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Muonic three-body Coulomb systems in the hyperspherical approach
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Muonic three-body bound states and resonances are treated within a hyperspherical adiabatic expansion
scheme. A new method for determining the basis functions of this expansion is developed: decomposing these
functions into Faddeev-type components, an equivalent treatment of all two-body contributions, and thus the
correct asymptotics, are guaranteed. This approach is characterized by its high symmetry and a considerable
reduction of the numerical effort. Using partial wave aBespline expansions for the components, wave
functions and energies of thtu and d®*Heu molecules are calculated in extreme and uncoupled adiabatic
approximation. Fodtu good agreement with alternative calculations, which are based on a much higher
number of expansion functions, is found, and the results fod®itew system are rather close to variational
calculations.

PACS numbes): 36.10.Dr

I. INTRODUCTION As a first step towards the full treatment of such pro-
The investigation of muonic molecules, consisting of two ©ES5€S: W develop n the present paper a reliable method for
calculating the muonic three-body bound states and reso-

nuclei and one negatively charged muon, is mainly moti- ) . .
vated by the idea 0% muor}: catalszed fusiqudp). A Iotyof nances involved. This method is based on the standard ex-
: gansion of the three-body wave function into surface func-

experiments and calculations have been done in order to d ) : '
termine the properties of such systems. Especially the bourPnS [12,13. The essential problem, thus, consists in
states of thedtu molecule, the most promising system for constructing these funcpons, which is done in our approach
wCF, are known with high precision. Variational methodsby decomposing them into Faddeev-type components. Pro-
[1-4], hyperspherical approachgs;6], and solutions of the ceeding in this way, overcompleteness problems are avoided,
Faddeev equatiorf§'] were employed in this context. all two-body subsystems are treated in an equivalent way,
In muonic three-body systems with nuclei of higherand the correct asymptotics is guaranteed. For the determi-
charge, as, e.gd®Heu, the possibility ofCF is consider- nation of the partial wave projected Faddeev-type compo-
ably reduced due to the stronger Coulomb repulsion. Butients,B-spline expansions and the Galerkin techniii.4]
these states are of interest with respeci.toF kinetics[8],  are employed.
and hence some Born-Oppenheini@rl0] and variational In the present paper we develop our method and, in order
[11] calculations have been performed also for them. Thergo test its efficiency, apply it to the well-understoodu
is, however, a completely different reason for investigatingmolecule and, as an example of systems of higher charge, to
such systems in more detail. In nuclear astrophysics, reag¢he d®Heu molecule. It turns out that, in comparison with an
tions of the type d+?He—>4He+ P, t+4|.'|e—>7|-iff7 alternative hyperspherical treatmentdtfx, [5], the number
p+'Be—°B +y play an important role, the first two in the of expansion functions is considerably reduced. The energy
primordial nucleosynthesis, the third one with respect to thgpizined for thed®Hew resonance is somewhat different
solar neutrino problem. The Coulomb barrier prevents meag.q the Born-Oppenheimer resuf,10] mentioned above,
suring the corresponding cross sections at astrophysical efit agrees quite well with variational calculatiofi&1]
ergies in direct collision experiments. One, therefor.e, had RQuhich are generally considered to be most accurate. ,These
rely up to now on low-energy extrapolations of existing data'rather promising findings justify the application of our ap-

However, when screening the positive charges by a €08 roach to more delicate problems as, e.g., the treatment of
tively charged muon, these cross sections should become eX- b , €.9.,

: : 6| i 7
perimentally accessible. In other words, they should becom igh-lying resonances m_the L"‘_‘ or p'Bep systems. The
measurable in processes of the type corresponding investigations will be presented in a subse-

quent publication.

du +3He— (d®Hew)* —*Heuw +p, The paper is organized as follows. In Sec. Il we give a
brief review of the hyperspherical adiabatic approximation.
tu+*He— (t*Hew)* = Liu+y Section Ill contains a detailed description of our new ap-
proach to determining the surface functions. Section IV is
and devoted to the numerical treatment of the problem and pre-
sents the results obtained. The conclusions are drawn in Sec.
pu+ 'Be—(p'Beu)* —8Bu+1y. V.
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Instead of the variableg, andy,, we use in what follows
the hyperspherical coordinates, @, ,X,,Y,) defined by
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where Osp<» and O<sw,<w/2. The hyperradius

p=x2+y? is a measure for the size of the three-body sys-
tem, the hyperangle, is determined by the ratio between
|yl and|X,|. Due to the choice of the factors i3), the
hyperradius does not depend on the set of Jacobi coordinates.
Only the five angle€) ,=(w,,X,,Y,) depend on the spe-
cific set of coordinateg. Since the five angles of one set can

FIG. 1. Seta of Jacobi coordinates. be transformed into the angles of another one by a kinematic

rotation, we omit the corresponding indices, if they are not

Il. THE HYPERSPHERICAL ADIABATIC APPROACH necessary for the argumentation. In the coordinéb&sthe

] ) . . Hamiltonian takes the well-known form
The motion of three particles in their center of mass sys-

tem can be described in Jacobi coordinateg,R,) as He _ 52 7 o, AXQ)  7(Q)
shown in Fig. 1. The index» specifies one of the three TP R T o
possible sets of coordinates= 1, 2, or 3. Particles 1 and 2

are the two nuclei, with particle 2 being the heavier one, andiere the grand angular momentum operatois given by
particle 3 is a negatively charged muon. The Hamiltonian of

@)

these particles, interacting only via the Coulomb force, is 1 52 réa
given by A%(Q,)=— com, S, 702 0% SN+ ——g—
H ﬁz( + 1) ; mE L + ! Ag 5 1
T2 my T m )7 2 m, mgtm TR P L
B Y B Y Sinzwa 4’ (8
242,67 " "
+ 21 v (1) wherel %, andlg,a are the subsystem angular momentum op-
“ erators,
wherem, andZ, denote the masses and charges of the par- 1 1
ticles, respectively, anda(, 8,7) is a cyclic permutation of I = I—ﬁ I =YX y. (9)

(1,2,3). Appropriate units, when treating the Coulomb prob-
lem, are the Bohr radiua of one of the two-body sub-
systems and its ground-state enesgyWe take the system of
particles 2 and 3, i.e., the heavier nucleus and the muon. Its 3

3
c
Bohr radiusa® and ground-state energy?® are Q)= 7 w)=—2Z, >, ﬁ. (10)
a=1 a=1 a a

The angular part of the three-body Coulomb potential reads

2(my+ 2(my+ . o . .
a(23>:ﬁ(m2—m3)2' 8(23):_h(m2—(r;133))2‘ ) According to Macek[12], the six-dimensional Schyo
|Z5Z5|mymge 2mymg[a’=”’] dinger equation,
Introducing dimensionless coordinates HY (p,Q)=E¥(p,Q), (1D
. Cq R c, - is treated by solving first the corresponding five-dimensional
Re=g@F ar Yo~ g g2 (3 angular problem and then the resulting one-dimensional ra-
“ dial equation. That is, we consider first the Hamilton{@h
where for fixed values of the hyperradius,

AZ(Q) 7(Q)
+ .

(12

[my(my+ms) \/mlgmy(mcﬁ— mg+m,) H,(Q)=
my(mg+m.)’ m,(mg+m.)*
(49 The corresponding eigenvalue equation,

the Hamiltonian reads, in units ¢, H,(Q)Bn(p,Q)=Ux(p)Bn(p,Q), (13
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is a differential equation with respect to the five angular vari-

ables, while the hyperradiys enters merely as a parameter.
Therefore, the eigenvalués,(p), conventionally referred to
as eigenpotentials[15], are p dependent. The operator
H,(Q) has been shown to be self-adjoint with a purely dis-
crete spectruml6]. Its eigenfunction8,(p,{)), denoted as
surface function§13], hence form a complete orthogonal set
on the hypersphere, their normalization being chosen as

(Bm(p)[Bn(p))= f dQBF(p,Q2)Bn(p, Q)= &y
14

Expanding now the three-body wave functidt{p,(}) in
terms ofB,(p,{2),

)

—52 Bn(p, ),

V(p, Q)=
(p )n=1P

(15

the Schrdinger equatior(11) goes over to

©

f7(p)=[Un(p) —Elfn(p)— 2 [2(Bn(p)|Br(p))fr(p)

m=1

+(Bn(p)[Br(p)) fm(p)]. (16)

Here, the coupling matrix elements are given by

J
(Bo(pIBip)) = | GOBE(p.0)7 Be(p.0) (17

and

2

J
<Bn(p)|Bﬁq(p)>=fdQBﬁ(p,Q)&—szm(p,Q)- (18

Taking into account Eq(14), the normalization condition
(¥|¥)=1 for the bound-state solutions of Ed.1) reduces
to

> deplfn<p>|2=1. (19)
n=1J0

The truncation of Eqg.15), (16), and(19) to a finite number
of termsN>1 or to a single ternN=1 is calledcoupled
adiabatic approximatiofCAA) or uncoupled adiabatic ap-
proximation(UAA), respectively. In the latter case EJ.6)
simplifies to

f2(p)=[Un(p)+(Br(p)[Bn(p)) —Elfn(p).

Neglecting additionally the derivatives of the surface func-
tions with respect to the hyperradius, we end up with th
extreme adiabatic approximatiofieAA),

fa(p)=[Un(p)—E]Ifn(p).

(20

(21)
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In the present paper, we restrict ourselves to the UAA and
EAA, so that upper and lower bounds for the exact energy
are found.

Ill. DETERMINATION OF THE SURFACE FUNCTIONS

Our main task consists in solving the five-dimensional
eigenvalue equatiol3). For this purpose an efficient ex-
pansion of its solutions, i.e., of the surface functions
B,(p,Q), will be developed. Most essential is that this ex-
pansion satisfies the correct asymptotic properties.

At small hyperradii the grand angular momentum term
with its p~2 behavior represents the dominant part in the
operator(12). Hence, Eq(13) reduces to

[A2(Q)—p?Un(p)1Bn(p,)~0

for p—0. (23

By comparing this relation with the eigenvalue equation of
the grand angular momentum operator,

[A%(Q) = Z( L+ 1) ]Y[4(Q)=0, (24)

we obtain

L L+1)
Py

Un(p)= Ba(p. )~ Y[ (Q) for p—0.

(29

Here, theY; () are the hyperspherical harmonif$8]
given by

Y[ %](Qa) = N[ 7] COé"wa SinL“waPt(LaJrl/Z’ldJrl/Z)

X(cos20,) 7/ 1 (%a:9), (26)
whereN; , is a normalization constanB{*#)(x) a Jacobi
polynomial, and 7 [\ (X,.¥.) an eigenfunction of the

squared total angular momentum operafé’»r the so-called
bispherical harmonic

// ILa'\I/_la(;(a vya) = mzl:d/l <I amaLaM a| LM >Y|ama(§(a)

(27)

with the Clebsch-Gordan coefficients,m,L ,M ,|LM) and
the usual spherical harmoni¥s,(X). The index .#] of the
hyperspherical harmonics collectively denotes the set of
quantum number&,l,,L,,L,M}. The eigenvalue if24) is
given by #=1,+L,+2k+3. If it is degenerate we have in
(25), instead of a singler|1(£2), a linear combination of
hyperspherical harmonics belonging to this value“af

At large hyperradii, and at energies below the three-body
breakup threshold, the surface functions go ovechannel

X YLaMa(gla)l

efunctions[lgjl, i.e., to products of muonic two-body bound

states and free wave functions describing the motion of the
respective third particle. The eigenpotentials converge to-
wards the corresponding two-body binding energi&s

For the ground-state energies obtained in these approxima=1 or 2(note that particle 3 was assumed to be the mwon

tions the following inequalities holfiL7]

EEAA< Eoxacl ECAA EUAA, (22

That is,

—gled (28)

Un(p) for p—oo
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and within one set but also between these two or three sets of
functions, and the matrix associated with the metric of the

Bn(p,Q)~p¥2%2m (p coswg)sinbwgs 7 TV (X45.,95) - - i i
n(ps P migLP B B 1L \Xp:Y g expansion scheme becomes singular. To overcome this prob

lem, only handmade constructions have been used up to now,
for p—o, (299  which are based on introducing cutoff functiof20] or
neglecting the small eigenvalues of the overlap mdiik.
where .%*m,ﬂ(p coswp) represents the hydrogenlike wave These methods, however, are not free of a certain arbitrari-

function of the corresponding muonic atom with the princi- N€ss in choosing the cutoff points or selecting the small ei-

pa| quantum numbem and the angular quantum number genvalue% and therefore appear SomeVYhat questionable.
g, A possible way out of these complications is suggested by

the experiences of the three-nucleon problem. There, one en-
_ V16835 cosug counters a rather similar situation: due to the identity of the
Hmig(p COS ) =Ny €7V particles, all sets of Jacobi coordinates are involved, which is

most naturally taken care of by employing the Faddeev de-

X (2V]el¥]p coswp)'s compositior[ 22,23 of the three-body wave function. Adopt-
ing this idea, we split the surface functions into Faddeev-
><Li'€T;<2\/IS$#3)Ip CoSwp). (30) type components, combining thus the advantages of the

adiabatic approximation and of the Faddeev approach. That

Lmll(x) is a Laguerre polynomial aerlﬁ anormalization 'S: We represent the surface functions as a superposition,

constant. Consistently with Fig. 1, the channel ingex1 or 3

2 denotes the asymptoti23,1) or (13,2 fragmentations, re- B,(p,Q)= E b,n(p,Q,), (31
spectively. TheU(p) are labeled byn=1,2,3 ... accord- a=1

ing to the increasing sequence of their asymptotic valuegf three components

el@®  Let us assume, e.g., that this sequence is P

e{P<eP<e®)<... asis the case for thetu system, Boan=GolaVaBn, (32
thenUl(p)—>s(123), Uz(p)—>s(113), U3(p)—>s(223), ...,and ) ) i
an analogous correspondence holds Bf(p,Q) and the Green functior, being defined by
%m,ﬁ(p Coswp) in (29). A2 3
Considering(29) it becomes clear why expansions into Gol=U,— ?+ Vgl lg—1]. (33
B=1

hyperspherical harmonics, which are a good choice at small

p, fail to reproduce the surface functions at large values ONote that by introducing the functions,(p,Q,) we have

the hyperraqllus. Let us regard, for examplle, the groun(_j Sta&%\ken over a modification of the original Faddeev definition
of the muonic atomi=1,1,=0). The atomic wave function

% has | imal val _23) as suggested in Refg24,25. It is easily seen that with the
10(p COSvy) as its maximal value gt cosv,=a*=, L€, yafinitions (32) and (33) the decompositior(31) satiesfies
at the Bohr radius of this atom. For increasimghe corre-

: Eq. (13 for any choice of these functions. Following the
spondingw, tends more and more toward$2. That means, roposal in[25] we choose in what follows
the wave function, regarded as a function of the hyperanglg
w1, shows a peak ab,~ 7/2, which becomes sharper with (Xo/%0)”
increasing hyperradii. Such a peak structure, however, re- {a(Xa Ya) =2 1+eXp(y/y—+1)
quires for its approximation a drastically increasing number o
of Jacobi polynomials, and thus of hyperspherical harmonicgith open parameters,, yo, and v. In the partial wave
(26). Therefore, at large values pfan alternative expansion expansion applied in the following calculation, these param-
has to be chosen in correspondence with the asymptotic beters are used to accelerate the convergence. Inserting Egs.
havior (29). According to the above discussion, the channel(31)—(33) into (13) we end up with the following set of
functions, i.e., the right-hand side (29), appear as an ad- coupled equations:
equate basis set.

-1
: (34

A natural way of reproducing both asymptotic regions [A? 7~ o L7 3
seems to be to expand the surface functions both into hyper- p7+ re ;ﬁza ¢s7 g|Pant P ;a bn=Unban -
spherical harmonics and channel functions. The overcom- (35)

pleteness of such a basis, however, leads to serious problems

when solving the corresponding generalized eigenvalue The remaining task now consists in determining the
problem numerically. In fact, the channel functions, beingFaddeev-type components,(p,{,). Since we consider in
orthogonal in the limijp—c0, become nonorthogonal, and in the present paper only the Coulomb interaction between the
practice even linearly dependent, for decreaging\s com-  three particles, the two nuclei involved cannot occur in a
pared to the treatment &f ~ in Ref.[19], this is more critical bound state. This suggests to use only two Faddeev-type
in our case, where we have to deal with two different muoniccomponentsh,,, andb,,,, reducing in this way the dimen-
atoms, i.e., with two different sets of channel functions.sion of the coupled system of equatio(85) correspond-
When incorporating the strong interaction, such an expaningly. When incorporating the strong interaction between the
sion is needed also with respect to the third fragmentatiotwo nuclei, as is our goal in the long run, it appears natural to
(12,3). As a consequence, linear dependence occurs not ortigke into account also the third componést, .
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Within the present formulation the restriction to two com-
ponents is most easily achieved by puttifig=0. The set of

equationg35) then simplifies to

NP 757
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Inserting the ansat@8) into (36) and(37) and projecting
onto the partial wavegl,L,;LM| and (I,L,LM|, respec-
tively, we end up with the generalized eigenvalue problem

071 al L,
P2 + o }bln—" bon=Upnb1y (36) B'BELﬁi,B !/lﬁlﬁl‘ﬂiﬁn(p'wa) kBIBLBiBn(p)
and _al
=Un(p) 2 Ao o(r0a)Ka L n(p), (39
A A g
[;2'+ 2n b1n=Uuby,. (37)

We emphasize once more that the general relati8Bsare
valid for any choice of,. Their specialization to Eq$36)

and (37), therefore, is no approximation.

In the following calculations we use for the two compo-

nentsb,, andb,, the ansatz

ban(P,Qa) =e JTeml p cosw,

Xl E ka|aLaian(p)CO§awa SinLawa
a LYILY

XS (@) AN (Ko Fa) - (39)

Here, the 4 (x,.V.) are the eigenstate®7) of the

providing us with the expansion coefficienkg|aLaian(p)
and the eigenvalued,(p). Note that, as in the original re-
lation (13), the hyperradiusp occurs here as a parameter.

Explicit formulas for the matricesZ and. 7% are given in the
Appendix.

IV. NUMERICAL TREATMENT AND RESULTS

In the following numerical investigations we restrict our-
selves to states of total angular momentumO0, which im-
plies identical values of the subsystem and the relative angu-

lar momentd , andL ,, respectively. Convergence has been
achieved when choosing their maximal valud gg=10. It

turns out that in ansat@38) 20 B-splinesS,(w,) are suffi-
cient to obtain stable results. In order to reproduce the peak

structure at ,~ /2, a fairly small mesh of spline nodes had
squared total angular momentum operator. The dependenge be chosen in this region.

of the hyperangle is treated via an expansion Bteplines

To get rid of the hyperangle, in Eqg. (39), which its
Si (w,). The further functions ob,, in (38) have been cho- solutionsk 1 i n(p) @andUy(p) do not depend on, two dif-

this

sen in accord with the asymptotic properties discusseferent methods have been developed. In the so-cathiid-
above: the Laguerre polynomial contained (B0) can be cation point methodi26] Eq. (39) is solved at specific values
approximated by a sufficiently small number of splines, butof the hyperangle. In order to obtain a quadratic eigenvalue

is not the case for the exponential functionproblem, only a limited number of these collocation points is

e~ VIeml » coo, \which therefore has been split off explicitly allowed. In theGalerkin method 14], analogously to partial
in (38). The additional factors siaw, and co%w, reproduce

the correct behavior near the poinig,~0 and w, ~ m/2,
respectively. Since the Jacobi polynomial(26) can be ex-

panded quite well into splines, ans&®8) is also appropriate
in the region of small values of the hyperradius.

wave projections, Eq39) is multiplied with the expansion

functions Sj(w,) and integrated over the hyperangle. The
resulting eigenvalue problem remains quadratic for any num-
ber of integration points, which allows us to choose 20 mesh
points for each spline, while the collocation method would

PN

U —
Gusev et aLl{2 °

\ g1(tll)
\ 81(du) _____

05 | 4 -
4

4
0 Iy
U.(p)

FIG. 2. Lowest eigenpotentialt);(p) and
U,(p) of thedtu system forL=0. With increas-

ing hyperradius they converge towards the
ground-state energies{"” and £{"), respec-
tively. The diamonds are the results of Rie].

30
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FIG. 3. Lowest eigenpotentialt);(p) and
U,(p) of thed®Heu system for.=0. They con-
verge towards the ground-state energies
s =—1 ande(®, respectively.

u,(p)

restrict us to two or three points only. The consequence is ktter ones have been read off simply from the corresponding
higher stability of the Galerkin method, a feature particularlyfigure in [5], with the size of the diamonds indicating the
relevant for the treatment of the singularity of the Coulombreading error. It is seen that with only 440 basis functions we
potential at the origin. Moreover, an appropriate transformapractically reproduce the results of Gussval., who needed
tion of the mesh point$27] is used in this context. The more than 1800 functions. The decomposition of the surface
integrations over the hyperangle, and the angle between functions into Faddeev-type components, thus, leads to a
X, andy, [see Eq(46)] are performed via Gaussian quadra- considerable reduction of the numerical effort.
ture. Figure 3 shows the corresponding eigenpotentials of the
Choosing 2 Faddeev-type components, 11 partial waves|*Heu system. In contrast to theétu case, the lowest po-
and 20B-splines, we end up with a (44040)- dimensional tential is purely repulsive, as expected in view of the Cou-
eigenvalue problem. For its solutions the Lanczos algorithmiomb repulsion between the deuteron and théew sub-
is employed, using the trick of shifted equations described irsystem. The attractive character of the second eigenpotential

[28]. This powerful tool replaces the original (44@40)- is a consequence of the polarization of the atom in the
dimensional problem by an effectivex?7 matrix equation.  Coulomb field of the®He nucleus.
In Fig. 2 the two lowest eigenpotentials of theu system In Fig. 4 we make this statement explicit by presenting

are shown together with the results of Gusal. [5]. The the relevant partial wave contributions to the second eigen-

o

-0.25 v .
S S
0.252 - S/ i
/ 1/.
-0.254 | / . .
®) / FIG. 4. Second eigenpotential dfHeu for
L / . . X
/ different values ofl ., i.e., for different num-
-0.256 - / . .
/ bers of partial waves taken into account.
7
-0.258 | / lnax=0 — ]
/ o
0.26 / hmax=5,
- 4 81(du) _____

-0.262 |

-0.264 ' ' L L '
20 30 40 50 60 70
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-200 T
B o ©
2or Bow 360 % ]
Alexander et al. ------
-240 | .
FIG. 5. Binding energies of the ground state
260 | | of dtu (L=0) obtained for different values of
Imax- The lines serve to guide the eye. The
E, [eV] dashed line is the result of the variational calcu-
280 4 lation [1]. The two curves converging towards a
value somewhat above this line correspond to the
300 | | UAA. The two lower curves represent the EAA
results. In both approximations the two sets of
parameters of Table | are used.
“BRQ e N e e e I e e e e e e
-340 4
0 2 4 6 8 10

potential. Choosing),..= 0, thus enforcing the atom to be in wave decompositions involved. The curves for the two dif-
an isotropic state, nearly no attraction is seen. This changdérent sets of parameters given in Table | agree for
drastically when taking into account anisotropic contribu-l,,,=10. But the corresponding final value is approached
tions. The main part of the attraction is given already by themuch faster with s¢&). In this way the number of relevant
p-wave (ma—1), but attractive contributions are provided partial waves can be reduced frdim,,= 10 to about 7.
also by the higher partial waves up ltg,,=4 or 5. For the excited state of thettu molecule one encounters
The radial equations are treated both within the extreme rather similar situation, as demonstrated in Fig. 6. In this
and the uncoupled adiabatic approximatid2%) and (20),  case the inequalitie€2) have not yet been proved, but they
making use of a Runge-Kutta algorithm. By insertit85)  are satisfied by the present numerical results: the EAA gives
into (21) and (20) one infers for somg,<1 the boundary gyerbinding, while the binding obtained in UAA is some-

condition what too weak.
, o Table Il presents a quantitative comparison between our
pofn(po)=(Z+1D)fn(po). (40 results and the ones of Guseval. [5] and of a variational

We ch _ 103 and i h dial . calculation[1]. The relative difference to the results of Ref.
€ CNoos&, = and integrate the radial equation up to [1] is given in percent. It is seen that the extreme adiabatic

e 3
80 or 160 Bohr radii in case of thtétu or d°Hey molecules, approximation is justified only in the treatment of the ground

respectively. Since only the attractive eigenpotentials prog, .. tne most important point in this table, however, is the
duce bound states or resonances, the radial equations have

s e wit) () for S or i, |1 0004 T beluen o UAyestt e U
In Fig. 5 we show the resulting ground-state binding en- u u ’ ining i pancy

ergies for thedt, molecule as a function of the number of variational calculations, thus, is not due to any inaccuracy in

subsystem partial waves taken into account. The two lowefl€t€rmining the surface functions, but arises from the un-

(uppe) curves correspond to the EAAUAA), yielding coupled adiabat_ic approximation itself. InQeed,_Gueeal..
overbinding (underbinding in comparison with the varia- Showed that, going over to the coupled adiabatic approxima-
tional calculation[1]. These numerical results, hence, are intion, it needs six surface functions to reproduce the varia-
accord with the inequalitie€22). The two curves belonging tional calculations up to the first three significant digits. Our
to the same approximation are calculated by using differenpurpose, however, was not to redo this calculation, but to
sets of parameters, x,, andy, (see Table ). As empha- develop a better method for determining the surface func-
sized repeatedly, the exact solution of Ef3) is indepen- tions, a method that should be well suited for the treatment
dent of the, and thus of these parameters. In practice thif systems of higher mass and charge.
can be used as a means to test the quality of different ap- The binding energies obtained for tddHeu system are
proximations, in particular the convergence of the partialgiven in Table Ill. We list there also the results of one-
channel Born-Oppenheimer calculatiof8,10] and of a

TABLE I. Two sets of parameters for the functiofig, . variational calculation11]. While the EAA gives a 10%
stronger binding, the UAA differs less than 0.5% from the
v %o Yo variational calculations. It also agrees better with these cal-
seta) 23 1.3 10 culations than the Born-Oppenheimer results.
setb) 26 1.8 10 In the present one-channel adiabatic approximati@ds

or (21), the radial equation yields for thé*Hew system a
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(EAA) [set(a)] ©
{UAA) fset(a)] +
(EAA) [set(b)] @
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Alexander etal. - -

E;[eV]-30 FIG. 6. Same as Fig. 5, but for the excited

state ofdtu.

-40

.50 | .

-60 1 ! 1 ! 1 1 1 1

bound state, which, however, can decay into the energeticallyncorporate the two-body bound states explicitly without

lower channel®Heu+d when switching on the neglected ending up with overcompleteness problems. Being physi-

coupling. Since the coupling is known to be wed@®,30,  cally motivated, this technique also led to a considerable

one expects this resonance to be fairly sharp and to appeggduction of the numerical effort.

almost at the binding energy found in the one-channel calcu- The efficiency of our approach was demonstrated by

lation. studying thedtu and d®Hex molecules or molecular reso-
nances, but for systems of charge-2 complete conver-

V. CONCLUSIONS AND OUTLOOK gence of the spline expansion has not yet been reached. Mak-
ing use of Kato’s cusp conditigr31] it should be possible to
Yvercome this problem. In Rdf32] a considerable improve-
Fent of the convergence was, in fact, achieved. We expect
at with this additional modification systems lik€Beg,

We have presented a method for calculating three-bod
Coulomb problems that combines the advantages of hype
spherical and Faddeev techniques. h

The hyperspherical method allows one to separate the h)&/ . . . . .
perradial motion from the angular part. After partial wave hich we are p_artlcularly mteresteq in for reasons discussed
decomposition, this part consists of an equation in only ond" the Introduction, can be treated in a reliable manner.
variable, the hyperangle, which was solved in the present Our procedure should allow us to treat also the scatterl_ng
investigations via an appropriate spline expansion. From th@roblem below the breakup threshold. In order to do this,
angular equation one gets, in particular, the eigenpotential@”'y the boundary conditions for the radial equations have to
which play the role of effective potentials in the radial equa-P€e changed. Since the angular part does not depend on such
tion. The characteristic features of the respective problenoundary conditions, the rest of the formalism, especially the
e.d., the occurrence of bound states and resonances as We”%ermination of the surface functions, remains unmodified.
polarizability effects, can be inferred immediately from these
potential curves. A further advantage is that, by solving the
radial equation, upper and lower bounds are obtained for the ACKNOWLEDGMENTS

binding energy of the ground state. .
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Ground state Excited state Method E (eV) AE/E (%)
Method E; (eV) AE.(/E, (%) E AE,/E, (%
etho 1 (ev) 1/E1 (%) E; (eV) 2/E3 (%) EAA 7772 19.87
EAA —333.09 +4.37 —43.76 +25.6 UAA —70.45 -0.41
UAA —317.60 —0.48 —31.90 —8.43 BO [9] —69.5 -1.75
UAA [5] —317.78 -0.43 —32.14 —7.72 BO [10] —69.96 -1.10

Variational[1] —319.14 —34.83 Variational[11] —70.74
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gral of the following structure
APPENDIX

The transformation of the Jacobi coordinates between the T :‘a'\fa|ﬂ|_ﬁ(wa)=f dx,dy, 7 :'a’\ﬂ:(?a Ya)
different sets is given by

Xf(waiza)% :-BY_B()A(ﬁ:)A/,g) (A4)

)ZB - C,BDZ dﬁa )_(:1

R = R (A1) or

yg/ \7dsa ~Cpa/ \y,

with the constants 7 'anl’l-’(w“):J dx,dy, 7 ,La“ﬁ:(&a,ya)

o \/ m,mg | X (0a:Z) 7 (111 (Xa a)s  (AB)

(ma+m7)(mﬁ+my) a
m.(m,+m,+m.) (A2) with some functionf depending only orw, andz,, a fact

dg,= \/ Y B , holding for all central potentials. Using straightforward alge-

(Mg +m,)(mg+m,) bra, these four-dimensional integrals can be reduced to one-

where (8,«) means (2,1), (3,2), or (1,3). This transforma- dimensional ones,

tion is orthogonal, i.e¢5,+d3,=1, and its inverse is given
via c,z=Cg, andd,z=—dg,. The hyperradiug is invari- 7I o (wg) E /' Ly L(w )

ant with respect to the set of coordinates, while the hyper- arapTh
angle transforms as 1 fw,,2,)
X [ dz,P, (z, r—
coSwg=C5, CoSw,+d5, sifw, ffl ol )Cogﬁwﬁ sintbw
—2C,03,2, COMW,, SiNw,, (A6)
. a (A3) .
wherez,=X,Y, - whereP,(z) denotes a Legendre polynomial and

bt 21,1 /2L
S (w0)= O 00302123 (1| o o s oo hcom,)1s-1h Lo Lisin, 15
ALy 21, )\ 2L ) ©pa
B=B

1L

S i =1y Lg—Lj Iy (|,’3 Ly (e 1 L La 1) |X) 1y L
0

o 0 0O o0\0 0 o0/\0 O O0/\0 O L, 1, Iy
Iy Iy L
x{ lg=lg g lg¢. (A7)
The second integral is simpler since it contains only functions belonging to the same set of coordinates. It reads

lalol

7|L|L(w)Zﬁ.LldeH(Z)f(wa,z) (A8)

with

L (CDEh oL e 1o W\ [La Lo LO[1L Lo L
T = ————1 LI L : A9
IaLalx 2 aTaaTax 0 O 0 0 0 0 L I IX ( )

a a

Note that, due to the triangle relations the angular momenta fulfill, all sums appearing AERSA9) are finite. The matrix
elements of matrixZ in Eq. (39) are given by

sal L, sal L, ~al, L,

/BI Lgi n(p' =l //Z:all:al n(p @ )+ Bl gLgi n(p @ )]5aﬁ+‘(/ﬁl Lgi n(p @ )5043 (A10)

with
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~ oo A ~ * A A A2 ’ ’ ~ ~
Lo (pog) = f d%,050 7/ 1L (e §a)| 7 + V| €7 TP 22 codua, sinteweS (00) 7 11 (R T
cosew,, sintew 1 2u,Zip
-5 . 2 a2 Ta — \Temlp cosw, 2_—_ SFemIP 5 T T
5la|a5LaLa p2 e ({(Ia_l—l-a—}_z) 4 Za Co&)a 2p |Em|
Lo |+1Slnz in? o (L, +1) X _ (| 4 q) 0
a E COsw ( ) N p Si wa|8m| a) ( )Sin(,()a _( a )COSL!)a
+p sinw | en| s,’,(wa)—sf,’,(wa)) , (A11)

Foee iy n(p,wa)=f d&udya@}“ﬁ*(ia,ya)[ > (1-£pVgle
“a B#a

! . ! ~, LM s &
VI€ml p COSw, Coéawa SlnLawaSi’ (a)a)‘;// 1L’ (Xa vya)
(3 a o

ZZ ! r A~ ~ * A ~
=_ Tl e~ VTenlp cosu, Coéaa)a SinLawaSi;(wa)f dx,dy, 7 }a“ﬂa(xa Ya)
Mg
X|o—————(1— &)+ >———
ZZ ’ ’
=— Tl e~ VIemlp 0%, codagy , sintew S (w,)
PRI Mg
X ——(1—-ép)+——
X7 f 2P (20 T (L6t 5 (1) | (A12)
and
>~ al ~ A
Dot (prwa)= f d%,0Ye 7 T (e Ja) €V ol Tl 20 costy sintow,S; (wp) 7 FY (Xg.9p)
zlu’azl S a8 o, LM* o A — JTemlp cosw ;
=" Z 5 comw, Ea | dXdY, 7/ 11 (Xq,Yo)[eVim B COSAw g SlnLBw,BSiﬁ(wﬁ)]
2peZy I,L,L !
- _rram ata — JTemlp coswg
7 com, be 2 7 i (0 f 4z (z)e S (@p) - (A13)
The matrix.# in Eq. (39) is given by
lola
S5 (P 00) = PapBl 1 B 1 & VTenle coa cogen, sittew,S (w,) (A14)
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