2a5EG2/~NB!1Mv t
2/~NB!. ~13!

Additional constraints fora, b, andh are obtained from the
requirements that~a! r(x) fulfills the integral equation~7!;
~b! r(x0)50; ~c! *

2x0

x0 r(x)dx51 which, together with Eqs.

~12! and ~13!, determinex0 . For G̃2>0, x0 is determined
uniquely. For G̃2,0 there are in principle many possible
solutions, but only the smallest one assures thatr(x)>0.

Before we turn to the discussion of these solutions, let us
briefly discuss the 3D case. Exploiting the same idea we
consider the effective potential

Veff~RW !5Bd~RW !2Aexp~2GR!/R. ~14!

The attractive part of the potential has the form of the
Yukawa potential, and is a Green function of

~¹22G2!exp~2GR!/R524pd~RW !. ~15!

Once again, in the limit of low-energy scattering this poten-
tial reduces to the form of Eq.~5! with B̃5B24pA/G2,
C̃54pA/G4. Note again that in general the potential~14!
accounts for scattering of all partial waves. As we shall see
below, however, in the limit of largeN the properties of the
system are determined fully by the asymptotic behavior of
Veff at R.0, or more specifically by the values ofB̃ and
C̃.

The densityr(R) in 3D ~which must be rotationally in-
variant, regular atR50, and vanish forR>R0) has to take
the form

r~R!5a2bR21hsinh~ G̃R!/R, ~16!

with G̃25G224pA/B5G2B̃/B. The equations relatinga,
b, h, E, andR0 can be found using a method analogous to
that used in 1D. Note that it is easy to generalize our method
to the case when the potential is a combination of several
~attractive or repulsive! Yukawa terms with various ranges.

III. PROPERTIES OF THE GROUND STATE
FOR LARGE N

For large ~but finite! N the solutions of NLSE can be
divided into three classes describing three different phases
~states! of the system. These solutions areuniversal~they do
not depend on the details of the effective potential, but only
on the trap potential!. They can be classified by the critical
value G̃c of the parameterG̃ ~to be defined later!.

For primarily repulsive atom-atom potentials with
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G̃2.G̃c
2 , atoms atT50 condense into the weakly interacting

gaseous phase. In the WIG phase the standard SIA is exact.
In 1D the solution becomesr(x)53(x0

22x2)/(4x0
3), with

x05(3NBG̃2/2Mv t
2G2)1/3, and energyE5Mv t

2x0
2/2. In 3D

the solution is r(R)515(R0
22R2)/(8pR0

5), with
R05(15NBG̃2/4pMv t

2G2)1/5, andE5Mv t
2R0

2/2. In 3D us-
ing semiclassical theory@28# we can estimate the critical
temperature for the condensation from the condition that the
density in the center of the trap should fulfill
Nr(0)LT

352.612, whereLT5h/A2pMkBT is the thermal
de Broglie wavelength. Of course, this estimate makes sense
since we expect that the density in the center of the trap at
the critical point does not differ very much from the density
at T50. In the WIG phase, one can easily include correc-
tions to our solutions coming from the kinetic energy term by
solving the NLSE iteratively@26,27#.

For 2G̃c
2<G̃2<G̃c

2 the gas is in a critical state, which we
term a super weakly interacting gas. Standard SIA cannot be
used in this case and one has instead to use Eq.~5!. In 1D the
solution becomes r(x)515(x0

22x2)2/(16x0
5), with

x05(45NB/2Mv t
2G2)1/5 and energyE5Mv t

2x0
2/6. In 3D

the solution is

r~R!5105~R0
22R2!2/~32pR0

7!, ~17!

with

R05~525NB/4pMv t
2G2!1/7 ~18!

andE53Mv t
2R0

2/10. Note that SWIG is a low-density gas-
eous phase in which the volume increases very slowly with
the number of particles, as if the repulsion of particles were
very weak. Paradoxically, the net effect of atom-atom inter-
actions is repulsive even with a negativeB̃. That is, of
course, the consequence of the fact that in this phase the
second~repulsive! term in Eq. ~5! dominates over the first
one. The density of atoms in the SWIG is larger than in the
WIG, so that the semiclassical estimate gives higher critical
temperature. This makes SWIG very interesting from the ex-
perimental point of view.

Obviously, the fact that the density in the SWIG phase is
larger than that in the WIG phase suggests the possibility that
neglecting the kinetic energy term in Eq.~7! may be unrea-
sonable in the SWIG phase. The kinetic energy correction
comes essentially from the vicinity of the boundary, at
x5x0 in 1D, andR5R0 in 3D. Fortunately, the density in
the SWIG phase is continuous with the first derivative,
whereas the wave function is continuous at those points in
the largeN limit. This allows us to prove rigorously that the
contribution of the kinetic energy in the SWIG phase is as-
ymptotically negligible~see Appendix A!.

Finally, for a primarily attractive potential with
G̃2,2G̃c

2 the gas condenses into a high-density phase. In this
case the use of the Hamiltonian~6! has to be questioned
since it contains only binary interactions. We also note that
neglecting the kinetic energy term in Eq.~7! becomes inap-
propriate in this phase. Nevertheless, denotingg̃252G̃2, the
solution in 1D isr(x)}@12cos(g̃x)/cos(g̃x0)#, with x0 be-
ing the smallest positive root of tan(g̃x0)52g̃/G. For
g̃!G, x0 becomes close top/g̃, and isN independent. The

energy isE52NBg̃2/G2@2x022tan(g̃x0)/g̃ # and is now
proportional toN. Similarly, in 3D the density isr(R)
}@12R0sin(g̃R)/Rsin(g̃R0)#, with R0 determined from

tan~ g̃R0!52
g̃R0G

2

~G21g̃2!~11GR0!1G3R0
. ~19!

The critical value ofG̃ is obtained from the condition
G̃cx0.1 in 1D and G̃cR0.1 in 3D. We obtain~from the
expressions forx0 andR0 in the WIG!

G̃c /G5~2Mv t
2/3NBG3!1/5, ~20!

G̃c /G5~4pMv t
2/15NBG5!1/7. ~21!

Physically, the above condition corresponds to the fact that
the spatial variations of the condensate density in the trap
become so significant that both terms in Eq.~5! are compa-
rable in the center of the trap,

uB̃r~0!u;uC̃r9~0!u. ~22!

As we see from Eqs.~20! and~21! the critical region shrinks
asN grows, but relatively slowly. The most important feature
of the above formulas is that the size of the critical region
~i.e., the region of SWIG phase! depends on the trap param-
eters. Our results are illustrated in Figs. 1 and 2.

IV. PHYSICAL REALIZATION OF THE SWIG PHASE

The main question is whether the SWIG phase can be
realized experimentally. One possibility is to control the pa-
rameters of the atom-atom potential using external magnetic
or electric fields@29#. Such control could, in principle, lead
to asc.0, i.e., B̃.0. Another possibility is to decrease the
size of the atomic trap. The following estimate is for the 3D
model, withB24pA/G254p\2asc/M , andasc. 2 nm,M
being the mass of a cesium atom. We have defined a charac-
teristic length scale of the attractive part of the potential as
Rattr5*dRRVattr(R)/*dRVattr(R)52/G, and set it.0.5 nm.

FIG. 1. Dependence of the condensate sizeR0 on the control
parameterG̃ for N5104 with a52 mm. We have usedG2150.25
nm,A516\Vattr(Rattr)/G with \Vattr(Rattr)51014 Hz as discussed in
the text. The line connected with open squares is the result for
G̃2.0, while asterisks represent the points forG̃2,0.
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We also set\Vattr(Rattr) equal to the characteristic energy of
interatomic binding,.\31014 Hz. With these numbers it is
easy to show thatG̃/G is indeed small,.0.008. For a large
trap with trap frequency 10 Hz, and a ground-state size
a.2 mm, we are well above~WIG! or below ~HDP! the
critical region, depending on the sign of the scattering length.
The situation is very much different, however, for a mi-
crotrap of frequency 0.1 MHz, anda.0.02mm. In this case
we estimate that the gas at zero temperature will be in the
SWIG phase provided the number of atoms is not too large,
sayN<500. We note that the estimates depend very strongly
on the values ofA andGc used.

Of course, for such a value ofN, the critical temperature
for BEC is so low that it is hard to believe that it can be
reached with conventional methods. Recently, however, it
has been proposed that a gas in a microtrap can bedynami-
cally condensed due to the interaction with an external
agent—a laser that provides a mechanism of sideband cool-
ing @23#. In such an open system the role of the control
parameter~an analog of temperature! is played by the detun-
ing of the laser from the motional sideband resonances. The
adjustment of detuning allows the achievement of effective
‘‘temperatures’’ that allow for BEC, or even generalized
BEC, in which the atoms condense in some of the excited
states of the trap even withN. 50–100. Our present analy-
sis strongly suggests that for such a system, if atoms con-
dense, they will necessarily condense into the SWIG phase.

Even withN,500, however, one may question the valid-
ity of our mean field theory. We expect the mean field ap-
proach to be valid when the condensate correlation length
l c is much smaller than the condensate sizeR0 . For asc52
nm, a520 nm, and the microtrap frequencyv t50.1 MHz,
direct application of Eqs.~17! and ~18! indicates that
R0.100 nm,n05Nr(0).531017 cm23, and l c.30 nm.
As we see, the size of the single atom ground statea is here
comparable to, and in fact smaller than,l c , whereas the ac-
tual size of the condensateR0 is about three times larger than
l c . Although strictly speaking the conditionl c!R0 is not

fulfilled, nevertheless we think that forl c.R0/3 the mean
field theory should give a correct rough description of the
low-temperature physics of the atomic gas in a tight trap. We
have to admit, however, that corrections to the mean field
theory results might in this case be substantial.

Summarizing, we have presented a phenomenological
model of a Bose gas of trapped atoms, which interact via
effective potentials that can support bound states and have a
scattering length of arbitrary sign. We have found analytic
expressions describing the ground state of such a system in
the mean field approximation. In the regime of very small
scattering length, or very tight atomic traps, the ground state
exhibits properties different from those previously discussed
@26#. We term the corresponding gaseous phase a super
weakly interacting gaseous phase, since the net effect of
atom-atom interactions is particularly weak in this phase.
The SWIG phase exists even in the case of negative scatter-
ing lengths. We have discussed in detail scaling properties of
the SWIG phase, and possibilities of its experimental real-
ization.

The main qualitative result of our paper is that atoms with
attractive interactions can behave in tight traps as if they
repel each other. The question is how general this result is. Is
it valid for small, but not very small traps, where the mean
field is still applicable, or can one extend it to the limit when
\v t is much greater than the energy of atom-atom interac-
tions~i.e., the Lamb-Dicke limit!? To shed some light on this
question we discuss the problem of two atoms in a harmonic
trap in Appendix B, and show that energy level shifts due to
atom-atom interactions of the sort discussed in the paper
change the sign as the trap tightens. In this sense our quali-
tative result can be extended to the mentioned limit, provided
corrections to mean field are appropriately treated.

ACKNOWLEDGMENTS

We acknowledge very fruitful discussions with Professor
K. Burnett, Professor Jinx Cooper, Professor E. Cornell, Pro-
fessor A. Dalgarno, Professor E. Heller, Professor V. Kharch-
enko, Professor G. Shlyapnikov, Professor H. Stoof, Profes-
sor J. Walraven, and Professor P. Zoller. We thank Dr. J.
Babb and Dr. Jinx Cooper for a critical reading of the manu-
script. This work was supported by the NSF through a grant
for the Institute for Theoretical Atomic and Molecular Phys-
ics at Harvard University and Smithsonian Astrophysical Ob-
servatory. M.L. was also supported by the NSF and by Polish
Academy of Sciences Grant No. INT-9023548.

APPENDIX A: KINETIC ENERGY CORRECTION
IN THE SWIG PHASE

We remind the reader that the first step of the Bogoliubov-
Hartree ~BH! method consists in the minimization of the
energy functional~6! in which the operatorsC andC† are
regarded asc numbers. The minimum can always be looked
for using a variational method, and the density~17! together
with wave functionC trial(R)5ANr(R) is a good trial func-
tion. We divide the energy functional into the kinetic and
potential parts. The real minimal energy fulfills

FIG. 2. Dependences of the condensate sizeR0 on the number
of atomsN with other parameters the same as in Fig. 1. The line
connected with plus signs is the result forG̃510 ~WIG!, while the
line connected with crosses is that forg̃510 ~HDP!. The line con-
nected with open squares is in the SWIG region withG̃50.1 which
overlays the line connected with asterisks forg̃50.1.
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Emin5 min
C,C†

H@C,C†#<Hkin@C trial ,C trial
† #

1Hpot@C trial ,C trial
† #. ~A1!

At the same time, due to positiveness of the kinetic energy

Emin> min
C,C†

Hpot@C,C†#. ~A2!

Elementary calculations yield that for the SWIG trial func-
tion

Hkin@C trial ,C trial
† #5N

\2

2M

21

2R0
2}N5/7 for N→`.

~A3!

On the other hand, asN→`, by the definition ofC trial(R),

min
C,C†

Hpot@C,C†#5Hpot@C trial ,C trial
† #5NE, ~A4!

with E53Mv t
2R0

2/10}N2/7. We thus obtain

NE<Emin<NE1O~N5/7!, ~A5!

which implies that asymptotically the kinetic energy term
may be neglected, andEmin.NE.

APPENDIX B: TWO ATOMS IN A TIGHT TRAP

In order to illustrate the main qualitative result of this
paper, we consider in this appendix two atoms interacting via
potential ~8! in a harmonic trap in 1D. The Schro¨dinger
equation separates in this case in the center of mass and
relative distance variables. Denotings5(x11x2)/A2,
r5(x12x2)/A2, the Hamiltonian becomesH5Hs1Hr ,
where

Hs52
\2

2M

d2

ds2
1
Mv t

2s2

2
, ~B1!

Hr52
\2

2M

d2

dr2
1
Mv t

2r 2

2
1Veff~A2r !. ~B2!

For bosonic atoms~and without spin! only even wave func-
tions of r are allowed. Also, onlyHr has eigenvalues that
depend on atom-atom interactions. In principle, one can eas-
ily follow the dependence of the eigenvalues ofHr as func-
tions ofv t . In the limit when\v t becomes larger than typi-
cal interaction energy, one expects that perturbation theory
with respect toVeff should become valid.

The zeroth order eigenstates are the even harmonic oscil-
lator eigenfunctions with eigenenergiesEn5\v tn. The en-
ergy level shifts are given byDEn5^nuVeffun&. Let us con-
sider, in particular, the ground state shift,

DE05
B

A2pa
2AeG2a2/2erfc~Ga/A2!, ~B3!

with erfc( ) denoting the error function, anda5A\/2Mv t.
Evidently, fora→0, the energy shift becomes positive~as if
the atom-atom interactions were purely repulsive!, but re-
mains small in comparison to the zero point energy\v
}1/a2. On the contrary, whena→`, the shift is either posi-
tive or negative depending on the sign of the scattering
length, or in other words depending on the sign ofB̃,
DE0→(B22A/G)/(A2pa)}B̃. When does the transition
from the region of negative shift to the region of positive
shift take place? Obviously, this happens exactly when the
condition for the two-atom analog of the SWIG phase oc-
curs. To this aim we expand the error function up to the
second order term, and obtain

DE0}B2
2A

G S 12
1

G2a2D.0, ~B4!

and thereforeG̃c
2.22A/(BGa2).
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