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Nonhydrogenic Rydberg atoms in a magnetic field: A rigorous semiclassical approach

Bruno Hipper! Jarg Main,? and Gunter Wunnef
IFachbereich Physik und InstitutfiChemie und Biologie des Meeres,
Carl von Ossietzky UniversitaPostfach 2503, D-26111 Oldenburg, Germany
2Institut fur Theoretische Physik I, Ruhr-UniversitBochum, D-44780 Bochum, Germany
(Received 10 August 1995

Multielectron atoms in external fields are essentially more complicated than hydrogen with regard to theo-
retical treatments. Experimental spectra of helium as weR-amsatrix quantum-defect calculations revealed
discrepancies between the diamagnetic hydrogen atom and general Rydberg atoms. They appeared most trans-
parent as novel resonance structures in constant scaled-energy recurrence spectra of nonhydrogenic atoms at
positions where no hydrogenic resonances exist. To reveal the physical origin of these resonances we per-
formed a rigorous semiclassical investigation of honhydrogenic atoms in magnetic fields. The ionic core is
introduced into the Hamiltonian via a short-ranged core potential. For this Hamiltonian we analyze in detail the
classical dynamics of closed orbits. Classical core-scattering results in the creation of a huge number of new
closed orbits. They appear to be composed of a sequence of slightly different hydrogenic orbits, interconnected
by the core-scattering, and can be grouped into families accordingly. With a semiclassical closed-orbit theory
generalized to arbitrary quantum defects of the ionic core and with the closed orbits at hand we are able to
calculate photoabsorption spectra of nonhydrogenic atoms. Although each of the new orbits has a low ampli-
tude, the interference of all members of a family results in clearly visible resonances in the Fourier transform
recurrence spectra, in good agreement with experiment and quantum calculations. The novel structures in
nonhydrogenic spectra are now identified and semiclassically interpreted in terms of families of core-scattered
classical orbits.

PACS numbsgs): 32.60:+i, 03.65.Sq, 05.45:b, 32.70.Cs

[. INTRODUCTION orbit theory[9,10]. The theory allows a quantitative calcula-
tion of recurrence spectra reproducing in detail the resonance

Highly excited atoms in magnetic fields have been showrstructures experimentally observed in hydrogenic atfth$
to be ideally suited — as real physical examples of noninteand even explains most of the structures in nonhydrogenic
grable systems — to study experimentally and theoreticallyecurrence spectra, e.g., in helija2].
the gquantum manifestations of classical chfbs3]. Even Nevertheless, exact quantum-defBematrix calculations
the simplest system, the hydrogen atom, placed in a uniforfil3—15 and experimental investigatioh#4] reveal puzzling
magnetic field, is neither separable nor integrable in the restructures in recurrence spectra of general Rydberg atoms in
gime where the magnetic and Coulomb force are of compamagnetic fields; i.e., changes are observed in the intensities
rable strength, a condition fulfilled in atoms excited close toof resonances, and, most interesting, resonances appear at
the ionization threshold4]. The classical dynamics is cha- positions where no closed orbits exist in the hydrogen atom.
otic, i.e., no invariant tori exist to calculate individual quan- Similar nonhydrogenic signatures have recently also been
tum states via semiclassical torus quantization. Neverthelessbserved in experimental Stark spectra of lithilkf] and in
since the discovery of quasi-Landau resonances in bariurspectra of rubidium atoms in crossed magnetic and electric
[5], it turned out that closed classical orbits are of speciafields[17]. As general Rydberg atoms differ from hydrogen
importance for modulations of the photoabsorption spectran the existence of a non-Coulombic ionic core, a detailed
The quasi-Landau resonances could be interpreted semiclagnalysis of core effects, and particular, of core-scattering is
sically as a periodic motion of the electron in the plane pernecessary to explain the nonhydrogenic resonance structures.
pendicular to the magnetic field ax®]. In later experiments In a semiclassical approach Gao, Delos, and Baruch in-
on hydrogen different types of quasi-Landau resonancesorporated quantum defects into tblesed-orbit theoryand
were observed and explained in terms of closed orbits out ofompared semiclassical and experimental Stark spectra of
the plane perpendicular to the fidld]. The method oton-  sodium in the positive energy regini&8]. In these spectra,
stant scaled-energy spectroscopgables a systematic ex- core-scattering effects were unessential compared with the
perimental search for the entirety of quasi-Landau resoquality of the avaiable experimental data and only hydro-
nances related to closed classical orb#k genic orbits have been considered in their calculations. Ob-

The measurements were accompanied by extensive thewiously it is impossible to explain the nonhydrogenic reso-
retical investigations. Most of the theoretical work has beemance structures in Refgl3—15 in this approximation.
restricted to the hydrogen atom, which served — because of Another approach followed th-matrix picture: The re-
its simplicity and fundamental importance — as a basis alsgion outside the ionic core is treated semiclassically with
for the understanding of nonhydrogenic atoms. Fundamentdlydrogenic classical orbits but core effects are considered
advance in a semiclassical description of the photo cross sefully quantum mechanically, i.e., as a quantum scattering of
tion in terms of classical orbits was achieved bglased- waves[15]. The method is able to reproduce the resonance
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structures, which are interpreted [ih5] as effects “beyond The potentiaM(r) of the nucleus and the core is assumed to
periodic orbits.” With this statement the fundamental ques-be spherical symmetric and must comply with the two con-
tion arises as to whether or not these structures can be egitions
plained fully semiclassically in terms of different types of
classical orbits. r—0 z r—e 1
The first completely semiclassical interpretation of nonhy- V() —— — T and V(r) —— - T
drogenic spectra was given in Rdfl9], where the reso-
nances were calculated with different types of classical corenatural to general Rydberg atoms. Instead of performing
scattered orbits. Briefly, the decisive start for the treatment oHartree-Fock calculations we use an analytical form that al-
core effects in the framework of closed-orbit theory is thelows an easy integration of classical trajectories. Anyway,
modeling of the ionic core by means of a suitable core poour intention is not to describe one particular atom to the
tential and a consideration of this model potential with thegreatest accuracy but to study the general effects of an addi-
classical movement of the highly excited electron. In thistional short-ranged potential on the photoabsorption spectra.
paper we report in detail the rigorous semiclassical investiin order to have a simple dependence of the first derivative
gation of general Rydberg atoms in magnetic fields. with respect tar we assume the following dependenceron
The paper is organized as follows: In the next section we

introduce the model core potential and discuss the classical , . 1 z-1 " a
scattering of orbits. In particular the classical deflection func- Iv(r) = Veouomt ")+ Veord 1) = r r 1+ al®
tion is shown to be almost uniquely related to the quantum 3

defects of the ionic core. In Sec. lll we analyze the classical ] .

dynamics of the highly excited electron under the combinedVN€réZ is the nuclear charge aralis a free length param-
action of the Coulomb potential, the core, and the externaftér determining the range of the core. This kind of potential
magnetic field. In a systematic search we obtain new familie§@s also been used in recent studies of nonhydrogenic atoms
of core-scattered closed orbits. In Sec. IV we derive thd20] _ _ . _
closed-orbit theory extended to arbitrary quantum defects. N comparison with hydrogen, the classical equations of
Finally, in Sec. V we apply the closed-orbit theory to the motion derived from the Hamiltonia(®2) are now mod|f|ed
orbits of Sec. Ill. The semiclassically obtained recurrence®y the presence of a short-ranged core potentigdjnin the
spectra are compared with rec&matrix quantum calcula- following we discuss the changes of classical trajectories in
tions and experimental measurements and reveal an interprél€ Vicinity of the core, in particular the deflection of core-
tation of nonhydrogenic resonance structures in terms ofcattered orbits. The complete classical dynamics including

classically core-scattered closed orbits. the external magnetic field is analyzed in Sec. IIl.
In guantum mechanics the ionic core is entirely character-

ized by quantum defectg,, or for energie€>0 by phase

Il. MODEL CORE POTENTIAL shifts 6. At the ionization threshold, these two quantities
FOR GENERAL RYDBERG ATOMS are connected by Seaton’s theorem
The exact nonrelativistic Hamiltonian for ad-electron S,=mu, .
atom in a magnetic field of streng directed along the ' '
axis reads The quantum defects can be calculated from the core poten-
tial (3) (see Appendix A and depend in this model on the
N 2 N 2 nuclear charg&, the lengtha, and the azimuthal quantum
pi z€& e : -y
Hoxael > e — >y ———F ) ————— number /. For increasing/ the quantum defects become

S12m S 4mer; () Ameolri—ri rapidly small, whereas they ascend with growihigr a.

9 Classically, the core potential leads to a deflection of a
BL.: + e_Bz 2 1 trajectory incident with impact parametér, which is di-
2, Pi |- N -
8m rectly related to the classical angular momentum
L=(/+ 1/2)k. The classical scattering is most easily de-

We are dealing with Rydberg atoms where only one electror'?chribecj in femipa}rabo!ical coordinatésee Appendix Bi

is highly excited close to the ionization threshold but the'V'€r€ PUrely Cou omb|c.;'orb|ts at en_er@/:O are simply
ionic core remains in the ground state. In this situation theStr‘_"“ght _Ilnes. If an additional attractive core Is considered
nuclear charge is screened by the inner electrons and tHERJEctories are de}‘(lectetlnl as sh%wn n F'g.'hl'.FG"‘:.O no
complexity of the exact problem can be substantially simpli-CO"® scattering takes place, whereas wit |n_creais|rtge .
fied to the movement of the highly excited electron in anlrajectories are more _and more deflected, unt!l thg deflection
attractive Coulomb potential modified by a short-ranged coréN9!€ reaches a maximum. With further growing impact pa-

potential combined with an external magnetic field directed @Meter the deflgction angle; decreases until finally the elec-
along the z axis. In atomic units [with tron moves outside the region of the short-ranged core po-

y=B/(2.35<10° T) the magnetic field strenglthe Hamil- tential. The deflection functio® (/) for different kinds and

tonian of the highly excited electron reads parameters of the core potent{@) is shown in Fig. 2. Our
model potential causes no singularitiesth{/); i.e., trajec-

. 1 1 tories are not trapped by the core. The model poteri8al
i T o0 has to be chosen in such a way that the resulting quantum
H 2 P 2 vt g7’ P V(). @ defects approximate those of the investigated atom.

e
=1\2m
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FIG. 1. Classical scattering of trajectories at the ionic dame
semiparabolical coordinates; energy-0). Nonscattered Coulom-

bic orbits are straight lines. )

Some remarks are necessary about the arbitrariness of the
choice of the core potential, as the classical dynamics and the b
creation of new types of orbits discussed in Sec. Ill depends )

sensitively on this choice. Quantum mechanically the ionic
core is entirely described by the quantum defects. But there
exists an almost unique relation between the quantum defects; |
and the asymptotic behavior of the classical core scattering,
i.e., the deflection functio® (/). To show this we calculate

the classical deflection functiof (") and the semiclassical 0.8
guantum defects., for an arbitrary core potentidB). The
deflection angle, i.e., the difference between the polar angleos6 i

of the incoming and outgoing electron as a functionrofat
energy E~0 around the ionization threshglds obtained
from classical mechanid1]:

(/+1/2)dr
rof 2\ — (/+1/2)%/2r?

O=12|

= (/+1/2)dr
N \/Ef 2 Z 2 2’
rocl 2= V(1) = (/ + 1122/ 2r

(4)

with V(r) the core modified Coulomb potentié8) andr ¢
and r, the classical turning points depending @h The

0.4

0.2

FIG. 2. Quantum defecit, and classical deflection function
O()I2m=du,/d/ for two different kinds of core potentialéa)

guantum defectg., are semiclassically given as the differ- Core potential of Egq.(3) with a=1. (b) Core potential

ence in actions

J \/ (/+1/2)2
———dr
T R_w r
R 1 (/+1/2)7?
_fr F—Tdr . (5)

Applying the formula

d (xw 2(Y)r7f( y)
—f f(x,y)dxzf dxtfxgy) 2
dyJxy) x1(y) d

,=— lim

dxq
—f(X1'Y)d—y

Veardr)=—(Z=21)/r(r+1).

to the calculation of the derivative gf , with respect to/’
and comparing the result with the classical deflection func-
tion ® (/) we finally obtain the very general relation

du
0()=2m~ ®)

between the quantum defects and the deflection function. It
is illustrated in Fig. 2 for two different examples of model
potentials. Consequently, if the quantum defegts for
/=0,1,2 ... are fixed, the maximum deflection angle,

0O ax IS determined, as well, independent of the special form
of the core potential, provided that, does not fluctuate too
much with changing”. The maximum deflection angle is
directly related to the creation of core-scattered closed orbits:
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Only those nonhydrogenic orbits exist whose deflection
angle between interlinked hydrogenic orbits is less than
®,a- Equation(6) ensures that the classical dynamics of
nonhydrogenic atoms analyzed in the next section is almost
uniquely related to the quantum defects of the investigated
atom provided the model potential is adjusted to these quan-
tum defects. The classical dynamics does not depend sensi-
tively on a special analytical choice of the core potential.

Ill. CREATION OF NEW CLOSED ORBITS
THROUGH CLASSICAL CORE SCATTERING

Here we examine the classical dynamics of the highly
excited electron in the core modified Coulomb potentil
combined with an external magnetic field. The equations of
motion obtained from the total Hamiltonid@) are regular-
ized in semiparabolical coordinates and integrated numeri-
cally (see Appendix B As in the hydrogenic case, where it
is well known that closed orbits starting at and returning to
the nucleus produce modulations in the photo cross section
[11], we expect to explain the structures in nonhydrogenic
recurrence spectra in terms of closed orbits as well. There-
fore we give special attention to the existence of different
types of nonhydrogenic closed orbits.

Indeed, scattering by the core potential leads to the cre-
ation of a huge number of periodic orbits. With the know-
ledge about core scattering from the previous section a first
understanding of the shape of the orbits can be obtained. A
trajectory starting in almost the same initial direction as a
hydrogenic closed orbit leaves the nucleus radially and
evolves hydrogenlike outside the region of the ionic core. As
the orbit returns to the nucleus it is scattered by the core
potential. There are two possible ways for the nonhydrogenic
orbit to go: It can pass the core potential by leaving the
nucleus either on its right or on its left side. Two examples
are given with orbits(a) and (b) in Fig. 3 where the core
region is expanded separately to elucidate the scattering. The
electron is deflected and, contrary to hydrogen, the direction
of the outgoing electron does not agree with the incoming
direction but may now almost agree with the initial direction
of another hydrogenic closed orbit. Furthermore for each
scattering angle there exist two values for the impact param-
eter leading to two slightly different orbits, as illustrated in
Figs. 3c) and 3d). Outside the ionic core the electron again ] ) ]
evolves hydrogenlike and may then be scattered a second FIG_. 3. Four examples qf slllghtlly dn‘fe_rent core-scattered orbits
time, a third time, etc. until finally it returns to the nucleus Pelonging to the same familR;®V; . Orbits () and (b) pass the

exactly where the orbit is closed. Thus the nonhydrogeniducleus on different sides, whereas orlisand (d) differ only in
closed orbits appear to be composed of two or more hydrot:he'r impact parameters. The fu_II lines represg_nt one a_nd the da_lshed
. . . . lines a second cycle of the orbits. The magnified sections elucidate
genic orbits. The greater the maximal scattering angler detail the scattering in th .
. . . g In the core region.
O ax: the greater the number of possible interconnections of
hydrogenic orbits. This illuminates a huge and rapid increase
in the number of multiple scattered closed orbits. The noniematic search for both hydrogenic and core-scattered non-
hydrogenic orbits are created with increasing maximum dehydrogenic closed orbits. The scheme for this search
flection angle via a cascade of bifurcations. It would be in-becomes most transparent with the help of the following
teresting to study the bifurcation scheme in detail and tqS,dJ) diagrams(see Fig. 4 and Fig.)5Let a trajectory start
observe the occurrence of nonhydrogenic orbits in quanturat the origin with initial angled; relative to thez axis.
mechanical and semiclassical spectra with increa@ng,. Whenever the orbit passes either the positive or negative
This analysis is currently under investigation. axis, i.e.,p=0, its classical actiors= [p?dt is recorded in
Because the complete knowledge of closed orbits up to ¢he (S,9) diagram. Varying the starting angtk the diagram
certain maximal length are the essential key to a semiclassexhibits lines belonging to orbital crossings of the positive
cal calculation of recurrence spectra we now perform a sysand negativez axis, respectively. Now each closed orbit is
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. FIG. 4. (S.9) diagram for the hydrogen atom at scaled energy g1 5. Same as Fig. 4 but for a nonhydrogenic atom with

E=—0.3. Lines correspond to trajectories passing either the posigyantum defect;=0.5. The rapid increase in the number of non-
tive or negativez axis. Crossings of lines indicate closed orbits, hydrogenic closed orbits is clearly exhibited.

labeled in the nomenclature of R¢8].

obviously characterized by a simultaneous return of the elecaimost the sum of hydrogenic ones they may be clustered at
tron to the positive and negatizeaxis, i.e., by a crossing of recurrence positions where a hydrogenic orbit does not nec-

two lines in the §,9) diagram. Thus the starting angles and essarily exist. For example, in Fig. 5 clusters of orbits exist
classical actions of all closed orbits can be directly obtainegyatweenS~4.2 andS~4.6. ie.. at positions where novel
from the (S,9) diagram as the crossings of two different N aan

lines. Figures 4 and 5 represent two ex?/rgnples&f}o dia- {ym calculation§13]. In this way the new resonances, which
grams calculated at scaled enefgy Ey “*=—0.3, Fig. 4 pave recently been discovered in nonhydrogenic atoms
for the hydrogen atom and Fig. 5 for a nonhydrogenic atont; 3 14 14 can alreadyqualitativelybe explained by clusters
with quantum defeciu;=0.5. A comparison illustrates a ¢ ¢qre scattered closed classical orbits. A comptgtanti-
rapid increase in the number of closed orbits from 35 hydr?iative comparison of recurrence spectra will be possible with

genic orbits in Fig. 4 to about 2600 core-scattered orbits i g
Fig. 5. The nonhydrogenic orbits are clustered at startinqugr:zlfnot];;ﬂgitez;fétr;giory extended to general Rydberg

angles around those of hydrogenic orbits and the actions o
these clusters are approximately the sum of two or more
actions of hydrogenic orbits. If one has a closer look at them
in coordinate space and does not consider in detail small IV. CLOSED-ORBIT THEORY EXTENDED
differences in the core region, it turns out that they can be TO NONHYDROGENIC ATOMS

grouped into families of structurally similar orbits. As men-  Here, we present the closed-orbit theory of general Ryd-
tioned before, they seem to be composed of hydrogenic Oferg atoms in magnetic fields with a complete consideration
bits interlinked by the scattering at the core and it is naturals core effects via guantum defects and classical core scat-
to introduce the following notation for the families: We \{v_rite tering. The closed-orbit theory has been originally developed
hy®hy®hs® - - - whereh; denotes the name of a primitive for the hydrogen atom in a magnetic field by Du and Delos
hydrogenic orbit andp indicates the scattering at the core [9] and Bogomolny[10] and has been extended to incorpo-
potential. For the hydrogenic orbits;, we use the same 4t quantum defects by Gao, Delos, and Barikd]. For
nomenclature as in Ref8], i.e., orbitsR, are bifurcated completeness we report the physical picture and the deriva-
from the motion perpendicular to the field axié, denotes tion of semiclassical formulas. Although we tried to shorten
orbits directly bifurcated from the motion parallel to the the derivations as much as possible, the theory is quite
field, and higher-order bifurcations are marked by an astetengthy. The final results are to be found with E§6),
isk. For example, the orbits in Fig. 3 belong to the family where the oscillator strength is expressed in terms of all
Ry® V1. closed classical orbits, and with E@i2) for the scaled re-
Because the classical action of nonhydrogenic orbits i€urrence spectra.

resonance structures have been discover@dnmatrix quan-
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the final state is usually extended over several thousand Bohr
radii). In order to compute the integral (i@) it is sufficient to
know .7(x) in the vicinity of the nucleus, where the mag-
netic field is neglegible compared with the Coulomb force
and special solutions of the inhomogeneous Sdilger
equation(8) are outgoing Coulomb waves. On account of the
short-ranged core potential, the waves own an additional
phase shifts,= mwu,. The outgoing Coulomb wave is cal-
culated in Sec. IV B.

In the outer region the magnetic field must no longer be
neglected and the wave function is now propagated semiclas-
sically along classical trajectories. These trajectories, which
are directed radially at first, then feel the additional Lorentz
force and show up signatures of classical chaos. They evolve
according to the Hamiltonian equations, where the full core
potential is used. Eventually they are scattered at the atomic
core. The amplitude of the semiclassical wave function at a
given point ¢,9) depends on the stability properties of the
trajectories reachingr(9) and its phase is related to the
classical actiors and the numbew of conjugate points, i.e.,

FIG. 6. Sketch of the semiclassical excitation mechanisee  the Maslov index. The semiclassical wave is constructed in
text): (1) A radially outgoing Coulomb wave is produced by pho- Sec. IV C.
toabsorption. (2) The wave is propagated semiclassically along When the trajectory finally returns to the nucleus the
classical trajectories that are eventually scattered several times wtave function is joined to Coulomb scattering wavsse
the ionic core.(drawn is a single-scattered orbi(3) Finally re-  Sec. IV D and after separating the dependence the follow-
turning orbits are joined to incoming Coulomb waves. ing ansatz of#(x) as a superposition of an outgoing and
returning waves is valid close to the origin:

A. Physical picture

The semiclassical excitation mechanism can be roughly F(X)=> [W(r,9)+ ¥, 9)]eme. 9
divided into three different steps sketched in Fig. 6. m

The incoming and outgoing waves interfere and produce 0s-
(1) A state initially located close to the nucleus is excitedcillations in the photo cross section. With the wave function
by a photon creating an outgoing Coulomb wave which is9) at hand the semiclassical oscillator stren¢th is ob-
phase shifted in the case of nonhydrogenic atoms with retgined in Sec. IV E.
spect to the quantum defects of the ionic core.
(2) The further propagation of this wave is regarded semi- B. Outgoing Coulomb waves

classically along classical trajectories according to the full o
Hamiltonian (2), i.e., including core scattering of returning  Close to the nucleus where the magnetic field can be ne-

orbits (see Fig. & In this step the physical picture differs glected the inhomogeneous Sctfirer equatior(8) for the

substantially from Ref[15] where a semiclassical propaga- Hamilton operator

tion is restricted to regions out of core and core effects are

treated as quantum scattering. H=
(3) The finally returning trajectories are joined to incom-

ing Coulomb waves and the interference of incoming ands solved with the help of the Green’s function expanded in

outgoing waves create modulations in the oscillator strengtH. X .
spherical harmonics

Going into detail, we start with the exact quantum expres-
sion for the oscillator strength for dipole transitions of an
initial stateV; to final states at energy

S|

f’z ——+ Vcore (10)

N| =

FHX) =2 Vil 19NGZTT )Y il 9,9)

2 . :
f(E)=— ;(E— Ei)lmj Bx(D¥)* (0).7(%), (7) and the outgoing waves can be written as

whereD is the dipole operator and(x) the solution of the ‘I’%UI(W&):/; f dX' Y2 (97,087 (rr )Y (9, 0)
inhomogeneous Schiinger equation #=Iml
. X(DW)(x). (1)
[E-H+ig]7(x)=(D¥;)(x). (8) -
Here we tookgE‘O, an approximation valid for smatl and
The quantum wave”7(x) can be semiclassically approxi- for states highly excited close to the ionization threshold.
mated as explained in the following. The initial state is lo- The radial Green’s function is gained from a regular and an
cated close to the nucleywithin a few Bohr radii, whereas irregular solution22]
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2R ORE™(r) e
2 RO RO T ROY(r) —— /71085, Na/1(1Br)

9%(r,r')=

where r=min{r,r'},r~=maxr,r'} and with 7(f,,f,)
=f,f5—f1f, the Wronskian determinant. For hydrogen the
regular and irregular solutions consist of Bessel and Neu- . . . -
mann functions, respectively, whereas for nonhydrogenic ath _the outgoing radial function the ionic core causes a phase
oms they can be written down in the asymptotic region as &Mt 9, at distances > core:

linear combination of hydrogenic solutions, with prefactors
depending on the phase shifts:

+5in8,J5, 1 1(\/8I)]. (13)

_ 2
R2%U(r)=R%"{r)+iR%"(r) =€ > \[;H(z%l( Var). (14

r>r
core 2
Rg,reg(r) - F[COS§/Jz/+ 1( \/S—r)
(HM=J,+iN, is the Hankel function of the first kinglFi-

—sind, Ny, . 1(\/8r)], (120 nally the outgoing wave can be written down:
|
Vo r, 9)=—mi /;ml REU)Y /(9. 0) J &' (DY) (x IREE(r' )Y 5,(9',0") (15)
A\ J
T N
Blm

The coefficient8 ,,, depend only on the dipole operator and on the initial state. As we do not know the initial wave function
inside the core regionr&rg,d, they are unknown, but constant. Only in the hydrogenic case can they be calculated
analytically. For the dipole transition considered here they lead to a constant factor in the spectra. Together with an asymptotic

property of the Hankel function
X—00 2
H(l)(X) _ei[x—w/Zn—w/4]
n X

one obtains the asymptotic form of the outgoing wave:

=]

\I’?nm’as(r,'ﬂ)= _ \/;21/4r—3/4ei(\/§—7r/4) /2; I (_ 1 )/eia/B/mY/'"(ﬂ’O) (16)
"=\m
e /
o (®)

The angular functiongi’,/,‘;(ﬁ) depend on the initial state, the s
_ T AiS()s
dipole operator, and the quantum defeéts of the ionic W)= p(q)e>™. (17)

core.
Every orbit starting on the initial surfacE® and passing

throughq gives a contribution tas(q) of the form(17). The

C. Semiclassical propagation densityp(q) depends on the divergence of adjacent trajecto-
ries:
When the outgoing waves reach a radiusr .o, Where
a semiclassical approximation becomes valid but the mag- J(t=0g°)
netic term is still small enough compared with the Coulomb p(qQ)= I '0) p(q°%) (18
term, we proceed as follows: From now on we propagate the (t.q

wave function semiclassically along classical trajectories in . :
the combined fields. We follow the construction of Maslov with the Jacobian

and Fedoriuk[23], which is also described in Ref24]: 0
Starting from an initial surfac&® and integrating the clas- J(t q°)=de4 9(t.q7)
sical actionS(qg) and the density(q) along the solutions of ’ at,q) |
Hamilton’s equations, one can construct an asymptotic, i.e.,

correct in first order ofi, solution to Schrdinger’s equation:  The action is defined as

(19
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The semiclassical wave function at, {/) now reads

Stq)=5(a)+ | pda 20

For the systems considered here, i.e., atoms in externaﬂfﬁ]emtr,ﬁ)
fields, the wave function on the initial sphere with radius

r=r; is given by Eq.(16) and may be written as =—y2m ; Vsind; /r? sin® defa(r,9)/a(t, )]
Win(ri, )= pm(r;, §)eSr =4, (21 X /091 ) €LSmir ) = (w2 arck (w1 4)], 27)
with
Vom(ri, 9)=— \/;21/4“*3/4(1//[‘;](19) (22) Cpnqerning the applicability of the semiclassical approxi-
mation it may be noted that for highly excited atoms at labo-
the density of classical trajectories, and ratory field strength the configuration-space form of the
semiclassical condition is valid in the classically allowed re-
r ) . )
e far— | gion except(a) close to its border where the classical mo-
S(ri)=v8r; f 2/vdr 23 mentum becomes extremely small &bl close to the origin

where the potential is singular. In case(aef a momentum-

the action of a classical trajectory starting at the nucleus andpace form of the semiclassical approximation is appropriate
propagated ta =r; in a pure Coulomb field, i.ewithout [9]. In region (b), i.e., close and inside the ionic core the
consideration of the core potential. The formulas suggest tapplicability of the semiclassical approximation is not at all
start formally all trajectories at the origin and on the condi-obvious and a further discussion is necessary: For the model
tion that we have to “switch off” the core potential in the potential(3) we calculated the partial radial wave functions
beginning in order to neglect core effects that are alreadR*Yr) quantum mechanically via numerical integration of
incorporated in the;//m(ﬂ) in (22). Then, a correct calcula- Schralinger’s equation and semiclassically. A comparison of
tion of the stability properties is guaranteed as well. the quantum defectg, (see Appendix A demonstrates a

The outgoing wave propagates along classical trajectoriegood agreement in the asymptotic wave functions. Therefore
starting with angle; relative to the magnetic field axes. The we finally conclude that the semiclassical approximation is
trajectories are those of an electron experiencing the Couwappropriate for the problem as a whole, provided the Maslov
lomb force plus the short-ranged core potential and the Lorindex is considered correctly.
entz force. Each trajectory, labeled with the indg>gives at
(r,9) a contribution of the form

S m
k(13 0) = NI(t, B3 4 /3CE B3 1) [V (17, D 1) In Eq. (27) the semiclassical wave function has to be cal-
X @il Sm k(1 9) = (wl2) eyt 4] (24) culated in an implicit way. Moreover, it is not valid close to
the origin where the semiclassical condition breaks down.
whereS;, (r,®¥) denotes the action of an electron starting atOn the other hand the calculation of oscillator strength via
the origin (with the core potential switched off at the begin- Eg. (7) requires the explicit knowledge of returning waves

D. Finally returning waves

ning). It is divided into two parts: close to the origin. For this purpose the semiclassical waves
of finally returning classical trajectories are joined to incom-
Snk=SctM(3yT+mn,), (25)  ing Coulomb scattered waves as described in the following
’ ’ text.
whereS, is the action for magnetic quantum numimer=0, In Eqg. (27) the actionSy, i(r,¥) of an almost closed orbit

i.e., the action of ther( ) motion, whereas the second term K incoming at the anglé};  is approximated in the vicinity

approximates the action of the separatedhotion. T, is the  Of the nucleugbutr>R,9 by

recurrence time and the index,, is incremented by one .

every time the orbit touches tteaxes and, moreover, it is _ a0 _ (9 2,

increymented by one at the start and at the end and incre- Sk 9) =S var + \[8(1& Frp)”+ 2 (28)

mented by two every time the orbit passes the origin. The

Maslov indexqy increases by one every time the trajectory

passes a conjugate point or a caustic, where the Jacobigsee Appendix ¢ WhereSOm’k is the action of the orbit ex-

J(t,9;) vanishes, and is incremented additionally by one atctly returning to the origin but without consideration of the

the beginning and the end of the trajectory. The Jacobian core potential at the final return, i.e., the same rule for the
“switching off” holds for the initial start and final return of a

d(X,y,2) a(r,9) closed trajectory. The additional phase of#/2 in (28) is

a(t, 9 ,(p) necessary for a correct counting of the Maslov index consis-

tent with the definition thaty, is incremented by one at the

is given on the initial spheréclose to the nucleus where final return of a closed orbit.

B~0 andE~0) for radially outgoing trajectories as The determinant ii27) can be expressed by one element
of the monodromy matrixM computed in semiparabolical

I(t;, 910 = 2 sind; r¥2. coordinategsee Appendix R

(26)

J(t,0) = de* ind de*
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a(raﬁ) 2 i I - A P
det- it oy = v Mizk: 29  WpsMr,9)=— JEC%‘,k Vsind; /rsind] Myl Zo( i k)
y Ui .0l
The monodromy matriM is nearly independent of close @[S~ (/2 ayt (ml4)]
to the nucleus but outside the ionic corer .o,9, i.€., in the o )
region where the semiclassical returning wave has to be X @ ILVBT=ITB(9 = B¢ )"~ (w/2)] (30)

joined to an incoming Coulomb scattered quantum wave. It

is therefore quite natural to calculate the monodromy matrix The exact quantum mechanical stationary state of the
of a closed orbit on the condition that the core potential iscore-scattered waves is a superposition of an incoming wave
“switched off” at the start and final return. By means of this |/2/rH (22/)+1(\/§) and an outgoing wave2/rH (21/)+1(\/§)

procedure, the Liapunov exponents of primitive orbits notyith prefactors including a total phase shift of 2between
scattered at the coreand consequently the amplitudes of the two waves due to the core potential:

returning wavesare the same for hydrogenic and nonhydro-
genic atoms. It may be noted that the Liapunov exponents of r>Tcore 2 .
closed orbits defined and computed in this way differ from WwS%fr) — F[H(zz/)ﬂ( V8r)+e? o /HY)  (\8r)]
those obtained ih20] where the core potential is considered
to include the start and final return of trajectories. The sta- _
bility coefficients of Ref[20] are not suitable to be used in =e'/RI"qr). (31
the semiclassical theory.
Inserting the above expressions in E27) we obtain the Now, in the asymptotic limes>r ..., we expand the return-
incoming semiclassical wave function in the vicinity of the ing wave function‘l’[ﬁt, needed in Eq(9), in terms of the
nucleus as a sum over all trajectories closed at the nucleusCoulomb scattered wave functions and spherical harmonics:

W“’“’*%, CrmPENP)Y f(9,0)

=)

2 c 2
=2 c/m\[;H§2)+1(J8_r)Y/m(ﬂ,0)+/§ml c/,,,\[;ez‘ﬁng;?H(@)Y/m(ﬁ,O) (32
“

J \_ J/

— —
incoming wave outgoing wave

In order to determine the coefficients,, we must compare the incoming part of the Coulomb scattered wave fun@&pn
with the incoming semiclassical wave functi@d0). Using the orthogonality relation for the spherical harmonics we get

2 T .
Crm \[FH(ZZ)H( \/§)=2wa WINSEM )Y, (9,0 sindd &

_ | 2 o
== (2m*23 sind, WMoz (910 \[;e'[sm,k (712) oy (x14)

X J LB T 9 7121 SingY ,(9,0)d .
. ,

The integral is evaluated in the stationary phase approximation together with the assumptigsinti,(9,0) is nearly
constant in the region of stationary phase, i.egtatd; y:

2 . .
o\ HE (B0 =~ 2, (5, i

' irs?  — 7l 2) ay, + i 2 - —i[V8r—ml— T
X(—=1) 229110 Y sm( Ot 1, 0) €' LSmi (72 enct "UT(zr) SlAgil\Br =l ~(3l4m], (33
o

In the last term we recognize the asymptotic form of the radial incoming wave

2 e 2 o
\[FH(22/)+1(\/8—r) \/__(zr)73/4efl[vw 7l —(3/4)7]

w



and finally obtain the coefficients

C/m= - (ZW)S/ZC%DK \/Sinl‘}iyk Sinﬁf’k/|m12k|(— 1
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which are inserted int¢32) to get the returning wave function

W, 9)=—(2m)52Y, \sind;  Sind; /[ Moy
cl.ok

oo

X 709, ’k)ei[somyk—(ﬁ/z)aw 4]
/=

E. Oscillator strength

To obtain the semiclassical formula for the oscillator
strength we now insert the expressions for the outgoing wav
(15) and the returning waves5s) into Eq. (7). The integral in
(7) results by analogy witti15) in coefficientsB?,, and the
sum over/ quantum numbers i35 can be reduced by
analogy with(16) to functions

éz,n(a):/;n1| (—1)"€B*, Y, m(9,0),

where the coefficient8,,, are replaced by their complex
conjugate, but the phase shifts due to the quantum defec
(e'%’) keep their sign; i.e., thg'/i(ﬂ) in general differ from
the complex conjugate Q;f;/%(ﬂ). As a final result we obtain

m

753
Y D210Vl 94, 0) €S (TID e w14, (34)
| (—1) €%R2®YN)Y sn(91,0)Y y( 3,0). (35)

whered;  is the starting angle of closed orlkt ¥¢  is the
returning angle,m;,, is the monodromy matrix element,
§%Yk is the classical actiony, is the Maslov index, and, is
the phase shift. As previously explained all classical quanti-
ties of orbitsk closed at the nucleus have to be calculated
with the condition that the core potential has to be switched
off at the start and final return of the trajectory, as core ef-
fects related to the first and last interaction with the core are
already incorporated in the semiclassical formulas via the
phase shifts, .
In our comparison of semiclassical results with experi-

mental spectra or exa®-matrix quantum calculations we

onsider dipole transitions withr-polarized light from an

itial s state to final states with magnetic quantum number
m= 0. For this transition the only nonvanishing coefficient is
B,o and we obtain

the oscillator strength as the sum of a direct part from the

dipole matrix element off’; with the outgoing wavel 3",
which produces a continuous background and contribution
from all returning wavesP[¢' which causes a superposition
of oscillations in the spectrum:
f=1f0+ fosc (36)

with

fO=2(E;—E) > |Bml?
/m

fOSC:4(277)3/2(Ef_Ei)Im{ C%k \/Sinl‘}iyk Sinﬂfyk/|m12k|
X 3 80 e D)€l (e
m=—x
,?/:i(a)=/;ml (—1)7 "B, Y /n( 9,0),
24 0>=/;ml (—1) € B%0Y (19,0,

B, m= f x(DY,) (R )Y? o 90),

f0=2(E{—E;)|B1d?,
s

/0 /0 io 3
Z8(9)=73(9)=—eBig\[z-cosy (37

and
f=f°[1+ > Ay sin(S— ¢k>}, (39)
cl.ok
with the amplitudes and phases
A= \/187T Sinﬁi’k Sinﬁf’k/|m12,k|cosﬁi’k CO&?f’k,
o r
¢k:_261+ Eak_z. (39)

F. Recurrence spectra at constant scaled energy

A special feature of a purely hydrogenic system in a mag-
netic field is its scaling property with respect to the magnetic
field strength. With scaled coordinates and momenta,

F=y ~13

2/3r , D

the classical Hamiltonian can be written in the form

p=y

~2By =

H= v (40)
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The classical trajectories obtained from the scaled equationsosition é:ék to the recurrence spectrufd2). For finite
of motion do not depend on both energy and magnetic fieldength Az the resonances are broadened and may overlap. In
strength but on only one parameter, the scaled energiis case the complex phases(#®) ensure the correct con-
E=Ey~?". Because the classical action scales as sideration of interference effects in the calculation of recur-
9, & -13 rence strength&(S), which are complex numbers in gen-
SE2mSy (1) eral. If there is no interest in the complex phase of these
(the factor of 27 is introduced for convenience onlgach numbers recurrence spectra are taken as absolute value or
closed orbitk contributes a sinusoidal modulation#1*3to  absolute value squared B{(S).
the oscillator strength at constant scaled energy. The modu- Regarding transitions from an initialstate to final states
lations become most transparent in the Fourier transform ofith m=0 the amplituded\, and phases, are given by Eq.
photoabsorption spectra at constant scaled energyhese  (39) (with m,,, replaced with the scaled quantitietn this
so-called recurrence spectra exhibit sharp resonances at th§m, Eq. (42 has been applied to obtain the semiclassical

positions of the scaled classical action of closed orbits; i.€..acrrence spectra presented in the next paragraph.
they can be interpreted semiclassically in terms of closed

orbits starting at and returning to the nucleus. Varying the
scaled energ¥ the bifurcation scheme of closed orhj25] V. COMPARISON OF RECURRENCE SPECTRA
can be systematically analyzed in the recurrence spectra : .
[8,11]. Nonhydrogenic resonance structures in recurrence spectra
The scaling property is lost, in general, for nonhydrogenichave been dls_covered R-matrix quantum calculations of a
atoms in magnetic fields because the size of the ionic cor@'0del atom with one nonzero quantum defeet ¢ 0) [13].
does not depend on the magnetic field strength. In our modetimilar structures have also been recently observed in ex-
potential (3), this loss manifests in the fact that the length Perimental spectra arf@matrix calculations of heliuri14].
parametera determining the range of the core potential is Ve are now able to compare the recurrence spectra of Refs.
constant and does not scale li&e ay?3. But if the range of  [13] and[14] with rigorous semiclassical results and to ex-
interest for the magnetic field strengthis not too large, Pplain the nonhydrogenic resonances in terms of families of
ay?® may be assumed to be constant in good approximatiofore-scattered closed orbits.
and is chosen to reproduce the quantum defgctsof a
given atom at the center of the interval. With this appoint-
ment the same scaling laws as for hydrogen can now be
applied to nonhydrogenic atoms. Recurrence spectra at con- In Ref.[13] the transition from hydrogenic to nonhydro-
stant scaled energy are most appropriate, also for genergenic spectra has been analyzed in varying the quantum de-
Rydberg atoms, to perform comparisons between generifect i, in R-matrix calculations between,;=0 (i.e., hydro-
features in quantum spectra and the related classical dynargen) andu;=0.9. At scaled energﬁz —0.3 the recurrence
ICS. . , , , _ spectrum atu;=0.5 [Fig. 7(b)] significantly deviates from
Applying the scaling relation for the classical actid#y.  the hydrogenic spectrufiFig. 8(b)]: Pronounced resonances
(41)] andll for ~the ~monodromy matrix element 5re ghserved, which do not appear in hydrogen and at posi-
(fyz=my2y™) and introducing tions where no hydrogenic closed orbits exist. One of them

7=y 18 labeled withY is situated aé%4.4, and another 8~3.3.

o ) In our classical calculations we choge-2.269 anda=1
the oscillating part of the photoabsorption spectrum can b&, ihe potential(3) to obtain a quantum defect gf,=0.5.

A. Model atom at scaled energ)é= -0.3

written as Because of the huge exponential proliferation of the number
B . of closed orbits with increasing action the calculations have
fo{z)= fo)’llelzk Ay siN2mSz— ¢y). been restricted t8<4.8. The semiclassical recurrence spec-

clL.ol

tra are presented in Figs(&f and 8a). They show the same
The Fourier transform recurrence spectra can be calculatdgatures as thR-matrix calculations of Re{.13] and we are
analytically in the approximation that S8 is assumed NOw able to explain these structures in terms of families of

1/6, 1/6
=Y . .
constant in the Fourier transformed interyaj ,z,]. With ~ Structural similar closed orbits.
z=1/2 (z,+2,) andAz=2z,—z, we obtain Let us start the discussion with the resonance structure at

4.2<S<4.6 labeled withY in Fig. 7(b). It is built up by a
superposition of several hundred core-scattered closed orbits
as illustrated in Fig. 9. The figure presents the recurrence
amplitudesA, of nonhydrogenic orbitgcalculated with Eg.
(39)]. The cluster of strongest amplitudes aroB4.5 be-
longs to the closed-orbit famle%ean* , Whereas clusters

of resonances a6~4.3 and S~4.45 belong to the orbit

F(é) — ifzzfos%Z)GZWié(z_z)dZ
Az ),

1 [z o ~ .
= —foy”ﬁf ‘278> A, sin(2nS,z— dy)dz
Az cl.ok

Z

— {078 A sin(7(S—SYAz) o (- 2752+ /2) families R;® V] and R3® V3, respectively. Some members
Er T 2w(S—S)Az ' of these families are plotted in Fig. 10. In addition to the
42) single-scattered orbits also multiple-scattered orbits contrib-

ute to the observed resonance structures. Indeed, we find any
In the case of an infinite length of the photoabsorption speceombination of double and triple core-scattered orbits of the
trum (Az— ) each closed orbk contributes a functionat  kind R;&V3;®R; or Ri®Vi®eR,&Vi. These multiple-
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042601pra7

FIG. 7. Fourier transform recurrence spedtransition to final
statesm”™=0") of a nonhydrogenic atom with quantum defect  FIG. 8. Same as Fig. 7 but for the hydrogen atom, i.e., with
m1=0.5. Scaled energif= —0.3. (a) Semiclassical calculatiorib) quantum defecj,=0.
R-matrix quantum calculatiofil3]. Some resonances are labeled

with closed orbits or their symbolic namps]. drogen together with the quantum calculation of Hé#]

are to be found in Fig. 12. The agreement between the semi-
scattered orbits have quite a low amplitude, but of courseglassical results, the experimental spectrum, and the
their total number is extremely high as any permutation ofR-matrix quantum calculations is strikingly good even for
primitive hydrogenic orbits is possible and, as discusseghe very details in which the helium atom deviates from hy-
a.bo_ve, every core_—scattering produces a whole family o{jrogen[zs]_
similar shaped orbits. . We are now going to explain the novel resonance struc-
The resonance structure &-=3.3 is easier to explain as tyres in helium. Experimentally two new resonances appear
there are fewer possibilities to build up core-scattered orbitS; jed actio~ 10.65 andS~11.45. which can now be
of this quite short length from primitive hydrogenic orbits. identified with families of core-scattéred orbits: There are
The strongest amplitudes belong to single-scattered orbits (geveral possibilities to combine two or more 6rbits to ap-
the family Vi® R, bl.Jt theriz exist small contributions  of proximately achieve these actions. In Fig. 11, we have indi-
double-scattered orbi®; ©V; &R, as well. cated all types of double-scattered orbits that we have actu-
. ally found. For illustration some graphs of orbits are drawn
B. Helium atom at scaled energye =—0.7 in Fig. 13. It is clearly visible how they are composed of two

Recently the helium atom was investigated experimenPrimitive hydrogenic orbits. There is even a much greater
tally with high-resolution constant scaled-energy spectrosiumber of multiple core-scattered orbits, e.g., the oRjit
copy [12,14. Metastable $2s°S, He atoms were excited @®V7 has almost the same action Rgd Rg® V7. Any com-
with cw laser lightr polarized with respect to the magnetic bination of primitive hydrogenic orbit®;, andV,, existing at
field axis to final states with magnetic_quantum numberscaled energfe=—0.7 seems to be possible. The 13 000
m=0. Recurrence spectra at scaled endtgy— 0.7 reveal most stable orbits we have used in our calculations are only
nonhydrogenic resonance structures at large actions in agrea-small, perhaps 1%, subset of all multiple-scattered orbits as
ment with R-matrix quantum calculationgl4]. The novel we have estimated by an extensive closed-orbit search in a
nonhydrogenic structures are marked by arrows in Figsvery small range of starting angles. Searching for all orbits is
11(b) and 11c). a difficult task with regard to a reasonable employment of

The p-wave quantum defect of helium close to the ioniza-computer resources. But, every additional core scattering
tion threshold isu;=0.0684 and all quantum defegts for  leads to an enormous loss of recurrence amplitude and we
higher angular momenta are negligibly small. In our calcu-assume that orbits scattered more than three times can be
lations we chose nuclear charge-2 and length parameter neglected in the periodic orbit sum of the semiclassical spec-
a=0.33 in the potentia(3) to model the helium atom. The trum. This assumption is supported by the good quantitative
semiclassical recurrence spectrum is presented in F{g).11 agreement between the semiclassical, experimental, and
For comparison the semiclassical recurrence spectrum of hyrR-matrix spectrun(see Fig. 1L
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a) Closed-orbit theory RioV}
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8 9 10 11 12
4 4.6 6000
§ b)Experimental spectrum (helium)
4000 }
_ FIG. 9. Section of the amplitude spectrum at scaled energy
E=—0.3 and quantum defegt,;=0.5. The lines represent the re- 2000
currence strength of nonhydrogenic closed orbits generating by co-
herent superposition the resonance structure labelled¥vithFig. 0 - .
7. 8 9 10 11 12
6000 - - -
In the quantum mechanically calculated spectrum of he- c)Numerical calculation (helium)

lium [Fig. 11(c)] there appear two further resonances at 4000 |
S~9.0 and S~9.8 dominantly built up from double-
scattered orbits of familieR},®V} with an index sum 2000

p+v=11 andu+v=12, respectively. We also find an ad- n M AA N
ditional resonance ab~8.15, which is very weak in the 0 8 9 10 11 12
guantum spectrum. The corresponding core-scattered orbit Action

consists of two hydrogeneous orbRg and V3 that do not

exist at scaled actiofE=—0.7, but are born at slightly

X FIG. 11. Recurrence spectra of the helium at@final states
higher scaled energy. P dm

m”=0") at scaled energﬁ= —0.7. (a) Semiclassical calculation;
(b) experimental spectrufil4]; (c) R-matrix quantum calculation
[14]. Nonhydrogenic resonances are marked by arrows and labeled

We have investigated nonhydrogenic Rydberg atoms ifVith families of single-scattered closed orbits.
magnetic fields in a rigorous semiclassical approach. The
non-Coulombic nature of the ionic core has been consideregotential and new families of core-scattered nonhydrogenic
in classical trajectory calculations via a short-ranged corelosed orbits have been discovered. With a closed-orbit
theory extended to arbitrary quantum defects of the ionic
core semiclassical recurrence spectra of nonhydrogenic at-

VI. CONCLUSION

a) Closed-orbit theory

|F(8)]

6000
b)Numerical calculation (hydrogen)
4000
2000 | n AM
0 LJ\ _ LA LA JUL A
8 9 10 1 12
FIG. 10. Some core-scattered orbits contributing to the reso- Action
nance structure labeled with in Fig. 7. Scaled energig=—0.3;
quantum defecj,=0.5. (a) — (c) Orbits of family Ri®V3; (d) — FIG. 12. Same as Fig. 11 but for the hydrogen at¢ah Semi-

(f) Orbits of family R}®V3* . classical calculationtb) R-matrix quantum calculatiofil4].
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with the conditionu,(r)~r”** close to the origin. Equation

(A1) is integrated numerically from the origin to the region
outside the ionic corer¢>r.y9. The phase shifé, = 7u , is
now obtainedmodulo ) by comparison with the analytical
form of the asymptotic wave functiofi2).

Semiclassicallyfi 6, is the difference in the classical ac-
tion between the nonhydrogenic and hydrogenic radial mo-
tion starting at the turning point. As is well known
/(7 +1) has to be replaced with'(+ 1/2)? in the semiclas-
sical formulas to be valid for small angular quantum num-
bers[27]. With the hydrogenic part in Ed5) solved analyti-
©) cally, ro=1/2 (/'+ 1/2)?, andR>r .., We obtain
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FIG. 13. Some examples of single-scattered closed orbits of the
helium atom at scaled energy——0.7. They belong to familie&)  For jllustration Table | presents the quantum defgetsfor
Rs®Vs; (b) Rs®Vg; () Rs®V7; (d) Rs® Vg; (8) Rg® V. the model potentiat3) and various values of the nuclear

chargeZ and length parametea. The quantum and semi-

oms have been provided. They are in good guantitativelassical results are in good agreement especially for the
agreement as well witlR-matrix quantum calculations as largest and most important quantum defects. The agreement
with experimental measurements. Furthermore the rigorous a justification for a rigorous semiclassical treatment of
semiclassical approach allows a deeper understanding amdnhydrogenic atoms in magnetic fields, i.e., the consider-
interpretation of the physics of general Rydberg atoms: Thation of core effects via classical scattering.
novel resonance structures in nonhydrogenic recurrence
spectra have been recently denoted as effects “beyond peri-
odic orbits,” which result fronquantum scatteringf return- APPENDIX B: REGULARIZATION OF EQUATIONS
ing waves at the ionic corel5]. We are now able to explain OF MOTION

these features completely in terms of new families of closed The coulomb singularity presents an obstacle with regard
orbits, i.e., viaclassicalcore scattering. It may be noted that 1, nymerical integration of the equations of motion. The way
the different approaches are not at all in contradiction buy ; of this problem is a transformation of tinte>r with
complement each other to finalize our physical picture ofyi—2¢dq+ called regularizatiori28], together with a coordi-

general Rydberg atoms in magnetic fields. nate transformation to semiparabolical coordinates

The semmlassmal apprqach should be appllcable_ not onl =tz and v=\r—z This results in a regularized
to atoms in a magnetic field but to nonhydrogenic Star amiltonian

spectra[16] and to atoms in crossed magnetic and electric
fields [17] as well. But the numerical effort to search for
core-scattered closed orbits will considerably increase in the
case of nonparallel external magnetic and electric fields, as
the classical motion of the highly excited electron is non-
separable inhree degrees of freedom.

) 1 (2 2
T= 5 (Pt pl) —E(u?+vh) = (Z-1)e” Wiz

1

2+ VZ
’ +§'yz/_1,2v2(,u,2+ v’)=2. (Bl

X
2a

1+

APPENDIX A: COMPUTATION OF QUANTUM DEFECTS ) . . .
The equations of motion obtained from the Hamilton{Ba)

We calculate the quantum defegts of the ionic core due  are free of singularities and were integrated numerically with
to the core potentiaf3) by two different methods, namely, the help of a high-order Runge-Kutta algorithm with step
quantum mechanically by numerical solution of Sahro width control in order to fulfill the accuracy requirement in
inger’s equation and semiclassically by calculation of thethe domain of the additional core potential. Close to the
classical action. nucleus where the magnetic field can be neglected and with

In quantum mechanics the regular wave functionsE~(Q the HamiltonianB1) describes the scattering of a free
u,(r)=rR¥Yr) at energyE=0 are solutions of the radial motion by the short-ranged core-potential as illustrated in
equation Fig. 1.

Because core scattering is graphically more pronounced
in semiparabolical than in cylindrical coordinates in this pa-
per all closed orbits are drawn in semiparabolical coordinates

(m,v).

2 A(/+1)
W_r—Z—ZV(r) u,(r)=0, (A1)
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TABLE I. Quantum mechanical and semiclassical quantum defegctef the model core potential.

Z=3a=1 Z=3a=2 Z=4a=2

/ M(/quantun) M(/semicl) nguanturr) ,LL(/SGmiCD Iu(/quantun) M(/semicl)

0 0.9095 0.9077 1.2982 1.2963 1.7999 1.7981

1 0.7489 0.7473 1.1924 1.1896 1.6821 1.6796

2 0.3135 0.3446 0.9471 0.9449 1.4159 1.4131

3 0.0216 0.0151 0.4955 0.5073 0.9355 0.9344

4 0.0012 0.0004 0.0684 0.0626 0.1338 0.1243

5 <10°* <104 0.0081 0.0055 0.0127 0.0085

APPENDIX C: CLASSICALACTION IN THE VICINITY m,;, and an initial deviation solely in momentum space to
OF THE NUCLEUS obtainmj, andm,,. In practice a linearized system of dif-

ferential equations obtained by differentiating Hamilton’s

The classical action in the vicinity of the nuclewsth the 8quations of motion with respect to the phase-space coordi-

core potential switched off, the magnetic field neglected, an . . .
E~0) is most easily calculated in semiparabolical coordi-nates S numenca]ly mtegrated. I .
tesy = T (1+c0s9) and»= \r (1—cosd). With th For closed orbits starting at the origin and calculated in
natesu = r( C? ) andw=r( Cfo )- ! € regu- semiparabolical coordinateg.(v) an initial deviation in mo-
larized moment®,, = —2cosd/2 andp, = —2sind;/2 of o entum space perpendicular to the orbital motion can be
: ) ; ) ) . p perp
bits returning with an angleé}; to the field axis we obtain expressed by a deviation in the starting angje

(0,0
A8=f (Pudp’ +p,dv')=—p'u—ply 5'0”(0)) =( _pv(o)) o0
) 5p,(0)) | pu(0) | 2
gi— O
=8r cosz. (C1 and the deviations of coordinates at the final return are
For 9= ; we get the desired expression to derive . —

tweg p &) Su(T) 79, (M

= 51% .
APPENDIX D: CALCULATION ov(T) Jv T
OF THE MONODROMY MATRIX a_ﬂi( )

The monodromy matrixM is the stability matrix re- gy nrojection the matrix elemenmn,, is now obtained as
stricted to deviations perpendicular to a periodic orbit after

period timeT. We only discuss systems with two nonsepa- 1 v o
rable degrees of freedoflike atoms in a magnetic fieldIf m12=§( Pu(T) 75 (M) =pu(T) Z5-(T)
5q(0) is a small deviation perpendicular to the orbit in co- ! '
ordinate space at timte=0 andsp(0) an initial deviation in  |f the Jacobiar(26) is written in semiparabolical coordinates
momentum space, the corresponding deviations attimi® 4 » and the new timer
are related to the monodromy matfik0]:

5CI(T)) <5Q(0)) (mllmlz)(5Q(0)) ( J(t,9))=pnvde
op(T) op(0) My1My,/ \ 6p(0) )

To computeM one considers an initial deviation solely in Equation(29) is derived by comparison with E¢D2) for the
coordinate space to obtain the matrix elememts; and monodromy matrix elememnty,.

. (D2)

I pu,v)
(7(7',1%)

v du
Pﬂd—ﬂi p”d_ﬁi -

=r sim‘}(

(D3)
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