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The spatial coherence function in all three orthogonal directions has been measured by means of perfect
crystal neutron interferometry. It has been demonstrated that the coherence function is given by the Fourier
transform of the related momentum distribution, which in turn is determined by the collimation and mono-
chromatization of the beam incident upon and traversing the interferometer. Thus, a measurement of the
coherence function can replace a measurement of the momentum distribution in certain cases. Retrieval of the
coherence can be accomplished by phase echo and/or postselection methods. A complete retrieval of the
coherence is impossible in principle due to unavoidable loss factors.

PACS number~s!: 03.75.b, 03.65.Bz, 42.50.p

I. INTRODUCTION

During the past two decades, neutron interferometry has
provided direct experimental realizations of many quantum
Gedanken experiments@1–4#. Most of these experiments
have been performed with perfect crystal interferometers
where the strictly periodic arrangement of the atoms in a
monolithic perfect silicon crystal provides a coherent beam
splitting at twice the Bragg angle, a subsequent coherent de-
flection, and then a superposition at the exit plate of the
interferometer. The phase difference between the coherent
beams in this Mach-Zehnder interferometer can be affected
by nuclear, electromagnetic, gravitational, or topological in-
teractions, and an amplitude attenuation can be achieved by
absorbing materials. Due to the very low phase-space density
of existing neutron sources, neutron interferometry is a self-
interference phenomena being observed nearly exclusively
when only one neutron is inside the interferometer at a given
time. In nearly all cases the next neutron does not yet exist as
a free particle following fission of uranium in the reactor.

Coherence phenomena play an important role in any kind
of interferometry@5–7#. Here we summarize some known
results, add some additional ones, and analyze them in terms
of general quantum optics, which can be applied to photon
and matter waves as well. Indeed, neutrons have many well-
known particle properties, but in interference experiments
they behave like wave fields which provide the connection to
the quantum optical terminology. In this connection, typical
quantum optical phenomena like postselection and squeezing
of Schrödinger-cat-like states@8#, coherent photon exchange
experiments@9,10#, and experiments concerning counting
statistics@11,12# have been reported in the literature. Coher-
ence appears as a system property~neutron plus interferom-

eter! which persists as long as it does not become destroyed
by statistical or dissipative effects.

II. BASIC RELATIONS

The concept of coherence follows from the description of
field properties by wave functions as they are used routinely
in quantum physics and quantum optics@5–7#. Here we fo-
cus our attention on first-order coherence phenomena of
Schrödinger quantum fields, which are described by

Hc~rW,t !5 i\
]c~rW,t !

]t
. ~1!

The propagation of waves in free space from a source to a
detector is described by a wave packet,

c~rW,t !5E a~kW !ei ~k
W
•rW2vt !d3kW . ~2!

The amplitude factora(kW ) stems from creationak
† and anni-

hilation ak operators, which create or annihilate a mode with
the correspondingkW vector. The quantization steps of the
coherent field between the source and the detector~a distance
L apart! are extremely narrow (Dk;2p/L) and, therefore,
the integral form of the wave function can be used@6#.

The first-order, two-point–two-time correlation function
relating the physical situation at (rW,t) and (rW8,t8) is given by

G~1!~rW,t;rW8t8!5Tr$rc* ~rW,t !c~rW8,t8!%, ~3!

where

r5E c* ~rW,t !c~rW,t !d3rWdt5E ua~kW !u2d3kW ,

and ua(kW )u25g(k) is the density of states inkW space.G(1)

has the general features
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G~1!~rW,t;rW,t !>0 ~4a!

and

G~1!~rW,t;rW,t !G~1!~rW8,t8;rW8,t8!>uG~1!~rW,t;rW8,t8!u2. ~4b!

These self-correlation functions can be measured by several
interferometric methods where parts of the wave function
can be spatially or temporally shifted compared to a refer-
ence beam. For neutron matter waves, this can be accom-
plished by perfect crystal interferometers where the wave
function behind the interferometer is composed of a linear
superposition of the wave functions originating from beam
paths I and II~Fig. 1!. In the case of an empty interferometer,
these two contributions to the wave function in the forward
direction~0! behind the interferometer are equal in amplitude
and phase (c0

I 5c0
II). This follows from symmetry consider-

ations be cause they are transmitted-reflected-reflected
~TRR! and reflected-reflected-transmitted~RRT!, respec-
tively. Thus,

c05c0
I 1c0

II . ~5!

The related intensity can now be written as

I 05Tr$rc0* ~rW,t !c0~rW,t !%5G~1!~rW,t;rW,t !1G~1!~rW8,t8;rW8,t8!

12 ReG~1!~rW,t;rW8,t8!. ~6!

If we write the self-correlation functionG(1) for (rW,t)
Þ(rW8,t8) as a complex function,

G~1!~rW,t;rW8,t8!5uG~1!~rW,t;rW8,t8!ueix~rW,t;rW8,t8!, ~7!

we then see that, in terms of the phasex, the intensity is

I5G~1!~rW,t;rW,t !1G~1!~rW8,t8;rW8,t8!

12uG~1!~rW,t;rW8,t8!ucosx~rW,t;rW8,t8!. ~8!

One should note thatG(1)(rW,t;rW,t) andG(1)(rW8,t8;rW8,t8) are
the intensities originating from beam paths I and II, respec-
tively.

The fringe visibility ~contrast! of the interference
pattern is related to the normalized correlation function
G (1)(rW,t;rW8,t8), that is,

G~1!~rW,t;rW8,t8![
G~1!~rW,t;rW8,t8!

@G~1!~rW;t;rW,t !G~1!~rW8,t8;rW8,t8!#1/2
. ~9!

Combining Eqs.~2!, ~3!, and ~8!, the complex degree of
mutual coherence can be written as

G~1!~rW;t;rW8,t8!}E ua~kW !u2ei @~rW2rW8!•kW2~ t2t8!vk#d3kWdvk .

~10!

This can be simplified by using the spatial and temporal
translation invariances (rW2rW85DW , t2t85t) and the free-
space dispersion relationvk5\k2/2m, such that

G~1!~DW ,t!5E r~kW ,v!ei ~k
W
•DW 2vkt!d3kW dvk . ~11!

The Fourier transform given here is similar to the well-
known van Hove formalism of neutron scattering@13#. We
can now write the interference pattern~8! in the form

I ~DW ,t!5I 11I 212AI 1I 2uG~1!~DW ,t!ucos~kW•DW 2vkt!, ~12!

and the visibility of the interference pattern

V5
Imax2Imin
Imax1Imin

5
2AI 1I 2
I 11I 2

uG~1!~DW ,t!u. ~13!

For a completely coherent fielduG (1)(DW ,t)u51, whereas this
function becomes zero for anyDW Þ0 andtÞ0 for a com-
pletely incoherent field. Any real experimental arrangement
provides partially coherent fields where the coherence func-
tions tend towards zero forDW→` andt→`. The coherence
lengthsDW c and the coherence timetc are usually defined
when the coherence function has decayed to a value 1/e, but
it should be mentioned that a damped oscillatory behavior
occurs in certain cases. In such cases, the more general defi-
nition

Dc
25

*D2G~1!~D! dD

*G~1!~D! dD
~14!

should be used@14#.
Under conditions in which the temporal structure of the

beam is slow, that is, quasistatic or even static, the corre-
sponding time (t) variations ofG (1)(DW ,t) can be separated
from the spatial (DW ) correlations, such thatG (1) may be writ-
ten as a productG (1)(DW ,0)G (1)(0,t). For Gaussian momen-
tum distributions having widthsdki in each of the three or-
thogonal directions (i5x,y,z), one obtains a Gaussian
coherence function

G~DW !5 )
i5x,y,z

e2@~D idki !
2/2#, ~15!

FIG. 1. Sketch of a skew symmetrically cut perfect crystal neu-
tron interferometer. Rotating the phase flag changes the optical path
lengths for path II relative to path I, thus generating an interfero-
gram.
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andG(0,t)51 for all times. This is the case for continuous
wave ~cw! experiments. The coherence lengthsD i

c are di-
rectly related todki by the uncertainty relations

D i
cdki5

1
2 . ~16!

Since we are only concerned with first-order coherence here,
we have suppressed the superscript~1! on the coherence
function in Eq.~15!.

III. COHERENCE MEASUREMENTS

In neutron interferometry a spatial shift between the two
coherent beams can be provided by a phase-shifting slab
which changes the optical path length according to its index
of refractionn and its thicknessD0 . The boundary condition
of quantum mechanics requiring continuity of the wave func-

tion allows only the normal (sŴ) component of the momentum
to change at the slab surface, resulting in a spatial shift of the
wave packet@15,16#:

DW 5~12n!sŴ D0 , ~17!

which is related to the phase shift

x5~n21!kDeff52NbclDeff5DW •kW . ~18!

HereN andbc are the atom density and the coherent scatter-
ing length of the phase shifter material, and

Deff5D0 /(kŴ•sŴ) represents the neutron path length inside the
material slab. Absorption (sa), incoherent scattering
(s incoh), and small-angle scattering (sSAS) processes which
can be described by an imaginary term in the index of re-
fraction cause a loss of intensity of the beam reflected into
the detector. Variations of the thickness (dD) and of the
density (dN) of the phase shifter across the beam cross sec-
tion cause a variance of the phase shift, and also several
unavoidable imperfections of the interferometer crystal itself
and residual vibrations causeuG(0,0)u to be less than unity,
which leads to an incomplete modulation of the beam. Thus,
the observed interference pattern has the general form

I ~DW !5I 0@A1Bcos~DW •kW1w0!#, ~19!

where I 0A and I 0B corresponds to I 11I 2 and to
2AI 1I 2uG(DW )u of Eq. ~12!. The attenuation processes cause a
reduction of the intensity in beam path II, i.e.,@17#,

I II8~D0!5I II~0!exp@2Ns tDeff#, ~20!

with s t5sa1s incoh1sSAS. For very strong beam attenua-
tions, additional~fluctuation! effects come into play@18#.
The fluctuation processes do not depend on the overall thick-
ness~or density! of the phase shifter and result in additional
damping factors to the coherence function@19,20#; thus the
experimentally measured coherence function is

uG~DW !uexp5expH 2F S dD

D0
D 21S dN

N0
D 2G

3~DW 0kW0!
2 Y2J uG~DW !u. ~21!

All parameters entering Eq.~19! can be measured separately.
When no phase shifter is inserted~perfect phase flag only!,
one measuresuG(0)u andf0; and when the beams are alter-
nately closed off, one measuresI I and I II for different thick-
nesses of the phase shifter. Because we are mostly interested
in the coherence function, one defines the normalized degree
of coherence

g~DW ,t!5
uG~DW ,t!u
uG~0,0!u

, ~22!

which is the function to be compared with theory.
The above formulas show that spatial coherence is a

three-dimensional phenomena. Figure 2 shows how wave-
packet displacements in three mutually perpendicular direc-
tions can be experimentally realized within a perfect crystal
interferometer. The resulting degree of coherence~contrast!
is measured when an additional thin auxiliary phase flag is
rotated around a vertical axis in the first gap of the interfer-
ometer.

A. Longitudinal coherence,x direction

In this case, the surface of the phase shifter is perpendicu-
lar to the reflecting lattice planes of the Si-crystal interfer-
ometer which shifts the wave packet in a direction where the
perfect crystal does not influence the original momentum
distribution function. The related spatial shift of the wave
packets@see Fig. 2~a!# becomes

Dx52Nbcl
2D0/2p, ~23!

FIG. 2. Phase-shifting slab arrangements for the measurements
of the longitudinal~a!, transverse~b!, and vertical~c! coherence
function.
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and the corresponding phase shift is

x5DW •kW52NbclD0 /coswB , ~24!

where fB denotes the Bragg angle. Related experiments
have been carried out since the beginning of neutron inter-
ferometry@21–23#. They have shown a more or less continu-
ous reduction of the fringe visibility at high order which
results from the smooth bell-shaped momentum distribution
in that direction. Figure 3 shows the result of a more recent
experiment carried out at the MURR Reactor, where the mo-
mentum~wavelength! distribution had a non-Gaussian shape
as it was determined by rocking an additional silicon ana-
lyzer crystal in the dispersive position through theI 0 beam
shown in Fig. 1@23,24#. The full lines are the mutual Fourier
transforms as it is expected from Eq.~11!.

B. Transverse coherence,y direction

In this case, the surface of the phase shifter is parallel to
the reflecting lattice planes where the momentum distribution
becomes strongly influenced due to the dynamical diffraction
effects from the perfect crystal@25#. The resulting momen-
tum distribution becomes rather narrow (Dky /k0>1025),
exhibiting an oscillatory structure. The related spatial shift of
the wave packet@see Fig. 2~b!# becomes

Dy52Nbcl
2D0/2p ~25!

and the phase shift reads as

x522NbcD0d, ~26!

where the Bragg relationl52dsinQB has been used with
the Si interferometer lattice plane spacingd. This phase shift
behaves nondispersively up to rather high interference orders
and, therefore, the visibility of the interference fringes are
correspondingly enhanced compared to the case of a longi-
tudinal phase shifter. Related experiments have been per-
formed at the ILL reactor and have verified this behavior
@26#; see Fig. 4. The contrast is shown around the 250th
interference order when the path length of the neutron beam
inside the phase shifter is 33.8 mm and an auxiliary thin Al
phase shifter is rotated inside the interferometer. The reduc-
tion of the contrast in the dispersive~longitudinal! x direc-
tion is caused mainly by the effect of the coherence function
uG(DW )u and not by beam attenuation and phase-shift fluctua-

tions @Eqs. ~20! and ~21!#. The reduction of the contrast in
the nondispersive~transverse! y-direction case is caused
nearly exclusively by beam attenuation and phase-shift fluc-
tuation effects and only very little by the coherence function.
The coherence function for the nondispersive position has
been calculated within the framework of spherical-diffraction
theory where the contrast of a defocused interferometer is
evaluated@27–29#. An interpretation in terms of a mutual
coherence function has been given by Holy@30# and Petra-
scheck@15,16#. There is a nonvanishing contrast over the
whole width of the Borrmann fan as shown in Fig. 5. The
plotted results are for a thickness of the perfect crystal
Dcryst, which is 10 times the characteristic length
L5(2dbcN)

21, which amounts to about 10mm for most
silicon reflections. The coherence length has to be extracted
by using Eq.~13! and some influence of the coherence func-
tion appears only beyond the;104 interference order, i.e., at
thicknesses where all other damping factors usually domi-
nate.

FIG. 3. Measured momentum
distributiong(k) ~left! and coher-
ence function~right! in the longi-
tudinal direction@23#.

FIG. 4. Measured interference pattern around the 250th interfer-
ence order for phase shifts in the longitudinal~a! and the transverse
~b! direction @26#. ~The dashed lines represent the interference pat-
tern around zero interference order.! The transverse coherence
length Dy

c is related to the defocusing distanceDt by
Dy
e52Dt tanuB .
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C. Vertical coherence,z direction

In this case, a vertical shiftDz of the trajectories is
achieved by a phase-shifting slab whose surface is tilted with
respect to the horizontal plane by an anglew, as shown in
Fig. 2~c!. This small spatial shift, due to refraction in the
tilted slab, is given by

Dz52tanw
l2Nbc
2p

D0 , ~27!

and the corresponding total phase shift becomes

x52NbclD0 /cosw. ~28!

Such a phase shifter produces phase shifts in other direc-
tions, too, which have to be balanced by a proper phase
shifter put into the reference beam and which compensates
for beam attenuation as well.

Experiments using phase shifters with different thick-
nesses and tilt angles were performed at the MURR reactor
~Fig. 6!. At this interferometer setup, a twin focusing mono-
chromator made up of pyrolytic graphite~PG! crystals~Fig.
6! was used, which produced a double-humped momentum
distribution in the vertical direction as it was measured by
scanning a horizontal slit~1 mm! through the intensity dis-
tribution behind a static slit~1 mm! placed at the interferom-
eter table. These measurements were performed at different
beam heights and averaged afterwards. The contrast was ex-
tracted from interferograms obtained by rotating an auxiliary
phase shifter around a vertical axis with various tilted phase
shifters and compensator phase-shifter slabs inserted into the
two beams of the interferometer. This contrast~fringe visibil-
ity! directly yields the coherence function as it is plotted in
Fig. 6. The full lines in Figs. 6~c! and 6~d! correspond to an
optimal fit to the data and they are related to each other by
their mutual Fourier transformations.

IV. DISCUSSION

The results show that spatial coherence is a basic three-
dimensional phenomenon, and that related coherence func-
tions can be obtained from the contrast of the interference
pattern when variously oriented phase-shifting slabs are in-
serted into the interferometer. The coherence function in a
certain direction is the Fourier transform of the related mo-
mentum distribution in that direction. Thus, it is determined
by the collimation and monochromatization defining the
beam. In this respect, the coherence function represents beam
properties rather than single particle properties. Nevertheless,
within quantum mechanics, the related wave function@Eq.

FIG. 5. Calculated coherence function in the transverse direction
@16#, plotted here as a function of the defocusing distanceDt ~see
Fig. 4!.

FIG. 6. ~a! Diagram showing the twin focus-
ing PG monochromator at beam portC at
MURR. ~b! Diagram showing the tilted phase
shifters in the interferometer used to determine
the vertical (z) coherence function.~c! Measured
momentum distribution and~d! measured coher-
ence function in the vertical direction.
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~2!# can also be attributed to a single neutron, but this quan-
tum system should also always be connected to a certain
beam. That is, the wave function contains at the same time
properties of the quantum system and of the apparatus as
well, which can be seen as a basic feature of quantum me-
chanics.

The coherence experiments described in this article have
been performed with perfect crystal interferometers. For rep-
resentative usual values for the collimation and monochro-
matization, the measured coherence length in the longitudi-
nal direction is about 100 Å, in the transverse direction about
50 000 Å, and in the vertical direction about 50 Å. These
values define the phase-space volume and from the measured
intensity the related phase-space density~a dimensionless
quantity! of about 10214 neutrons can be extracted, which
corresponds to the expected phase-space density behind a
thermal moderator of a standard neutron source. The size of
the coherence packet in some sense describes the volume
which the neutron ‘‘sees’’ when it interacts with its environ-
ment. This has been elucidated in an experiment where the
wave packet was sent through an absorbing lattice which was
oriented in various ways in relation to the three axes of the
packet@31#.

The question may arise, whether the coherence vanishes
when the coherence function becomes zero at large phase
shifts. Several recent postselection experiments for neutrons
and electrons@8,22–24,32# have shown that this is not the
case and that interference fringes and coherence phenomena
can be revived when a proper position, momentum, or time
selection is applied to the beam, even subsequent to super-
position of the two coherent beams in the last crystal of the

neutron interferometer. In the case of large spatial separa-
tions of the interfering packets (D@Dc), when uG(D)u be-
comes zero and the interference fringes disappear, the coher-
ence phenomena manifest themself in momentum space by
an intrinsic modulation of the momentum distribution@33#.
This indicates that coherence cannot be destroyed by any
Hamiltonian interaction but only by stochastic and dissipa-
tive effects@34–36#. Such effects become more influential
the larger the spatial separation of the~potentially! interfer-
ing wave packets, which thereby provides a natural limit on
how far so-called coherent Schro¨dinger-cat-like states can be
separated. The interaction with the environment, phase
shifter, or detector must not be of purely statistical nature,
but one that can cause a quantum entanglement between the
system and the detector. The random-average model of co-
herence loss provides in this case a proper description of the
loss of coherence@20,37,38#.

Only spatial-coherence phenomena have been treated in
this paper, but it should be mentioned that temporal-
coherence properties can also be elucidated by neutron inter-
ferometry. In this case, energy is exchanged differently in
both beams than can be achieved by applying a Zeeman
energy exchange between the neutron and a resonator coil
@9# or by multiphoton exchange in an oscillating field@10#.
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