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Multilevel effects on the balance of dipole-allowed to dipole-forbidden transitions
in Rydberg atoms induced by a dipole interaction with slow charged projectiles
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In collisions of Rydberg atoms with charged projectiles at velocities approximately matching the speed of
the Rydberg electron, (matching velocity, n being the principal quantum number of the Rydberg level, the
dipole-forbidden transitions with large angular-momentum transferl substantially dominate over dipole-
allowed transitionsAl =1, although both are induced by the dipole interaction. Here it is shown that as the
projectile velocity decreases the adiabatic character of the depopulation depends on the energy distribution of
states in the vicinity of the initial level. If the spectrum is close to degenetasyfor hight levelg the
dipole-forbidden depopulation prevails practically over the entire low-velocity region, down to velocities
~n3AE/Rylv,,, whereAE is the energy spacing adjoining to the level due to either a quantum defect or the
relevant level width or splitting, whichever is greater. If the energy gaps are subst@sidbr strongly
nonhydrogenics and p levels in alkali-metal atoms then the fraction of dipole transitions in the total
depopulation reaches a flat minimum just below the matching velocity and then grows again, making the
progressively increasing contribution to the low-velocity depopulation. The analytic models based on the
first-order Born amplitude&ather than the two-level adiabatic approximajifurnish reasonable estimates of
the fractional dipole-allowed and dipole-forbidden depopulations.

PACS numbs(s): 34.60+z, 34.80.Dp

I. INTRODUCTION lates readily to earlier works of Beigman, Vainshtein, and
Sobel’'man[3] on the action-angle approach to the quasiclas-
The dominant status of dipole transitions in charged prosical scattering, Percival and Richafdg on the strong cor-
jectile scattering on atoms is traditionally associated withfespondence principle, Presnyakov and Urfion equally
fast collisions. At large velocities the dipole potential causespaced systems, and Flanngy on the equivalent oscillator
dipole Al =1 transitions only, whereas nondipole transitionstheorem was acknowledged in the work of Beigman and
with large-angular-momentum changel>1 are induced Syrkin [1] and was tested in detail experimentally in several
solely by multipole interactions. It is for this reason thatWorks of MacAdam and co-workersee[2] and references
dipole cross sections dominate over nondipole, although thi§itéd therein. Since the early 1980s this group has been
dominance is not as strong as for radiative transitions anagrformmg extensive studies on Rydberg atom cql_hsmns
becomes even less pronounced in transitions with large e|¥‘-”th charggd. propctﬂes overa broad range of vglouﬂes. .TO
ergy changeAn>1. This standard picture is typical for the handle CQ||ISIOnS in the_domam below th_e matching veloqlty
— . : . ; the experimental technique was greatly improved, especially
Born approximation and is valid, strictly speaking, for fast

lisi Iv. For decades it has b " in the elimination of stray electric-field effects. Eventually
collisions only. or decades It has been a common practice ‘heasurements were extended from matching velocities
rely on the Born approximation in atomic collisions, includ-

: ) . L ~_ v=v, down tov~0.2v,, wherev,, is the orbital velocity of
ing even .relat|Vt_aIy ;Io_w collisions, primarily because of its 4 Rydberg electron with the principal quantum number
computational simplicity. The accord finally attained between the theory and experi-
In slow collisions, however, due to alternative channelsyent for the depopulation af levels in Na(whose quantum
available for excitation, the dipole interaction acquires a dif-gefect is 0.0155 confirms the validity of the dipole-
ferent role, thus radically changing the scheme of transitiongorbidden mechanism of transitions in slow collisions. In ad-
[1,2]. At intermediate velocities the atom-projectile interac- dition, recently Irby and co-worker§7,8] performed the
tion is not weak and is no longer a mere perturbation. Insteacheasurements for the depopulation of strongly nonhydro-
it couples together a broad variety of levels forcing an elecgenics levels in Na and again observed that the fraction of
tron to visit many states in one single act of collision. Sincedipole transitions in total depopulation falls from nearly 80%
the major term in the atom-projectile interaction is a dipoleatv ~10v,, to about 20% ab =2v,,, similar to results fod
coupling, the whole process can be viewed as a chain devels, although shifted to higher velocity. Due to quantum
virtual dipole transitions. At low velocities the probability of defects, however, these two cases differ significantly and this
this transition chain results in largel change and consider- is a major point of the present paper. In what follows we
ably surpasses the probability of the pure dipéle=1 tran-  shall show that overall the velocity dependence of the dipole
sition. It is in this sense that one says the dipole interactiorfractional depopulation is the curve with a minimum and that
causes dipole-forbidden transitions and the total depopulahe evolution from direct transitions in fast collisions to a
tion cross section is therefore dominated by nondipole tranehain of virtual transitions at intermediate velocitigghich
sitionsAl>1 in contrast to fast collisions. is common for any multilevel atomic syst¢mepresents only
This structure of transitions in slow collisioiehich re-  a downhill part of the curve preceding the minimum. As the
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projectile velocity drops below the matching velocity the ac-

tual balance between dipole-allowed and dipole-forbidden Un0|o—n|=f |lan(p,)|?2mp dp, (1)
transitions truly depends on the type of the spectrum or, more

precisely, on the energy-level splitting. Namely, for the sub-

stantial energy spacing in the manifold adjacent to the initiaWhere transitions amplitudes, are obtained from the close-
level (as for lowi levels with large quantum defegtthe — coupling system

minimum is reached readily below the matching velocity,

beyond which point the role of dipole transitions increases

again. In contrast, if the levels separation is snfa8 for iay(p)=> > Vo (pt)
larged levels, then the minimum shifts into the deep adia- n' I'=lx1
batic region, so that the depopulation remains dipole- X exp(—iwp_nit)an (p.t), 2)

forbidden practically over the entire low-velocity region. We
shall also see that the analytical models based on the first-
order Born amplitudes rather than two-level adiabatic apWith the initial condition [an(p, —)|= 8,811, Where
proximation furnish reasonable estimates of the fractionalvn—n,,, andV,_,,,, are the energy spacing and interac-
dipole-allowed and dipole-forbidden depopulation. tion matrix elements between levefd and n’l’, respec-
The material is organized as follows. Section Il reviewstively. As the leading interaction is dipolee., onlyAl=*1
the semiclassical close-coupling method. In Sec. Il we firsterms are retaingdthe solution of system(2) describes
discuss a transparent and exactly solvable model of an infichains of virtual dipole transitions. These chains are contrib-
nite number of equally spaced levels illustrating the mainuted mostly by the coupling of closest neighbors
idea and compare it to the calculations and experimental datal<n’l +1, so that for practical purposes it suffices to keep
for the depopulation ofis levels in Na, symmetric with re- only two termsV,,_,, ., in each equation2). For the
spect to two main channets—np—(n—1)d—---(n—1)I m-averaged dipole potential we choose
andns—(n—1)p—(n—2)d—---(n—2)I. Section IV con-
tains the semi-infinite models suitable fod levels in Na,

depopulating primarily via one channell >2 and appropri- V(p,t):a - p tot ., p'=p+Ry,

ate generalizations, which allow for unequal spacifay men (p,z+vztz)52

both one- and two-channel depopulaliand considerably ©)
improve the correspondence to the data on realistic spectra. 12

The summary of the results is presented in Sec. V. Atomic

- 1
d _n'1'= | &3+ Im ,I + 1 2 y
units with Ry for the energy are used throughout the paper. et 2141 % nimizin ml

whered is a properly averaged dipole moment dRglis a
regularization parameter0.5n%, which eliminates the po-

A full guantum-mechanical treatment of collisionally in- tential singularity asp—0. For fast collisions the averaged
duced transitions in Rydberg atoms at intermediate and lowotential(3) exactly reproduces the first-order Born approxi-
velocities reduces to highly impractical numerical integrationmation. For low velocities <v,, the quality ofm averaging
of a large number of atom plus projectile radial Sclinger  has been previously checked by direct comparison with the
equations that describe transitions to numerous accessibi®naveraged results and found to provide reasonable accu-
states. Two major simplifications can be made. First is theacy for cross sectionfl]. In what follows dipole matrix
impact parameter approximatigf]. Since the scattering of elements are obtained in the Coulomb approximation with
charged particles on atoms is induced predominantly by théhe aid of nonhydrogenic corrections accordingd 18].
long-range dipole interaction, then within a broad velocity Consider now the collisional depopulation of IdwRyd-
range of practical interest the projectilésns and, to a lim-  berg states in Na. Quantum defectsspfp, d, andf levels
ited extent, electronsan be considered to move along clas-are 1.348, 0.855, 0.0155, and 0.001 45, respectiigelg, for
sical trajectories. In addition, for collisions with neutral at- example[13] and references cited thergirFor the slightly
oms accompanied by relatively small energy change-1,  nonhydrogenid level the ratio ofnd-nf splitting tonp-nd
the projectile motion may be assumgd a reasonable accu- splitting is 0.0167 and therefore thed level depopulates
racy) to be rectilinear and uniform. For further details on the overwhelmingly to the almost degenerate manifoldhgf>2
impact parameter method, sE&10,11. A second simplifi-  states, whereas the depopulation of the strongly nonhydro-
cation takes into account that our major concern here is thgenicns level is dominated by two practically equally likely
depopulation dependence on the orbital quantum numbethannels: ns—np—(n—-1)d—(n—1)f—---(n—1)I and
changeAl. In this context the role of the magnetic quantumns—(n—1)p—(n—2)d—(n—2)f—---(n—2)I. Even
numbersm is minor and by considering transitions betweenwith all above assumptions the systé®) still requires nu-
m-averaged levels based on a suitable averaging proceduneerical solution, which involves, in particular, for S@e-
(see below one preserves the major features of the procespopulation, up to~4n differential equations and is quite
while significantly reducing the number of equations. Theredaborious for the low-velocity region. In this regard, before
fore in the semiclassical close-coupling approach the croswe resort to a numerical approach it is advisable to consider
section is given as an integral of the transition probabilitya model that allows for analytic solution and provides an
over impact parameter immediate insight into the structure of transitions.

Il. CLOSE-COUPLING METHOD
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FIG. 1. Schemes of levelga) infinite equally spaced levels FIG. 2. Total and dipole depopulation probabilities in infinite,

equally spaced levels systerR; is a modulus of the first-order

system;(b) semi-infinite equally spaced levels systefm} semi-
Y (b) duaty S yste(o) (Born) amplitude(6).

infinite unequally spaced levels syster(d) infinite unequally
spaced levels system.
R=(01+t0_1)/ o4
1. INFINITE EQUALLY SPACED LEVELS SYSTEM

AND DATA FOR REALISTIC SPECTRA :2< J 2(2P,)p dp) /(J’ [1-J2(2P)]p dp ).
If we assume level splittingw and matrix elements
V,,_ v’ Within a depopulation channel independent of quan- €S)
tum numbersn and|, then one comes to so-called infinite
equally spaced levels syste(tESLS); thereby Eq.(2) re- When analyzing8) we first note thafP, is uncondition-
duces to ally small in the high-velocity¥Born) limit as 14 and there-
fore the total cross section is dominated by dipole transitions,
iag(p,t)=V(p,t)expiot)a,_ 1(p,t)+V(p,t) i.e.,R—1. In the opposite limit of low velocities the situation
) strongly depends on the energy splitting
xXexp —iot)ag(p,t), (4) If w#0 then P, is again small, now exponentially as

ith K d initial dit _ h ~exp(—wplv) and againR—1 asv—0. In other words, in
with —oe<k<ec and initial condition|ay(p, —<)|= o The  yery'siow collisions due to the adiabaticity condititas-

scheme of levels is given in Fig(d) and below we always oy narameted Eagn2/#vs1) the dipole transitions tend to

assume for convenience the initial depopulated level corres eyl again and because of the presence of the manifold of
sponding tok=0. The assumption of equal level spacing is

. - > adjacent levels the corresponding probability is given exactly
especially restrictive, but we shall see that the model St"c%y the Born formula6). Based on the behavior dﬁ(x) and

preserves the most of the important featur.es. The solution —J(x) (see Fig. 2, we readily conclude that in between
(4) first found by Presnyakov and Urn¢$] is two extremesv—0 and », R reaches a minimum whose
location is determined by the maximum Bf over p andv.
|aw(p,>)[=]3(2P1)], ®) " From (6) it immediately follows that the minimum sought is
attained at the reduced projectile velocity=v*=26/3
[where the reduced velocity is the velocity in units of the
Rydberg electron velocity,, and § is the difference between
quantum defects related to levels spacil§E by
2d) 2 5~0.51%(AE/Ry)]. The value of that minimum is approxi-
:(_) x(B), mately R*=0.36. The calculation oR according to the
pv IESLS model (4)—(8) for 30s depopulation with
(6)  6=06,—0,=0.493 is given in Fig. 3 and demonstrates good
x(B)=PBK(B)+K32(B)1?, accord with estimates af* andR*. In summary, the IESLS
model predicts the dipole fractional depopulation to behave
whereS=wplv andKgy,K; are modified Bessel functions. If as a curve with a minimum, whose value is about 40% and
we identify k with an angular momentum changd, then independent of level spacing. The location of the minimum

whereJ,(x) is an ordinary Bessel function of the ordeand
P, is the modulus of the first-ordéBorn) amplitude, so that
(see Seatohl0])

2

Pi(p,v):“ V(p,t)e't dt

the probability ofAl transition is v*, however, is immediately related t6, essentially as
v*~ 4. Accordingly, the dipole depopulation of strongly non-
WA,=Ji,(2P1). (7) hydrogenic levelsé6~1 reaches the minimum in the close

submatching velocity domain and then rises again. On the
The total probability of the depopulation is equal to contrary, for very small quantum defec$s:0.01 typical for
W,=1-J3(2P,). Itis convenient to present the contribution the levels with large orbital quantum numbersthe mini-
of dipole Al ==*1 transitions as the ratio mum moves into the deep adiabatic region so that the entire
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SN iaK(p,H)=V(p,t)expliwt)ay—1(p,t) +V(p,t)

ol ‘ AR [ E
§ oot | oo sherscouting o 2 el e iehacalp ), ©
3 08} | o~ extended infinite, eq(16,17) A Qeo R . .
& ol [ 7 cmperment 78] A iag(p,t)=V(p,t)exp —iwt)ai(p,1),
s 06 1 , - ”
3 sl 1 with 1<k<o and initial condition|a,(p,—%)|= &0 Ac-
2 ol 1 cording to[1], the solution for such a semi-infinite system is
:g: 0:3 1 ] given by
= ] |a(p, )| =Ik(2P1) + I; 2(2Py)
Rs] A F 4

ool =[(k+1)J:1(2P)/Py], O=<k<c. (10)

10-t 100 - 101

reduced projectile velocily

More realistic is a system where the gapbetween levels 0
and 1 is greater than the constant spacigbetween the
FIG. 3. Fractional dipole depopulation of Sevel in Na. other levels[Fig. 1(c)]. Using the technique of a \Volterra
integral equation for the generating function, the approxi-

low-velocity area of practical interest is dominated by theMate solution can be written 4]

progressively increasing contribution of the dipole-forbidden

transitions. Wi=[a(p,) "= fiW,,
The extreme case of degenerate levels withO is of no

interest because of the well-known logarithmic divergence of

dipole and total depopulation cross sections at large impact

parameters. This divergency is regularized by accounting for

?’a”?f srgall_level §p||tt|ngls Idue to_|nelast|_c andhrad'st'vewherewt(wl,wz) is the total depopulation probability of the
evel broadening or internal plasma interactions, thereby regiia| jevel k=0, depending, strictly speaking, on boih

ducing the problem to the case of small nonzero energy spagnq «,,, and factorsf, give the fractional contribution of
Ing. o _ _ transitions with varioug\| =k. The first important feature of
Compare now this picture to the direct numerical closehis solution is that it automatically satisfies the normaliza-
coupling calculations of the 30depopulation according to tion condition=,f,=1 regardless of the approach used for
(2) and (3) for the real spectrunisee Fig. 3 along with  the total probabilityw, and is flexible towards various ap-
available experimental dafd,8]. We observe the IESLS re- proximations forW, [such as a single gap, normalized
sults converging to the close-coupling data for velocitiesBorn approximationV,(w,)=P,/(1+ P,) used in[1]]. Sec-
higher than the matching velocity at abaut5. The model ond, the structure ofl11) clearly demonstrates that it is the
is also consistent with numerical resu(® in predicting a second gam, (and notw,) that determines the role of dipole
flat minimum of R in submatching region and slo® in-  depopulation. Ifw, is large enough, then dipole transitions
crease a® —0. On the other hand, the actual minimum is dominate, as onlyf;—1 whenv—0, whereas for all other
much deeper, approximately 7—10%, meaning that th&>1 we havef,—0. In the opposite case of,~0 the dipole
model is quantitatively invalid in this range, overestimatingcontribution becomes negligible for smakh because
R up to a factor of 5. It is quite obvious that the cause isf1/(1—f1)~1/N° whereN is the number of levels in the
equal spacing. Indeed, the actuap329d spliting is about  depopulation channgin our caseN~n—1). The latter situ-
three times less than the one fors380p. This increases ation is just t_he case for thet level depopulation and, over-
both 3& and 3@ depopulations, but apparently the 30 all, the solution(11) works reasonably well, except that it

level is affected directly and therefore much stronger, WhichmediCtS a too fast drqp in the dipole fraqtional d.epopullations
considerably reduces the dipole fraction in the total depopu‘:"S we move deeper Into the subr_natchln_g region. Th_|s hap-
ens because the major assumption behind the sol(&ihn

lation. To a considerable extent this drawback is eIiminatec& that the coupling within a closelv spaced manifeidO is
by semi-infinite models originally proposed [d] for the pling Y sp

q lati f higher-levels that allow f | tighter than between an initial levé&=0 and the adjacent
depopulation of higher-levels that allow for unequal spac- 5 ito1d k>0. Accordingly, the transitions in the manifold

Ing. occur equally likely in both directionksk+ 1, whereas at
the bottom of the spectrum the transitions take place prima-
rily in the directionk=0=k=1. This holds, however, only

IV. SEMI-INFINITE MODELS AND ITS EXTENSIONS for fairly fast collisions when the first-order amplitud is
small enough. In passing the vicinity of the matching veloc-
We resort now to the depopulation dflevels in Na. As ity, P, rises substantially, which tightens the coupling be-
mentioned above, this process is highly asymmetric towardsveen the bottom level O and the manifold. As a result, the
the manifold of closely spaced levels with ladgand there-  solution (11) progressively underestimates the probability
fore, the previous model, infinite in both directions does notright below the matching velocitfup to a factor of~2) and
apply. Instead, consider an equally spaced system bourttien becomes completely invalid for lower velocities. The
from one endFig. 1(b)] situation can be improved as follows.

f=[kJ(2P1(w2))/P1(w2)]?, k>0, (11

Wo=1-W,,
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First, we choos&V, such that at the limit of equal spacing

. . e 0.9 T T T ARARRAMAGMIRERS T
W, becomes identical to the result for the total probability in . = closecoupling, eq.(2)
the semi-infinite mode(10). This reducesV, to the form S OBT| L Cotended semivinfinite. e (14.150) ]
2 o7r i extended se'rf‘bzi]—inﬂnite, eq.(14,15b) 21
t
W,={J:(2P(01))/P1(w7)}2 (12) 7 S s
S o05h S ]
In fact, as we shall see below, somewhat better results follow 3 of
if W, is given as in the IESLS mod¢¥): § 041 . p,if[u"
g 03F ke E
s oA
W;=1-J5(2P (1)) (13) & ozf o ]
& o1f oA e
[although(13) is inconsistent with(10) in the Born limit, SO e T ]
which is insignificant for slow collisionjs To-1 ‘ T ‘

Second, we account for the fact that despite the limita- reduced projectile velocity
tions related to the equal spacing, the semi-infinite equally
spaced modgl) is more preferable at very low velocities as
it makes no assumptions on the coupling strength. Therefore,

one can, at the qualitative level, combine both models with . :
q model for smallp. Omitting the elementary transformations,

equal and unequal spacing. If we introduce the impact pa; ; ;
rameterp* such thatP,(p*)=1, then, when integrating the a’[he symmetric extended model may be written as fol-

. H *
probability over the impact parameter we use the unequall>|PWS' if p=>p",

FIG. 4. Fractional dipole depopulation of @8evel in Na.

spaced modelll) for p>p* and the equally spaced ofik0) Weo=[kJ(2P /P 20\W./2 kl>0
otherwise. Thus the approximation for the one-directional = [kI(@Py(02))IPy(@2) F(Wif2), - [k|>0, (16)
depopulation, which hereafter will be referred to as an ex- Wo=1-W,
tended semi-infinite model, can be summarized as fol- !
lows: if p>p*, and if p<p*,
Wi=[kJ(2P1(@2))/P1(w2) "Wy, k>0, Wi=J{(2P1)?,
(14
Wo=1-W,, where
and if p<p*, Wi=1-J5(2P1(w1)) (17
Wi=[(k+1)Jy;1(2P1(w2))/Py(w3) 1%, k=0, When applying this model to the 8@epopulationsee Fig.
3) we find significant improvement over the simple IESLS
where model in the submatching domain. The remaining discrepan-
cies, such as the location of the depopulation minimum, are
Wt:{Jl(zpl(wl))/pl(wl)}Z (159 difficult to eliminate in a simple framework of an extended
model and need a more elaborated approach. The same also
or applies top levels, which depopulate via two asymmetric but
quite competing channelsp—ns andnp—(n—1)d.
W,=1-J3(2P;(w1)). (15b The fact that it is the first-ordeiBorn) amplitudeP; that

appears as an effective argument throughout the above-

Based on these formulas and taking into account small difeonsidered analytical solutiotiand not a two-level adiabatic
ferences of quantum defects corresponding todl{@ —f ) approximation, as this might have seemed natural at the first
andw,(f —g) gaps(0.014 and 0.0015, respectivglpne can  glancg has an immediate implication for the transitions in
expect the velocity* minimizing the contribution oAl=1  very slow collisions. It was show(see[14]) that in the limit
transitions to the total depopulation to occur in the ultra-v—0 the adiabatic probability obtained from the asymptotic
adiabatic region and therefore the entire submatching velocolution of the two-level system drops exponentially faster
ity domain to exhibit increasing dipole-forbidden fractional than the Born probability, roughly speaking, as
depopulation. The numerical results for28epopulation W,~Wpg,, exp(—d/pv), whered is an m-averaged dipole
following from (14) and(15) and supporting that conclusion moment from(3). The two-level approximation, however,
are given in Fig. 4 in comparison with exact close-couplingholds only if the coupling between two given levels is stron-
calculationg 1] and the experimeri2]. One can see indeed ger than their coupling with the rest of the spectrum, i.e.,
quite reasonable accuracy, especially for low velocities, rem,>w;. It is readily clear this is not the case for Rydberg
garding both the profile of the fractional depopulation and itsevels where any two neighboring levels are to no extent
absolute values. isolated from the adjacent manifold, the presence of which

Return now to thes depopulation. For the unequally plays an essential role in the increase of the two-level prob-
spaced scheme of levels given in Figdjlwe can treat the ability. In particular, in the IESLS model the probability of
symmetrics depopulation in essentially the same mannerdipole transitions reduces exactly to the Born formula in the
combining the semi-infinite unequally spaced mod&) for  adiabatic limit. In turn, in the real system the energy spacing
large impact parameters with an infinite equally spacedonverges to zero and therefore the probability and the cor-
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4 — . . . projectiles reveals the nonmonotonic behavior of the total
o depopulation character in terms of the balance between

@ [ESLS model, eq.(4) dipole-allowed and chain dipole-forbidden transitions. In

3| | —* closecoupling eq.(2) - particular, the dipole fractional depopulation of strongly non-

hydrogenic levels reaches a minimum near the matching ve-
locity in contrast to the monotonic decrease with the decreas-
ing velocity for hydrogenic levels with large orbital
momenta. Although the exact depth and the location of that
minimum result from the interplay between transition prob-
e abilities and level splittings in the depopulation channel, the
major features are explained by means of the simple multi-
o LS ‘ ‘ s . level models, attributing the behavior of the dipole depopu-
0.1 0% 03 04 05 lation to the energy spacing in the vicinity of the initial level.
reduced projectile velocity For large energy gaps the minimum occurs at the beginning
of the submatching area, then giving way to the increasing
FIG. 5. Absolute dipole depopulation of $tevel in Na, in units  dipole contribution. For closely spaced levels the minimum
of magn”. shifts into the deep adiabatic region and the dipole-forbidden
. ) . . transitions dominate, for the most part, in slow collisions.
responding cross section decrease at low velocities noticgyantitatively the models are in a reasonable correspondence
ably slower than in Born approximatidisee Fig. 5. with the numerical calculations. The results also indicate that
It should be emphasized, in conclusion, that for the ultragyen for slow collisions the problem remains essentially

adiabatic regiow <0.1 all models considered predict the di- silevel and the two-level adiabatic approximation is not
pole depopulation to become again a dominant case. Hov‘éipplicable.

ever, as seen in Fig. 5, at~0.1 the dipole cross section is

comparable to an area of the Rydberg electron orbit, which

means that the semiclassical impact parameter approxima- ACKNOWLEDGMENTS
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