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In collisions of Rydberg atoms with charged projectiles at velocities approximately matching the speed of
the Rydberg electronvn ~matching velocity!, n being the principal quantum number of the Rydberg level, the
dipole-forbidden transitions with large angular-momentum transferD l@1 substantially dominate over dipole-
allowed transitionsD l51, although both are induced by the dipole interaction. Here it is shown that as the
projectile velocity decreases the adiabatic character of the depopulation depends on the energy distribution of
states in the vicinity of the initial level. If the spectrum is close to degeneracy~as for high-l levels! the
dipole-forbidden depopulation prevails practically over the entire low-velocity region, down to velocities
;n3@DE/Ry#vn , whereDE is the energy spacing adjoining to the level due to either a quantum defect or the
relevant level width or splitting, whichever is greater. If the energy gaps are substantial~as for strongly
nonhydrogenics and p levels in alkali-metal atoms!, then the fraction of dipole transitions in the total
depopulation reaches a flat minimum just below the matching velocity and then grows again, making the
progressively increasing contribution to the low-velocity depopulation. The analytic models based on the
first-order Born amplitudes~rather than the two-level adiabatic approximation! furnish reasonable estimates of
the fractional dipole-allowed and dipole-forbidden depopulations.

PACS number~s!: 34.60.1z, 34.80.Dp

I. INTRODUCTION

The dominant status of dipole transitions in charged pro-
jectile scattering on atoms is traditionally associated with
fast collisions. At large velocities the dipole potential causes
dipoleD l51 transitions only, whereas nondipole transitions
with large-angular-momentum changeD l@1 are induced
solely by multipole interactions. It is for this reason that
dipole cross sections dominate over nondipole, although this
dominance is not as strong as for radiative transitions and
becomes even less pronounced in transitions with large en-
ergy changeDn.1. This standard picture is typical for the
Born approximation and is valid, strictly speaking, for fast
collisions only. For decades it has been a common practice to
rely on the Born approximation in atomic collisions, includ-
ing even relatively slow collisions, primarily because of its
computational simplicity.

In slow collisions, however, due to alternative channels
available for excitation, the dipole interaction acquires a dif-
ferent role, thus radically changing the scheme of transitions
@1,2#. At intermediate velocities the atom-projectile interac-
tion is not weak and is no longer a mere perturbation. Instead
it couples together a broad variety of levels forcing an elec-
tron to visit many states in one single act of collision. Since
the major term in the atom-projectile interaction is a dipole
coupling, the whole process can be viewed as a chain of
virtual dipole transitions. At low velocities the probability of
this transition chain results in largeD l change and consider-
ably surpasses the probability of the pure dipoleD l51 tran-
sition. It is in this sense that one says the dipole interaction
causes dipole-forbidden transitions and the total depopula-
tion cross section is therefore dominated by nondipole tran-
sitionsD l@1 in contrast to fast collisions.

This structure of transitions in slow collisions~which re-

lates readily to earlier works of Beigman, Vainshtein, and
Sobel’man@3# on the action-angle approach to the quasiclas-
sical scattering, Percival and Richards@4# on the strong cor-
respondence principle, Presnyakov and Urnov@5# on equally
spaced systems, and Flannery@6# on the equivalent oscillator
theorem! was acknowledged in the work of Beigman and
Syrkin @1# and was tested in detail experimentally in several
works of MacAdam and co-workers~see@2# and references
cited therein!. Since the early 1980s this group has been
performing extensive studies on Rydberg atom collisions
with charged projectiles over a broad range of velocities. To
handle collisions in the domain below the matching velocity
the experimental technique was greatly improved, especially
in the elimination of stray electric-field effects. Eventually
measurements were extended from matching velocities
v5vn down tov;0.2vn , wherevn is the orbital velocity of
a Rydberg electron with the principal quantum numbern.
The accord finally attained between the theory and experi-
ment for the depopulation ofd levels in Na~whose quantum
defect is 0.0155! confirms the validity of the dipole-
forbidden mechanism of transitions in slow collisions. In ad-
dition, recently Irby and co-workers@7,8# performed the
measurements for the depopulation of strongly nonhydro-
genics levels in Na and again observed that the fraction of
dipole transitions in total depopulation falls from nearly 80%
at v;10vn to about 20% atv52vn , similar to results ford
levels, although shifted to higher velocity. Due to quantum
defects, however, these two cases differ significantly and this
is a major point of the present paper. In what follows we
shall show that overall the velocity dependence of the dipole
fractional depopulation is the curve with a minimum and that
the evolution from direct transitions in fast collisions to a
chain of virtual transitions at intermediate velocities~which
is common for any multilevel atomic system! represents only
a downhill part of the curve preceding the minimum. As the
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projectile velocity drops below the matching velocity the ac-
tual balance between dipole-allowed and dipole-forbidden
transitions truly depends on the type of the spectrum or, more
precisely, on the energy-level splitting. Namely, for the sub-
stantial energy spacing in the manifold adjacent to the initial
level ~as for low-l levels with large quantum defects! the
minimum is reached readily below the matching velocity,
beyond which point the role of dipole transitions increases
again. In contrast, if the levels separation is small~as for
large-l levels!, then the minimum shifts into the deep adia-
batic region, so that the depopulation remains dipole-
forbidden practically over the entire low-velocity region. We
shall also see that the analytical models based on the first-
order Born amplitudes rather than two-level adiabatic ap-
proximation furnish reasonable estimates of the fractional
dipole-allowed and dipole-forbidden depopulation.

The material is organized as follows. Section II reviews
the semiclassical close-coupling method. In Sec. III we first
discuss a transparent and exactly solvable model of an infi-
nite number of equally spaced levels illustrating the main
idea and compare it to the calculations and experimental data
for the depopulation ofns levels in Na, symmetric with re-
spect to two main channelsns→np→(n21)d→•••(n21)l
andns→(n21)p→(n22)d→•••(n22)l . Section IV con-
tains the semi-infinite models suitable fornd levels in Na,
depopulating primarily via one channeln,l.2 and appropri-
ate generalizations, which allow for unequal spacing~for
both one- and two-channel depopulation! and considerably
improve the correspondence to the data on realistic spectra.
The summary of the results is presented in Sec. V. Atomic
units with Ry for the energy are used throughout the paper.

II. CLOSE-COUPLING METHOD

A full quantum-mechanical treatment of collisionally in-
duced transitions in Rydberg atoms at intermediate and low
velocities reduces to highly impractical numerical integration
of a large number of atom plus projectile radial Schro¨dinger
equations that describe transitions to numerous accessible
states. Two major simplifications can be made. First is the
impact parameter approximation@9#. Since the scattering of
charged particles on atoms is induced predominantly by the
long-range dipole interaction, then within a broad velocity
range of practical interest the projectiles~ions and, to a lim-
ited extent, electrons! can be considered to move along clas-
sical trajectories. In addition, for collisions with neutral at-
oms accompanied by relatively small energy changeDn;1,
the projectile motion may be assumed~to a reasonable accu-
racy! to be rectilinear and uniform. For further details on the
impact parameter method, see@6,10,11#. A second simplifi-
cation takes into account that our major concern here is the
depopulation dependence on the orbital quantum number
changeD l . In this context the role of the magnetic quantum
numbersm is minor and by considering transitions between
m-averaged levels based on a suitable averaging procedure
~see below! one preserves the major features of the process
while significantly reducing the number of equations. There-
fore in the semiclassical close-coupling approach the cross
section is given as an integral of the transition probability
over impact parameter

sn0l02nl5E uanl~r,`!u22pr dr, ~1!

where transitions amplitudesanl are obtained from the close-
coupling system

i ȧnl~r,t !5(
n8

(
l 85 l61

Vnl2n8 l 8~r,t !

3exp~2 ivnl2n8 l 8t !an8 l 8~r,t !, ~2!

with the initial condition uanl(r,2`)u5dn,n0d l ,l0, where
vnl2n8 l8

, andVnl2n8 l8
, are the energy spacing and interac-

tion matrix elements between levelsnl and n8l 8, respec-
tively. As the leading interaction is dipole~i.e., onlyD l561
terms are retained! the solution of system~2! describes
chains of virtual dipole transitions. These chains are contrib-
uted mostly by the coupling of closest neighbors
nl⇔n8l61, so that for practical purposes it suffices to keep
only two termsVnl2n8 l61 in each equation~2!. For the
m-averaged dipole potential we choose

V~r,t !5d̄nl2n8 l 8

r81vt
~r821v2t2!3/2

, r85r1R0,

~3!

d̄nl2n8 l 85S 1

2l11 (
m

z^nlmuzun8l61m& z2D 1/2,
where d̄ is a properly averaged dipole moment andR0 is a
regularization parameter;0.5n2, which eliminates the po-
tential singularity asr→0. For fast collisions the averaged
potential~3! exactly reproduces the first-order Born approxi-
mation. For low velocitiesv,vn the quality ofm averaging
has been previously checked by direct comparison with the
nonaveraged results and found to provide reasonable accu-
racy for cross sections@1#. In what follows dipole matrix
elements are obtained in the Coulomb approximation with
the aid of nonhydrogenic corrections according to@12#.

Consider now the collisional depopulation of low-l Ryd-
berg states in Na. Quantum defects ofs, p, d, and f levels
are 1.348, 0.855, 0.0155, and 0.001 45, respectively~see, for
example,@13# and references cited therein!. For the slightly
nonhydrogenicd level the ratio ofnd-n f splitting tonp-nd
splitting is 0.0167 and therefore thend level depopulates
overwhelmingly to the almost degenerate manifold ofn,l.2
states, whereas the depopulation of the strongly nonhydro-
genicns level is dominated by two practically equally likely
channels: ns→np→(n21)d→(n21) f→•••(n21)l and
ns→(n21)p→(n22)d→(n22) f→•••(n22)l . Even
with all above assumptions the system~2! still requires nu-
merical solution, which involves, in particular, for 30s de-
population, up to;4n differential equations and is quite
laborious for the low-velocity region. In this regard, before
we resort to a numerical approach it is advisable to consider
a model that allows for analytic solution and provides an
immediate insight into the structure of transitions.
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III. INFINITE EQUALLY SPACED LEVELS SYSTEM
AND DATA FOR REALISTIC SPECTRA

If we assume level splittingv and matrix elements
Vnl2n8 l 8 within a depopulation channel independent of quan-
tum numbersn and l , then one comes to so-called infinite
equally spaced levels system~IESLS!; thereby Eq.~2! re-
duces to

i ȧk~r,t !5V~r,t !exp~ ivt !ak21~r,t !1V~r,t !

3exp~2 ivt !ak11~r,t !, ~4!

with 2`,k,` and initial conditionuak(r,2`)u5dk,0. The
scheme of levels is given in Fig. 1~a! and below we always
assume for convenience the initial depopulated level corre-
sponding tok50. The assumption of equal level spacing is
especially restrictive, but we shall see that the model still
preserves the most of the important features. The solution of
~4! first found by Presnyakov and Urnov@5# is

uak~r,`!u5uJk~2P1!u, ~5!

whereJk(x) is an ordinary Bessel function of the orderk and
P1 is the modulus of the first-order~Born! amplitude, so that
~see Seaton@10#!

P1
2~r,v !5U E V~r,t !eivt dtU25S 2drv D

2

x~b!,

~6!
x~b!5b2@K0

2~b!1K1
2~b!#2,

whereb5vr/v andK0 ,K1 are modified Bessel functions. If
we identify k with an angular momentum changeD l , then
the probability ofD l transition is

WD l5JD l
2 ~2P1!. ~7!

The total probability of the depopulation is equal to
Wt512J 0

2(2P1). It is convenient to present the contribution
of dipoleD l561 transitions as the ratio

R5~s11s21!/s tot

52S E J1
2~2P1!r dr D YS E @12J0

2~2P1!#r dr D .
~8!

When analyzing~8! we first note thatP1 is uncondition-
ally small in the high-velocity~Born! limit as 1/v and there-
fore the total cross section is dominated by dipole transitions,
i.e.,R→1. In the opposite limit of low velocities the situation
strongly depends on the energy splittingv.

If vÞ0 then P1 is again small, now exponentially as
;exp~2vr/v! and againR→1 asv→0. In other words, in
very slow collisions due to the adiabaticity condition~Mas-
sey parameterDEa0n

2/\v@1! the dipole transitions tend to
prevail again and because of the presence of the manifold of
adjacent levels the corresponding probability is given exactly
by the Born formula~6!. Based on the behavior ofJ 1

2(x) and
12J 0

2(x) ~see Fig. 2!, we readily conclude that in between
two extremesv→0 and `, R reaches a minimum whose
location is determined by the maximum ofP1 overr andv.
From ~6! it immediately follows that the minimum sought is
attained at the reduced projectile velocityṽ5v*.2d/3
@where the reduced velocity is the velocity in units of the
Rydberg electron velocityvn andd is the difference between
quantum defects related to levels spacingDE by
d'0.5n3~DE/Ry!#. The value of that minimum is approxi-
mately R*.0.36. The calculation ofR according to the
IESLS model ~4!–~8! for 30s depopulation with
d5ds2dp50.493 is given in Fig. 3 and demonstrates good
accord with estimates ofv* andR* . In summary, the IESLS
model predicts the dipole fractional depopulation to behave
as a curve with a minimum, whose value is about 40% and
independent of level spacing. The location of the minimum
v* , however, is immediately related tod, essentially as
v*;d. Accordingly, the dipole depopulation of strongly non-
hydrogenic levelsd;1 reaches the minimum in the close
submatching velocity domain and then rises again. On the
contrary, for very small quantum defectsd,0.01 typical for
the levels with large orbital quantum numbersl , the mini-
mum moves into the deep adiabatic region so that the entire

FIG. 1. Schemes of levels:~a! infinite equally spaced levels
system;~b! semi-infinite equally spaced levels system;~c! semi-
infinite unequally spaced levels system;~d! infinite unequally
spaced levels system.

FIG. 2. Total and dipole depopulation probabilities in infinite,
equally spaced levels system.P1 is a modulus of the first-order
~Born! amplitude~6!.
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low-velocity area of practical interest is dominated by the
progressively increasing contribution of the dipole-forbidden
transitions.

The extreme case of degenerate levels withv50 is of no
interest because of the well-known logarithmic divergence of
dipole and total depopulation cross sections at large impact
parameters. This divergency is regularized by accounting for
various small level splittings due to inelastic and radiative
level broadening or internal plasma interactions, thereby re-
ducing the problem to the case of small nonzero energy spac-
ing.

Compare now this picture to the direct numerical close-
coupling calculations of the 30s depopulation according to
~2! and ~3! for the real spectrum~see Fig. 3! along with
available experimental data@7,8#. We observe the IESLS re-
sults converging to the close-coupling data for velocities
higher than the matching velocity at aboutṽ.5. The model
is also consistent with numerical results~2! in predicting a
flat minimum ofR in submatching region and slowR in-
crease asv→0. On the other hand, the actual minimum is
much deeper, approximately 7–10 %, meaning that the
model is quantitatively invalid in this range, overestimating
R up to a factor of 5. It is quite obvious that the cause is
equal spacing. Indeed, the actual 30p-29d splitting is about
three times less than the one for 30s-30p. This increases
both 30s and 30p depopulations, but apparently the 30p
level is affected directly and therefore much stronger, which
considerably reduces the dipole fraction in the total depopu-
lation. To a considerable extent this drawback is eliminated
by semi-infinite models originally proposed in@1# for the
depopulation of higher-l levels that allow for unequal spac-
ing.

IV. SEMI-INFINITE MODELS AND ITS EXTENSIONS

We resort now to the depopulation ofd levels in Na. As
mentioned above, this process is highly asymmetric towards
the manifold of closely spaced levels with largel and there-
fore, the previous model, infinite in both directions does not
apply. Instead, consider an equally spaced system bound
from one end@Fig. 1~b!#

i ȧk~r,t !5V~r,t !exp~ ivt !ak21~r,t !1V~r,t !

3exp~2 ivt !ak11~r,t !, ~9!

i ȧ0~r,t !5V~r,t !exp~2 ivt !a1~r,t !,

with 1<k,` and initial conditionuak(r,2`)u5dk,0. Ac-
cording to@1#, the solution for such a semi-infinite system is
given by

uak~r,`!u5Jk~2P1!1Jk12~2P1!

5@~k11!Jk11~2P1!/P1#, 0<k,`. ~10!

More realistic is a system where the gapv1 between levels 0
and 1 is greater than the constant spacingv2 between the
other levels@Fig. 1~c!#. Using the technique of a Volterra
integral equation for the generating function, the approxi-
mate solution can be written as@1#

Wk5uak~r,`!u25 f kWt ,

f k5@kJk„2P1~v2!…/P1~v2!#
2, k.0, ~11!

W0512Wt ,

whereWt~v1,v2! is the total depopulation probability of the
initial level k50, depending, strictly speaking, on bothv1
and v2, and factorsf k give the fractional contribution of
transitions with variousD l5k. The first important feature of
this solution is that it automatically satisfies the normaliza-
tion condition(kf k51 regardless of the approach used for
the total probabilityWt and is flexible towards various ap-
proximations forWt @such as a single gapv1 normalized
Born approximationWt(v1)5P1/(11P1) used in@1##. Sec-
ond, the structure of~11! clearly demonstrates that it is the
second gapv2 ~and notv1! that determines the role of dipole
depopulation. Ifv2 is large enough, then dipole transitions
dominate, as onlyf 1→1 whenv→0, whereas for all other
k.1 we havef k→0. In the opposite case ofv2'0 the dipole
contribution becomes negligible for smallv because
f 1/(12 f 1);1/N3, whereN is the number of levels in the
depopulation channel~in our caseN;n21!. The latter situ-
ation is just the case for thed level depopulation and, over-
all, the solution~11! works reasonably well, except that it
predicts a too fast drop in the dipole fractional depopulations
as we move deeper into the submatching region. This hap-
pens because the major assumption behind the solution~11!
is that the coupling within a closely spaced manifoldk.0 is
tighter than between an initial levelk50 and the adjacent
manifold k.0. Accordingly, the transitions in the manifold
occur equally likely in both directionsk⇔k11, whereas at
the bottom of the spectrum the transitions take place prima-
rily in the directionk50⇒k51. This holds, however, only
for fairly fast collisions when the first-order amplitudeP1 is
small enough. In passing the vicinity of the matching veloc-
ity, P1 rises substantially, which tightens the coupling be-
tween the bottom level 0 and the manifold. As a result, the
solution ~11! progressively underestimates the probability
right below the matching velocity~up to a factor of;2! and
then becomes completely invalid for lower velocities. The
situation can be improved as follows.

FIG. 3. Fractional dipole depopulation of 30s level in Na.
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First, we chooseWt such that at the limit of equal spacing
Wt becomes identical to the result for the total probability in
the semi-infinite model~10!. This reducesWt to the form

Wt5$J1„2P1~v1!…/P1~v1!%
2. ~12!

In fact, as we shall see below, somewhat better results follow
if Wt is given as in the IESLS model~7!:

Wt512J0
2
„2P1~v1!… ~13!

@although ~13! is inconsistent with~10! in the Born limit,
which is insignificant for slow collisions#.

Second, we account for the fact that despite the limita-
tions related to the equal spacing, the semi-infinite equally
spaced model~9! is more preferable at very low velocities as
it makes no assumptions on the coupling strength. Therefore,
one can, at the qualitative level, combine both models with
equal and unequal spacing. If we introduce the impact pa-
rameterr* such thatP1~r* !51, then, when integrating the
probability over the impact parameter we use the unequally
spaced model~11! for r.r* and the equally spaced one~10!
otherwise. Thus the approximation for the one-directional
depopulation, which hereafter will be referred to as an ex-
tended semi-infinite model, can be summarized as fol-
lows: if r.r* ,

Wk5@kJk„2P1~v2!…/P1~v2!#
2Wt , k.0,

~14!
W0512Wt,

and if r,r* ,

Wk5@~k11!Jk11„2P1~v2!…/P1~v2!#
2, k>0,

where

Wt5$J1„2P1~v1!…/P1~v1!%
2 ~15a!

or

Wt512J0
2
„2P1~v1!…. ~15b!

Based on these formulas and taking into account small dif-
ferences of quantum defects corresponding to thev1(d2 f )
andv2( f2g) gaps~0.014 and 0.0015, respectively!, one can
expect the velocityv* minimizing the contribution ofD l51
transitions to the total depopulation to occur in the ultra-
adiabatic region and therefore the entire submatching veloc-
ity domain to exhibit increasing dipole-forbidden fractional
depopulation. The numerical results for 28d depopulation
following from ~14! and~15! and supporting that conclusion
are given in Fig. 4 in comparison with exact close-coupling
calculations@1# and the experiment@2#. One can see indeed
quite reasonable accuracy, especially for low velocities, re-
garding both the profile of the fractional depopulation and its
absolute values.

Return now to thes depopulation. For the unequally
spaced scheme of levels given in Fig. 1~d! we can treat the
symmetrics depopulation in essentially the same manner,
combining the semi-infinite unequally spaced model~12! for
large impact parameters with an infinite equally spaced

model for smallr. Omitting the elementary transformations,
the symmetric extended model may be written as fol-
lows: if r.r* ,

Wk5@kJk„2P1~v2!…/P1~v2!#
2~Wt/2!, uku.0,

~16!
W0512Wt

and if r,r* ,

Wk5Jk
2~2P1!

2,

where

Wt512J0
2
„2P1~v1!… ~17!

When applying this model to the 30s depopulation~see Fig.
3! we find significant improvement over the simple IESLS
model in the submatching domain. The remaining discrepan-
cies, such as the location of the depopulation minimum, are
difficult to eliminate in a simple framework of an extended
model and need a more elaborated approach. The same also
applies top levels, which depopulate via two asymmetric but
quite competing channelsnp→ns andnp→(n21)d.

The fact that it is the first-order~Born! amplitudeP1 that
appears as an effective argument throughout the above-
considered analytical solutions~and not a two-level adiabatic
approximation, as this might have seemed natural at the first
glance! has an immediate implication for the transitions in
very slow collisions. It was shown~see@14#! that in the limit
v→0 the adiabatic probability obtained from the asymptotic
solution of the two-level system drops exponentially faster
than the Born probability, roughly speaking, as
Wad;WBorn exp~2d/rv!, whered is anm-averaged dipole
moment from~3!. The two-level approximation, however,
holds only if the coupling between two given levels is stron-
ger than their coupling with the rest of the spectrum, i.e.,
v2.v1. It is readily clear this is not the case for Rydberg
levels where any two neighboring levels are to no extent
isolated from the adjacent manifold, the presence of which
plays an essential role in the increase of the two-level prob-
ability. In particular, in the IESLS model the probability of
dipole transitions reduces exactly to the Born formula in the
adiabatic limit. In turn, in the real system the energy spacing
converges to zero and therefore the probability and the cor-

FIG. 4. Fractional dipole depopulation of 28d level in Na.
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responding cross section decrease at low velocities notice-
ably slower than in Born approximation~see Fig. 5!.

It should be emphasized, in conclusion, that for the ultra-
adiabatic regionṽ!0.1 all models considered predict the di-
pole depopulation to become again a dominant case. How-
ever, as seen in Fig. 5, atṽ;0.1 the dipole cross section is
comparable to an area of the Rydberg electron orbit, which
means that the semiclassical impact parameter approxima-
tion is no longer valid below that velocity. This seems to be
the most serious problem in studying an adiabatic depopula-
tion and the relevant method is yet to be developed.

V. CONCLUSION

The numerical simulation of the close-coupled transitions
in Rydberg atoms induced by collisions with slow charged

projectiles reveals the nonmonotonic behavior of the total
depopulation character in terms of the balance between
dipole-allowed and chain dipole-forbidden transitions. In
particular, the dipole fractional depopulation of strongly non-
hydrogenic levels reaches a minimum near the matching ve-
locity in contrast to the monotonic decrease with the decreas-
ing velocity for hydrogenic levels with large orbital
momenta. Although the exact depth and the location of that
minimum result from the interplay between transition prob-
abilities and level splittings in the depopulation channel, the
major features are explained by means of the simple multi-
level models, attributing the behavior of the dipole depopu-
lation to the energy spacing in the vicinity of the initial level.
For large energy gaps the minimum occurs at the beginning
of the submatching area, then giving way to the increasing
dipole contribution. For closely spaced levels the minimum
shifts into the deep adiabatic region and the dipole-forbidden
transitions dominate, for the most part, in slow collisions.
Quantitatively the models are in a reasonable correspondence
with the numerical calculations. The results also indicate that
even for slow collisions the problem remains essentially
multilevel and the two-level adiabatic approximation is not
applicable.
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