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The inverse scattering theory has been used to define effective local electron-methane interaction potentials.
Those interactions have been obtained first by inversion of the total cross-section data as a function of energy.
The WKB approximation has been used in that determination. The same approximation has been used to effect
(fixed energy inversion of differential cross-section data from electron-methane scattering for energies of 200,
300, 500, and 700 eV. The resulting interactions, which we have assumed to be purely real, are very similar and
show little energy dependence. They are in good agreement with a theoretically derived potential for this
system at those radii for which the inversion potentials are determined sensitively by the scattering data. In
addition, the generalized unitarity theorem has been used to specify the scattering amplitude from the 700-eV
data. TheS function given by Legendre integration of that amplitude has been inverted to specify another
purely real potential for the collision. The result is very similar to those found by the other analyses.

PACS numbd(s): 34.80—i

I. INTRODUCTION by design and one should not assume that the potential found
is physical. There are ambiguities in the proddgsand with
There are two basic approaches with which quantitativeahe methods we will use in particulg§2]. With the direct
information on the(effective local interaction between two approach, in contrast, one is able to incorporate physical
particles undergoing nonrelativisitic quantal scattering mayknowledge and insight at the outset. But direct analyses of
be specified. The most common is the direct approach iscattering data often do not give a quality fit, as measured,
which an interaction potential is obtained by making a “first for example, by the¢? per datum §%/N) not being of order
principles” calculation based upon specifics of more funda-one[3]. The best situation is one in which a model interac-
mental underlying two particle interactions. The derived po-tion constructed from first principles and which gives a rea-
tential then is used in direct solution of the Sdlirger sonable fit to the data is used to regularize the inversion
equation and the asymptotic properties of the relative motiogprocess that yields a refined interaction with which an excel-
wave functions give the predictions to be compared withlent fit to that data set results. But a prerequisite for such a
measured data. procedure is an extraordinarily high quality data set so that
The alternative approach is to use inverse scatteringariation of x2/N is a stringent selection criterion upon the
theory[1], with a most common approach in this vein being model specifics.
that of numerical inversion. Therein one first makes an in- Inversion methods usually belong to one of two classes,
formed choice of a phenomenological form for the interac-the first of which has energy as the spectral parameter and
tion and then, by adjusting the values of associated paramhe angular momentum is fixed, the second is vice versa. Of
eters, repeated solutions are made of the Sltthger the latter, the fixed energy class, we have found that the fully
equations until a best fit is found to the data set of interestquantal and semiclassical WKB inversion schemes of
But there are more rigorous inverse scattering thedrdés Lipperheide-Fiedelde{l F) type[4,5] have been most useful
with which the(Schralinge) interaction can be constructed in practice. Those schemes have been used extensively in
directly from the scattering function. With these more rigor-recent years to analyze the differential cross sections from
ous methods, essentially r@ priori assumption is made the elastic scattering of two nuclgs,6] as well as of elec-
about the shapes of the potentials, although they will belondgrons from water molecules’] and from atomg8]. In this
to the class identified with the specific method used. By dinpaper, we analyze the differential cross-section {@teor
of their construction, however, and when used in direct soe-CH, scattering using the semiclassical WKB inversion
lutions of the Schrdinger equation, they givéretain an  scheme of LF type and construct local inversion potentials at
extremely high quality fit to the data upon which they wereenergies ranging from 200 eV to 700 eV. Differential cross-
predicated. They may or may not be “realistic” insofar as section data at other, and lower, energies exist but we have
they do or do not look like ones determined by folding un-chosen the set from Saka¢ al. [9] as they are typical of a
derlying elementary two particle interactions with the densitymodern experiment, have been taken at energies for which
profiles of many body colliding systems. If they do then onethe WKB method may be applicable, and were provided to
may take heart that the measured data are reflecting the ims in tabular form with specified error values.
herent character of the many body theory considered. If they While most of the applications of inverse scattering
do not, that is no proof that the many body theory is wrongtheory take differential cross-section data as the starting
but that many body theory must lead in finality to an inter-point, Miller [10] has shown that it is also possible to obtain
action that provides a statistically significant fit to the data. potentials by inversion of the total cross section. His method
The interaction that results from inverse scattering theorys based on an eikonal approximation and on the assumption
usually is associated with an excellent fit to the data. That ishat the potential is real, local, and independent of energy
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(i.e., there is no underlying nonlocaljtylt has been used edly. The results are much less ambiguous then and demon-
[11] to specify an interaction for the He-He atomic system.strate that, if absorptive processes are important in the
Herein we demonstrate that the approach can be used als@action mechanism, these scattering data should not be used
with a WKB approximation as the Sabatier transfofii solely as the measure of those contributions. By considering
links the (inversion potential to the quasipotential which is purely real interactions, th& function is unitary and the
defined by the phase shift function associated with the scagéneralized unitarity theorem permits one to determine the
tering. The Miller procedurgl0] can be used equally well to actual scattering amplitudé(¢) from the scattering data.
specify that quasipotential. The assumption that the quasipd-"€ magnitude of (6) is the square root of the differential
tential is independent of energy facilitates the scheme, buf"0SS Section and its phase is a solution of a nonlinear inte-
by virtue of the Sabatier transform, there is a residual energ§"@ equ:jltlon[the kernel of which involves the complete
dependence in the extracted interaction. We present this d0°—180°) cross sectidr{17]. If a stable solution of that
velopment herein since many total cross-section measurdlonlinear equation can be foufi, 19 then theS function
ments have been made for the scattering of electrons fror§ 9iven exactly by Legendre integrations of ttwmplex
atoms and molecules. In some cases those measuremefif&tiering amplitude. The starting “data” for the inversion
span a wide energy range. For example, recent measuremeft§thods is then fixed with little ambiguity and so poses a
at incident electron energies of up to 4 keV have been regtrmgent.constramt on the specifics of $wnctlon f(_)rm to
ported [12]. We are not aware of any previous inversion be usec_i in su_bsequent inverse scattering calculations.
analyses of the total cross sections for electron scattering and 1 1€ inversion procedures that we have used are presented

here we investigate the feasibility of such and compare inl" S€c. Il @s is a brief review of the process of using the

version potentials calculated from total cross-section datg€neralized unitarity theorem to define scattering phase

with one obtained by direct calculation, as well as with ones>hifts- The results of our applications to the analyses of elec-
found using fixed energy inversion of a select set of differ-oN scattering from the molecule GHare then presented
ential cross sections. and discussed in Sec. lll. Conclusions we can draw are given

At low energies,<60 eV typically,ab initio calculations ~ finally in Sec. IV.

of effective interactions for electrons scattering from small
molecules have shown that static, exchange, and polarization [l. INVERSION THEORY AND METHODS
(SEP components are all important in an explanation of the

total elastic scattering cross sectidi€] and that has also Direct and inverse methods of analysis of scattering data

by usually are processes that involve two stages, with the link
been observed specifically for the case of methidre1. between the measured data and the interaction potential be-

In a later publication, Jaifi16] used a complex optical po- . : : .
tential whigh, for energieg ag)ove 20 eV, hpad anpenerg?y delnd the scattering matrice8, (k) or equivalently, the scatter-

pendent absorptive part that significantly reduced calculatei'? phase_shlftsﬁ/ (k).(:(llz) Ir_l[S/ (k).])' _Fo_r the _scatter-
elastic scatteringtotal) cross sections. His static exchange,mg. of_spl_nle_ss partlcles, or if the intrinsic spin of the
asymptotically adjusted polarization plus absorption modeProJec'[IIe is ignored(as is the case hereonly fea' half-
calculations have strong absorption in the energy regime lo@teg/er values of th_e angular mome”t“m varlable(Le._,

— 500 eV, an energy region of interest to us. He also prez‘:/{rllz) arerequired .and the d|.ﬁerent|al cross secyons
dicted differential cross sections at 100, 200, 300, and 408t @ fixed energy and W'.th scattgrlng angleare given in
eV with those complex potentials. Data were not availabld®™ms of(compley scattering amplitudes,

then for all of those energies, but the 200-eV measurement 1

had been made. In a previous papb4], those 200-eV dif- f(9)=-A(9)e'e? (1)
ferential cross-section data were analyzed and reasonably k

well fitted by a calculation in which only a purely reS8EP

potential was used. The prediction with the absorptive interPY

action of Jain16] does not fit nearly as well. But a refined

complex interaction could well do so. The question is just a(9) :|f(9)|2:iA2(9)
how absorptive that interaction woul@dr should be. This dQ k?

and the data of Sakaat al.[9] at many energies to 700 eV,

together with our ability to use inversion of the total and -

differential cross-section information, motivated our present T /20 (27+D[SA(k)—1]P(0)]| , (2
report. In particular, we have analyzed the total cross-section -

data from electrons scattered from methane molecules, and . . .
have considered the relevant differential cross-section dat\fi\/hIle the t(_)tal Cross section for scattering by a purely real
[9] for the elastic scattering of 200-, 300-, 500-, and 700_8\}nteract|on is given by

2

electrons. 4"
Herein we have restricted consideration to finding purely o(k)= _7;2 (2/+1)sir?[ 8,(K)]. 3)
real interactions. The methodsf inversion used need not ke =0 '

be so restricted. They can be used to specify comfedx

sorptive interactions. But by restricting consideration to real Therein the phase shifts are purely real quantities as absorp-
interactions, the number of parameters involved in the firstive processes have not been considered. The wave numbers
stage of inversion, namely, the determination ofSfunc- are defined from the center of mass energy as usual by

tion form from an excellent fit to the data, is reduced mark-E=(#%/2u)k?. Then, if the phase shift§, (k) can be inter-
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polated smoothly, the infinite summation in E@) can be for ¢(""1) and if the sequence" converges, its limit is a
converted to an integral so that the total cross section besolution of Eq.(5). Further, if the integral in Eq8) is ap-
comes proximated by a quadrature formula, E@®) reduces to a
system of linear equations. However, the price of finding
stable convergent solutions by this means is the loss of a
rigorous guarantee of global uniqueness.
We now describe the two methods of inversion of actual
where 8(\ k) is a continuous function of. data; the first associated with the total cross-section data and
With scattering by real potentials, the magnitude andthe second of fixed energy form appropriate for the differen-
phase of the amplitudd&q. (1)] may be extracted from the tial cross-section data. Both use the WKB approximation to
measured differential cross sections, under the constraint thacilitate a link between measuremephase shiftsand an
the scattering function is unitafit 7]. In such cases the gen- interaction(Schralingen potential.
eralized unitarity theorem leads to an equation defining the In the WKB approximatiorj1,5], the phase shift function
phasee(6) in terms of the complet¢0°—180°) cross sec- relates to a quasipotenti@l(o) by
tion, viz., with x=cos(®),

o(k)= T(—ZJ:Z)\sinz[ S(\,K)JdX, (4

o (= Qo)
. A(y)A(z)cod ¢(y) — ¢(2)]dy dz SN K== 3737| —H—=0do, (10
Sln(’D(X):JJ’27-rA(x)(1—x2—y2—22+2xyz)1’2' ®) MNOTA

which, by an Abel integral transforiri], gives the quasipo-

Therein the region of integration is the interior of an e”ipse'tential as

From the specifiedcomplex scattering amplitude, the scat-

tering function is obtained by C4E1 d - SO0K) " .

_ [ . Qlo)=— 45 S . (11)

s/—1:e2'5/—1=|kf f(0)P,(0)sin(6)ds,  (6)
0
The scattering potential then is specified by the Sabatier
which in turn identifies the phase shifés . transform,
Usually, solutions of Eq(5), or its equivalent, have been

sought with iteration schemes based on the contraction map- Vio)=El1— _ Q(o) (12)
ping principle[17,18. That approach also defines an exist- (p)= X E ’

ence condition for a solution and for its global uniqueness as

well. In application, though, we have found difficulties with gg long as theresia 1 to 1correspondence betweprand the

it. The physical circumstances considefé@8] did not meet  dimensionless variable via the transcendental equation
the domain criteria and the solutions found were not stable.

Thus we considered a modification of the Newton iteration Q(o)
method. p=kr=o0 ex = )

In brief, our modified Newton methodl9] considers an
operatorF acting on functionsp according to

Fle]=sine(x)] With o=ks, one can rewrite the WKB approximation for
A(Y)A(z)cod o(y)— ¢(2)]dy dz the phase shift function, Eq10), in terms of an impact
_J ijA(x)(l—xz—yz—zernyz - (7)) parameterb(=\/K), viz.,

(13

A. Inversion of total cross sections

The Frehet derivativeF’ of F is given by SONK) = — ﬁ'“kaw QkS e %w(b). (14)
b

N

Miller [10] assumed)(ks) to be independent of the momen-
tumk so thatw(b) is also. Then ifw(b) is a smooth, invert-
ible function, an Abel inversion of Eq14) yields

F;(h)=c0i¢(X)]h(X)+f f H(X,y,2)sie(y) = ¢(2)]

X[h(y)—h(z)]dydz

=c0i<p(X)]h(X)+2f U H(X,y,2)si ¢(y)

Q(ks)—Q(s)=— (15

ﬁzf 1 g
Tulool(w) -5

The upper limit of the integral is the value for which the
. _ i radicand is zero. Miller assumed further that the quasipoten-
and is a bounded linear operator. Then, if one can solve thgy| was small so that a first order expansion of the transcen-
linear functional equation, dental equations equates the potential to the quasipotential
, directly with s—r. Then Eq.(15) reduces to that used by
F(‘»Dn)J“Fw(ﬁDnH_ﬁDn):O’ 9 Miller and defining the potentidV,(r), viz.,

—cp(Z)]dZ)h(y)dy (8)
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52 1 B. Fixed energy inversion of differential cross sections
Vu(r)y=-— —f ——do. 16 i ; ; ; ; ; _
m(r) 7)o\ w) 12 (16) Since the foregoing discussion of inversion of total scat

tering cross-section data involves tt@omplete phase shift

function, we can define the fixed energy phase shift function

S(\,k) at any single energy for use with (fixed energy

KB inversion scheme. Alternatively we can take each dif-

rential cross section as a separate data set to be used in a

fixed energy inversion scheme by first defining&function

of the appropriate form from its direct fit to théxed en-

ergy) data. With both approaches, we consider the WKB

method that we have used in the pgst 8] to analyze other

4 differential cross-section data. Consequently we give herein

o(k)= —Z[Azsinz{ SINKIZ but a brief review of the fixed energy method to define terms
k to be used in the later discussion.

This approach is based upon using known forms for the
dé(\ k) phase shift function for a fixed energy, within the Abel inte-
ax )d (17 gral transform, Eq(11), to specify the(fixed energy quasi-

potential. The inversion potential, at the chosen energy, is
given then by the Sabatier transform, Ef2), and at radii
specified by the relation E¢13). Potentials calculated in this
way will vary with the chosen energy, but as they are deter-
mined by using a fixed energy inverse scattering method, we
identify them hereafter ag.g(r,E). To apply the fixed en-
ergy inversion scheme, it is particularly useful to recast the

The latter approximation of Miller is not essential. The
method he set forth can be used to obtain the quasipotenti
itself and the Sabatier transform then gives the interactior%le
potential.

To obtain b(w) from the total cross section, one may
proceed by integratinpy partg the integral equation for the
total cross section, Eq4), to get

4a (= .
aralp )\23|n{25()\,k)}<

For potentials decreasing faster thar® asr —o, the phase
shifts decrease faster than ? asA—« [4], and therefore
the leading term in Eq(17) vanishes. A change of variables
then gives

ko(k)=2ﬂ'fxb2(w)sin(g)dw (18) (fixed energy phase shift function in the form
k 1
0
N
1
_ 2 %2 _ 2 2
whose Fourier sine transformation, o\ k)= 2in§=:l [In{A"=an T =InA"—ap}], (22
5 2 (> o for which theS function has the rational form
b (w)=—2f o(k)sin —|kdk, (19
™ 0 k N )\Z_a*z
o _ . sovk =11 (ﬁ 23
is a direct specification di?(w) in terms of the total cross- n=1\ N —aj
section data. But it is not very practical as there are numeri- ) S o
cal difficulties with integration whem is large, and the mea- @S then the quasipotential is given explicitly by
sured data are usually far from complete functionk.ofhus N
we propose to use a functional form fiof(w) in Eq. (18) to Q(o)=2iE 2 . 1 (24)
fit measured total cross-section data. Specifically we have i=1| Jo2—a? Joi—ar?|
n n

chosen the form

This form has been used with success in WKB inversion
studies of nuclear, atomic, and molecular scattefutiffer-

2 —
b*(w)= w(BZ+ 0?2’ (20 entia) cross sectionf6—8|] and we now apply it by finding
the optimal smallest set of compldgonjugate pole-zero
with the parameter§A,B} to be determined by &2 mini- pairs by a direct fit to the actual measured differential cross

mization search giving a “best fit” to the measured data. It isS€Ction. A least squares search has led to se(tsvoj values
of note that the cross section with this form fo#() has {ay}, that give excellent fits to the differential cross-section

the asymptotic form Qata[g] taken at 200, 3QO, 50023 and 700 eV._Those; values are
listed in Table | along with thg</F for each fit. Again as we
m2A B B have restricted the pole-zero pairs to be complex conjugates,
o(k)= ﬂ[ 1-(1+ 2k exp{ - ?)] each energy inversion will yield a purely real interaction.
5 lll. RESULTS AND DISCUSSION
~ 5832 +O(k™*)  as k—o. (21 A. Inversion of the total cross-section data

The procedures to invert total cross-section data have

With this selected form fob?(w) the quasipotentiaD(s) been used to determine inversion potentials for the interac-
as a function ofs is easily obtained from Eq(15). The tions of electrons with the ClHmoleculeq12]. Total cross-

inversion potential as a function ofis then found by use of section data for all have been taken in the range from 77.5

the transcendental equations, E¢k2) and (13), for each eV up to 4 keV, a spread which makes feasible use of the

energy, and is designated hereafteVagr ,E). inversion method. The data were fit using the parametric
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TABLE I. The two complex polesy, defining the scattering 102
functions obtained from fits to the differential cross sections for
electron elastic scattering from GHThe zerosg,,, are the com-
plex conjugates of these. The quality of the fits is specified by the
values of they?/F that are shown in the second column.

Energy(eV) Y2IF a; ay

200 1.00 (1.368, 3.605 (0.8918, 0.687H 10
300 0.54 (1.211, 4.231 (0.9481, 0.832p
500 0.63 (1.757, 3.758  (0.5971, 0.788%
700 0.88 (1.728, 3.7656  (0.5288, 0.8008 10 ; :

Radius(a.u.)

form for b?(w) given by Eq.(20) and the optimal values of FIG. 2. The potentialsolid curvg V(r,1000 eV) from the
the parameters are 8.48240° and 19.96 forA andB, re- inversion of the total cross section froerCH, scattering compared
spectively. With those parameter values, the quality of the fiwvith the result of a model calculatididashed ling[14]. The inser-
to the data is measured by the value )p‘-f/F being 1.7. tion shows the inversion potentialé,(r,E) obtained at 1000 eV
Inverting theb?(w) functions gives phase shift functions per (solid lin), 400 eV(small dashed line and 100 eV(long dashed
Eq. (14), and to check that quality fits to the data have beerfin€), respectively.
retained by the assumed energy dependence, those phase
shift functions were used in the partial wave summations othat is plotted in the bottom segment of Fig. 1. Herg(k)
Eqg. (3) to compare with the data a second time. THéF  ando, (k) are the total cross sections found using the inver-
after that process is 1.9. Clearly the adopted form for thesion potentials given by our WKB scheme and with Miller’s
phase shift function retains the quality of fit to data quiteeikonal approximation, respectively. Evidently for most en-
well and the integral formula, Ed4), is therefore a reliable ergies k>5A ") the difference is but a few percent.
approximation with this data set. The potentials from our analyses of teCH, total cross-
The fits to the total cross-section data that are shown igection data are shown in Fig. 2. In the main feature of this
the top segment of Fig. 1 are the results of recalculationgiiagram, the inversion potentis,(r,1000 eV) is displayed
using the inversion potentiaq(r,E) in the Schrainger by the solid curve. We chose that energy to be large enough
equation. These recalculated total cross sections are also vefyat the WKB approximation is valid and that the quasipo-
similar to ones found using the Miller inversion potentials tential values would be small so that the Miller prescription
Vw(r) as is evident from the energy variation of the differ- should be valid. Indeed the resultant inversion potential is
ence, virtually identical toV\,(r) obtained using the Miller pre-
scription. The inversion result is compared also with the re-
(25) sult of a theoretical calculatiofdisplayed by the dashed
curve and which is a sum of static, polarization, and ex-
change potentials for the-CH, system[14]. The inversion
potential is larger than the model calculation at radii greater
than 0.8 a.u. The results of our WKB calculations of
Vo(r,E) for e-CH, scattering at different energies are
: shown in the inset. There is practically no difference between
] the 400- and 1000-eV resultshort dashed and solid curves,
respectively so that the Miller assumption that the underly-
ing potential is energy independent is met, at least for this
energy regime. Further, the agreement of these results with
Vu(r) indicates also that the eikonal approximation is very
5F 1 good at energies above 400 eV. The 100-eV result in the inset
is shown by the long dashed curve. It does differ slightly
from the other two and, while we may expect such as a
breakdown of the high energy approximations of our inver-
sion studies, it can also be a reflection that absorptive pro-
cesses, ionization, in particular, are now more important as
—_—— well. In a mean field theory such are accounted for by having
5 k(;(:x) 15 complex, optical potentials.
o But the(total cross sectioninversion method is most ac-
FIG. 1. The total cross-section data from electron scatteringUrate for smalf values[10]. By recalculating the total cross
from the CH, molecule are compared in the top section with the Sections with the inversion potentials altered to havé
results calculated by using the inversion potentialér,E). Inthe ~ form at radii greater than a valug,,, we found that the
bottom section, the percentage differerdgk) between total cross —€nergy variatior(of the total cross sectigiwas little altered.
sections calculated using our WKB prescription and the Miller oneThe absolute magnitudes were with 10% and 20% reduction
are displayed. occurring forR.; being 3.0 and 2.0 a.u., respectively. There-

UQ(k)_‘TM(k)
O'Q(k)

A(k)=1OC{

o(units of a3}
o
)

A[%]
[=)
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1 10°

Radius (a.u.)
FIG. 3. The potentials determined by fixed energy inversion of 0 %0 100
6¢ . (deg)

the differential cross-section daftd] and displayed by the dashed,
long dashed, dot-dashed, and chain line for the 200-, 300-, 500~ ¢ 4 11 gifferential cross-section data at 200, 300, 500, and

3”% 1588'2\\//) fgizgs%rorr:eisrs/eeigi\;er:y,of tﬁznlggf(iros\g't:ecti;z%oo eV(from top to bottom compared with the results of using the
(s%lid lin® fixed energy inversion potentials to recalculate them. The results
’ have been scaled by 50, 10, 5, and 1 for the 200-, 300-, 500-, and
700-eV sets, respectively, to facilitate viewing.
fore the large radii aspect of the potential is not established ) _ ) _
by the inversion study of the total cross-section data. So we  C: A comparison of the differential cross sections

consider next whether or not specific differential cross sec- The fixed energyrea) inversion potentials when used in
tions may be. In particular, we consider fixed energy inverthe Schrdinger equation yield differential cross sections that
sion methods for data at energies where we are confident thate shown in Fig. 4. These calculations match the 200- to
the WKB approximation is valid. 700-eV data so well that we use the actual data as the equiva-
lent of them to investigate the quality of the potentials ob-
tained by inversion of the total cross-section data. We have
B. WKB fixed energy inversion of differential cross sections made direct solution of the Schiimger equations using

We have used the fixed energy WKB inversion method toVQ(r’200 e) andV(r, 700 &) specifically to calculate the

analyze the differential cross sectionses€H,, scattering at 200-eV and 700-eV differential cross sections. The compari-

. . sons of those cross sections with experimental dated
209’ 300, 50(.)’ ant_:l 700 €], Usmg the comple_x-con]ugate therefore with the fixed energy studieme displayed in Fig.
pair values given in Table | to define tt&function at each ¢ The 700-eV results are given in the top panel and the

energy gives quality fits to the data. Those pole-zero paibng.ev results are shown in the bottom. Therein the solid
values then were used to specify the fixed energy inversioges display the cross sections calculated using the
potentialsVeg(r,E) that are shown in Fig. 3. Clearly, there is v/ _(r E) interactions. The cross sections found by using
some energy dependence to these results, although for Smﬁi%oretically derived interactions are also shown in Fig. 5.
radii (r<1.0 au), they are all very similar to the The (small dashed curves represent the results tabulated by
Vo(r,1000 eV) resul(shown by the solid curve in this fig- Jain [16] at 200 eV and calculate¢at 700 eV using the
ure) obtained by inversion of the total cross-section dataderived purely real interaction given in Rdfl4]. In the
They differ from that and each other at larger radii though a®00-eV case we show a third resylong dashed curye
is shown in the main body of the diagram for radii to 1 a.u.which is the cross section obtained with a complex potential
and in the inset for radii to 3.0 a.u. Using those fixed energythat has been proposed for this scatteriti§]. Clearly the
inversion potentials in the Schiimger equation leads to the results at 700 eV are in quite good agreement with each other
results that are shown in Fig. 3. Therein the data are comand the data. Thus at 700 eV the SEP model and the poten-
pared with the calculated 200-, 300-, 500-, and 700-eV crossals from either fixed energy or total cross-section inversions
sections ranging from the top of the diagram to the bottomare reasonably in agreement. They give very good to excel-
Those cross sections have been scaled up by factors of Signt fits to the measured differential cross sections with no
10, 5, and 1, respectively, to facilitate viewing. Clearly theneed to include effects of absorption processes. Indeed, by
quality of fit is retained when the inversion potentials arechanging the radial variation 0fo(r,700 eV) to have the
used to recalculate the cross sections. The exact specificatiexpected polarization form at large radii reduces the calcu-
of the potentials beyond- 2 a.u. does not influence these lated results at forward anglggssentially at 5° and 10°
calculated cross sections very much, at least for the range afnly) to agree with the data.
momentum transfer values spanned by the current data sets. The 200-eV differential cross-section results are quite dif-
It is these results that set the standard by which the spderent, however. By its construction, the fixed energy poten-
cific results found using our other calculations are to be meatial gives an excellent fit to the data as was shown in Fig. 4,
sured. There are differences between the potentials found dyut of the set displayed in the bottom half of Fig. 5, the
inversion of the total cross section and those found from theomplex potential resultabulated values in Refl16]) is
fixed energy analyses. Those effects are considered next. very poor. That result is not in contradiction to the observed
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— Ty TABLE Il. The phase shifts(in degrees obtained from the
10' 3 analysis of 700-eV electron—methane-molecule scattering data by
o unitarity condition, 6(}’)), compared with those of the rationgl
10 function, (6(/3)), found by a direct fit of the differential cross sec-
-1 .
10 tion.
z 10° K 1 2 3 4 5 6
g
< oM 998 59.0 46.4 299 225 169 140
<o
= 10 59 1029 620 440 329 248 190 148
g 0
g 10 7 8 9 10 1 12 13
10
2 s 116 98 80 65 51 42 35
10 &9 118 95 78 66 56 48 41
P R P P
50 100 14 15 16 17 18 19 20
0. m. (deg)

sV 31 2.9 2.6 2.2 1.7 1.2 0.6
FIG. 5. The differential cross sections feFCH, at 200 eV~ &9 3.6 32 2.8 25 23 2.0 1.8
(bottom) and 700 eV(top). The solid curves are the results corre-
sponding to thé/(r,E) potentials while thésmall dashed curves . ] ]
are those found using a theoretical potenfiiad]. The long dashed been made to obtain that complete cross section with the
curve at 700 eV is the cross section that results when a completheoretical calculated values of Sakatal. [9] at 0°,
interaction[16] is assumed for this system. 160°, and 180° being used to facilitate that interpolation.
With this input and initially the phase function taken to be

reasonable result for the total cross section found in Jain'§1€ constantpo(6) =¢(0°)=0.287, iteration of the nonlin-
study since the misfit to the differential cross section occur&ar integral equation, Ed5), using our modified Newton
for data with magnitudes less than a few percent of the formethod converged. The optical theorem gave the choice for
ward angle values. But the purely r¢8IEP interaction re- ¢(0°).

sult (also from the tabulation of Jaji16]) does very well for The 20 phase shifts that could be calculated reliably by
all angles to about 60° and then is only slightly larger than-€gendre integration of the scattering amplitude found from
the remaining, small magnitude cross-section values. The réhe unitarity condition are given in Table II. They are com-
sult found using ou¥o(r,200 eV) interaction overestimates Pared with the set obtained from tifunction found by a
the data at forward scattering angles but has the correct trerflirect fit to the cross-section data, i.e., with the pole-zero pair
with momentum transfer. The good agreement at the highef@lués given in Table I. The sets of phase shifts are quite
momentum transfeflarger scattering anglggound using the ~ Similar, with differences in the importaow /) values be-

V,, interaction is consistent with the total cross-section in-iNg but a few percent. Itis not surprising therefore that$he
version method being more accurate for small radii tharfunction found by a simple mapping of the unitarity condi-
large. We varied the long range characteigf(r,200 eV) tion phase shifts is also very similar to the fitted one. With
to have the expected * form (from 1.5 a.ul and again the phase shifts€"” up to/'=20), we recalculated the dif-
found changes in the forward angle cross-section predictioferential cross section and the comparison with the experi-
to bring agreement with the data. But that only affected thenental data and thé&complete shape that was input to the
first two points(at 5° and 10°) seriously. The rest of the unitarity study are displayed in Fig. 6. Therein the solid
calculated cross section remained at odds with the measurédrve is the input complete cross section and the dashed
values. At this energy then, only from fixed energy inversioncurve is the recalculation. Both are excellent fits to the data
have we a potential that we can tag with a quality fit towith the slight oscillatory behavior in the recalculation at

observed data. large angles reflecting the truncation of the partial wave sum-
mation. The potentials that result from inversion in these
D. Use of unitarity to fix the S function for inversion cases are displayed in Fig. 7. The inversion potential based

upon the unitarity condition results is displayed therein by

The potentials found for 700-eV electron scattering ar&ne solid curve while the dashed curve is the fixed energy
very similar and the fixed energy inversion analysis gives afnyersion one previously given in Fig. 3. The two differ

excellent fit to the differential cross section. That process|ightly at small radii but are very similar from 0.3 a.u. out-
started with a search for a set of pole-zero complexyyards.

conjugate pairs of parameters to defineSafunction from a
“best fit" to the cross-section data. The process has ambigu-
ities. But with unitarity as a constraint we can specify the
physical S function values directly from the data prior to Purely real scattering potentials have been constructed by
inversion. TheS function parameters are then given by ausing inverse scattering theory to analyze both the total and a
simple mapping of the functional form to a table of numbers.set of differential cross sections from the elastic scattering of
The data have been measured at scattering angles betweslactrons from CH. For energies above 200 eV, the inver-
5° and 135°. To use the unitarity constraint that cross secsion potentials show some energy dependence and those ob-
tion is needed at all scattering angles. An interpolation hasined by fixed energy inversion are associated with ex-

IV. CONCLUSION
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FIG. 7. The fixed energy inversion potentials obtained from the

FIG. 6. The measured differential cross-section data and th&nitarity condition phase shift sesolid curvg and that from thes
interpolation and extrapolation of {solid curve from the elastic ~ function given by a direct fit to the cross-section déteshed
scattering of 700-eVe-CH, compared with the resuldashed — CUrve.
curve from the phase shifts which were found by using the modi-
fied Newton method to specify the scattering amplitudes. character of electron-molecule interactions. We also note that

the inversion potentials are quite different fronic@mplexy

tremely good fits to the measured differential cross—sectioqlm(_)racti0n that has been proposed for this system. However

data. Likewise the potentials obtained by inversion of thethat may be of little significance since the fit to the differen-

total cross-section data reproduce those data quite well, byt, ¢ sq section data at 200 eV found by using that absorp-
when used to analyze the 200- to 700-eV differential cros ive interaction is not good. Again, more data at smalerd
sections do not give the same quality of fits as the f'xejargeb momentum transfer values, are neededlifferential)

total cross sectiofinversion) potentials is not correct ®ross sections are to be sufficiently sensitive to the asymp-
P ' totic properties of the interactions.

The closely equivalent result for 700 eV based upon the Inversion and direct studies of such scattering data are in

phase shifts extracted using the unitarity condition Comcirmfact complementary. With inversion studies, one can usually

th_at there is little ambiguity for us to be concerned abou1identify a potential that is associated with an excellent fit to
with the search process that specifies $inctions central data. But a fully microscopic folding modédirect calcula-

to the fixed energy invers_ion process. The invgrsipn sche'm fon is the only way to find the physical phenomena under-
can b.e adapted to specify complex absorptive mteractlonﬁling any effective local interaction. Thus, given that a rea-
but with the present data extremely good fits the 200- to sonable fit to data can be obtained with a microscopic direct

;ggtgervt'g:wosésffescetgnogifr r:j(:t;e%ur'rﬁ]oer)ép!ﬂg'ngfs'opeco.fselcalculation, by using that as a regularization inversion analy-
Pt ' ’ VEry PreciSel¥ag then may indicate what attributes of the effective local

Fnealsvur(?d td;lff?/:/enttrlal\ cross-?egtlgn rdata, will k;e iﬂiﬁ?ed tamteraction need be explained by even better microscopic
esolve Just how strong absorplion processes are S SC30del calculations. But high quality and extensive data sets

tering system. In particular, lower energy scattering data ma e needed and, in the present case particularly, more data at

be more instructive about absorption processes. Fully quantgo,[h very small and large scattering angles are needed before

inversion methods wiII.be needet_j with_those studigs thou.ghSUCh a regularization can be attempted with some hope for
The potentials obtained from inversion of the differential ignificant results

cross-section data are similar to the theoretical ones to radil
~2 a.u., and the results we have obtained suggest that the

present_data are rather |Qsen5|t|vca_ to the precise values of the ACKNOWLEDGMENTS

interaction at larger radii than this. That is not to say the

system at lower energies or for smaller scattering angles We thank Dr. Takeji Sakae for providing us with tabula-
(than 5°) will not be. Indeed, the cross sections of slowtions of the differential cross-section data from the elastic
electron 20 eV) scattering are sensitive to the long rangescattering of electrons from CH
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