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Muonic three-body bound states and resonances are treated within a hyperspherical adiabatic expansion
scheme. A new method for determining the basis functions of this expansion is developed: decomposing these
functions into Faddeev-type components, an equivalent treatment of all two-body contributions, and thus the
correct asymptotics, are guaranteed. This approach is characterized by its high symmetry and a considerable
reduction of the numerical effort. Using partial wave andB-spline expansions for the components, wave
functions and energies of thedtm andd3Hem molecules are calculated in extreme and uncoupled adiabatic
approximation. Fordtm good agreement with alternative calculations, which are based on a much higher
number of expansion functions, is found, and the results for thed3Hem system are rather close to variational
calculations.

PACS number~s!: 36.10.Dr

I. INTRODUCTION

The investigation of muonic molecules, consisting of two
nuclei and one negatively charged muon, is mainly moti-
vated by the idea of muon catalyzed fusion (mCF!. A lot of
experiments and calculations have been done in order to de-
termine the properties of such systems. Especially the bound
states of thedtm molecule, the most promising system for
mCF, are known with high precision. Variational methods
@1–4#, hyperspherical approaches@5,6#, and solutions of the
Faddeev equations@7# were employed in this context.

In muonic three-body systems with nuclei of higher
charge, as, e.g.,d3Hem, the possibility ofmCF is consider-
ably reduced due to the stronger Coulomb repulsion. But
these states are of interest with respect tomCF kinetics@8#,
and hence some Born-Oppenheimer@9,10# and variational
@11# calculations have been performed also for them. There
is, however, a completely different reason for investigating
such systems in more detail. In nuclear astrophysics, reac-
tions of the type d13He→4He1p, t14He→7Li1g
p17Be→8B 1g play an important role, the first two in the
primordial nucleosynthesis, the third one with respect to the
solar neutrino problem. The Coulomb barrier prevents mea-
suring the corresponding cross sections at astrophysical en-
ergies in direct collision experiments. One, therefore, had to
rely up to now on low-energy extrapolations of existing data.
However, when screening the positive charges by a nega-
tively charged muon, these cross sections should become ex-
perimentally accessible. In other words, they should become
measurable in processes of the type

dm13He→~d3Hem!*→4Hem1p,

tm14He→~ t4Hem!*→7Lim1g

and

pm17Be→~p7Bem!*→8Bm1g.

As a first step towards the full treatment of such pro-
cesses, we develop in the present paper a reliable method for
calculating the muonic three-body bound states and reso-
nances involved. This method is based on the standard ex-
pansion of the three-body wave function into surface func-
tions @12,13#. The essential problem, thus, consists in
constructing these functions, which is done in our approach
by decomposing them into Faddeev-type components. Pro-
ceeding in this way, overcompleteness problems are avoided,
all two-body subsystems are treated in an equivalent way,
and the correct asymptotics is guaranteed. For the determi-
nation of the partial wave projected Faddeev-type compo-
nents,B-spline expansions and the Galerkin technique@14#
are employed.

In the present paper we develop our method and, in order
to test its efficiency, apply it to the well-understooddtm
molecule and, as an example of systems of higher charge, to
thed3Hem molecule. It turns out that, in comparison with an
alternative hyperspherical treatment ofdtm, @5#, the number
of expansion functions is considerably reduced. The energy
obtained for thed3Hem resonance is somewhat different
from the Born-Oppenheimer results@9,10# mentioned above,
but agrees quite well with variational calculations@11#,
which are generally considered to be most accurate. These
rather promising findings justify the application of our ap-
proach to more delicate problems as, e.g., the treatment of
high-lying resonances in thep6Lim or p7Bem systems. The
corresponding investigations will be presented in a subse-
quent publication.

The paper is organized as follows. In Sec. II we give a
brief review of the hyperspherical adiabatic approximation.
Section III contains a detailed description of our new ap-
proach to determining the surface functions. Section IV is
devoted to the numerical treatment of the problem and pre-
sents the results obtained. The conclusions are drawn in Sec.
V.
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II. THE HYPERSPHERICAL ADIABATIC APPROACH

The motion of three particles in their center of mass sys-
tem can be described in Jacobi coordinates (rWa ,RW a) as
shown in Fig. 1. The indexa specifies one of the three
possible sets of coordinates,a51, 2, or 3. Particles 1 and 2
are the two nuclei, with particle 2 being the heavier one, and
particle 3 is a negatively charged muon. The Hamiltonian of
these particles, interacting only via the Coulomb force, is
given by

H52
\2

2 S 1

mb
1

1

mg
DD rWa

2
\2

2 S 1

ma
1

1

mb1mg
DDRW a

1 (
a51

3
ZbZge

2

urWau
, ~1!

wherema andZa denote the masses and charges of the par-
ticles, respectively, and (a,b,g) is a cyclic permutation of
(1,2,3). Appropriate units, when treating the Coulomb prob-
lem, are the Bohr radiusa of one of the two-body sub-
systems and its ground-state energy«. We take the system of
particles 2 and 3, i.e., the heavier nucleus and the muon. Its
Bohr radiusa(23) and ground-state energy« (23) are

a~23!5
\2~m21m3!

uZ2Z3um2m3e
2 , «~23!52

\2~m21m3!

2m2m3@a
~23!#2

. ~2!

Introducing dimensionless coordinates

xWa5
ca

a~23!rWa , yW a5
ca

daa
~23!RW a , ~3!

where

ca5Am1~m21m3!

ma~mb1mg!
, da5Ambmg~ma1mb1mg!

ma~mb1mg!2
,

~4!

the Hamiltonian reads, in units ofu« (23)u,

H52DxWa
2DyWa

22Z1(
b51

3
cb

ZbuxWbu
. ~5!

Instead of the variablesxWa andyW a , we use in what follows
the hyperspherical coordinates (r,va ,x̂a ,ŷa) defined by

uxWau5r cosva, uyW au5r sinva , x̂a5
xWa

uxWau
, ŷa5

yW a

uyW au
,

~6!

where 0<r,` and 0<va<p/2. The hyperradius

r5AxWa
21yW a

2 is a measure for the size of the three-body sys-
tem, the hyperangleva is determined by the ratio between
uyW au and uxWau. Due to the choice of the factors in~3!, the
hyperradius does not depend on the set of Jacobi coordinates.
Only the five anglesVa5(va ,x̂a ,ŷa) depend on the spe-
cific set of coordinatesa. Since the five angles of one set can
be transformed into the angles of another one by a kinematic
rotation, we omit the corresponding indices, if they are not
necessary for the argumentation. In the coordinates~6!, the
Hamiltonian takes the well-known form

H52r25/2
]2

]r2
r5/21

L2~V!

r2
1
V ~V!

r
. ~7!

Here the grand angular momentum operatorL is given by

L2~Va!52
1

cosva sinva

]2

]va
2 cosva sinva1

lW x̂a

2
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1
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2
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2
1

4
, ~8!

where lW x̂a
and lW ŷa

are the subsystem angular momentum op-
erators,

lW x̂a
5xWa 3

1

i
¹W xa

, lW ŷa
5yW a 3

1

i
¹W ya

. ~9!

The angular part of the three-body Coulomb potential reads

V ~V!5 (
a51

3

V a~va!522Z1(
a51

3
ca

Za cosva
. ~10!

According to Macek@12#, the six-dimensional Schro¨-
dinger equation,

HC~r,V!5EC~r,V!, ~11!

is treated by solving first the corresponding five-dimensional
angular problem and then the resulting one-dimensional ra-
dial equation. That is, we consider first the Hamiltonian~7!
for fixed values of the hyperradius,

Hr~V!5
L2~V!

r2
1
V ~V!

r
. ~12!

The corresponding eigenvalue equation,

Hr~V!Bn~r,V!5Un~r!Bn~r,V!, ~13!

FIG. 1. Seta of Jacobi coordinates.
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is a differential equation with respect to the five angular vari-
ables, while the hyperradiusr enters merely as a parameter.
Therefore, the eigenvaluesUn(r), conventionally referred to
as eigenpotentials@15#, are r dependent. The operator
Hr(V) has been shown to be self-adjoint with a purely dis-
crete spectrum@16#. Its eigenfunctionsBn(r,V), denoted as
surface functions@13#, hence form a complete orthogonal set
on the hypersphere, their normalization being chosen as

^Bm~r!uBn~r!&5E dVBm* ~r,V!Bn~r,V!5dmn .

~14!

Expanding now the three-body wave functionC(r,V) in
terms ofBn(r,V),

C~r,V!5 (
n51

`
f n~r!

r5/2
Bn~r,V!, ~15!

the Schro¨dinger equation~11! goes over to

f n9~r!5@Un~r!2E# f n~r!2 (
m51

`

@2^Bn~r!uBm8 ~r!& f m8 ~r!

1^Bn~r!uBm9 ~r!& f m~r!#. ~16!

Here, the coupling matrix elements are given by

^Bn~r!uBm8 ~r!&5E dVBn* ~r,V!
]

]r
Bm~r,V! ~17!

and

^Bn~r!uBm9 ~r!&5E dVBn* ~r,V!
]2

]r2
Bm~r,V!. ~18!

Taking into account Eq.~14!, the normalization condition
^CuC&51 for the bound-state solutions of Eq.~11! reduces
to

(
n51

` E
0

`

dru f n~r!u251. ~19!

The truncation of Eqs.~15!, ~16!, and~19! to a finite number
of termsN.1 or to a single termN51 is calledcoupled
adiabatic approximation~CAA! or uncoupled adiabatic ap-
proximation~UAA !, respectively. In the latter case Eq.~16!
simplifies to

f n9~r!5@Un~r!1^Bn8~r!uBn8~r!&2E# f n~r!. ~20!

Neglecting additionally the derivatives of the surface func-
tions with respect to the hyperradius, we end up with the
extreme adiabatic approximation~EAA!,

f n9~r!5@Un~r!2E# f n~r!. ~21!

For the ground-state energies obtained in these approxima-
tions the following inequalities hold@17#

EEAA<Eexact<ECAA<EUAA. ~22!

In the present paper, we restrict ourselves to the UAA and
EAA, so that upper and lower bounds for the exact energy
are found.

III. DETERMINATION OF THE SURFACE FUNCTIONS

Our main task consists in solving the five-dimensional
eigenvalue equation~13!. For this purpose an efficient ex-
pansion of its solutions, i.e., of the surface functions
Bn(r,V), will be developed. Most essential is that this ex-
pansion satisfies the correct asymptotic properties.

At small hyperradii the grand angular momentum term
with its r22 behavior represents the dominant part in the
operator~12!. Hence, Eq.~13! reduces to

@L2~V!2r2Un~r!#Bn~r,V! 0 for r→0. ~23!

By comparing this relation with the eigenvalue equation of
the grand angular momentum operator,

@L2~V!2L~L11!#Y@L#~V!50, ~24!

we obtain

Un~r! 
L~L11!

r2
, Bn~r,V! Y@L#~V! for r→0.

~25!

Here, theY@L#(V) are the hyperspherical harmonics@18#
given by

Y@L#~Va!5N@L# cos
lava sinLavaPk

~La11/2,la11/2!

3~cos2va!Y laLa

LM ~ x̂a ,ŷa!, ~26!

whereN@L# is a normalization constant,Pk
(a,b)(x) a Jacobi

polynomial, andY laLa

LM ( x̂a ,ŷa) an eigenfunction of the

squared total angular momentum operatorLW 2, the so-called
bispherical harmonic

Y laLa

LM ~ x̂a ,ŷa!5 (
maMa

^ l amaLaMauLM &Ylama
~ x̂a!

3YLaMa
~ ŷa!, ~27!

with the Clebsch-Gordan coefficients^ l amaLaMauLM & and
the usual spherical harmonicsYlm( x̂). The index@L# of the
hyperspherical harmonics collectively denotes the set of
quantum numbers$k,l a ,La ,L,M %. The eigenvalue in~24! is
given byL5 l a1La12k1 3

2. If it is degenerate we have in
~25!, instead of a singleY@L#(V), a linear combination of
hyperspherical harmonics belonging to this value ofL.

At large hyperradii, and at energies below the three-body
breakup threshold, the surface functions go over tochannel
functions@19#, i.e., to products of muonic two-body bound
states and free wave functions describing the motion of the
respective third particle. The eigenpotentials converge to-
wards the corresponding two-body binding energies«m

(a3) ,
a51 or 2~note that particle 3 was assumed to be the muon!.
That is,

Un~r!→«m
~a3! for r→` ~28!
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and

Bn~r,V! r3/2Rmlb
~r cosvb!sinLbvbY lbLb

LM ~ x̂b ,ŷb!

for r→`, ~29!

where Rmlb
(r cosvb) represents the hydrogenlike wave

function of the corresponding muonic atom with the princi-
pal quantum numberm and the angular quantum number
l b ,

Rmlb
~r cosvb!5Nmlb

e2Au«m
~a3!ur cosvb

3~2Au«m
~a3!ur cosvb! lb

3Lm1 lb

2lb11
~2Au«m

~a3!ur cosvb!. ~30!

Lm1 l
2l11(x) is a Laguerre polynomial andNmlb

a normalization

constant. Consistently with Fig. 1, the channel indexb51 or
2 denotes the asymptotic~23,1! or ~13,2! fragmentations, re-
spectively. TheUn(r) are labeled byn51,2,3, . . . accord-
ing to the increasing sequence of their asymptotic values
«m
(a3) . Let us assume, e.g., that this sequence is

«1
(23),«1

(13),«2
(23),•••, as is the case for thedtm system,

thenU1(r)→«1
(23), U2(r)→«1

(13), U3(r)→«2
(23), . . . , and

an analogous correspondence holds forBn(r,V) and
Rmlb

(r cosvb) in ~29!.
Considering~29! it becomes clear why expansions into

hyperspherical harmonics, which are a good choice at small
r, fail to reproduce the surface functions at large values of
the hyperradius. Let us regard, for example, the ground state
of the muonic atom (m51,l 150). The atomic wave function
R10(r cosv1) has its maximal value atr cosv15a(23), i.e.,
at the Bohr radius of this atom. For increasingr the corre-
spondingv1 tends more and more towardsp/2. That means,
the wave function, regarded as a function of the hyperangle
v1 , shows a peak atv1'p/2, which becomes sharper with
increasing hyperradii. Such a peak structure, however, re-
quires for its approximation a drastically increasing number
of Jacobi polynomials, and thus of hyperspherical harmonics
~26!. Therefore, at large values ofr an alternative expansion
has to be chosen in correspondence with the asymptotic be-
havior ~29!. According to the above discussion, the channel
functions, i.e., the right-hand side of~29!, appear as an ad-
equate basis set.

A natural way of reproducing both asymptotic regions
seems to be to expand the surface functions both into hyper-
spherical harmonics and channel functions. The overcom-
pleteness of such a basis, however, leads to serious problems
when solving the corresponding generalized eigenvalue
problem numerically. In fact, the channel functions, being
orthogonal in the limitr→`, become nonorthogonal, and in
practice even linearly dependent, for decreasingr. As com-
pared to the treatment ofH2 in Ref. @19#, this is more critical
in our case, where we have to deal with two different muonic
atoms, i.e., with two different sets of channel functions.
When incorporating the strong interaction, such an expan-
sion is needed also with respect to the third fragmentation
(12,3). As a consequence, linear dependence occurs not only

within one set but also between these two or three sets of
functions, and the matrix associated with the metric of the
expansion scheme becomes singular. To overcome this prob-
lem, only handmade constructions have been used up to now,
which are based on introducing cutoff functions@5,20# or
neglecting the small eigenvalues of the overlap matrix@21#.
These methods, however, are not free of a certain arbitrari-
ness in choosing the cutoff points or selecting the small ei-
genvalues, and therefore appear somewhat questionable.

A possible way out of these complications is suggested by
the experiences of the three-nucleon problem. There, one en-
counters a rather similar situation: due to the identity of the
particles, all sets of Jacobi coordinates are involved, which is
most naturally taken care of by employing the Faddeev de-
composition@22,23# of the three-body wave function. Adopt-
ing this idea, we split the surface functions into Faddeev-
type components, combining thus the advantages of the
adiabatic approximation and of the Faddeev approach. That
is, we represent the surface functions as a superposition,

Bn~r,V!5 (
a51

3

ban~r,Va!, ~31!

of three components

ban5G0zaVaBn , ~32!

the Green functionG0 being defined by

G0
215Un2

L2

r2
1 (

b51

3

Vb@zb21#. ~33!

Note that by introducing the functionsza(r,Va) we have
taken over a modification of the original Faddeev definition
as suggested in Refs.@24,25#. It is easily seen that with the
definitions ~32! and ~33! the decomposition~31! satiesfies
Eq. ~13! for any choice of these functions. Following the
proposal in@25# we choose in what follows

za~xa ,ya!52F11expS ~xa /x0!
n

ya /y011D G
21

, ~34!

with open parametersx0 , y0 , and n. In the partial wave
expansion applied in the following calculation, these param-
eters are used to accelerate the convergence. Inserting Eqs.
~31!–~33! into ~13! we end up with the following set of
coupled equations:

FL2

r2
1
V

r
2
1

r (
bÞa

zbV bGban1
zaV a

r (
bÞa

bbn5Unban .

~35!

The remaining task now consists in determining the
Faddeev-type componentsban(r,Va). Since we consider in
the present paper only the Coulomb interaction between the
three particles, the two nuclei involved cannot occur in a
bound state. This suggests to use only two Faddeev-type
components,b1n andb2n , reducing in this way the dimen-
sion of the coupled system of equations~35! correspond-
ingly. When incorporating the strong interaction between the
two nuclei, as is our goal in the long run, it appears natural to
take into account also the third componentb3n .
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Within the present formulation the restriction to two com-
ponents is most easily achieved by puttingz350. The set of
equations~35! then simplifies to

FL2

r2
1
V 2z2V 2

r Gb1n1 z1V 1

r
b2n5Unb1n ~36!

and

FL2

r2
1
V 2z1V 1

r Gb2n1 z2V 2

r
b1n5Unb2n . ~37!

We emphasize once more that the general relations~35! are
valid for any choice ofza . Their specialization to Eqs.~36!
and ~37!, therefore, is no approximation.

In the following calculations we use for the two compo-
nentsb1n andb2n the ansatz

ban~r,Va!5e2Auemu r cosva

3 (
laLa ia

ka laLa ian
~r!coslava sinLava

3Sia~va!Y laLa

LM ~ x̂a ,ŷa! . ~38!

Here, theY laLa

LM ( x̂a ,ŷa) are the eigenstates~27! of the

squared total angular momentum operator. The dependence
of the hyperangle is treated via an expansion intoB-splines
Sia(va). The further functions ofva in ~38! have been cho-
sen in accord with the asymptotic properties discussed
above: the Laguerre polynomial contained in~30! can be
approximated by a sufficiently small number of splines, but
this is not the case for the exponential function
e2Auemu r cosva, which therefore has been split off explicitly
in ~38!. The additional factors sinLava and cos

lava reproduce
the correct behavior near the pointsva'0 andva'p/2,
respectively. Since the Jacobi polynomial in~26! can be ex-
panded quite well into splines, ansatz~38! is also appropriate
in the region of small values of the hyperradius.

Inserting the ansatz~38! into ~36! and~37! and projecting
onto the partial waveŝ l 1L1LM u and ^ l 2L2LM u, respec-
tively, we end up with the generalized eigenvalue problem

(
b lbLb ib

Ab lbLb ibn
a laLa ~r,va!kb lbLb ibn

~r!

5Un~r! (
b lbLb ib

Bb lbLb ibn
a laLa ~r,va!kb lbLb ibn

~r!, ~39!

providing us with the expansion coefficientska laLa ian
(r)

and the eigenvaluesUn(r). Note that, as in the original re-
lation ~13!, the hyperradiusr occurs here as a parameter.
Explicit formulas for the matricesA andB are given in the
Appendix.

IV. NUMERICAL TREATMENT AND RESULTS

In the following numerical investigations we restrict our-
selves to states of total angular momentumL50, which im-
plies identical values of the subsystem and the relative angu-
lar momental a andLa , respectively. Convergence has been
achieved when choosing their maximal value aslmax510. It
turns out that in ansatz~38! 20 B-splinesSi(va) are suffi-
cient to obtain stable results. In order to reproduce the peak
structure atva'p/2, a fairly small mesh of spline nodes had
to be chosen in this region.

To get rid of the hyperangleva in Eq. ~39!, which its
solutionska laLa ian

(r) andUn(r) do not depend on, two dif-
ferent methods have been developed. In the so-calledcollo-
cation point method@26# Eq. ~39! is solved at specific values
of the hyperangle. In order to obtain a quadratic eigenvalue
problem, only a limited number of these collocation points is
allowed. In theGalerkin method@14#, analogously to partial
wave projections, Eq.~39! is multiplied with the expansion
functionsSj (va) and integrated over the hyperangle. The
resulting eigenvalue problem remains quadratic for any num-
ber of integration points, which allows us to choose 20 mesh
points for each spline, while the collocation method would

FIG. 2. Lowest eigenpotentialsU1(r) and
U2(r) of thedtm system forL50. With increas-
ing hyperradius they converge towards the
ground-state energies«1

(tm) and «1
(dm) , respec-

tively. The diamonds are the results of Ref.@5#.
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restrict us to two or three points only. The consequence is a
higher stability of the Galerkin method, a feature particularly
relevant for the treatment of the singularity of the Coulomb
potential at the origin. Moreover, an appropriate transforma-
tion of the mesh points@27# is used in this context. The
integrations over the hyperangleva and the angle between
xWa andyW a @see Eq.~46!# are performed via Gaussian quadra-
ture.

Choosing 2 Faddeev-type components, 11 partial waves,
and 20B-splines, we end up with a (4403440)- dimensional
eigenvalue problem. For its solutions the Lanczos algorithm
is employed, using the trick of shifted equations described in
@28#. This powerful tool replaces the original (4403440)-
dimensional problem by an effective 737 matrix equation.

In Fig. 2 the two lowest eigenpotentials of thedtm system
are shown together with the results of Gusevet al. @5#. The

latter ones have been read off simply from the corresponding
figure in @5#, with the size of the diamonds indicating the
reading error. It is seen that with only 440 basis functions we
practically reproduce the results of Gusevet al., who needed
more than 1800 functions. The decomposition of the surface
functions into Faddeev-type components, thus, leads to a
considerable reduction of the numerical effort.

Figure 3 shows the corresponding eigenpotentials of the
d3Hem system. In contrast to thedtm case, the lowest po-
tential is purely repulsive, as expected in view of the Cou-
lomb repulsion between the deuteron and the3Hem sub-
system. The attractive character of the second eigenpotential
is a consequence of the polarization of thedm atom in the
Coulomb field of the3He nucleus.

In Fig. 4 we make this statement explicit by presenting
the relevant partial wave contributions to the second eigen-

FIG. 3. Lowest eigenpotentialsU1(r) and
U2(r) of thed

3Hem system forL50. They con-
verge towards the ground-state energies
«1
(He m)521 and«1

(dm) , respectively.

FIG. 4. Second eigenpotential ofd3Hem for
different values oflmax, i.e., for different num-
bers of partial waves taken into account.
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potential. Choosinglmax50, thus enforcing the atom to be in
an isotropic state, nearly no attraction is seen. This changes
drastically when taking into account anisotropic contribu-
tions. The main part of the attraction is given already by the
p-wave (lmax51), but attractive contributions are provided
also by the higher partial waves up tolmax54 or 5.

The radial equations are treated both within the extreme
and the uncoupled adiabatic approximations~21! and ~20!,
making use of a Runge-Kutta algorithm. By inserting~25!
into ~21! and ~20! one infers for somer0!1 the boundary
condition

r0f n8~r0!5~L11! f n~r0!. ~40!

We chooser051023 and integrate the radial equation up to
80 or 160 Bohr radii in case of thedtm or d3Hem molecules,
respectively. Since only the attractive eigenpotentials pro-
duce bound states or resonances, the radial equations have
been solved withU1(r) for dtm andU2(r) for d

3Hem.
In Fig. 5 we show the resulting ground-state binding en-

ergies for thedtm molecule as a function of the number of
subsystem partial waves taken into account. The two lower
~upper! curves correspond to the EAA~UAA !, yielding
overbinding ~underbinding! in comparison with the varia-
tional calculation@1#. These numerical results, hence, are in
accord with the inequalities~22!. The two curves belonging
to the same approximation are calculated by using different
sets of parametersn, x0 , and y0 ~see Table I!. As empha-
sized repeatedly, the exact solution of Eq.~13! is indepen-
dent of theza and thus of these parameters. In practice this
can be used as a means to test the quality of different ap-
proximations, in particular the convergence of the partial

wave decompositions involved. The curves for the two dif-
ferent sets of parameters given in Table I agree for
lmax510. But the corresponding final value is approached
much faster with set~a!. In this way the number of relevant
partial waves can be reduced fromlmax510 to about 7.

For the excited state of thedtm molecule one encounters
a rather similar situation, as demonstrated in Fig. 6. In this
case the inequalities~22! have not yet been proved, but they
are satisfied by the present numerical results: the EAA gives
overbinding, while the binding obtained in UAA is some-
what too weak.

Table II presents a quantitative comparison between our
results and the ones of Gusevet al. @5# and of a variational
calculation@1#. The relative difference to the results of Ref.
@1# is given in percent. It is seen that the extreme adiabatic
approximation is justified only in the treatment of the ground
state. The most important point in this table, however, is the
very good agreement between our UAA results and the UAA
results of Gusevet al. The remaining discrepancy to the
variational calculations, thus, is not due to any inaccuracy in
determining the surface functions, but arises from the un-
coupled adiabatic approximation itself. Indeed, Gusevet al.
showed that, going over to the coupled adiabatic approxima-
tion, it needs six surface functions to reproduce the varia-
tional calculations up to the first three significant digits. Our
purpose, however, was not to redo this calculation, but to
develop a better method for determining the surface func-
tions, a method that should be well suited for the treatment
of systems of higher mass and charge.

The binding energies obtained for thed3Hem system are
given in Table III. We list there also the results of one-
channel Born-Oppenheimer calculations@9,10# and of a
variational calculation@11#. While the EAA gives a 10%
stronger binding, the UAA differs less than 0.5% from the
variational calculations. It also agrees better with these cal-
culations than the Born-Oppenheimer results.

In the present one-channel adiabatic approximations~20!
or ~21!, the radial equation yields for thed3Hem system a

FIG. 5. Binding energies of the ground state
of dtm (L50) obtained for different values of
lmax. The lines serve to guide the eye. The
dashed line is the result of the variational calcu-
lation @1#. The two curves converging towards a
value somewhat above this line correspond to the
UAA. The two lower curves represent the EAA
results. In both approximations the two sets of
parameters of Table I are used.

TABLE I. Two sets of parameters for the functionsz1,2.

n x0 y0

set~a! 2.3 1.3 10
set~b! 2.6 1.8 10
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bound state, which, however, can decay into the energetically
lower channel3Hem1d when switching on the neglected
coupling. Since the coupling is known to be weak@29,30#,
one expects this resonance to be fairly sharp and to appear
almost at the binding energy found in the one-channel calcu-
lation.

V. CONCLUSIONS AND OUTLOOK

We have presented a method for calculating three-body
Coulomb problems that combines the advantages of hyper-
spherical and Faddeev techniques.

The hyperspherical method allows one to separate the hy-
perradial motion from the angular part. After partial wave
decomposition, this part consists of an equation in only one
variable, the hyperangle, which was solved in the present
investigations via an appropriate spline expansion. From the
angular equation one gets, in particular, the eigenpotentials
which play the role of effective potentials in the radial equa-
tion. The characteristic features of the respective problem,
e.g., the occurrence of bound states and resonances as well as
polarizability effects, can be inferred immediately from these
potential curves. A further advantage is that, by solving the
radial equation, upper and lower bounds are obtained for the
binding energy of the ground state.

When combining the hyperspherical method with the Fad-
deev technique, we have made use of the typical property of
Faddeev-type equations to treat all two-body contributions in
an equivalent manner. Proceeding in this way allowed us to

incorporate the two-body bound states explicitly without
ending up with overcompleteness problems. Being physi-
cally motivated, this technique also led to a considerable
reduction of the numerical effort.

The efficiency of our approach was demonstrated by
studying thedtm andd3Hem molecules or molecular reso-
nances, but for systems of chargeZ.2 complete conver-
gence of the spline expansion has not yet been reached. Mak-
ing use of Kato’s cusp condition@31# it should be possible to
overcome this problem. In Ref.@32# a considerable improve-
ment of the convergence was, in fact, achieved. We expect
that with this additional modification systems likep7Bem,
which we are particularly interested in for reasons discussed
in the Introduction, can be treated in a reliable manner.

Our procedure should allow us to treat also the scattering
problem below the breakup threshold. In order to do this,
only the boundary conditions for the radial equations have to
be changed. Since the angular part does not depend on such
boundary conditions, the rest of the formalism, especially the
determination of the surface functions, remains unmodified.
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APPENDIX

The transformation of the Jacobi coordinates between the
different sets is given by

S xWb

yW b

D 5S 2cba dba

2dba 2cba
D S xWa

yW a

D , ~A1!

with the constants

cba5A mamb

~ma1mg!~mb1mg!
,

~A2!

dba5A mg~ma1mb1mg!

~ma1mg!~mb1mg!
,

where (b,a) means (2,1), (3,2), or (1,3). This transforma-
tion is orthogonal, i.e.,cba

2 1dba
2 51, and its inverse is given

via cab5cba anddab52dba . The hyperradiusr is invari-
ant with respect to the set of coordinates, while the hyper-
angle transforms as

cos2vb5cba
2 cos2va1dba

2 sin2va

22cbadbaza cosva sinva ,
~A3!

whereza5 x̂aŷa .

Due to the partial wave expansion employed, each ele-
ment of the matricesA andB in Eq. ~39! contains an inte-
gral of the following structure

I laLa lbLb

LM ~va!5E dx̂adŷaY laLa

LM* ~ x̂a ,ŷa!

3 f ~va ,za!Y lbLb

LM ~ x̂b ,ŷb! ~A4!

or

J laLa la8La8
LM

~va!5E dx̂adŷaY laLa

LM* ~ x̂a ,ŷa!

3 f ~va ,za!Y l
a8La8
LM

~ x̂a ,ŷa!, ~A5!

with some functionf depending only onva andza , a fact
holding for all central potentials. Using straightforward alge-
bra, these four-dimensional integrals can be reduced to one-
dimensional ones,

I laLa lbLb

LM ~va!5(
l x
S lbLb l x

laLaL ~va!

3E
21

1

dzaPlx
~za!

f ~va ,za!

coslbvb sinLbvb
,

~A6!

wherePl(z) denotes a Legendre polynomial and

S lbLb l x

laLaL ~va!5
~21!L1 l x

2
l̂ aL̂a l̂ b

2 L̂b
2 l̂ x

2(
lb8Lb8

~21! lb8AS 2l b2l b8
D S 2Lb

2Lb8
D cba

lb2 lb81Lb8d
ba

lb81Lb2Lb8~cosva! lb2 lb81Lb2Lb8~sinva! lb81Lb8

3(
l x8 l y8

l̂ x8
2l̂ y8

2S l b2 l b8 Lb2Lb8 l x8

0 0 0
D S l b8 Lb8 l y8

0 0 0
D S l a l x8 l x

0 0 0
D S La l y8 l x

0 0 0
D H l x8 l y8 L

La l a l x
J

3H l x8 l y8 L

l b2 l b8 l b8 l b

Lb2Lb8 Lb8 Lb

J . ~A7!

The second integral is simpler since it contains only functions belonging to the same set of coordinates. It reads

J laLa la8La8
LM

~va!5(
l x
F

l
a8La8 l x

laLaL E
21

1

dzaPlx
~za! f ~va ,za! ~A8!

with

F
l
a8La8 l x

laLaL 5
~21!L1 l x

2
l̂ aL̂a l̂ a8 L̂a8 l̂ x

2S l a l a8 l x

0 0 0
D S La La8 l x

0 0 0
D H l a8 La8 L

La l a l x
J . ~A9!

Note that, due to the triangle relations the angular momenta fulfill, all sums appearing in Eqs.~A6!–~A9! are finite. The matrix
elements of matrixA in Eq. ~39! are given by

Ab lbLb ibn
a laLa ~r,va!5@Ãb lbLb ibn

a laLa ~r,va!1C̃ b lbLb ibn
a laLa ~r,va!#dab1D̃b lbLb ibn

a laLa ~r,va!d̄ab ~A10!

with
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Ã
a l

a8La8 ia8n
a laLa ~r,va!5E dx̂adŷaY laLa

LM* ~ x̂a ,ŷa!FL2

r2
1VaGe2Auemur cosva cosla8va sinLa8vaSi

a8
~va!Y l

a8La8
LM

~ x̂a ,ŷa!

5d la la8dLaLa8
coslava sinLava

r2
e2Auemur cosva S H ~ l a1La12!22

1

4
2

2maZ1r

Za cosva
22rAuemu

3F S La1
3

2D cosva2~ l a11!
sin2va

cosva
G2r2 sin2vau«muJSi

a8
~va!22F ~La11!

cosva

sinva
2~ l a11!

sinva

cosva

1r sinvaAuemuGSi
a8
8 ~va!2Si

a8
9 ~va! D , ~A11!

C̃
a l

a8La8 ia8n
a laLa ~r,va!5E dx̂adŷaY laLa

LM* ~ x̂a ,ŷa!F (
bÞa

~12jb!VbGe2Auemu r cosva cosla8va sinLa8vaSi
a8
~va!Y l

a8La8
LM

~ x̂a ,ŷa!

52
2Z1
r

e2Auemur cosva cosla8va sinLa8vaSi
a8
~va!E dx̂adŷaY laLa

LM* ~ x̂a ,ŷa!

3F mb

Zb cosvb
~12jb!1

mg

Zg cosvg
~12jg!GY l

a8La8
LM

~ x̂a ,ŷa!

52
2Z1
r

e2Auemur cosva cosla8va sinLa8vaSi
a8
~va!

3(
l x
F

l
a8La8 l x

laLaL E
21

1

dzaPlx
~za!F mb

Zb cosvb
~12jb!1

mg

Zg cosvg
~12jg!G , ~A12!

and

D̃b lbLb ibn
a laLa ~r,va!5E dx̂adŷaY laLa

LM* ~ x̂a ,ŷa!jaVae
2Auemur cosvb coslbvb sinLbvbSib~vb!Y lbLb

LM ~ x̂b ,ŷb!

52
2maZ1

Zar cosva
jaE dx̂adŷaY laLa

LM* ~ x̂a ,ŷa!@e2Auemur cosvb coslbvb sinLbvbSib~vb!#

3Y lbLb

LM ~ x̂b ,ŷb!

52
2maZ1

Zar cosva
ja (

l x
S lbLb l x

laLaL ~va!E
21

1

dzaPlx
~za!e2Auemur cosvbSib~vb! . ~A13!

The matrixB in Eq. ~39! is given by

Bb lbLb ibn
a laLa ~r,va!5dabd la lbdLaLb

e2Auemur cosva coslava sinLavaSia~va! . ~A14!
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