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An effective-potential formalism, previously developed for electron scattering by a neutral target, is ex-
tended to apply to electron-ion scattering, with the requirement of antisymmetrization now accounted for
explicitly. A minimum principle for the effective potential is derived, valid for scattering below the ionization
threshold and applicable when, as is usually the case, the target wave functions are imprecisely known. The
basis for the minimum principle is the Rayleigh-Ritz property that is satisfied by the modified Hamiltonian in
terms of which the effective potential is defined. An analysis of single-channel, zero-energy scattering for a
particular partial wave is presented; it is based on the effective-potential formalism and leads to an absolute
definition of the zero-energy phase shiftd~0! of the formd~0!5m~`!p, wherem(n) is the quantum defect of the
nth energy level. This result may be thought of as an extension of Levinson’s theorem for scattering by
short-range potentials.

PACS number~s!: 03.65.Nk, 34.80.Kw, 11.80.Fv

I. INTRODUCTION

Minimum principles, of the Rayleigh-Ritz type, were de-
veloped some years ago as a tool for the systematic improve-
ment of trial functions in variational treatments of low-
energy electron and positron scattering by light atoms@1,2#.
Such methods have, in recent years, played a less significant
role than originally anticipated. One reason for this is the
subsequent introduction of alternative techniques, such as
close-coupling andR-matrix methods@3#, that very effec-
tively take advantage of the ever-increasing power of com-
puters. Partly as a result of this, procedures based on the
minimum-principle idea, originally presented in the context
of scattering by hydrogenic targets, have not been further
developed to apply to more complex atomic and negative-ion
targets. Moreover, the extension of the theory to electron
scattering bypositiveions—a class of problems of consider-
able current interest—has not been previously made. In the
search for reliable calculational methods applicable to mul-
tiparticle scattering systems, where computational limits of
existing methods begin to be felt, it appears likely that the
particular merits of the variational approach, developed to its
full potential, can be exploited. With this as motivation, a
generalized version of the minimum-principle approach to
low-energy multiparticle scattering calculations will be given
here.

In Sec. II an effective-potential formulation of the scatter-
ing problem, which provides the basis for the minimum prin-
ciple, will be presented in a form that is applicable to multi-
channel scattering by complex targets, with resonance effects
accounted for in a natural way, for scattering energies below
the ionization threshold. The theory is an extension of that
given in Ref.@2#, with the requirement of antisymmetry now
explicitly accounted for, and applicable to electron scattering
by positive ions. As in the analogous case of scattering by a
neutral target, the spectrum of the modified Hamiltonian in
terms of which the effective potential is defined has a con-
tinuum of states removed that, in the physical spectrum, con-
tains energies lying below the scattering energy. In addition,
an infinite series of Rydberg states, corresponding to the pro-

jectile electron weakly bound to the positively charged tar-
get, is removed in the construction of the effective potential.
The essence of the calculational procedure is the application
of the minimum principle for the effective potential. Since
this principle is rigorously valid even when the target states
are imprecisely known, and since the modified Hamiltonian
is obtained directly through the subtraction of known sepa-
rable interactions, the method has certain advantages over
those based on the Feshbach projection-operator formalism
@4#. It should be emphasized that the minimum principle is of
a subsidiary nature, useful in optimizing the choice of trial
functions. With the variational construction of the effective
potential accomplished the equivalent one-body integral
equation for the reaction matrix can be solved numerically,
with high accuracy, using standard methods@5#. Since, in
going beyond hydrogen, one deals with inexact target wave
functions, a rigorous bound on diagonal elements of the re-
action matrix is not guaranteed. However, theaccuracyof
the scattering calculation, which is now very similar to a
Rayleigh-Ritz calculation of the energy of an~N11!-particle
bound state, can in general be comparable to that achieved in
the determination of the binding energy of theN-particle
target.

The phase shift is the parameter of interest for single-
channel scattering in a particular partial wave and the avail-
ability of an absolute definition of this parameter can be
useful in the interpretation of results obtained from applica-
tions of the minimum principle@6#. Levinson’s theorem, suit-
ably generalized, relating the zero-energy phase shift to the
number of bound states, provides the basis for such an abso-
lute definition. The theorem was originally derived for scat-
tering by a short-range potential@7#, and has recently been
extended to apply to the case where the target is a neutral
atom@8#. When the potential contains an attractive Coulomb
tail the zero-energy phase shiftd~0! can be defined~relative
to the Coulomb phase! asd~0!5m~`!p by analytic continu-
ation of the quantum defect function to the series limit@9#.
This result, which removes the ambiguity in the definition of
the phase shift regarding the addition of arbitrary multiples
of p, was recently given a purely scattering-theoretic deriva-
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tion ~not involving analytic continuation! valid for one-body
potential scattering@10#. Its extension to apply to electron
scattering by positive ions is conveniently obtained with the
aid of the effective-potential formalism, as shown in Sec. III.
The definition arrived at in this way is therefore the appro-
priate one to use in scattering calculations based on the
effective-potential method.

II. EFFECTIVE-POTENTIAL FORMALISM

A. Definition of the effective potential

While greater generality is possible in setting up an
effective-potential formalism that allows for the use of
Rayleigh-Ritz methods, we focus our attention here on the
scattering of an electron by a target consisting ofN electrons
bound to a fixed nucleus of chargeZueu. The Hamiltonian of
this system may be written~in N11 different ways! as

H5h~n!1K~n!1V~n!. ~2.1a!

HereK(n) is the sum of the kinetic energy of thenth elec-
tron and its monopole Coulomb interaction with the residual
system,h(n) is the Hamiltonian of that residual system~in
which electronn has been removed!, andV(n) is the inter-
action, with the monopole Coulomb component subtracted
off, of the nth electron with the residual system. In configu-
ration space we have

V~n!52
Ne2

r n
1 (

j51

N11

~12dn j!
e2

urn2r j u
, ~2.1b!

wherer j is the distance of thej th electron from the nucleus.
The target states associated with open channels satisfy

h~n!uxg~ n̄!&5«guxg~ n̄!&, ~2.2!

with negative eigenvalues«1<«2<•••<«p . We use the nota-
tion

xg~ n̄!5xg~1,2,...,n21,n11,...,N11! ~2.3!

for the antisymmetrized target wave function; for simplicity,
we frequently represent the space and spin coordinates of the
j th particle by the symbolj . More often, the coordinates will
be suppressed.@In accordance with convention, thefunction
xg(n̄) is interpreted as the coordinate-space representation of
the Diracket uxg(n̄)&.# An essential feature of the effective-
potential formalism is the introduction of a modified Hamil-
tonian which has the branches of its continuous spectrum
starting not at the physical thresholds of the various channels
but at a higher threshold lying above the scattering energyE.
As a first step in this direction, we define the modified target
Hamiltonian

ĥ~n!5h~n!2 (
g51

p

«guxg~ n̄!&^xg~ n̄!u. ~2.4!

~This is an alternative to working with the standard Feshbach
projection operators which are difficult to construct in gen-
eral, when exchange and rearrangement processes are pos-
sible and when exact target solutions are not available.! As
seen from the eigenvalue equationĥ(n)uxg(n̄)&50, «g<«p ,

the target energies associated with open channels have been
displaced upward to zero, so thatĥ(n)2«p11 is a non-
negative operator. At this point we must be concerned with
the fact that the target states are imprecisely known. Let us
assume that an orthonormal set of trial functionsxgt(n̄) have
been found~by the Hylleraas-Undheim construction@11#, for
example! that are sufficiently accurate to give binding, that
is, which provide ap3p diagonal matrix representation of
h(n) with ordered eigenvalues«gt all less than zero. The
definition ~2.4! is then replaced with

ĥ~n!5h~n!2 (
g51

p
h~n!uxgt~ n̄!&^xgt~ n̄!uh~n!

^xgt~ n̄!uh~n!uxgt~ n̄!&
. ~2.5!

It has been shown@2# that with the energy«̄p11 determined
to satisfy

«p11<
«1
«1t

«2
«2t

•••
«p

«pt
«p11 , ~2.6!

the operatorĥ(n)2 «̄p11 is non-negative.~We assume that
«̄p11 lies above«pt .! This suggests that we introduce the
modified Hamiltonian

Ĥ5H2 (
n51

N11

(
g51

p
h~n!uxgt~ n̄!&^xgt~ n̄!uh~n!

^xgt~ n̄!uh~n!uxgt~ n̄!&
. ~2.7!

From an examination of the asymptotic solutions of the
Schrödinger equation associated with this Hamiltonian, one
sees that the threshold of the continuous spectrum ofĤ lies
above«̄p11. It follows that if Ĥ has no discrete states below
E ~we briefly discuss the more general case below! then the
operator inequalityĤ2E.0 is satisfied for scattering ener-
giesE, «̄p11. This is the key property in the development of
the minimum principle. To simplify notation in the following
we work, formally, with exact target wave functions with the
understanding that in an actual calculation trial target func-
tions are employed, with the modified Hamiltonian given by
Eq. ~2.7!.

We now show how the scattering problem may be refor-
mulated in such a way that virtual excitations of the system
are described in terms of the modified HamiltonianĤ intro-
duced above. The scattering wave function corresponding to
an incident channel with indexn is represented as

Cn~1,2,...,N11!5A(
g

xg~ 1̄! f gn~1!1M n~1,2,...,N11!,

~2.8!

where the residual antisymmetrizerA is defined by the re-
lation

Ax~ 1̄! f ~1!5 (
n51

N11

~21!n11x~ n̄! f ~n!. ~2.9!

The function f gn(n) in Eq. ~2.8! is a one-body radial wave
function for electronn propagating in channelg, and the
normalizable, completely antisymmetric, functionM n con-
tains the effects of virtual excitations. While not indicated
explicitly, the productxgf gn is to be understood as a vector-
coupled product combining the orbital and spin angular mo-
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menta of the target and projectile to give a state of definite
total orbital angular momentum and spin, along with their
projections@12#. The channel indexg now stands for all the
quantum numbers of the system, not only that which labels
the energy level of the target.

The wave function represented in Eq.~2.8! satisfies the
Schrödinger equation

05~H2E!uCn&5(
n

(
g

~21!n11

3@V~n!1K~n!2Eg#uxg~ n̄!&u f gn~n!&

1~Ĥ2E!uM n&1(
n

(
g

«guxg~ n̄!&^xg~ n̄!uM n&,

~2.10!

whereEg5E2«g is the energy available to the projectile in
channelg. In line with remarks made above, the target wave
functions have been taken to be exact, with the understand-
ing that the modified Hamiltonian will be replaced by the
form ~2.7! in calculations. To find a formal solution to Eq.
~2.10! we first write down an equation to be satisfied byM n ,
for which approximate solutions may be obtained with the
aid of a subsidiary minimum principle, and then deduce the
coupled equations to be satisfied by the one-body scattering
functions f gn . Based on considerations of simplicity for the
form of the effective potential that emerges from this analy-
sis, we make the choice

~Ĥ2E!M n52(
n

(
g

~2 !n11V̂~n!xg~ n̄! f gn~n!, ~2.11!

where

V̂~n!5Ĥ2ĥ~n!2K~n!. ~2.12!

Combining Eqs.~2.10!–~2.12!, we have

05(
n

(
g

~21!n11@V~n!2V̂~n!1K~n!2Eg#

3uxg~ n̄!&u f gn~n!&1(
n

(
g

«guxg~ n̄!&^xg~ n̄!uM n&;

~2.13!

the relation

V~n!2V̂~n!5 (
n8Þn

(
g

«guxg~ n̄8!&^xg~ n̄8!u, ~2.14!

which follows from the definition~2.12!, will be useful in
what follows.

As the final step in the derivation we write the formal
solution of Eq.~2.11! as

M n5Ĝ~E!(
n

(
g

~21!n11V̂~n!xg~ n̄! f gn~n!, ~2.15!

whereĜ(E)5(E2Ĥ)21 is the Green’s function associated
with the modified Hamiltonian, and insert it into Eq.~2.13!.
The result is evaluated with the aid of the resolvent equation

~E2Ĥ !215@E2ĥ~n!2K~n!#21

1@E2ĥ~n!2K~n!#21

3V̂~n!~E2Ĥ !21, ~2.16!

which is used, along with the eigenvalue equation forĥ(n)
noted above, to deduce the relation

^xg~ n̄!uĜ~E!5
1

E2K~n!
^xg~ n̄!u@11V̂~n!Ĝ~E!#.

~2.17!

Consider now the result obtained by replacingV(n)2V̂(n)
in Eq. ~2.13! by the expression given in Eq.~2.14!. It proves
useful to transform this result by writing

(
g,g8

(
n

(
n8

~21!n11~12dnn8!uxg~ n̄8!&

3^xg~ n̄8!uxg8~ n̄!&u f g8n~n!&

5(
n

(
g,g8

uxg~ n̄!&^xg~ n̄!u@Auxg8~ 1̄!&u f g8n~1!&

2~21!n11uxg8~ n̄!&u f g8n~n!&], ~2.18!

where the right-hand member was obtained by interchanging
indicesn and n8. In addition, the Dirac-ket version of Eq.
~2.9! has been applied. At this stage the Schro¨dinger equation
has the structure

(
n

(
g

uxg~ n̄!&uLg~n!&50,

which, owing to the identity of the particles, can be satisfied
by settingeachof the vectorsuLg(n)& equal to zero. The
relation uLg~1!&50 provides us with the coupled one-body
wave equations

@K~1!2Ea#u f an~1!&1
«a

E2K~1! (
g
V ag~E!u f gn~1!&50,

~2.19!

where

V ag~E!u f gn~1!&5^xa~ 1̄!u$AV̂~1!1@E2K~1!#~A21!

1V̂~1!Ĝ~E!AV̂~1!%uxg~ 1̄!&u f gn~1!&.

~2.20!

To obtain a manifestly Hermitian form for the effective po-
tential, we make use of the relation Ĝ(E)
5(N11)21AĜ(E), which holds since the resolvent has an
eigenfunction expansion involving totally antisymmetric
states. We may then express the effective-potential operator
as

V ag~E!5^xa~ 1̄!u$AV̂~1!1@E2K~1!#~A21!

1~N11!21V̂~1!AĜ~E!AV̂~1!%uxg~ 1̄!&.

~2.21!
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B. Reaction matrix

It will be convenient to convert Eq.~2.19! to an integral
equation, in a representation in which the operatorK is di-
agonal. Toward this end we introduce a complete set of~dis-
crete and continuum! solutions of the homogeneous radial
equation (K2E)F(E,r )50 for the l th partial wave~the in-
dex l is suppressed!, where

K52
\2

2m

d2

dr2
2
ze2

r
1

\2l ~ l11!

2mr2
~2.22!

and z5Z2N. With the continuum solutions normalized on
the energy scale, they have the asymptotic form

FS \2k2

2m
,r D;S 2m

\2pkD
1/2

sin~kr2 lp/22h ln 2kr1s!,

~2.23!

with

h521/ka, a5\2/me2z, s5argG~ l111 ih!. ~2.24!

The integral equation for the one-body wave function may
be written as

f an~r !5F~Ea ,r !dan1(
g
E
0

`

dr8E
0

`

dr9G ~r ,r 8;Ea!

3V ag~r 8,r 9;E! f gn~r 9!. ~2.25!

The propagator has the eigenfunction expansion

G ~r ,r 8;Ea!5PE dE8
F~E8,r !F~E8,r 8!

Ea2E8

«a

E2E8
, ~2.26!

where the generalized energy integral is understood to in-
clude a sum over discrete states, and the singularity at
Ea2E850 is treated by the principal-value prescription.
The~somewhat unconventional! factor«a/~E2E8! is unity at
the singularity so that, while it modifies the off-shell exten-
sion of the wave function, it can be ignored in evaluating the
asymptotic behavior of the wave function and hence the de-
termination of the physical reaction matrixRan . Following
standard methods, we obtain the identity

Ran~Ea ,En ;E!5(
g
E
0

`

drE
0

`

dr8F~Ea ,r !

3V ag~r ,r 8;E! f gn~r 8!. ~2.27!

After a single iteration using Eq.~2.26!, we arrive at an
integral equation for the off-shell reaction matrix of the form

Ran~Ea ,En ;E!5Ran
Born~Ea ,En ;E!

1(
g
E dE8Rag

Born~Ea ,E8;E!

3P
1

Eg2E8

«g

E2E8
Rgn~E8,En ;E!.

~2.28!

The leading termRan
Born is obtained from Eq.~2.27! by replac-

ing the exact solutionf gn(r 8) on the right-hand side by its
Born approximationF(Eg ,r 8)dgn . Here again the integra-
tion over energies is meant to include a sum over discrete
eigenstates ofK. Such discrete-state contributions can be ac-
counted for in an approximate but highly accurate manner in
numerical solutions of integral equations of this type, in
which the continuum itself is replaced by a sequence of dis-
crete states@5#.

C. Minimum principle

We now briefly review a variational procedure, based on a
subsidiary minimum principle, for evaluating the resolvent
Ĝ(E) appearing in the definition~2.21! of the effective po-
tential. One introduces a trial resolventĜt(E) and resolvent
identity

Ĝ~E!5Ĝt~E!1Ĝ~E!@~Ĥ2E!Ĝt~E!11#. ~2.29!

By writing Ĝ5Ĝt1DĜ on the right-hand side, the identity
takes the form of the sum of the variational approximation

Ĝn52Ĝt1Ĝt~Ĥ2E!Ĝt ~2.30!

and a second-order error term; one finds that

Ĝ5Ĝn1DĜ~E2Ĥ !DĜ. ~2.31!

With the energy assumed to lie below the minimum eigen-
value of the modified HamiltonianĤ, the error term in the
resolvent will be a negative operator. Replacement of the
exact resolvent in Eq.~2.21! by the variational approxima-
tion Ĝn provides us with a minimum principle for the effec-
tive potential and a prescription for a variational construction
of the reaction matrix@13#. If, for example, the trial resolvent
is chosen as

Ĝt5(
i
ci uF i&^F i u, ~2.32!

where theFi form an orthonormal set of trial functions, and
the linear parametersci are chosen variationally, Eq.~2.30!
becomes

Ĝn~E!5(
i

uF i&
1

^F i uE2ĤuF i&
^F i u. ~2.33!

The trial functions may be improved systematically by mini-
mization of diagonal elements of the variational expression
for the effective potential. If the modified Hamiltonian has
one or more discrete states with eigenenergy belowE, the
minimum principle must be modified; the subtraction proce-
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dure that may be used to arrive at this modified version has
been described elsewhere@2#. Here we merely remark that
this procedure leads not only to a valid minimum principle
but also to a description of resonances of the ‘‘closed-
channel’’ type@4#.

Single-channel scattering in a given partial wave is char-
acterized by a real phase shift. The utility of the minimum
principle is greatly enhanced by a removal of the ambiguity
with regard to multiples ofp in the determination of the
phase shift. In this regard an absolute determination of the
phase shift at zero energy~coupled with the assumption of
continuity in the energy variable! can be helpful. Levinson’s
theorem provides such an absolute determination for scatter-
ing potentials of short range. The extension to the case where
the potential has an attractive Coulomb tail is discussed be-
low.

III. ABSOLUTE DETERMINATION OF THE PHASE
SHIFT: LEVINSON-SEATON THEOREM

We consider the single-channel scattering of an electron
of zero energy by a positive ion. We wish to establish the
relation d~0!5m~`!p between the zero-energy phase shift
~relative to the Coulomb phase! and the limiting value of the
quantum defect, thereby obtaining the multiparticle generali-
zation of a result derived earlier for potential scattering@10#.
As remarked above, such a Levinson-type theorem, of inter-
est in its own right, would provide a reference value for the
phase shift, thus removing the ambiguity with regard to mul-
tiples of p, and this can be helpful in analyzing results of
numerical calculations of the phase shift. The basis for the
analysis is most conveniently taken to be the integrodiffer-
ential equation~2.19!, subjected to the transformations

f gn5S «g

E2K D 1/2f̃ gn ;

Ṽ ag~E!5S «a

E2K D 1/2V ag~E!S «g

E2K D 1/2.
~3.1!

Note that~in accordance to an earlier observation! while the
off-shell extensions of the wave functions and potentials are
changed by this transformation, the physical scattering pa-
rameters are unaltered since the factors introduced are unity
on the energy shell. With channel labels dropped, and with
the scattering energy set at the threshold value« correspond-
ing to the target in its ground state, the scattering equation
becomes

K f̃ ~r !1E
0

`

Ṽ ~r ,r 8;«! f̃ ~r 8!dr850. ~3.2!

The solution, consistent with the normalization established
above, behaves asymptotically as

f̃ ~r !;~r /a2z2R!1/2$J2l11@~8r /a!#

2tand~0!Y2l11@~8r /a!#%, ~3.3!

whereJ2l11 andY2l11 are Bessel functions of the first and
second kinds, respectively, andR5me4/2\2. We now con-
sider a class of solutionsf̃ (l,r ) corresponding to the intro-
duction of a potential-strength parameterl. Associated with
these solutions is a family of phase shiftsd~0,l!. The defini-
tion of the phase shift adopted here is such thatd~0,l! is a
continuous function ofl with d~0,0!50 and d~0,1![d~0!.
The version of Eq.~3.2! that we study is, in operator nota-
tion,

@K1lṼ ~«!# f̃ ~l!50. ~3.4!

With the replacementl→l1dl, Eq. ~3.4! becomes

@K1~l1dl!Ṽ ~«!# f̃ ~l1dl!50. ~3.5!

A standard manipulation is now employed, in which Eq.
~3.4! is premultiplied by f̃ (l1dl), Eq. ~3.5! is premulti-
plied by f̃ ~l!, an integration is performed, and the two equa-
tions are subtracted. A partial integration is carried out in the
term containing the kinetic energy, taking into account the
asymptotic form~3.3!, and the Hermiticity property of the
effective potentialV ~«! is invoked. The resultant relation,
correct to first order indl, is

tan d~0,l1dl!2tan d~0,l!52pdl^ f̃ ~l!uṼ ~«!u f̃ ~l!&,
~3.6!

where we use the notation

^ f̃ ~l!uṼ ~«!u f̃ ~l!&

5E
0

`

drE
0

`

dr8 f̃ ~l,r !Ṽ ~r ,r 8;«! f̃ ~l,r 8!.

~3.7!

Alternatively, we may write, in the limitdl→0,

1

p

dd~0,l!

dl
52^w~0,l!uV ~«!uw~0,l!&, ~3.8!

in terms of the wave functionw(0,l,r )5 f̃ (l,r )cosd~0,l!.
This latter function is recognized@9# as the zero-energy limit
of the positive-energy continuum wave function normalized
according to

E
0

`

w~E8,l,r !w~E,l,r !dr5d~E82E!. ~3.9!

A closely analogous treatment may be given for the
bound-state problem, defined by the eigenvalue equation

Kwn~l!1lṼ @En~l!1«#wn~l!5En~l!wn~l!,
~3.10!

for the energyEn~l!, measured relative to the continuum
threshold energy, as a function of the potential-strength pa-
rameter; the energy eigenfunction is assumed to be normal-
ized to unity. A similar equation may be written down withl
replaced byl1dl. After performing the standard manipula-
tion of these two equations, making use of the fact that both
the kinetic-energy and potential-energy operators are Hermit-
ian, we obtain the relation
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^wn~l1dl!ulṼ @En8~l!#uwn~l!&2^wn~l!u~l1dl!Ṽ @En8~l1dl!#uwn~l1dl!&

5@En~l!2En~l1dl!#^wn~l!uwn~l1dl!&. ~3.11!

For brevity we have expressed the total energy of the system,
appearing as the energy argument of the effective potential,
as En8(l)5En(l)1«. To first order indl, Eq. ~3.11! be-
comes

^wn~l!u H Ṽ @En8~l!#1l
]Ṽ @En8~l!#

]l J uwn~l!&5
dEn~l!

dl
.

~3.12!

We now writeEn(l)52z2R/n* 2, where the effective quan-
tum number is defined asn* (l)5n2m(n,l). The quantum
defectm~n,l! is taken to be a continuous function ofl with
m~n,0!50 andm~`,1!5m~`!. With the energy represented in
this way, we have

dEn~l!

dl
5
2z2R

n* 3
dm~n,l!

dl
, ~3.13!

so that Eq.~3.12! becomes

dm~n,l!

dl

52
^w~En ,l!uṼ @En8~l!#uw~En ,l!&

12l
2z2R

n* 3 K w~En ,l!U]Ṽ ~E!

]E
Uw~En ,l!L U

E5E
n8~l!

.

~3.14!

Here we have introduced the renormalized state vector

uw~En ,l&5S n* 3

2z2RD 1/2uwn~l& ~3.15!

that in the limit n→` passes smoothly into the energy-
normalized zero-energy continuum stateuw~0,l& @9#. In that
limit the numerator on the right-hand side of Eq.~3.14! be-
comes^w~0,l!uṼ ~«!uw~0,l!&. With the assumption that this
matrix element and its energy derivative are finite, it follows
that the denominator in Eq.~3.14! goes to unity and we
arrive at the relation

dm~`,l!

dl
52^w~0,l!uṼ ~«!uw~0,l!&. ~3.16!

Comparison with Eq.~3.8! shows that

d

dl F 1p d~0,l!2m~`,l!G50. ~3.17!

After integrating this relation with respect tol between zero
and 1, and recalling the definitions of the phase shift and
quantum defect at these limits, we find that

d~0!5m~`!p, ~3.18!

a relation that provides an absolute determination of the
phase shift, as defined using standard scattering theory, and
that contains within it the well-known resultd~0!~modp!
5m~`!p of quantum-defect theory.

IV. DISCUSSION

It has long been understood that there are useful conse-
quences arising from the fundamental connection that exists
between low-energy scattering and bound-state dynamics.
An absolute determination of the partial-wave phase shift at
zero energy based on Levinson’s theorem~relating the zero-
energy phase shift in a given partial wave to the number of
bound states of the same angular momentum! can, by ex-
trapolation in the energy variable, be helpful in an analysis of
low-energy scattering. Another aspect of this connection is
the applicability of calculational methods of the Rayleigh-
Ritz type as an aid in the variational determination of scat-
tering parameters for energies below the ionization threshold.
Interestingly, the minimum principle for the scattering length
has provided a formal tool for the extension of Levinson’s
theorem to scattering by a compound system, with the effects
of the Pauli principle properly accounted for@8#. A straight-
forward generalization of the result of Ref.@8# to electron
scattering by positive ions is not possible owing to the exist-
ence of an infinite series of bound states of the electron-ion
system converging at the continuum threshold. Moreover,
such an absolute determination of the zero-energy phase shift
must be consistent with Seaton’s theorem@9# relating this
phase, modulop, to the quantum defect parameter evaluated
at threshold. In the approach adopted here, a theorem of the
Levinson-Seaton type has been derived through a formal
conversion of the multiparticle Schro¨dinger equation into an
equivalent one-body system defined by an energy-dependent,
nonlocal effective potential from which the long-range at-
tractive Coulomb tail has been separated off. It was then
possible to arrive at the result, shown in Eq.~3.18!, by suit-
able modification of a method used earlier in a treatment of
the problem of scattering by a purely local one-body poten-
tial @10#. The effective potential is not unique; one can have
different extensions off the energy shell leading, through a
solution of the Lippmann-Schwinger integral equation, to the
same physical scattering parameters. The particular choice
made here~distinct from that obtained in the Feshbach for-
mulation, a version that can be difficult to implement in prac-
tice! has the merit of allowing for a variational construction
in which trial functions can be systematically improved with
the aid of a minimum principle of the Rayleigh-Ritz type,
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applicable even in the presence of a Rydberg series accumu-
lating at threshold. The validity of the minimum principle
depends on the availability of trial target wave functions suf-
ficiently accurate to give binding. Since these target func-
tions need not be known exactly, the method is not restricted
to scattering by hydrogenlike ions—the essential require-
ment is that breakup of a two-cluster scattering system into
three or more subsystems be energetically forbidden. This
variational approach can provide an effective supplement to

existing calculational methods, allowing for the use of flex-
ible trial functions to account for the strong, long-range mul-
tiparticle correlations that are often encountered in studies of
scattering at low energies.
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