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The inverse scattering theory has been used to define effective local electron-methane interaction potentials.
Those interactions have been obtained first by inversion of the total cross-section data as a function of energy.
The WKB approximation has been used in that determination. The same approximation has been used to effect
~fixed energy! inversion of differential cross-section data from electron-methane scattering for energies of 200,
300, 500, and 700 eV. The resulting interactions, which we have assumed to be purely real, are very similar and
show little energy dependence. They are in good agreement with a theoretically derived potential for this
system at those radii for which the inversion potentials are determined sensitively by the scattering data. In
addition, the generalized unitarity theorem has been used to specify the scattering amplitude from the 700-eV
data. TheS function given by Legendre integration of that amplitude has been inverted to specify another
purely real potential for the collision. The result is very similar to those found by the other analyses.

PACS number~s!: 34.80.2i

I. INTRODUCTION

There are two basic approaches with which quantitative
information on the~effective local! interaction between two
particles undergoing nonrelativisitic quantal scattering may
be specified. The most common is the direct approach in
which an interaction potential is obtained by making a ‘‘first
principles’’ calculation based upon specifics of more funda-
mental underlying two particle interactions. The derived po-
tential then is used in direct solution of the Schro¨dinger
equation and the asymptotic properties of the relative motion
wave functions give the predictions to be compared with
measured data.

The alternative approach is to use inverse scattering
theory@1#, with a most common approach in this vein being
that of numerical inversion. Therein one first makes an in-
formed choice of a phenomenological form for the interac-
tion and then, by adjusting the values of associated param-
eters, repeated solutions are made of the Schro¨dinger
equations until a best fit is found to the data set of interest.
But there are more rigorous inverse scattering theories@1#
with which the~Schrödinger! interaction can be constructed
directly from the scattering function. With these more rigor-
ous methods, essentially noa priori assumption is made
about the shapes of the potentials, although they will belong
to the class identified with the specific method used. By dint
of their construction, however, and when used in direct so-
lutions of the Schro¨dinger equation, they give~retain! an
extremely high quality fit to the data upon which they were
predicated. They may or may not be ‘‘realistic’’ insofar as
they do or do not look like ones determined by folding un-
derlying elementary two particle interactions with the density
profiles of many body colliding systems. If they do then one
may take heart that the measured data are reflecting the in-
herent character of the many body theory considered. If they
do not, that is no proof that the many body theory is wrong,
but that many body theory must lead in finality to an inter-
action that provides a statistically significant fit to the data.

The interaction that results from inverse scattering theory
usually is associated with an excellent fit to the data. That is

by design and one should not assume that the potential found
is physical. There are ambiguities in the process@1# and with
the methods we will use in particular@2#. With the direct
approach, in contrast, one is able to incorporate physical
knowledge and insight at the outset. But direct analyses of
scattering data often do not give a quality fit, as measured,
for example, by thex2 per datum (x2/N) not being of order
one @3#. The best situation is one in which a model interac-
tion constructed from first principles and which gives a rea-
sonable fit to the data is used to regularize the inversion
process that yields a refined interaction with which an excel-
lent fit to that data set results. But a prerequisite for such a
procedure is an extraordinarily high quality data set so that
variation ofx2/N is a stringent selection criterion upon the
model specifics.

Inversion methods usually belong to one of two classes,
the first of which has energy as the spectral parameter and
the angular momentum is fixed, the second is vice versa. Of
the latter, the fixed energy class, we have found that the fully
quantal and semiclassical WKB inversion schemes of
Lipperheide-Fiedeldey~LF! type@4,5# have been most useful
in practice. Those schemes have been used extensively in
recent years to analyze the differential cross sections from
the elastic scattering of two nuclei@5,6# as well as of elec-
trons from water molecules@7# and from atoms@8#. In this
paper, we analyze the differential cross-section data@9# for
e-CH4 scattering using the semiclassical WKB inversion
scheme of LF type and construct local inversion potentials at
energies ranging from 200 eV to 700 eV. Differential cross-
section data at other, and lower, energies exist but we have
chosen the set from Sakaeet al. @9# as they are typical of a
modern experiment, have been taken at energies for which
the WKB method may be applicable, and were provided to
us in tabular form with specified error values.

While most of the applications of inverse scattering
theory take differential cross-section data as the starting
point, Miller @10# has shown that it is also possible to obtain
potentials by inversion of the total cross section. His method
is based on an eikonal approximation and on the assumption
that the potential is real, local, and independent of energy
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~i.e., there is no underlying nonlocality!. It has been used
@11# to specify an interaction for the He-He atomic system.
Herein we demonstrate that the approach can be used also
with a WKB approximation as the Sabatier transform@1#
links the ~inversion! potential to the quasipotential which is
defined by the phase shift function associated with the scat-
tering. The Miller procedure@10# can be used equally well to
specify that quasipotential. The assumption that the quasipo-
tential is independent of energy facilitates the scheme, but,
by virtue of the Sabatier transform, there is a residual energy
dependence in the extracted interaction. We present this de-
velopment herein since many total cross-section measure-
ments have been made for the scattering of electrons from
atoms and molecules. In some cases those measurements
span a wide energy range. For example, recent measurements
at incident electron energies of up to 4 keV have been re-
ported @12#. We are not aware of any previous inversion
analyses of the total cross sections for electron scattering and
here we investigate the feasibility of such and compare in-
version potentials calculated from total cross-section data
with one obtained by direct calculation, as well as with ones
found using fixed energy inversion of a select set of differ-
ential cross sections.

At low energies,<60 eV typically,ab initio calculations
of effective interactions for electrons scattering from small
molecules have shown that static, exchange, and polarization
~SEP! components are all important in an explanation of the
total elastic scattering cross sections@13# and that has also
been observed specifically for the case of methane@14,15#.
In a later publication, Jain@16# used a complex optical po-
tential which, for energies above 20 eV, had an energy de-
pendent absorptive part that significantly reduced calculated
elastic scattering~total! cross sections. His static exchange,
asymptotically adjusted polarization plus absorption model
calculations have strong absorption in the energy regime 100
– 500 eV, an energy region of interest to us. He also pre-
dicted differential cross sections at 100, 200, 300, and 400
eV with those complex potentials. Data were not available
then for all of those energies, but the 200-eV measurement
had been made. In a previous paper@14#, those 200-eV dif-
ferential cross-section data were analyzed and reasonably
well fitted by a calculation in which only a purely real~SEP!
potential was used. The prediction with the absorptive inter-
action of Jain@16# does not fit nearly as well. But a refined
complex interaction could well do so. The question is just
how absorptive that interaction would~or should! be. This
and the data of Sakaeet al. @9# at many energies to 700 eV,
together with our ability to use inversion of the total and
differential cross-section information, motivated our present
report. In particular, we have analyzed the total cross-section
data from electrons scattered from methane molecules, and
have considered the relevant differential cross-section data
@9# for the elastic scattering of 200-, 300-, 500-, and 700-eV
electrons.

Herein we have restricted consideration to finding purely
real interactions. The methods~of inversion! used need not
be so restricted. They can be used to specify complex~ab-
sorptive! interactions. But by restricting consideration to real
interactions, the number of parameters involved in the first
stage of inversion, namely, the determination of anS func-
tion form from an excellent fit to the data, is reduced mark-

edly. The results are much less ambiguous then and demon-
strate that, if absorptive processes are important in the
reaction mechanism, these scattering data should not be used
solely as the measure of those contributions. By considering
purely real interactions, theS function is unitary and the
generalized unitarity theorem permits one to determine the
actual scattering amplitudef (u) from the scattering data.
The magnitude off (u) is the square root of the differential
cross section and its phase is a solution of a nonlinear inte-
gral equation@the kernel of which involves the complete
(0°–180°) cross section# @17#. If a stable solution of that
nonlinear equation can be found@18,19# then theS function
is given exactly by Legendre integrations of the~complex!
scattering amplitude. The starting ‘‘data’’ for the inversion
methods is then fixed with little ambiguity and so poses a
stringent constraint on the specifics of theS function form to
be used in subsequent inverse scattering calculations.

The inversion procedures that we have used are presented
in Sec. II as is a brief review of the process of using the
generalized unitarity theorem to define scattering phase
shifts. The results of our applications to the analyses of elec-
tron scattering from the molecule CH4 are then presented
and discussed in Sec. III. Conclusions we can draw are given
finally in Sec. IV.

II. INVERSION THEORY AND METHODS

Direct and inverse methods of analysis of scattering data
usually are processes that involve two stages, with the link
between the measured data and the interaction potential be-
ing the scattering matricesSl (k) or equivalently, the scatter-
ing phase shiftsd l (k)„5(1/2i ) ln@Sl (k)#…. For the scatter-
ing of spinless particles, or if the intrinsic spin of the
projectile is ignored~as is the case here!, only real half-
integer values of the angular momentum variablel ~i.e.,
l5l 11/2) arerequired and the differential cross sections
at a fixed energy and with scattering angleu are given in
terms of~complex! scattering amplitudes,

f ~u!5
1

k
A~u!eiw~u! ~1!

by

ds~u!

dV
5u f ~u!u25

1

k2
A2~u!

5
1

4k2U (l 50

`

~2l 11!@Sl ~k!21#Pl ~u!U2, ~2!

while the total cross section for scattering by a purely real
interaction is given by

s~k!5
4p

k2 (
l 50

`

~2l 11!sin2@d l ~k!#. ~3!

Therein the phase shifts are purely real quantities as absorp-
tive processes have not been considered. The wave numbers
are defined from the center of mass energy as usual by
E5(\2/2m)k2. Then, if the phase shiftsd l (k) can be inter-
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polated smoothly, the infinite summation in Eq.~3! can be
converted to an integral so that the total cross section be-
comes

s~k!5
4p

k2 E0
`

2lsin2@d~l,k!#dl, ~4!

whered(l,k) is a continuous function ofl.
With scattering by real potentials, the magnitude and

phase of the amplitudes@Eq. ~1!# may be extracted from the
measured differential cross sections, under the constraint that
the scattering function is unitary@17#. In such cases the gen-
eralized unitarity theorem leads to an equation defining the
phasew(u) in terms of the complete~0°–180°) cross sec-
tion, viz., with x5cos(u),

sinw~x!5E E A~y!A~z!cos@w~y!2w~z!#dy dz

2pA~x!~12x22y22z212xyz!1/2
. ~5!

Therein the region of integration is the interior of an ellipse.
From the specified~complex! scattering amplitude, the scat-
tering function is obtained by

Sl 215e2id l 215 ikE
0

p

f ~u!Pl ~u!sin~u!du, ~6!

which in turn identifies the phase shiftsd l .
Usually, solutions of Eq.~5!, or its equivalent, have been

sought with iteration schemes based on the contraction map-
ping principle@17,18#. That approach also defines an exist-
ence condition for a solution and for its global uniqueness as
well. In application, though, we have found difficulties with
it. The physical circumstances considered@19# did not meet
the domain criteria and the solutions found were not stable.
Thus we considered a modification of the Newton iteration
method.

In brief, our modified Newton method@19# considers an
operatorF acting on functionsw according to

F@w#5sin@w~x!#

2E E A~y!A~z!cos@w~y!2w~z!#dy dz

2pA~x!~12x22y22z212xyz!1/2
. ~7!

The Fréchet derivativeF8 of F is given by

Fw8 ~h!5cos@w~x!#h~x!1E E H~x,y,z!sin@w~y!2w~z!#

3@h~y!2h~z!#dydz

5cos@w~x!#h~x!12E S E H~x,y,z!sin@w~y!

2w~z!#dzDh~y!dy ~8!

and is a bounded linear operator. Then, if one can solve the
linear functional equation,

F~wn!1Fwn
8 ~wn112wn!50, ~9!

for w (n11), and if the sequencewn converges, its limit is a
solution of Eq.~5!. Further, if the integral in Eq.~8! is ap-
proximated by a quadrature formula, Eq.~9! reduces to a
system of linear equations. However, the price of finding
stable convergent solutions by this means is the loss of a
rigorous guarantee of global uniqueness.

We now describe the two methods of inversion of actual
data; the first associated with the total cross-section data and
the second of fixed energy form appropriate for the differen-
tial cross-section data. Both use the WKB approximation to
facilitate a link between measurement~phase shifts! and an
interaction~Schrödinger! potential.

In the WKB approximation@1,5#, the phase shift function
relates to a quasipotentialQ(s) by

d~l,k!52
m

\2k2El

` Q~s!

As22l2
sds, ~10!

which, by an Abel integral transform@1#, gives the quasipo-
tential as

Q~s!5
4E

p

1

s

d

ds S E
s

` d~l,k!

Al22s2
ldl D . ~11!

The scattering potential then is specified by the Sabatier
transform,

V~r!5EF12expS 2
Q~s!

E D G , ~12!

so long as there is a 1 to 1correspondence betweenr and the
dimensionless variables via the transcendental equation

r5kr5s expSQ~s!

2E D . ~13!

A. Inversion of total cross sections

With s5ks, one can rewrite the WKB approximation for
the phase shift function, Eq.~10!, in terms of an impact
parameter,b(5l/k), viz.,

d~l,k!52
m

\2kEb
` Q~ks!

As22b2
sds[

1

2k
v~b!. ~14!

Miller @10# assumedQ(ks) to be independent of the momen-
tum k so thatv(b) is also. Then ifv(b) is a smooth, invert-
ible function, an Abel inversion of Eq.~14! yields

Q~ks!→Q~s!52
\2

pmE0
1

Ab2~v!2s2
dv. ~15!

The upper limit of the integral is the value for which the
radicand is zero. Miller assumed further that the quasipoten-
tial was small so that a first order expansion of the transcen-
dental equations equates the potential to the quasipotential
directly with s→r . Then Eq.~15! reduces to that used by
Miller and defining the potentialVM(r ), viz.,
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VM~r !52
\2

pmE0
1

Ab2~v!2r 2
dv. ~16!

The latter approximation of Miller is not essential. The
method he set forth can be used to obtain the quasipotential
itself and the Sabatier transform then gives the interaction
potential.

To obtain b(v) from the total cross section, one may
proceed by integrating~by parts! the integral equation for the
total cross section, Eq.~4!, to get

s~k!5
4p

k2
@l2sin2$d~l,k!%#0

`

2
4p

k2 E0
`

l2sin$2d~l,k!%S dd~l,k!

dl Ddl. ~17!

For potentials decreasing faster thanr23 asr→`, the phase
shifts decrease faster thanl22 as l→` @4#, and therefore
the leading term in Eq.~17! vanishes. A change of variables
then gives

ks~k!52pE
0

`

b2~v!sinS v

k Ddv, ~18!

whose Fourier sine transformation,

b2~v!5
2

p2E
0

`

s~k!sinS v

k D kdk, ~19!

is a direct specification ofb2(v) in terms of the total cross-
section data. But it is not very practical as there are numeri-
cal difficulties with integration whenv is large, and the mea-
sured data are usually far from complete functions ofk. Thus
we propose to use a functional form forb2(v) in Eq. ~18! to
fit measured total cross-section data. Specifically we have
chosen the form

b2~v!5
A

v~B21v2!2
, ~20!

with the parameters$A,B% to be determined by ax2 mini-
mization search giving a ‘‘best fit’’ to the measured data. It is
of note that the cross section with this form forb2(v) has
the asymptotic form

s~k!5
p2A

B4k H 12S 11
B

2kDexpS 2
B

k D J
→

p2A

2B3k2
1O ~k24! as k→`. ~21!

With this selected form forb2(v) the quasipotentialQ(s)
as a function ofs is easily obtained from Eq.~15!. The
inversion potential as a function ofr is then found by use of
the transcendental equations, Eqs.~12! and ~13!, for each
energy, and is designated hereafter asVQ(r ,E).

B. Fixed energy inversion of differential cross sections

Since the foregoing discussion of inversion of total scat-
tering cross-section data involves the~complete! phase shift
function, we can define the fixed energy phase shift function
d(l,k) at any single energy for use with a~fixed energy!
WKB inversion scheme. Alternatively we can take each dif-
ferential cross section as a separate data set to be used in a
fixed energy inversion scheme by first defining anS function
of the appropriate form from its direct fit to the~fixed en-
ergy! data. With both approaches, we consider the WKB
method that we have used in the past@5–8# to analyze other
differential cross-section data. Consequently we give herein
but a brief review of the fixed energy method to define terms
to be used in the later discussion.

This approach is based upon using known forms for the
phase shift function for a fixed energy, within the Abel inte-
gral transform, Eq.~11!, to specify the~fixed energy! quasi-
potential. The inversion potential, at the chosen energy, is
given then by the Sabatier transform, Eq.~12!, and at radii
specified by the relation Eq.~13!. Potentials calculated in this
way will vary with the chosen energy, but as they are deter-
mined by using a fixed energy inverse scattering method, we
identify them hereafter asVFE(r ,E). To apply the fixed en-
ergy inversion scheme, it is particularly useful to recast the
~fixed energy! phase shift function in the form

d~l,k!5
1

2i(n51

N

@ ln$l22an*
2%2 ln$l22an

2%#, ~22!

for which theS function has the rational form

S~l,k!5 )
n51

N S l22an*
2

l22an
2 D , ~23!

as then the quasipotential is given explicitly by

Q~s!52iE(
n51

N F 1

As22an
2

2
1

As22an*
2G . ~24!

This form has been used with success in WKB inversion
studies of nuclear, atomic, and molecular scattering~differ-
ential! cross sections@6–8# and we now apply it by finding
the optimal smallest set of complex~conjugate! pole-zero
pairs by a direct fit to the actual measured differential cross
section. A least squares search has led to sets of~two! values
$an%, that give excellent fits to the differential cross-section
data@9# taken at 200, 300, 500, and 700 eV. Those values are
listed in Table I along with thex2/F for each fit. Again as we
have restricted the pole-zero pairs to be complex conjugates,
each energy inversion will yield a purely real interaction.

III. RESULTS AND DISCUSSION

A. Inversion of the total cross-section data

The procedures to invert total cross-section data have
been used to determine inversion potentials for the interac-
tions of electrons with the CH4 molecules@12#. Total cross-
section data for all have been taken in the range from 77.5
eV up to 4 keV, a spread which makes feasible use of the
inversion method. The data were fit using the parametric
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form for b2(v) given by Eq.~20! and the optimal values of
the parameters are 8.4623105 and 19.96 forA andB, re-
spectively. With those parameter values, the quality of the fit
to the data is measured by the value ofx2/F being 1.7.
Inverting theb2(v) functions gives phase shift functions per
Eq. ~14!, and to check that quality fits to the data have been
retained by the assumed energy dependence, those phase
shift functions were used in the partial wave summations of
Eq. ~3! to compare with the data a second time. Thex2/F
after that process is 1.9. Clearly the adopted form for the
phase shift function retains the quality of fit to data quite
well and the integral formula, Eq.~4!, is therefore a reliable
approximation with this data set.

The fits to the total cross-section data that are shown in
the top segment of Fig. 1 are the results of recalculations
using the inversion potentialsVQ(r ,E) in the Schro¨dinger
equation. These recalculated total cross sections are also very
similar to ones found using the Miller inversion potentials
VM(r ) as is evident from the energy variation of the differ-
ence,

D~k!5100FsQ~k!2sM~k!

sQ~k! G , ~25!

that is plotted in the bottom segment of Fig. 1. HeresQ(k)
andsM(k) are the total cross sections found using the inver-
sion potentials given by our WKB scheme and with Miller’s
eikonal approximation, respectively. Evidently for most en-
ergies (k.5Å21) the difference is but a few percent.

The potentials from our analyses of thee-CH4 total cross-
section data are shown in Fig. 2. In the main feature of this
diagram, the inversion potentialVQ(r ,1000 eV) is displayed
by the solid curve. We chose that energy to be large enough
that the WKB approximation is valid and that the quasipo-
tential values would be small so that the Miller prescription
should be valid. Indeed the resultant inversion potential is
virtually identical toVM(r ) obtained using the Miller pre-
scription. The inversion result is compared also with the re-
sult of a theoretical calculation~displayed by the dashed
curve! and which is a sum of static, polarization, and ex-
change potentials for thee-CH4 system@14#. The inversion
potential is larger than the model calculation at radii greater
than 0.8 a.u. The results of our WKB calculations of
VQ(r ,E) for e-CH4 scattering at different energies are
shown in the inset. There is practically no difference between
the 400- and 1000-eV results~short dashed and solid curves,
respectively! so that the Miller assumption that the underly-
ing potential is energy independent is met, at least for this
energy regime. Further, the agreement of these results with
VM(r ) indicates also that the eikonal approximation is very
good at energies above 400 eV. The 100-eV result in the inset
is shown by the long dashed curve. It does differ slightly
from the other two and, while we may expect such as a
breakdown of the high energy approximations of our inver-
sion studies, it can also be a reflection that absorptive pro-
cesses, ionization, in particular, are now more important as
well. In a mean field theory such are accounted for by having
complex, optical potentials.

But the~total cross section! inversion method is most ac-
curate for smallr values@10#. By recalculating the total cross
sections with the inversion potentials altered to haver24

form at radii greater than a valueRcut, we found that the
energy variation~of the total cross section! was little altered.
The absolute magnitudes were with 10% and 20% reduction
occurring forRcut being 3.0 and 2.0 a.u., respectively. There-

FIG. 1. The total cross-section data from electron scattering
from the CH4 molecule are compared in the top section with the
results calculated by using the inversion potentialsVQ(r ,E). In the
bottom section, the percentage differenceD(k) between total cross
sections calculated using our WKB prescription and the Miller one
are displayed.

FIG. 2. The potential~solid curve! VQ(r ,1000 eV) from the
inversion of the total cross section frome-CH4 scattering compared
with the result of a model calculation~dashed line! @14#. The inser-
tion shows the inversion potentialsVQ(r ,E) obtained at 1000 eV
~solid line!, 400 eV~small dashed line!, and 100 eV~long dashed
line!, respectively.

TABLE I. The two complex polesan defining the scattering
functions obtained from fits to the differential cross sections for
electron elastic scattering from CH4 . The zeros,bn , are the com-
plex conjugates of these. The quality of the fits is specified by the
values of thex2/F that are shown in the second column.

Energy~eV! x2/F a1 a2

200 1.00 ~1.368, 3.605! ~0.8918, 0.6875!
300 0.54 ~1.211, 4.231! ~0.9481, 0.8322!
500 0.63 ~1.757, 3.758! ~0.5971, 0.7887!
700 0.88 ~1.728, 3.766! ~0.5288, 0.8003!
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fore the large radii aspect of the potential is not established
by the inversion study of the total cross-section data. So we
consider next whether or not specific differential cross sec-
tions may be. In particular, we consider fixed energy inver-
sion methods for data at energies where we are confident that
the WKB approximation is valid.

B. WKB fixed energy inversion of differential cross sections

We have used the fixed energy WKB inversion method to
analyze the differential cross sections ofe-CH4 scattering at
200, 300, 500, and 700 eV@9#. Using the complex-conjugate
pair values given in Table I to define theS function at each
energy gives quality fits to the data. Those pole-zero pair
values then were used to specify the fixed energy inversion
potentialsVFE(r ,E) that are shown in Fig. 3. Clearly, there is
some energy dependence to these results, although for small
radii (r,1.0 a.u.!, they are all very similar to the
VQ(r ,1000 eV) result~shown by the solid curve in this fig-
ure! obtained by inversion of the total cross-section data.
They differ from that and each other at larger radii though as
is shown in the main body of the diagram for radii to 1 a.u.
and in the inset for radii to 3.0 a.u. Using those fixed energy
inversion potentials in the Schro¨dinger equation leads to the
results that are shown in Fig. 3. Therein the data are com-
pared with the calculated 200-, 300-, 500-, and 700-eV cross
sections ranging from the top of the diagram to the bottom.
Those cross sections have been scaled up by factors of 50,
10, 5, and 1, respectively, to facilitate viewing. Clearly the
quality of fit is retained when the inversion potentials are
used to recalculate the cross sections. The exact specification
of the potentials beyond; 2 a.u. does not influence these
calculated cross sections very much, at least for the range of
momentum transfer values spanned by the current data sets.

It is these results that set the standard by which the spe-
cific results found using our other calculations are to be mea-
sured. There are differences between the potentials found by
inversion of the total cross section and those found from the
fixed energy analyses. Those effects are considered next.

C. A comparison of the differential cross sections

The fixed energy~real! inversion potentials when used in
the Schro¨dinger equation yield differential cross sections that
are shown in Fig. 4. These calculations match the 200- to
700-eV data so well that we use the actual data as the equiva-
lent of them to investigate the quality of the potentials ob-
tained by inversion of the total cross-section data. We have
made direct solution of the Schro¨dinger equations using
VQ(r ,200 eV! andVQ(r ,700 eV! specifically to calculate the
200-eV and 700-eV differential cross sections. The compari-
sons of those cross sections with experimental data~and
therefore with the fixed energy studies! are displayed in Fig.
5. The 700-eV results are given in the top panel and the
200-eV results are shown in the bottom. Therein the solid
curves display the cross sections calculated using the
VQ(r ,E) interactions. The cross sections found by using
theoretically derived interactions are also shown in Fig. 5.
The ~small! dashed curves represent the results tabulated by
Jain @16# at 200 eV and calculated~at 700 eV! using the
derived purely real interaction given in Ref.@14#. In the
200-eV case we show a third result~long dashed curve!
which is the cross section obtained with a complex potential
that has been proposed for this scattering@16#. Clearly the
results at 700 eV are in quite good agreement with each other
and the data. Thus at 700 eV the SEP model and the poten-
tials from either fixed energy or total cross-section inversions
are reasonably in agreement. They give very good to excel-
lent fits to the measured differential cross sections with no
need to include effects of absorption processes. Indeed, by
changing the radial variation ofVQ(r ,700 eV) to have the
expected polarization form at large radii reduces the calcu-
lated results at forward angles~essentially at 5° and 10°
only! to agree with the data.

The 200-eV differential cross-section results are quite dif-
ferent, however. By its construction, the fixed energy poten-
tial gives an excellent fit to the data as was shown in Fig. 4,
but of the set displayed in the bottom half of Fig. 5, the
complex potential result~tabulated values in Ref.@16#! is
very poor. That result is not in contradiction to the observed

FIG. 3. The potentials determined by fixed energy inversion of
the differential cross-section data@9# and displayed by the dashed,
long dashed, dot-dashed, and chain line for the 200-, 300-, 500-,
and 700-eV cases, respectively, compared with the
VQ(r ,1000 eV) found from inversion of the total cross section
~solid line!.

FIG. 4. The differential cross-section data at 200, 300, 500, and
700 eV~from top to bottom! compared with the results of using the
fixed energy inversion potentials to recalculate them. The results
have been scaled by 50, 10, 5, and 1 for the 200-, 300-, 500-, and
700-eV sets, respectively, to facilitate viewing.
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reasonable result for the total cross section found in Jain’s
study since the misfit to the differential cross section occurs
for data with magnitudes less than a few percent of the for-
ward angle values. But the purely real~SEP! interaction re-
sult ~also from the tabulation of Jain@16#! does very well for
all angles to about 60° and then is only slightly larger than
the remaining, small magnitude cross-section values. The re-
sult found using ourVQ(r ,200 eV) interaction overestimates
the data at forward scattering angles but has the correct trend
with momentum transfer. The good agreement at the higher
momentum transfer~larger scattering angles! found using the
VQ interaction is consistent with the total cross-section in-
version method being more accurate for small radii than
large. We varied the long range character ofVQ(r ,200 eV)
to have the expectedr24 form ~from 1.5 a.u.! and again
found changes in the forward angle cross-section prediction
to bring agreement with the data. But that only affected the
first two points ~at 5° and 10°) seriously. The rest of the
calculated cross section remained at odds with the measured
values. At this energy then, only from fixed energy inversion
have we a potential that we can tag with a quality fit to
observed data.

D. Use of unitarity to fix the S function for inversion

The potentials found for 700-eV electron scattering are
very similar and the fixed energy inversion analysis gives an
excellent fit to the differential cross section. That process
started with a search for a set of pole-zero complex-
conjugate pairs of parameters to define anS function from a
‘‘best fit’’ to the cross-section data. The process has ambigu-
ities. But with unitarity as a constraint we can specify the
physicalS function values directly from the data prior to
inversion. TheS function parameters are then given by a
simple mapping of the functional form to a table of numbers.

The data have been measured at scattering angles between
5° and 135°. To use the unitarity constraint that cross sec-
tion is needed at all scattering angles. An interpolation has

been made to obtain that complete cross section with the
theoretical calculated values of Sakaeet al. @9# at 0°,
160°, and 180° being used to facilitate that interpolation.
With this input and initially the phase function taken to be
the constant,w0(u)5w(0°)50.287, iteration of the nonlin-
ear integral equation, Eq.~5!, using our modified Newton
method converged. The optical theorem gave the choice for
w(0°).

The 20 phase shifts that could be calculated reliably by
Legendre integration of the scattering amplitude found from
the unitarity condition are given in Table II. They are com-
pared with the set obtained from theS function found by a
direct fit to the cross-section data, i.e., with the pole-zero pair
values given in Table I. The sets of phase shifts are quite
similar, with differences in the important~low l ) values be-
ing but a few percent. It is not surprising therefore that theS
function found by a simple mapping of the unitarity condi-
tion phase shifts is also very similar to the fitted one. With
the phase shifts (d l

(U) up to l 520), we recalculated the dif-
ferential cross section and the comparison with the experi-
mental data and the~complete! shape that was input to the
unitarity study are displayed in Fig. 6. Therein the solid
curve is the input complete cross section and the dashed
curve is the recalculation. Both are excellent fits to the data
with the slight oscillatory behavior in the recalculation at
large angles reflecting the truncation of the partial wave sum-
mation. The potentials that result from inversion in these
cases are displayed in Fig. 7. The inversion potential based
upon the unitarity condition results is displayed therein by
the solid curve while the dashed curve is the fixed energy
inversion one previously given in Fig. 3. The two differ
slightly at small radii but are very similar from 0.3 a.u. out-
wards.

IV. CONCLUSION

Purely real scattering potentials have been constructed by
using inverse scattering theory to analyze both the total and a
set of differential cross sections from the elastic scattering of
electrons from CH4. For energies above 200 eV, the inver-
sion potentials show some energy dependence and those ob-
tained by fixed energy inversion are associated with ex-

FIG. 5. The differential cross sections fore-CH4 at 200 eV
~bottom! and 700 eV~top!. The solid curves are the results corre-
sponding to theVQ(r ,E) potentials while the~small! dashed curves
are those found using a theoretical potential@14#. The long dashed
curve at 700 eV is the cross section that results when a complex
interaction@16# is assumed for this system.

TABLE II. The phase shifts~in degrees! obtained from the
analysis of 700-eV electron–methane-molecule scattering data by
unitarity condition, (d l

(U)), compared with those of the rationalS
function, (d l

(S)), found by a direct fit of the differential cross sec-
tion.

l 0 1 2 3 4 5 6

d l
(U) 99.8 59.0 46.4 29.9 22.5 16.9 14.0

d l
(S) 102.9 62.0 44.0 32.9 24.8 19.0 14.8

7 8 9 10 11 12 13

d l
(U) 11.6 9.8 8.0 6.5 5.1 4.2 3.5

d l
(S) 11.8 9.5 7.8 6.6 5.6 4.8 4.1

14 15 16 17 18 19 20

d l
(U) 3.1 2.9 2.6 2.2 1.7 1.2 0.6

d l
(S) 3.6 3.2 2.8 2.5 2.3 2.0 1.8
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tremely good fits to the measured differential cross-section
data. Likewise the potentials obtained by inversion of the
total cross-section data reproduce those data quite well, but
when used to analyze the 200- to 700-eV differential cross
sections do not give the same quality of fits as the fixed
energy inversion scheme. The large radii character of the
total cross section~inversion! potentials is not correct.

The closely equivalent result for 700 eV based upon the
phase shifts extracted using the unitarity condition confirm
that there is little ambiguity for us to be concerned about
with the search process that specifies theS functions central
to the fixed energy inversion process. The inversion schemes
can be adapted to specify complex absorptive interactions
but with the present data extremely good fits~to the 200- to
700-eV cross sections! did not require explicit inclusion of
absorption effects. Other data, or more and very precisely
measured differential cross-section data, will be needed to
resolve just how strong absorption processes are in this scat-
tering system. In particular, lower energy scattering data may
be more instructive about absorption processes. Fully quantal
inversion methods will be needed with those studies though.

The potentials obtained from inversion of the differential
cross-section data are similar to the theoretical ones to radii
;2 a.u., and the results we have obtained suggest that the
present data are rather insensitive to the precise values of the
interaction at larger radii than this. That is not to say the
system at lower energies or for smaller scattering angles
~than 5°) will not be. Indeed, the cross sections of slow
electron (<20 eV! scattering are sensitive to the long range

character of electron-molecule interactions. We also note that
the inversion potentials are quite different from a~complex!
interaction that has been proposed for this system. However,
that may be of little significance since the fit to the differen-
tial cross-section data at 200 eV found by using that absorp-
tive interaction is not good. Again, more data at smaller~and
larger! momentum transfer values are needed if~differential!
cross sections are to be sufficiently sensitive to the asymp-
totic properties of the interactions.

Inversion and direct studies of such scattering data are in
fact complementary. With inversion studies, one can usually
identify a potential that is associated with an excellent fit to
data. But a fully microscopic folding model~direct! calcula-
tion is the only way to find the physical phenomena under-
lying any effective local interaction. Thus, given that a rea-
sonable fit to data can be obtained with a microscopic direct
calculation, by using that as a regularization inversion analy-
ses then may indicate what attributes of the effective local
interaction need be explained by even better microscopic
model calculations. But high quality and extensive data sets
are needed and, in the present case particularly, more data at
both very small and large scattering angles are needed before
such a regularization can be attempted with some hope for
significant results.
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