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Multielectron atoms in external fields are essentially more complicated than hydrogen with regard to theo-
retical treatments. Experimental spectra of helium as well asR-matrix quantum-defect calculations revealed
discrepancies between the diamagnetic hydrogen atom and general Rydberg atoms. They appeared most trans-
parent as novel resonance structures in constant scaled-energy recurrence spectra of nonhydrogenic atoms at
positions where no hydrogenic resonances exist. To reveal the physical origin of these resonances we per-
formed a rigorous semiclassical investigation of nonhydrogenic atoms in magnetic fields. The ionic core is
introduced into the Hamiltonian via a short-ranged core potential. For this Hamiltonian we analyze in detail the
classical dynamics of closed orbits. Classical core-scattering results in the creation of a huge number of new
closed orbits. They appear to be composed of a sequence of slightly different hydrogenic orbits, interconnected
by the core-scattering, and can be grouped into families accordingly. With a semiclassical closed-orbit theory
generalized to arbitrary quantum defects of the ionic core and with the closed orbits at hand we are able to
calculate photoabsorption spectra of nonhydrogenic atoms. Although each of the new orbits has a low ampli-
tude, the interference of all members of a family results in clearly visible resonances in the Fourier transform
recurrence spectra, in good agreement with experiment and quantum calculations. The novel structures in
nonhydrogenic spectra are now identified and semiclassically interpreted in terms of families of core-scattered
classical orbits.

PACS number~s!: 32.60.1i, 03.65.Sq, 05.45.1b, 32.70.Cs

I. INTRODUCTION

Highly excited atoms in magnetic fields have been shown
to be ideally suited — as real physical examples of noninte-
grable systems — to study experimentally and theoretically
the quantum manifestations of classical chaos@1–3#. Even
the simplest system, the hydrogen atom, placed in a uniform
magnetic field, is neither separable nor integrable in the re-
gime where the magnetic and Coulomb force are of compa-
rable strength, a condition fulfilled in atoms excited close to
the ionization threshold@4#. The classical dynamics is cha-
otic, i.e., no invariant tori exist to calculate individual quan-
tum states via semiclassical torus quantization. Nevertheless,
since the discovery of quasi-Landau resonances in barium
@5#, it turned out that closed classical orbits are of special
importance for modulations of the photoabsorption spectra.
The quasi-Landau resonances could be interpreted semiclas-
sically as a periodic motion of the electron in the plane per-
pendicular to the magnetic field axis@6#. In later experiments
on hydrogen different types of quasi-Landau resonances
were observed and explained in terms of closed orbits out of
the plane perpendicular to the field@7#. The method ofcon-
stant scaled-energy spectroscopyenables a systematic ex-
perimental search for the entirety of quasi-Landau reso-
nances related to closed classical orbits@8#.

The measurements were accompanied by extensive theo-
retical investigations. Most of the theoretical work has been
restricted to the hydrogen atom, which served — because of
its simplicity and fundamental importance — as a basis also
for the understanding of nonhydrogenic atoms. Fundamental
advance in a semiclassical description of the photo cross sec-
tion in terms of classical orbits was achieved by aclosed-

orbit theory@9,10#. The theory allows a quantitative calcula-
tion of recurrence spectra reproducing in detail the resonance
structures experimentally observed in hydrogenic atoms@11#
and even explains most of the structures in nonhydrogenic
recurrence spectra, e.g., in helium@12#.

Nevertheless, exact quantum-defectR-matrix calculations
@13–15# and experimental investigations@14# reveal puzzling
structures in recurrence spectra of general Rydberg atoms in
magnetic fields; i.e., changes are observed in the intensities
of resonances, and, most interesting, resonances appear at
positions where no closed orbits exist in the hydrogen atom.
Similar nonhydrogenic signatures have recently also been
observed in experimental Stark spectra of lithium@16# and in
spectra of rubidium atoms in crossed magnetic and electric
fields @17#. As general Rydberg atoms differ from hydrogen
in the existence of a non-Coulombic ionic core, a detailed
analysis of core effects, and particular, of core-scattering is
necessary to explain the nonhydrogenic resonance structures.

In a semiclassical approach Gao, Delos, and Baruch in-
corporated quantum defects into theclosed-orbit theoryand
compared semiclassical and experimental Stark spectra of
sodium in the positive energy regime@18#. In these spectra,
core-scattering effects were unessential compared with the
quality of the avaiable experimental data and only hydro-
genic orbits have been considered in their calculations. Ob-
viously it is impossible to explain the nonhydrogenic reso-
nance structures in Refs.@13–15# in this approximation.

Another approach followed theR-matrix picture: The re-
gion outside the ionic core is treated semiclassically with
hydrogenic classical orbits but core effects are considered
fully quantum mechanically, i.e., as a quantum scattering of
waves@15#. The method is able to reproduce the resonance
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structures, which are interpreted in@15# as effects ‘‘beyond
periodic orbits.’’ With this statement the fundamental ques-
tion arises as to whether or not these structures can be ex-
plained fully semiclassically in terms of different types of
classical orbits.

The first completely semiclassical interpretation of nonhy-
drogenic spectra was given in Ref.@19#, where the reso-
nances were calculated with different types of classical core-
scattered orbits. Briefly, the decisive start for the treatment of
core effects in the framework of closed-orbit theory is the
modeling of the ionic core by means of a suitable core po-
tential and a consideration of this model potential with the
classical movement of the highly excited electron. In this
paper we report in detail the rigorous semiclassical investi-
gation of general Rydberg atoms in magnetic fields.

The paper is organized as follows: In the next section we
introduce the model core potential and discuss the classical
scattering of orbits. In particular the classical deflection func-
tion is shown to be almost uniquely related to the quantum
defects of the ionic core. In Sec. III we analyze the classical
dynamics of the highly excited electron under the combined
action of the Coulomb potential, the core, and the external
magnetic field. In a systematic search we obtain new families
of core-scattered closed orbits. In Sec. IV we derive the
closed-orbit theory extended to arbitrary quantum defects.
Finally, in Sec. V we apply the closed-orbit theory to the
orbits of Sec. III. The semiclassically obtained recurrence
spectra are compared with recentR-matrix quantum calcula-
tions and experimental measurements and reveal an interpre-
tation of nonhydrogenic resonance structures in terms of
classically core-scattered closed orbits.

II. MODEL CORE POTENTIAL
FOR GENERAL RYDBERG ATOMS

The exact nonrelativistic Hamiltonian for anN-electron
atom in a magnetic field of strengthB directed along thez
axis reads
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We are dealing with Rydberg atoms where only one electron
is highly excited close to the ionization threshold but the
ionic core remains in the ground state. In this situation the
nuclear charge is screened by the inner electrons and the
complexity of the exact problem can be substantially simpli-
fied to the movement of the highly excited electron in an
attractive Coulomb potential modified by a short-ranged core
potential combined with an external magnetic field directed
along the z axis. In atomic units @with
g5B/(2.353105 T) the magnetic field strength# the Hamil-
tonian of the highly excited electron reads
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The potentialV(r ) of the nucleus and the core is assumed to
be spherical symmetric and must comply with the two con-
ditions
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natural to general Rydberg atoms. Instead of performing
Hartree-Fock calculations we use an analytical form that al-
lows an easy integration of classical trajectories. Anyway,
our intention is not to describe one particular atom to the
greatest accuracy but to study the general effects of an addi-
tional short-ranged potential on the photoabsorption spectra.
In order to have a simple dependence of the first derivative
with respect tor we assume the following dependence onr :
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whereZ is the nuclear charge anda is a free length param-
eter determining the range of the core. This kind of potential
has also been used in recent studies of nonhydrogenic atoms
@20#.

In comparison with hydrogen, the classical equations of
motion derived from the Hamiltonian~2! are now modified
by the presence of a short-ranged core potential in~3!. In the
following we discuss the changes of classical trajectories in
the vicinity of the core, in particular the deflection of core-
scattered orbits. The complete classical dynamics including
the external magnetic field is analyzed in Sec. III.

In quantum mechanics the ionic core is entirely character-
ized by quantum defectsm l , or for energiesE.0 by phase
shifts d l . At the ionization threshold, these two quantities
are connected by Seaton’s theorem

d l 5pm l .

The quantum defects can be calculated from the core poten-
tial ~3! ~see Appendix A! and depend in this model on the
nuclear chargeZ, the lengtha, and the azimuthal quantum
number l . For increasingl the quantum defects become
rapidly small, whereas they ascend with growingZ or a.

Classically, the core potential leads to a deflection of a
trajectory incident with impact parameterb, which is di-
rectly related to the classical angular momentum
L5(l 1 1/2)\. The classical scattering is most easily de-
scribed in semiparabolical coordinates~see Appendix B!,
where purely Coulombic orbits at energyE50 are simply
straight lines. If an additional attractive core is considered
trajectories are deflected as shown in Fig. 1. Forb5L50 no
core scattering takes place, whereas with increasingL the
trajectories are more and more deflected, until the deflection
angle reaches a maximum. With further growing impact pa-
rameter the deflection angle decreases until finally the elec-
tron moves outside the region of the short-ranged core po-
tential. The deflection functionQ(l ) for different kinds and
parameters of the core potential~3! is shown in Fig. 2. Our
model potential causes no singularities inQ(l ); i.e., trajec-
tories are not trapped by the core. The model potential~3!
has to be chosen in such a way that the resulting quantum
defects approximate those of the investigated atom.
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Some remarks are necessary about the arbitrariness of the
choice of the core potential, as the classical dynamics and the
creation of new types of orbits discussed in Sec. III depends
sensitively on this choice. Quantum mechanically the ionic
core is entirely described by the quantum defects. But there
exists an almost unique relation between the quantum defects
and the asymptotic behavior of the classical core scattering,
i.e., the deflection functionQ(l ). To show this we calculate
the classical deflection functionQ(l ) and the semiclassical
quantum defectsm l for an arbitrary core potential~3!. The
deflection angle, i.e., the difference between the polar angles
of the incoming and outgoing electron as a function ofl ~at
energyE'0 around the ionization threshold! is obtained
from classical mechanics@21#:

Q~ l !5A2E
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` ~ l 11/2!dr

r 2A1/r2~ l 11/2!2/2r 2

2A2E
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with V(r ) the core modified Coulomb potential~3! and r 0,c
and r 0 the classical turning points depending onl . The
quantum defectsm l are semiclassically given as the differ-
ence in actions
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Applying the formula
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to the calculation of the derivative ofm l with respect tol
and comparing the result with the classical deflection func-
tion Q(l ) we finally obtain the very general relation

Q~ l !52p
dm l

dl
~6!

between the quantum defects and the deflection function. It
is illustrated in Fig. 2 for two different examples of model
potentials. Consequently, if the quantum defectsm l for
l 50,1,2, . . . are fixed, the maximum deflection angle,
Qmax is determined, as well, independent of the special form
of the core potential, provided thatm l does not fluctuate too
much with changingl . The maximum deflection angle is
directly related to the creation of core-scattered closed orbits:

FIG. 1. Classical scattering of trajectories at the ionic core~in
semiparabolical coordinates; energyE50!. Nonscattered Coulom-
bic orbits are straight lines.

FIG. 2. Quantum defectm l and classical deflection function
Q(l )/2p5dm l /dl for two different kinds of core potentials.~a!
Core potential of Eq. ~3! with a51. ~b! Core potential
Vcore(r )52(Z21)/r (r11).

746 53BRUNO HÜPPER, JO¨ RG MAIN, AND GÜNTER WUNNER



Only those nonhydrogenic orbits exist whose deflection
angle between interlinked hydrogenic orbits is less than
Qmax. Equation~6! ensures that the classical dynamics of
nonhydrogenic atoms analyzed in the next section is almost
uniquely related to the quantum defects of the investigated
atom provided the model potential is adjusted to these quan-
tum defects. The classical dynamics does not depend sensi-
tively on a special analytical choice of the core potential.

III. CREATION OF NEW CLOSED ORBITS
THROUGH CLASSICAL CORE SCATTERING

Here we examine the classical dynamics of the highly
excited electron in the core modified Coulomb potential~3!
combined with an external magnetic field. The equations of
motion obtained from the total Hamiltonian~2! are regular-
ized in semiparabolical coordinates and integrated numeri-
cally ~see Appendix B!. As in the hydrogenic case, where it
is well known that closed orbits starting at and returning to
the nucleus produce modulations in the photo cross section
@11#, we expect to explain the structures in nonhydrogenic
recurrence spectra in terms of closed orbits as well. There-
fore we give special attention to the existence of different
types of nonhydrogenic closed orbits.

Indeed, scattering by the core potential leads to the cre-
ation of a huge number of periodic orbits. With the know-
ledge about core scattering from the previous section a first
understanding of the shape of the orbits can be obtained. A
trajectory starting in almost the same initial direction as a
hydrogenic closed orbit leaves the nucleus radially and
evolves hydrogenlike outside the region of the ionic core. As
the orbit returns to the nucleus it is scattered by the core
potential. There are two possible ways for the nonhydrogenic
orbit to go: It can pass the core potential by leaving the
nucleus either on its right or on its left side. Two examples
are given with orbits~a! and ~b! in Fig. 3 where the core
region is expanded separately to elucidate the scattering. The
electron is deflected and, contrary to hydrogen, the direction
of the outgoing electron does not agree with the incoming
direction but may now almost agree with the initial direction
of another hydrogenic closed orbit. Furthermore for each
scattering angle there exist two values for the impact param-
eter leading to two slightly different orbits, as illustrated in
Figs. 3~c! and 3~d!. Outside the ionic core the electron again
evolves hydrogenlike and may then be scattered a second
time, a third time, etc. until finally it returns to the nucleus
exactly where the orbit is closed. Thus the nonhydrogenic
closed orbits appear to be composed of two or more hydro-
genic orbits. The greater the maximal scattering angle,
Qmax, the greater the number of possible interconnections of
hydrogenic orbits. This illuminates a huge and rapid increase
in the number of multiple scattered closed orbits. The non-
hydrogenic orbits are created with increasing maximum de-
flection angle via a cascade of bifurcations. It would be in-
teresting to study the bifurcation scheme in detail and to
observe the occurrence of nonhydrogenic orbits in quantum
mechanical and semiclassical spectra with increasingQmax.
This analysis is currently under investigation.

Because the complete knowledge of closed orbits up to a
certain maximal length are the essential key to a semiclassi-
cal calculation of recurrence spectra we now perform a sys-

tematic search for both hydrogenic and core-scattered non-
hydrogenic closed orbits. The scheme for this search
becomes most transparent with the help of the following
(S,q) diagrams~see Fig. 4 and Fig. 5!: Let a trajectory start
at the origin with initial angleq i relative to thez axis.
Whenever the orbit passes either the positive or negativez
axis, i.e.,r50, its classical actionS5*p2dt is recorded in
the (S,q) diagram. Varying the starting angleq i the diagram
exhibits lines belonging to orbital crossings of the positive
and negativez axis, respectively. Now each closed orbit is

FIG. 3. Four examples of slightly different core-scattered orbits
belonging to the same familyR2

1
%V1

1 . Orbits ~a! and ~b! pass the
nucleus on different sides, whereas orbits~c! and ~d! differ only in
their impact parameters. The full lines represent one and the dashed
lines a second cycle of the orbits. The magnified sections elucidate
in detail the scattering in the core region.
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obviously characterized by a simultaneous return of the elec-
tron to the positive and negativez axis, i.e., by a crossing of
two lines in the (S,q) diagram. Thus the starting angles and
classical actions of all closed orbits can be directly obtained
from the (S,q) diagram as the crossings of two different
lines. Figures 4 and 5 represent two examples of (S,q) dia-
grams calculated at scaled energyẼ5Eg22/3520.3, Fig. 4
for the hydrogen atom and Fig. 5 for a nonhydrogenic atom
with quantum defectm150.5. A comparison illustrates a
rapid increase in the number of closed orbits from 35 hydro-
genic orbits in Fig. 4 to about 2600 core-scattered orbits in
Fig. 5. The nonhydrogenic orbits are clustered at starting
angles around those of hydrogenic orbits and the actions of
these clusters are approximately the sum of two or more
actions of hydrogenic orbits. If one has a closer look at them
in coordinate space and does not consider in detail small
differences in the core region, it turns out that they can be
grouped into families of structurally similar orbits. As men-
tioned before, they seem to be composed of hydrogenic or-
bits interlinked by the scattering at the core and it is natural
to introduce the following notation for the families: We write
h1%h2%h3% ••• wherehi denotes the name of a primitive
hydrogenic orbit and% indicates the scattering at the core
potential. For the hydrogenic orbits,hi , we use the same
nomenclature as in Ref.@8#, i.e., orbitsRm

n are bifurcated
from the motion perpendicular to the field axis,Vm

n denotes
orbits directly bifurcated from the motion parallel to the
field, and higher-order bifurcations are marked by an aster-
isk. For example, the orbits in Fig. 3 belong to the family
R2
1

%V1
1 .

Because the classical action of nonhydrogenic orbits is

almost the sum of hydrogenic ones they may be clustered at
recurrence positions where a hydrogenic orbit does not nec-
essarily exist. For example, in Fig. 5 clusters of orbits exist
betweenS̃'4.2 andS̃'4.6, i.e., at positions where novel
resonance structures have been discovered inR-matrix quan-
tum calculations@13#. In this way the new resonances, which
have recently been discovered in nonhydrogenic atoms
@13,14,16# can alreadyqualitativelybe explained by clusters
of core-scattered closed classical orbits. A completequanti-
tativecomparison of recurrence spectra will be possible with
the help of a closed-orbit theory extended to general Rydberg
atoms in the next paragraph.

IV. CLOSED-ORBIT THEORY EXTENDED
TO NONHYDROGENIC ATOMS

Here, we present the closed-orbit theory of general Ryd-
berg atoms in magnetic fields with a complete consideration
of core effects via quantum defects and classical core scat-
tering. The closed-orbit theory has been originally developed
for the hydrogen atom in a magnetic field by Du and Delos
@9# and Bogomolny@10# and has been extended to incorpo-
rate quantum defects by Gao, Delos, and Baruch@18#. For
completeness we report the physical picture and the deriva-
tion of semiclassical formulas. Although we tried to shorten
the derivations as much as possible, the theory is quite
lengthy. The final results are to be found with Eq.~36!,
where the oscillator strength is expressed in terms of all
closed classical orbits, and with Eq.~42! for the scaled re-
currence spectra.

FIG. 4. (S̃,q) diagram for the hydrogen atom at scaled energy
Ẽ520.3. Lines correspond to trajectories passing either the posi-
tive or negativez axis. Crossings of lines indicate closed orbits,
labeled in the nomenclature of Ref.@8#.

FIG. 5. Same as Fig. 4 but for a nonhydrogenic atom with
quantum defectm150.5. The rapid increase in the number of non-
hydrogenic closed orbits is clearly exhibited.
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A. Physical picture

The semiclassical excitation mechanism can be roughly
divided into three different steps sketched in Fig. 6.

~1! A state initially located close to the nucleus is excited
by a photon creating an outgoing Coulomb wave which is
phase shifted in the case of nonhydrogenic atoms with re-
spect to the quantum defects of the ionic core.

~2! The further propagation of this wave is regarded semi-
classically along classical trajectories according to the full
Hamiltonian ~2!, i.e., including core scattering of returning
orbits ~see Fig. 6!. In this step the physical picture differs
substantially from Ref.@15# where a semiclassical propaga-
tion is restricted to regions out of core and core effects are
treated as quantum scattering.

~3! The finally returning trajectories are joined to incom-
ing Coulomb waves and the interference of incoming and
outgoing waves create modulations in the oscillator strength.

Going into detail, we start with the exact quantum expres-
sion for the oscillator strength for dipole transitions of an
initial stateC i to final states at energyE

f ~E!52
2

p
~E2Ei !ImE d3x~DC i !* ~x!F ~x!, ~7!

whereD is the dipole operator andF (x) the solution of the
inhomogeneous Schro¨dinger equation

@E2Ĥ1 i«#F ~x!5~DC i !~x!. ~8!

The quantum waveF (x) can be semiclassically approxi-
mated as explained in the following. The initial state is lo-
cated close to the nucleus~within a few Bohr radii, whereas

the final state is usually extended over several thousand Bohr
radii!. In order to compute the integral in~7! it is sufficient to
know F (x) in the vicinity of the nucleus, where the mag-
netic field is neglegible compared with the Coulomb force
and special solutions of the inhomogeneous Schro¨dinger
equation~8! are outgoing Coulomb waves. On account of the
short-ranged core potential, the waves own an additional
phase shiftd l 5pm l . The outgoing Coulomb wave is cal-
culated in Sec. IV B.

In the outer region the magnetic field must no longer be
neglected and the wave function is now propagated semiclas-
sically along classical trajectories. These trajectories, which
are directed radially at first, then feel the additional Lorentz
force and show up signatures of classical chaos. They evolve
according to the Hamiltonian equations, where the full core
potential is used. Eventually they are scattered at the atomic
core. The amplitude of the semiclassical wave function at a
given point (r ,q) depends on the stability properties of the
trajectories reaching (r ,q) and its phase is related to the
classical actionS and the numbera of conjugate points, i.e.,
the Maslov index. The semiclassical wave is constructed in
Sec. IV C.

When the trajectory finally returns to the nucleus the
wave function is joined to Coulomb scattering waves~see
Sec. IV D! and after separating thew dependence the follow-
ing ansatz ofF (x) as a superposition of an outgoing and
returning waves is valid close to the origin:

F ~x!5(
m

@Cm
out~r ,q!1Cm

ret~r ,q!#eimw. ~9!

The incoming and outgoing waves interfere and produce os-
cillations in the photo cross section. With the wave function
~9! at hand the semiclassical oscillator strength~7! is ob-
tained in Sec. IV E.

B. Outgoing Coulomb waves

Close to the nucleus where the magnetic field can be ne-
glected the inhomogeneous Schro¨dinger equation~8! for the
Hamilton operator

Ĥ5
1

2
p̂22

1

r
1Vcore ~10!

is solved with the help of the Green’s function expanded in
spherical harmonics

G 1~x,x8!5(
l m

Yl m* ~q8,w8!gl
E~r ,r 8!Yl m~q,w!

and the outgoing waves can be written as

Cm
out~r ,q!5 (

l 5umu

` E dx8Yl m* ~q8,w8!gl
E50~r ,r 8!Yl m~q,w!

3~DC i !~x8!. ~11!

Here we tookgl
E50 , an approximation valid for smallr and

for states highly excited close to the ionization threshold.
The radial Green’s function is gained from a regular and an
irregular solution@22#

FIG. 6. Sketch of the semiclassical excitation mechanism~see
text!: (1) A radially outgoing Coulomb wave is produced by pho-
toabsorption. (2) The wave is propagated semiclassically along
classical trajectories that are eventually scattered several times at
the ionic core.~drawn is a single-scattered orbit.! (3) Finally re-
turning orbits are joined to incoming Coulomb waves.
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gl
0 ~r ,r 8!5

2Rl
0,reg~r,!Rl

0,out~r.!

r 82W @Rl
0,reg~r 8!,Rl

0,out~r 8!#
,

where r,5min$r,r8%,r.5max$r,r8% and with W ( f 1 , f 2)
5 f 1f 282 f 18 f 2 the Wronskian determinant. For hydrogen the
regular and irregular solutions consist of Bessel and Neu-
mann functions, respectively, whereas for nonhydrogenic at-
oms they can be written down in the asymptotic region as a
linear combination of hydrogenic solutions, with prefactors
depending on the phase shifts:

Rl
0,reg~r ! ——→

r.r core A2

r
@cosd l J2l 11~A8r !

2sind l N2l 11~A8r !], ~12!

Rl
0,irr~r ! ——→

r.r core A2

r
@cosd l N2l 11~A8r !

1sind l J2l 11~A8r !]. ~13!

In the outgoing radial function the ionic core causes a phase
shift d l at distancesr.r core:

Rl
0,out~r !5Rl

0,reg~r !1 iRl
0,irr~r !5eid lA2

r
H2l 11

~1! ~A8r !. ~14!

(Hn
(1)5Jn1 iNn is the Hankel function of the first kind.! Fi-

nally the outgoing wave can be written down:

~15!

The coefficientsBl m depend only on the dipole operator and on the initial state. As we do not know the initial wave function
inside the core region (r,r core), they are unknown, but constant. Only in the hydrogenic case can they be calculated
analytically. For the dipole transition considered here they lead to a constant factor in the spectra. Together with an asymptotic
property of the Hankel function

Hn
~1!~x! ——→

x→` A 2

px
ei @x2p/2n2p/4#

one obtains the asymptotic form of the outgoing wave:

~16!

The angular functionsYm
d (q) depend on the initial state, the

dipole operator, and the quantum defectsd l of the ionic
core.

C. Semiclassical propagation

When the outgoing waves reach a radiusr i.r core, where
a semiclassical approximation becomes valid but the mag-
netic term is still small enough compared with the Coulomb
term, we proceed as follows: From now on we propagate the
wave function semiclassically along classical trajectories in
the combined fields. We follow the construction of Maslov
and Fedoriuk@23#, which is also described in Ref.@24#:
Starting from an initial surfaceS0 and integrating the clas-
sical actionS(q) and the densityr(q) along the solutions of
Hamilton’s equations, one can construct an asymptotic, i.e.,
correct in first order of\, solution to Schro¨dinger’s equation:

C~q!5Ar~q!eiS~q!/\. ~17!

Every orbit starting on the initial surfaceS0 and passing
throughq gives a contribution toc(q) of the form~17!. The
densityr(q) depends on the divergence of adjacent trajecto-
ries:

r~q!5
J~ t50,q0!

J~ t,q0!
r~q0! ~18!

with the Jacobian

J~ t,q0!5detU]~ t,q0!

]~ t,q!
U. ~19!

The action is defined as
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S~q!5S~q0!1E
q0

q

pdq. ~20!

For the systems considered here, i.e., atoms in external
fields, the wave function on the initial sphere with radius
r5r i is given by Eq.~16! and may be written as

Cm~r i ,q!5Arm~r i ,q!ei @S~r i !2p/4#, ~21!

with

Arm~r i ,q!52Ap21/4r i
23/4

Ym
d ~q! ~22!

the density of classical trajectories, and

S~r i !5A8r i5E
0

r iA2/rdr ~23!

the action of a classical trajectory starting at the nucleus and
propagated tor5r i in a pure Coulomb field, i.e.,without
consideration of the core potential. The formulas suggest to
start formally all trajectories at the origin and on the condi-
tion that we have to ‘‘switch off’’ the core potential in the
beginning in order to neglect core effects that are already
incorporated in theYm

d (q) in ~22!. Then, a correct calcula-
tion of the stability properties is guaranteed as well.

The outgoing wave propagates along classical trajectories
starting with angleq i relative to the magnetic field axes. The
trajectories are those of an electron experiencing the Cou-
lomb force plus the short-ranged core potential and the Lor-
entz force. Each trajectory, labeled with the indexk, gives at
(r ,q) a contribution of the form

Cm,k
semi~r ,q!5AJ~ t i ,q i ,k!/uJ~ t,q i ,k!uArm,k~r i ,q i ,k!

3ei @Sm,k~r ,q!2~p/2!ak1p/4#, ~24!

whereSm,k(r ,q) denotes the action of an electron starting at
the origin~with the core potential switched off at the begin-
ning!. It is divided into two parts:

Sm,k5Sk1m~ 1
2gTk1pnz,k!, ~25!

whereSk is the action for magnetic quantum numberm50,
i.e., the action of the (r ,q) motion, whereas the second term
approximates the action of the separatedf motion.Tk is the
recurrence time and the indexnz,k is incremented by one
every time the orbit touches thez axes and, moreover, it is
incremented by one at the start and at the end and incre-
mented by two every time the orbit passes the origin. The
Maslov indexak increases by one every time the trajectory
passes a conjugate point or a caustic, where the Jacobian
J(t,q i) vanishes, and is incremented additionally by one at
the beginning and the end of the trajectory. The Jacobian

J~ t,q i !5 detU ]~x,y,z!

]~ t,q i ,w!
U5r 2 sinq detU ]~r ,q!

]~ t,q i !
U ~26!

is given on the initial sphere~close to the nucleus where
B'0 andE'0) for radially outgoing trajectories as

J~ t i ,q i ,k!5A2 sinq i ,kr i
3/2.

The semiclassical wave function at (r ,q) now reads

Cm
semi~r ,q!

52A2p (
k

Asinq i ,k/r
2 sinq detu]~r ,q!/]~ t,q i !u

3Ym
d ~q i ,k!e

i @Sm,k~r ,q!2~p/2!ak1~p/4!#. ~27!

Concerning the applicability of the semiclassical approxi-
mation it may be noted that for highly excited atoms at labo-
ratory field strength the configuration-space form of the
semiclassical condition is valid in the classically allowed re-
gion except~a! close to its border where the classical mo-
mentum becomes extremely small and~b! close to the origin
where the potential is singular. In case of~a! a momentum-
space form of the semiclassical approximation is appropriate
@9#. In region ~b!, i.e., close and inside the ionic core the
applicability of the semiclassical approximation is not at all
obvious and a further discussion is necessary: For the model
potential~3! we calculated the partial radial wave functions
Rl
reg(r ) quantum mechanically via numerical integration of

Schrödinger’s equation and semiclassically. A comparison of
the quantum defectsm l ~see Appendix A! demonstrates a
good agreement in the asymptotic wave functions. Therefore
we finally conclude that the semiclassical approximation is
appropriate for the problem as a whole, provided the Maslov
index is considered correctly.

D. Finally returning waves

In Eq. ~27! the semiclassical wave function has to be cal-
culated in an implicit way. Moreover, it is not valid close to
the origin where the semiclassical condition breaks down.
On the other hand the calculation of oscillator strength via
Eq. ~7! requires the explicit knowledge of returning waves
close to the origin. For this purpose the semiclassical waves
of finally returning classical trajectories are joined to incom-
ing Coulomb scattered waves as described in the following
text.

In Eq. ~27! the actionSm,k(r ,q) of an almost closed orbit
k incoming at the angleq f ,k is approximated in the vicinity
of the nucleus~but r.Rcore) by

Sm,k~r ,q!5Sm,k
0 2A8r1Ar

8
~q2q f ,k!

21
p

2
~28!

~see Appendix C!, whereSm,k
0 is the action of the orbit ex-

actly returning to the origin but without consideration of the
core potential at the final return, i.e., the same rule for the
‘‘switching off’’ holds for the initial start and final return of a
closed trajectory. The additional phase of1 p/2 in ~28! is
necessary for a correct counting of the Maslov index consis-
tent with the definition thatak is incremented by one at the
final return of a closed orbit.

The determinant in~27! can be expressed by one element
of the monodromy matrixM computed in semiparabolical
coordinates~see Appendix D!:
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detU ]~r ,q!

]~ t,q i !
U5 2

r
m12,k . ~29!

The monodromy matrixMk is nearly independent ofr close
to the nucleus but outside the ionic core (r.r core), i.e., in the
region where the semiclassical returning wave has to be
joined to an incoming Coulomb scattered quantum wave. It
is therefore quite natural to calculate the monodromy matrix
of a closed orbit on the condition that the core potential is
‘‘switched off’’ at the start and final return. By means of this
procedure, the Liapunov exponents of primitive orbits not
scattered at the core~and consequently the amplitudes of
returning waves! are the same for hydrogenic and nonhydro-
genic atoms. It may be noted that the Liapunov exponents of
closed orbits defined and computed in this way differ from
those obtained in@20# where the core potential is considered
to include the start and final return of trajectories. The sta-
bility coefficients of Ref.@20# are not suitable to be used in
the semiclassical theory.

Inserting the above expressions in Eq.~27! we obtain the
incoming semiclassical wave function in the vicinity of the
nucleus as a sum over all trajectories closed at the nucleus:

Cm
in,semi~r ,q!52Ap (

cl.o.k
Asinq i ,k/rsinqum12,kuYm

d ~q i ,k!

3ei @Sm,k
0

2~p/2!ak1~p/4!#

3e2 i @A8r2Ar /8~q2q f ,k!22~p/2!#. ~30!

The exact quantum mechanical stationary state of the
core-scattered waves is a superposition of an incoming wave
A2/rH 2l 11

(2) (A8r ) and an outgoing waveA2/rH 2l 11
(1) (A8r )

with prefactors including a total phase shift of 2d l between
the two waves due to the core potential:

C l
scat~r ! ——→

r.r core A2

r
@H2l 11

~2! ~A8r !1e2id l H2l 11
~1! ~A8r !#

5eid l Rl
0,reg~r !. ~31!

Now, in the asymptotic limesr.r core, we expand the return-
ing wave functionCm

ret, needed in Eq.~9!, in terms of the
Coulomb scattered wave functions and spherical harmonics:

~32!

In order to determine the coefficientscl m we must compare the incoming part of the Coulomb scattered wave function~32!
with the incoming semiclassical wave function~30!. Using the orthogonality relation for the spherical harmonics we get

cl mA2

r
H2l 11

~2! ~A8r !52pE
0

p

Cm
in,semi~r ,q!Yl m~q,0!sinqdq

52~2p!3/2(
cl.o.k

Asinq i ,k/um12,kuYm
d ~q i ,k!A2

r
ei @Sm,k

0
2 ~p/2! ak1 ~p/4!#

3E
0

p

e2 i @A8r2Ar /8~q f ,k2q!22 p/2#AsinqYl m~q,0!dq.

The integral is evaluated in the stationary phase approximation together with the assumption thatAsinqYl m(q,0) is nearly
constant in the region of stationary phase, i.e., atq'q f ,k :

cl mA2

r
H2l 11

~2! ~A8r !52~2p!5/2(
cl.o.k

Asinq i ,k sinq f ,k/um12,ku

3~21! l Ym
d ~q i ,k!Yl m~q f ,k,0!ei @Sm,k

0
2~p/2!ak1p/4#

2

Ap
~2r !23/4e2 i @A8r2p l2~3/4!p#. ~33!

In the last term we recognize the asymptotic form of the radial incoming wave

A2

r
H2l 11

~2! ~A8r ! ——→
r→` 2

Ap
~2r !23/4e2 i @A8r2p l2~3/4!p#
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and finally obtain the coefficients

cl m52~2p!5/2(
cl.o.k

Asinq i ,k sinq f ,k/um12,ku~21! l Ym
d ~q i ,k!Yl m~q f ,k,0!ei @Sm,k

0
2~p/2!ak1p/4#, ~34!

which are inserted into~32! to get the returning wave function

Cm
ret~r ,q!52~2p!5/2(

cl.o.k
Asinq i ,k sinq f ,k/um12,ku

3Ym
d ~q i ,k!e

i @Sm,k
0

2~p/2!ak1p/4# (
l 5umu

`

~21! l eid l Rl
0,reg~r !Yl m~q f ,0!Yl m~q,0!. ~35!

E. Oscillator strength

To obtain the semiclassical formula for the oscillator
strength we now insert the expressions for the outgoing wave
~15! and the returning wave~35! into Eq.~7!. The integral in
~7! results by analogy with~15! in coefficientsBl m* and the
sum overl quantum numbers in~35! can be reduced by
analogy with~16! to functions

Ỹm
d ~q!5 (

l 5umu

`

~21! l eid l Bl m* Yl m~q,0!,

where the coefficientsBl m are replaced by their complex
conjugate, but the phase shifts due to the quantum defects
(eid l ) keep their sign; i.e., theỸm

d (q) in general differ from
the complex conjugate ofYm

d (q). As a final result we obtain
the oscillator strength as the sum of a direct part from the
dipole matrix element ofC i with the outgoing waveCm

out,
which produces a continuous background and contributions
from all returning wavesCm

ret which causes a superposition
of oscillations in the spectrum:

f5 f 01 f osc ~36!

with

f 052~Ef2Ei !(
l m

uBl mu2,

f osc54~2p!3/2~Ef2Ei !ImH (
cl.o.k

Asinq i ,k sinq f ,k/um12,ku

3 (
m52`

`

Ym
d ~q i ,k!Ỹm

d ~q f ,k!e
i @Sm,k

0
2~p/2!ak1p/4#J ,

Ym
d ~q!5 (

l 5umu

`

~21! l eid l Bl mYl m~q,0!,

Ỹm
d ~q!5 (

l 5umu

`

~21! l eid l Bl m* Yl m~q,0!,

Bl m5E d3x~DC i !~x!Rl
0,reg~r !Yl m* ~q,w!,

whereq i ,k is the starting angle of closed orbitk, q f ,k is the
returning angle,m12,k is the monodromy matrix element,
Sm,k
0 is the classical action,ak is the Maslov index, andd l is
the phase shift. As previously explained all classical quanti-
ties of orbitsk closed at the nucleus have to be calculated
with the condition that the core potential has to be switched
off at the start and final return of the trajectory, as core ef-
fects related to the first and last interaction with the core are
already incorporated in the semiclassical formulas via the
phase shiftsd l .

In our comparison of semiclassical results with experi-
mental spectra or exactR-matrix quantum calculations we
consider dipole transitions withp-polarized light from an
initial s state to final states with magnetic quantum number
m50. For this transition the only nonvanishing coefficient is
B10 and we obtain

f 052~Ef2Ei !uB10u2,

Y0
d~q!5Ỹ0

d~q!52eid1B10A 3

4p
cosq ~37!

and

f5 f 0H 11 (
cl.o.k

Ak sin~Sk2fk!J , ~38!

with the amplitudes and phases

Ak5A18p sinq i ,k sinq f ,k/um12,kucosq i ,k cosq f ,k ,

fk522d11
p

2
ak2

p

4
. ~39!

F. Recurrence spectra at constant scaled energy

A special feature of a purely hydrogenic system in a mag-
netic field is its scaling property with respect to the magnetic
field strength. With scaled coordinates and momenta,

r̃5g2/3r , p̃5g21/3p

the classical Hamiltonian can be written in the form

H̃5g22/3H5
1

2
p̃22

1

r̃
1
1

8
r̃25Ẽ. ~40!
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The classical trajectories obtained from the scaled equations
of motion do not depend on both energy and magnetic field
strength but on only one parameter, the scaled energy
Ẽ5Eg22/3. Because the classical action scales as

Sk52pS̃kg
21/3 ~41!

~the factor of 2p is introduced for convenience only! each
closed orbitk contributes a sinusoidal modulation ing21/3 to
the oscillator strength at constant scaled energy. The modu-
lations become most transparent in the Fourier transform of
photoabsorption spectra at constant scaled energyẼ. These
so-called recurrence spectra exhibit sharp resonances at the
positions of the scaled classical action of closed orbits; i.e.,
they can be interpreted semiclassically in terms of closed
orbits starting at and returning to the nucleus. Varying the
scaled energyẼ the bifurcation scheme of closed orbits@25#
can be systematically analyzed in the recurrence spectra
@8,11#.

The scaling property is lost, in general, for nonhydrogenic
atoms in magnetic fields because the size of the ionic core
does not depend on the magnetic field strength. In our model
potential ~3!, this loss manifests in the fact that the length
parametera determining the range of the core potential is
constant and does not scale likeã5ag2/3. But if the range of
interest for the magnetic field strengthg is not too large,
ag2/3 may be assumed to be constant in good approximation
and is chosen to reproduce the quantum defectsm l of a
given atom at the center of the interval. With this appoint-
ment the same scaling laws as for hydrogen can now be
applied to nonhydrogenic atoms. Recurrence spectra at con-
stant scaled energy are most appropriate, also for general
Rydberg atoms, to perform comparisons between generic
features in quantum spectra and the related classical dynam-
ics.

Applying the scaling relation for the classical action@Eq.
~41!# and for the monodromy matrix element
(m̃125m12g

1/3) and introducing

z[g21/3

the oscillating part of the photoabsorption spectrum can be
written as

f osc~z!5 f 0g1/6(
cl.o.k

Ãk sin~2pS̃kz2fk!.

The Fourier transform recurrence spectra can be calculated
analytically in the approximation thatg1/6'g1/6 is assumed
constant in the Fourier transformed interval@z1 ,z2#. With
z̄5 1/2 (z11z2) andDz5z22z1 we obtain

F~S̃!5
1

DzEz1
z2
f osc~z!e2p iS̃~z2 z̄!dz

5
1

Dz
f 0g1/6E

z1

z2
e2p iS̃~z2 z̄! (

cl.o.k
Ãk sin~2pS̃kz2fk!dz

5 f 0g1/6(
cl.o.k

Ãk

sin~p~S̃2S̃k!Dz!

2p~S̃2S̃k!Dz
ei ~fk22pS̃kz̄1 p/2!.

~42!

In the case of an infinite length of the photoabsorption spec-
trum (Dz→`) each closed orbitk contributes ad function at

position S̃5S̃k to the recurrence spectrum~42!. For finite
lengthDz the resonances are broadened and may overlap. In
this case the complex phases in~42! ensure the correct con-
sideration of interference effects in the calculation of recur-
rence strengthsF(S̃), which are complex numbers in gen-
eral. If there is no interest in the complex phase of these
numbers recurrence spectra are taken as absolute value or
absolute value squared ofF(S̃).

Regarding transitions from an initials state to final states
with m50 the amplitudesÃk and phasesfk are given by Eq.
~39! ~with m12,k replaced with the scaled quantities!. In this
form Eq. ~42! has been applied to obtain the semiclassical
recurrence spectra presented in the next paragraph.

V. COMPARISON OF RECURRENCE SPECTRA

Nonhydrogenic resonance structures in recurrence spectra
have been discovered inR-matrix quantum calculations of a
model atom with one nonzero quantum defect (m1Þ0) @13#.
Similar structures have also been recently observed in ex-
perimental spectra andR-matrix calculations of helium@14#.
We are now able to compare the recurrence spectra of Refs.
@13# and @14# with rigorous semiclassical results and to ex-
plain the nonhydrogenic resonances in terms of families of
core-scattered closed orbits.

A. Model atom at scaled energyẼ520.3

In Ref. @13# the transition from hydrogenic to nonhydro-
genic spectra has been analyzed in varying the quantum de-
fectm1 in R-matrix calculations betweenm150 ~i.e., hydro-
gen! andm150.9. At scaled energyẼ520.3 the recurrence
spectrum atm150.5 @Fig. 7~b!# significantly deviates from
the hydrogenic spectrum@Fig. 8~b!#: Pronounced resonances
are observed, which do not appear in hydrogen and at posi-
tions where no hydrogenic closed orbits exist. One of them
labeled withY is situated atS̃'4.4, and another atS̃'3.3.

In our classical calculations we choseZ52.269 anda51
in the potential~3! to obtain a quantum defect ofm150.5.
Because of the huge exponential proliferation of the number
of closed orbits with increasing action the calculations have
been restricted toS̃,4.8. The semiclassical recurrence spec-
tra are presented in Figs. 7~a! and 8~a!. They show the same
features as theR-matrix calculations of Ref.@13# and we are
now able to explain these structures in terms of families of
structural similar closed orbits.

Let us start the discussion with the resonance structure at
4.2,S̃,4.6 labeled withY in Fig. 7~b!. It is built up by a
superposition of several hundred core-scattered closed orbits
as illustrated in Fig. 9. The figure presents the recurrence
amplitudesAk of nonhydrogenic orbits@calculated with Eq.
~39!#. The cluster of strongest amplitudes aroundS̃'4.5 be-
longs to the closed-orbit familyR2

1
%V2

2* , whereas clusters
of resonances atS̃'4.3 and S̃'4.45 belong to the orbit
families R3

1
%V1

1 andR2
1

%V2
1 , respectively. Some members

of these families are plotted in Fig. 10. In addition to the
single-scattered orbits also multiple-scattered orbits contrib-
ute to the observed resonance structures. Indeed, we find any
combination of double and triple core-scattered orbits of the
kind R1%V2

1
%R1 or R1%V1

1
%R1%V1

1 . These multiple-
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scattered orbits have quite a low amplitude, but of course,
their total number is extremely high as any permutation of
primitive hydrogenic orbits is possible and, as discussed
above, every core-scattering produces a whole family of
similar shaped orbits.

The resonance structure atS̃'3.3 is easier to explain as
there are fewer possibilities to build up core-scattered orbits
of this quite short length from primitive hydrogenic orbits.
The strongest amplitudes belong to single-scattered orbits of
the family V1

1
%R2

1 but there exist small contributions of
double-scattered orbitsR1%V1

1
%R1 as well.

B. Helium atom at scaled energyẼ520.7

Recently the helium atom was investigated experimen-
tally with high-resolution constant scaled-energy spectros-
copy @12,14#. Metastable 1s2s3S1 He atoms were excited
with CW laser lightp polarized with respect to the magnetic
field axis to final states with magnetic quantum number
m50. Recurrence spectra at scaled energyẼ520.7 reveal
nonhydrogenic resonance structures at large actions in agree-
ment with R-matrix quantum calculations@14#. The novel
nonhydrogenic structures are marked by arrows in Figs.
11~b! and 11~c!.

Thep-wave quantum defect of helium close to the ioniza-
tion threshold ism150.0684 and all quantum defectsm l for
higher angular momenta are negligibly small. In our calcu-
lations we chose nuclear chargeZ52 and length parameter
a50.33 in the potential~3! to model the helium atom. The
semiclassical recurrence spectrum is presented in Fig. 11~a!.
For comparison the semiclassical recurrence spectrum of hy-

drogen together with the quantum calculation of Ref.@14#
are to be found in Fig. 12. The agreement between the semi-
classical results, the experimental spectrum, and the
R-matrix quantum calculations is strikingly good even for
the very details in which the helium atom deviates from hy-
drogen@26#.

We are now going to explain the novel resonance struc-
tures in helium. Experimentally two new resonances appear
at scaled actionS̃'10.65 andS̃'11.45, which can now be
identified with families of core-scattered orbits: There are
several possibilities to combine two or more orbits to ap-
proximately achieve these actions. In Fig. 11, we have indi-
cated all types of double-scattered orbits that we have actu-
ally found. For illustration some graphs of orbits are drawn
in Fig. 13. It is clearly visible how they are composed of two
primitive hydrogenic orbits. There is even a much greater
number of multiple core-scattered orbits, e.g., the orbitR7

1

%V7
1 has almost the same action asR1%R6

1
%V7

1 . Any com-
bination of primitive hydrogenic orbitsRm

n andVm
n existing at

scaled energyẼ520.7 seems to be possible. The 13 000
most stable orbits we have used in our calculations are only
a small, perhaps 1%, subset of all multiple-scattered orbits as
we have estimated by an extensive closed-orbit search in a
very small range of starting angles. Searching for all orbits is
a difficult task with regard to a reasonable employment of
computer resources. But, every additional core scattering
leads to an enormous loss of recurrence amplitude and we
assume that orbits scattered more than three times can be
neglected in the periodic orbit sum of the semiclassical spec-
trum. This assumption is supported by the good quantitative
agreement between the semiclassical, experimental, and
R-matrix spectrum~see Fig. 11!.

042601pra7

FIG. 7. Fourier transform recurrence spectra~transition to final
statesmp502) of a nonhydrogenic atom with quantum defect
m150.5. Scaled energyẼ520.3. ~a! Semiclassical calculation;~b!
R-matrix quantum calculation@13#. Some resonances are labeled
with closed orbits or their symbolic names@8#.

FIG. 8. Same as Fig. 7 but for the hydrogen atom, i.e., with
quantum defectm150.
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In the quantum mechanically calculated spectrum of he-
lium @Fig. 11~c!# there appear two further resonances at
S̃'9.0 and S̃'9.8 dominantly built up from double-
scattered orbits of familiesRm

1
%Vn

1 with an index sum
m1n511 andm1n512, respectively. We also find an ad-
ditional resonance atS̃'8.15, which is very weak in the
quantum spectrum. The corresponding core-scattered orbit
consists of two hydrogeneous orbitsR5

1 andV5
1 that do not

exist at scaled actionẼ520.7, but are born at slightly
higher scaled energy.

VI. CONCLUSION

We have investigated nonhydrogenic Rydberg atoms in
magnetic fields in a rigorous semiclassical approach. The
non-Coulombic nature of the ionic core has been considered
in classical trajectory calculations via a short-ranged core

potential and new families of core-scattered nonhydrogenic
closed orbits have been discovered. With a closed-orbit
theory extended to arbitrary quantum defects of the ionic
core semiclassical recurrence spectra of nonhydrogenic at-

FIG. 9. Section of the amplitude spectrum at scaled energy
Ẽ520.3 and quantum defectm150.5. The lines represent the re-
currence strength of nonhydrogenic closed orbits generating by co-
herent superposition the resonance structure labelled withY in Fig.
7.

FIG. 10. Some core-scattered orbits contributing to the reso-
nance structure labeled withY in Fig. 7. Scaled energyẼ520.3;
quantum defectm150.5. ~a! – ~c! Orbits of familyR2

1
%V2

1; ~d! –
~f! Orbits of familyR2

1
%V2

2* .

FIG. 11. Recurrence spectra of the helium atom~final states
mp502) at scaled energyẼ520.7. ~a! Semiclassical calculation;
~b! experimental spectrum@14#; ~c! R-matrix quantum calculation
@14#. Nonhydrogenic resonances are marked by arrows and labeled
with families of single-scattered closed orbits.

FIG. 12. Same as Fig. 11 but for the hydrogen atom.~a! Semi-
classical calculation;~b! R-matrix quantum calculation@14#.
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oms have been provided. They are in good quantitative
agreement as well withR-matrix quantum calculations as
with experimental measurements. Furthermore the rigorous
semiclassical approach allows a deeper understanding and
interpretation of the physics of general Rydberg atoms: The
novel resonance structures in nonhydrogenic recurrence
spectra have been recently denoted as effects ‘‘beyond peri-
odic orbits,’’ which result fromquantum scatteringof return-
ing waves at the ionic core@15#. We are now able to explain
these features completely in terms of new families of closed
orbits, i.e., viaclassicalcore scattering. It may be noted that
the different approaches are not at all in contradiction but
complement each other to finalize our physical picture of
general Rydberg atoms in magnetic fields.

The semiclassical approach should be applicable not only
to atoms in a magnetic field but to nonhydrogenic Stark
spectra@16# and to atoms in crossed magnetic and electric
fields @17# as well. But the numerical effort to search for
core-scattered closed orbits will considerably increase in the
case of nonparallel external magnetic and electric fields, as
the classical motion of the highly excited electron is non-
separable inthreedegrees of freedom.

APPENDIX A: COMPUTATION OF QUANTUM DEFECTS

We calculate the quantum defectsm l of the ionic core due
to the core potential~3! by two different methods, namely,
quantum mechanically by numerical solution of Schro¨d-
inger’s equation and semiclassically by calculation of the
classical action.

In quantum mechanics the regular wave functions
ul (r )5rRl

reg(r ) at energyE50 are solutions of the radial
equation

S d2dr2 2
l ~ l 11!

r 2
22V~r ! Dul ~r !50, ~A1!

with the conditionul (r );r l 11 close to the origin. Equation
~A1! is integrated numerically from the origin to the region
outside the ionic core (r.r core). The phase shiftd l 5pm l is
now obtained~modulop) by comparison with the analytical
form of the asymptotic wave function~12!.

Semiclassically,\d l is the difference in the classical ac-
tion between the nonhydrogenic and hydrogenic radial mo-
tion starting at the turning point. As is well known
l (l 11) has to be replaced with (l 1 1/2)2 in the semiclas-
sical formulas to be valid for small angular quantum num-
bers@27#. With the hydrogenic part in Eq.~5! solved analyti-
cally, r 05 1/2 (l 1 1/2)2, andR.r core we obtain

d l 5E
r0,c

R A22V~r !2
~ l 11/2!2

r 2
dr2A8~R2r 0!

1A8r 0 arctanAR2r 0
r 0

. ~A2!

For illustration Table I presents the quantum defectsm l for
the model potential~3! and various values of the nuclear
chargeZ and length parametera. The quantum and semi-
classical results are in good agreement especially for the
largest and most important quantum defects. The agreement
is a justification for a rigorous semiclassical treatment of
nonhydrogenic atoms in magnetic fields, i.e., the consider-
ation of core effects via classical scattering.

APPENDIX B: REGULARIZATION OF EQUATIONS
OF MOTION

The Coulomb singularity presents an obstacle with regard
to numerical integration of the equations of motion. The way
out of this problem is a transformation of timet°t with
dt52rdt called regularization@28#, together with a coordi-
nate transformation to semiparabolical coordinates
m5Ar1z and n5Ar2z. This results in a regularized
Hamiltonian

H5
1

2
~pm

21pn
2!2E~m21n2!2~Z21!e2~m21n2!/2a

3S 11
m21n2

2a D1
1

8
g2m2n2~m21n2!52. ~B1!

The equations of motion obtained from the Hamiltonian~B1!
are free of singularities and were integrated numerically with
the help of a high-order Runge-Kutta algorithm with step
width control in order to fulfill the accuracy requirement in
the domain of the additional core potential. Close to the
nucleus where the magnetic field can be neglected and with
E'0 the Hamiltonian~B1! describes the scattering of a free
motion by the short-ranged core-potential as illustrated in
Fig. 1.

Because core scattering is graphically more pronounced
in semiparabolical than in cylindrical coordinates in this pa-
per all closed orbits are drawn in semiparabolical coordinates
(m,n).

FIG. 13. Some examples of single-scattered closed orbits of the
helium atom at scaled energyẼ520.7. They belong to families~a!
R5
1

%V5
1; ~b! R5

1
%V6

1; ~c! R5
1

%V7
1; ~d! R5

1
%V8

1; ~e! R6
1

%V8
1 .
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APPENDIX C: CLASSICALACTION IN THE VICINITY
OF THE NUCLEUS

The classical action in the vicinity of the nucleus~with the
core potential switched off, the magnetic field neglected, and
E'0) is most easily calculated in semiparabolical coordi-
natesm5Ar (11cosq) andn5Ar (12cosq). With the regu-
larized momentapm

f 522cosqf /2 andpn
f 522sinqf /2 of or-

bits returning with an angleq f to the field axis we obtain

DS5E
~m,n!

~0,0!
~pmdm81pndn8!52pm

f m2pn
f n

5A8r cos
q f2q

2
. ~C1!

For q'q f we get the desired expression to derive Eq.~28!.

APPENDIX D: CALCULATION
OF THE MONODROMY MATRIX

The monodromy matrixM is the stability matrix re-
stricted to deviations perpendicular to a periodic orbit after
period timeT. We only discuss systems with two nonsepa-
rable degrees of freedom~like atoms in a magnetic field!. If
dq(0) is a small deviation perpendicular to the orbit in co-
ordinate space at timet50 anddp(0) an initial deviation in
momentum space, the corresponding deviations at timet5T
are related to the monodromy matrix@10#:

S dq~T!

dp~T!
D 5M S dq~0!

dp~0!
D 5Sm11m12

m21m22
D S dq~0!

dp~0!
D . ~D1!

To computeM one considers an initial deviation solely in
coordinate space to obtain the matrix elementsm11 and

m21, and an initial deviation solely in momentum space to
obtainm12 andm22. In practice a linearized system of dif-
ferential equations obtained by differentiating Hamilton’s
equations of motion with respect to the phase-space coordi-
nates is numerically integrated.

For closed orbits starting at the origin and calculated in
semiparabolical coordinates (m,n) an initial deviation in mo-
mentum space perpendicular to the orbital motion can be
expressed by a deviation in the starting angleq i

S dpm~0!

dpn~0!
D 5S 2pn~0!

pm~0!
D dq i

2

and the deviations of coordinates at the final return are

S dm~T!

dn~T!
D 5S ]m

]q i
~T!

]n

]q i
~T!
D dq i .

By projection the matrix elementm12 is now obtained as

m125
1

2 S pm~T!
]n

]q i
~T!2pn~T!

]m

]q i
~T! D . ~D2!

If the Jacobian~26! is written in semiparabolical coordinates
m,n and the new timet

J~ t,q i !5mn detU ]~m,n!

]~t,q i !
U5r sinqS pm

dn

dq i
2pn

dm

dq i
D .
~D3!

Equation~29! is derived by comparison with Eq.~D2! for the
monodromy matrix elementm12.
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