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How does the classical notion of ‘‘phase’’ apply to a quantum harmonic oscillatorH5
1
2(q̂

21 p̂2),
@ q̂,p̂#5 i\, which cannot have sharp positionandmomentum? A quantum stater̂ can be assigned a definite
classicalphase only if it is alarge-amplitude localized state. Our only demand, therefore, on a~Hermitian!
phase operatorf̂ is that the phase distributionP(w)5 Tr$d(f̂2w) r̂% attribute the correct sharp phase to any
such ‘‘classical phase’’ state. This requires that the Weyl symbol@f̂#w(q,p) of f̂ tend to u mod2p as
r→`, whereu5tan21(p/q) and r5(q21p2)1/2. There are infinitely many such phase operators. Each is
expressible asf̂5@ tan21( p̂/q̂)#V , where V specifies anordering rule for q̂ and p̂. The commutator
2 i @Ĥ,f̂#5122p@d(tan21p̂/q̂)#V corresponds to the Poisson bracket$H,fcl% PB5122pd(u) for thesingle-
valuedclassical phasefcl5u mod2p. Phase statesĜ(w) are defined by the condition that their Weyl symbols
@Ĝ(w)#w(r ,u)→d(u2w) as r→`. If moreover*0

2pdwĜ(w)51̂, then Ĝ(w) is a phase probability operator
measure~POM!. In particular,d(f̂2w) is a phase POM. Normalizableapproximatephase statesĜ«(w) are
defined by@Ĝ«(w)#w(r ,u)52p«2e2«r@Ĝ(w)#w(r ,u), «!1. Phase states are not, in general, ‘‘pure orthogonal’’
in the senseĜ(w)Ĝ(w8)5d(w2w8)Ĝ(w), unless they are of the formd(f̂2w). However, any phase state
Ĝ1(w) is trace orthogonalto any phase POMĜ2(w), in the sense that Tr$Ĝ2(w8)Ĝ1

«(w)%→d(w2w8) as
«→0. This implies that measurement of the POMĜ2(w8) on the stateĜ1

«(w) yields the outcomew with
probability 1 as«→0. Phase measurements of the first kind are possiblein principle; they would allow one to
prepare~approximate! phase states and monitor their phase evolution in a quantum~phase! nondemolishing
manner. Cases of special interest are the Susskind-Glogower and the Cahill-Glauber ordered phase states and
operators. The energy-phase~or number-phase! uncertainty relation isDHDf>0, the lower limit
DHDf50 being realized by pure number states; however, for states whose Wigner functions are localized
away from the origin and from the extremities of the~single-valued! phase window (0,2p), the uncertainty
relation is effectivelyDHDf> 1

2.

PACS number~s!: 03.65.2w, 42.50.Dv

I. INTRODUCTION

Phase changes in harmonic oscillators underlie interfer-
ometry, and the measurement of time. Indeed, phase shifts
correspond to time displacements. A phase shiftDu, induced
on a quantum state by some device, or just by the passage of
time, is a parameter in a time evolution operator, whose
measurement~e.g., by interferometry! need not involve a
phase operator. Still, it would be desirable to dispose of a
phase operatorf̂, whose measurement~of the first kind!
might, hopefully, allow topreparesharply phased states, and
monitor their evolution in a ‘‘quantum nondemolishing’’
~QND! manner.

Classically, the phase of an oscillator with sharp position
q and momentump is the angle

u5u~q,p!5tan21~p/q! ~1.1!

~in units where the mass and frequency of the oscillator are
unity!. But what is the phase, or phase distribution, of a
quantum oscillator~we use\51),

Ĥ5 1
2 ~ q̂21 p̂2!, @ q̂,p̂#5 i , ~1.2!

which cannot have sharp positionandmomentum? Although
the notion of ‘‘phase shift’’ is clear in the quantum context~a
parameter in a time evolution operator!, that of ‘‘phase’’ it-
self appears rather fuzzy.

In any case, since the HamiltonianĤ generates time evo-
lution, hence phase shifts, one would expect a phase operator
û to satisfy

@Ĥ,û #5 i⇔e2 i tĤ ûeitĤ5 û1t. ~1.3!

Eigenstates of such aû would remain eigenstates under
phase shifts, so that it would be possible to monitor them
nondestructively by repeatedû measurements. Unfortu-
nately, the requirement~1.3!, initially proposed by Dirac@1#,
is impossible to satisfy@2–4#, leading to the belief, for some
time, that a quantum phase operator does not exist@which is
true if one defines it by~1.3!#.

Various approaches to the ‘‘quantum phase’’ have been
proposed, eliciting enormous literature for such a circum-
scribed subject. Some of these approaches will be reviewed
in the first part of this paper. We restrict ourselves to those
approaches which are more or less directly relevant to our
own. In particular, we do not discuss very interesting treat-
ments by Shapiro and Shepard@5#, and by Ban@6#, making
use of ‘‘doubled’’ Hilbert spaces, or of Liouville space.

In this paper, we acknowledge that ‘‘phase’’ is an essen-
tially classical notion, as was emphasized by Bergou and
Englert@7#. A classical phase can be assigned unambiguously
to a quantum state only if it is alarge amplitude localized
state. By this we mean a stater̂q8p8 for which the expecta-
tions ^qur̂q8p8uq& and^pur̂q8p8up& are localized within inter-
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vals Dq and Dp aboutq8 and p8, and such that the box
Dq3Dp subtends avanishing angle at the origin of the
(q,p) plane~Fig. 1!. Our only demand, therefore, on a~Her-
mitian! phase operatorf̂ is that thephase distribution

P~w!5Tr$d~f̂2w!r̂% ~1.4!

attribute the correct sharp phase to any such ‘‘classical
phase’’ state. Infinitely many different Hermitian operators
then qualify as ‘‘phase operators.’’ Each is expressible as

f̂5@ tan21~ p̂/q̂!#V , ~1.5!

whereV specifies anordering rule @8# for the noncommut-
ing operatorsq̂ and p̂. Thereby,f̂ is a ‘‘natural’’ quantiza-
tion of the classical observableu5tan21(p/q). The ‘‘ca-
nonical’’ ordering is Weyl ordering@8#. The Weyl ordered
phase operator was first introduced and studied extensively
~both for its fundamental physical significance and math-
ematical interest! by Smith, Dubin, and Hennings@9#. More
general ordering rules were considered independently in
@10#.

We will find that phase measurements of the first kind are
possible, inprinciple: They would allow to prepare sharply
phased states, and monitor them in a ‘‘quantum~phase! non-
demolishing’’~QND! manner@11#.

Since the paper is rather long, a self-contained summary
is given in the two concluding sections XVIII and XIX. The
rest of the paper is organized as follows: Sections II–VII
review some of the existing literature, and also serve to set
down a number of results that we shall need, and announce
general features to come out of our own treatment. Sections
VIII–XVII constitute the subject proper. Detailed calcula-
tions have been relegated to appendixes, to let the discussion
flow more smoothly. Appendixes A–I contain details of cal-
culations and complementary information to that given in the
text. Appendix J is purely mathematical. Appendix K re-
groups various known formulas which we require.

II. MULTIPLE- AND SINGLE-VALUED PHASES

We will use polar coordinates in the (q,p) phase plane:

u5tan21~p/q!, R5H~q,p!5 1
2 ~q21p2!, ~2.1a!

r5~q21p2!1/2, r5uau5221/2uq1 ipu5221/2r ,
~2.1b!

where we defined three different radial variables:r is the
radial distance;r5uau is widely used in the quantum optics
literature;R, equal to the classical oscillator Hamiltonian, is
the ‘‘action variable’’ canonically conjugate to the angleu:
Indeed, thecanonical transformation (q,p)→(R,u) pre-
serves the form of Poisson brackets@12#

$ f ,g%PB5
] f

]q

]g

]p
2

] f

]p

]g

]q
5

] f

]R

]g

]u
2

] f

]u

]g

]R
~2.2!

so that

$R,u%PB5$H,u%PB5
]u

]u
51. ~2.3!

The radial measures aredR5rdr52rdr, and integrals over
phase space will be*dqdp5*0

`rdr*0
2pdu, etc.

Considering~2.3!, we see that the demand@Ĥ,û #5 i , set
by Dirac @1# for a quantum phase operatorû, accords with
his cherished correspondence@13#

$.,.%PB↔2 i @ .,.# ~2.4!

between classical Poisson brackets and quantum commuta-
tors. As already mentioned,@Ĥ,û #5 i is impossible to satisfy
@2–4#. This is readily seen by considering its matrix elements
between number statesun&, whereĤun&5(n1 1

2)un&:

^n8u@Ĥ,û #un&5~n82n!^n8uûun&5 idn8n ~2.5!

implying that û5`1̂. Moreover,@Ĥ,û #5 i would imply that

eilûĤe2 ilû5Ĥ1l, ~2.6!

wherel is any real number, so that the ketse2 ilûun& would
benormalizable~if û is Hermitian! eigenkets ofĤ with con-
tinuouseigenvaluesn1 1

21l.
The above is really not surprising: The phaseu used in

~2.3! is amultiple-valuedfunction of (q,p). Indeed, to get
~2.2!, it is essential thatu be acontinuousfunction ofq and
p. Therefore, no well-behaved quantum observable can cor-
respond tou, because a quantum measurement can only have
definite~single-valued! outcomes. One should really refer to
a single-valuedclassical phase, such as

f5f~q,p!5u mod2p. ~2.7!

This satisfies, instead of$H,u%PB51,

$H,f%PB5
]f

]u
5122pd2p~u!, ~2.8!

where the Dirac comb

d2p~u![ (
n52`

`

d~u22pn!5d~u mod2p! ~2.9!

FIG. 1. The shaded box represents a quantum stater̂q8p8 whose
position and momentum transition probabilities,^qur̂q8p8uq& and
^pur̂q8p8up&, are localized about (q8,p8)5(r 8,u8), with spreads
~uncertainties! Dq andDp. The box subtends an angleDu at the
origin of phase space. If the amplituder 8 is large enough that the
phase uncertaintyDu is negligably small, thenr̂q8p8 can be as-
signed the phaseu8.
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expresses the sudden22p jumps suffered byf asu passes
multiples of 2p. One might therefore expect a phase opera-
tor f̂ to satisfy, rather than@Ĥ,û #5 i , the commutation rela-
tion

2 i @Ĥ,f̂#51̂22pĜ, ~2.10!

where Ĝ, defined by~2.10!, i.e., 2pĜ51̂1 i @Ĥ,f̂#, should
be some quantum analog ofd2p(u). This will indeed turn
out to be the case.

III. QUANTUM PHASE FROM NUMBER SHIFT
OPERATORS

In this section, we give a brief overview of what has been
the main line of thought on the quantum phase. We will need
the results

~2p!21E
0

2p

dw ei ~n82n!w5dnn8 , ~3.1a!

~2p!21E
0

2p

w dw ei ~n82n!w5pdnn82~12dnn8!
i

n82n
.

~3.1b!

The relation~2.6!, though impossible, points to energy
shift operators, i.e., number shift operators, as quantum ana-
logs of e6 iu. Since the latter do not suffer the multivalued-
ness thatu does, one suspects their quantum analogs to be
less problematic thanû itself. The familiar number shift op-
erators are the creation and annihilation operators:

â5221/2~ q̂1 i p̂ !, â†5221/2~ q̂2 i p̂ !, N̂5â†â5Ĥ2 1
2 ,

~3.2a!

@ â,â†#51, @N̂,â#52â, @N̂,â†#5â†. ~3.2b!

The relation@N̂,â#52â is indeed similar to~2.6! written in

the form @N̂,ei û#52ei û. The eigenstates ofâ are coherent
states

uqp&coh5ua&coh5ureiu&coh5e2~1/2!r2(
n50

`
rneinu

~n! !1/2
un&, ~3.3a!

a5221/2~q1 ip !5reiu, âua&5aua&. ~3.3b!

These are the archetypical localized states, with
Dq5Dp'1 ~see Fig. 1!: They indeed acquire a definite
phase as their amplitudesr→`, but not at lesser values of
r. Let us try, then, to modify â: Noting that
âN̂â†5(N11)2, we see that a closer similarity with~2.6!,
and also withe6 iu5r21/2(q6 ip), will be obtained if, fol-
lowing Susskind and Glogower@3#, we define ‘‘expu’’ opera-
tors as

Ê5~N̂11!21/2â5 (
n50

`

un&^n11u,

Ê†5â†~N̂11!21/25 (
n50

`

un11&^nu. ~3.4!

One then has@compare~3.2!#

Ê†un&5un11&, Êun&5~12dn0!un21&, ~3.5a!

@N̂,Ê#52Ê, @N̂,Ê†#5Ê†, ~3.5b!

ÊÊ†51̂, Ê†Ê51̂2u0&^0u, ~3.5c!

~Ê!mN̂~Ê†!m5N̂1m ~3.5d!

~Ê†!mN̂~Ê!m5N̂2m1mu0&^0u1~m21!u1&^1u

1~m22!u2&^2u1•••1um21&^m21u,

~3.5e!

where Êm indeed appears as a discrete analog ofe2 ilû in
~2.6!. However, since it annihilates the vacuum,Ê is not
invertible, hence not unitary: Indeed, it cannot be, for other-
wise it could be used to shiftN̂ down to negative eigenvalues
@contrary to~3.5e!#.

The Susskind-Glogower number shift operatorÊ has the
following unormalizable eigenkets:

uw&SG5~2p!21/2(
n50

`

einwun&, Êuw&SG5eiwuw&SG. ~3.6a!

These constitute a complete but nonorthogonal set of vectors
@4#:

E
0

2p

dwuw&SĜ wu51̂, ~3.6b!

SĜ w8uw&SG5~2p!21(
n50

`

ein~w2w8!

5
1

4p
1 1

2d~w82w!2
i

4p
cot

w82w

2
,

~3.6c!

where ~3.6b! follows from ~3.1a!, and the principal part is
understood in cot12(w82w). The ‘‘phase states’’uw&SG have
many compelling properties, and the ‘‘phase distribution’’
defined by

PSG~w!5SĜ wur̂uw&SG ~3.7!

is widely used@14#. However, not being orthogonal,uw&SG
cannot be the eigenkets of a Hermitian operator.

This prompted Pegg and Barnett@15# to consider a finite
Hilbert space$un&, n51,2, . . . ,s%, wherein
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uu j&PB5~s11!21/2(
n50

s

einu j , u j5
2p j

s11
,

j50,1, . . . ,s ~3.8a!

are orthogonal eigenkets of a Hermitian phase operator

f̂PB5 (
n50

s

uu j&u j^u j u, ûPBuu j&5u j uu j&. ~3.8b!

An elegant formalism ensues@15#. In the limit s→`,

S s11

2p D 1/2uu j&PB→uu j&SG, f̂PB→f̂SG, ~3.9a!

where@by ~3.1b!#

f̂SG5E
0

2p

w dwuw&SĜ wu5p1 (
n8Þn

un8&
i

n2n8
^nu.

~3.9b!

Still, uw&SG are not eigenkets off̂SG, even though the latter
is a well behaved operator.

The SG operatorÊ and the annihilation operatorâ belong
to a general family of ‘‘modulated’’ number shift operators

Êl5 (
n50

`

un21&ln^nu, l050, ~3.10a!

Êlun&5un21&ln , Êl
†un&5un11&ln11 ~3.10b!

introduced by Lerner, Huang, and Walters@16#. The eigen-
kets of Êl are given by

ub&5 (
n50

`

cnun&, cn5
bcn21

ln
5

bnc0
Pm51

n lm
,

Êlub&5bub&. ~3.11!

Susskind-Glogower corresponds toln51 andb5eiw. The
annihilation operatorâ corresponds toln5n1/2. Not all
states~3.11! have a definite phase@e.g., the coherent states
~3.3! at smallr#: In fact,anypure stateuC&5(ncnun& is an
eigenketub& of some operator Eˆ l , given by ~3.10a! with
ln5bcn21 /cn . Lerneret al. @16# argued that for~3.11! to
qualify as ‘‘phase states,’’ they should haveb5eiw, and
ln→1 as n→`, so that cn→(const)einw, that is, they
should tend to the Susskind-Glogoweruw& SG asn→`.

Leonhardt, Vaccaro, Bohmer, and Paul@17# discuss sev-
eral approaches of the above kind in a unified way, using as

underlying notions~i! covariance under phase shiftseiuĤ,
and ~ii ! invariance under the Susskind-Glogower number
shift Ê†. Note, however, that although it has many compel-
ling properties, the number shiftÊ† is not unique, as indi-
cated above.

IV. CLASSICAL PHASE DISTRIBUTIONS

Another line of attack on the quantum phase emphasizes
phase distributionsrather thanoperatorsfor phase or func-

tions of phase. We first discuss, in this section,classical
phase distributions.

A central role is played here by the angulard function

d~u2w!5dw~q,p!5
q

cosw
d~q sinw2p cosw!QS q

cosw D ,
~4.1!

where

Q~x!5H 0 ~x,0!

1 ~x.0!.
~4.2!

The step function in~4.1! assures thatq/cosw.0, i.e., that
dw(q,p) is localized over only half of the straight line
qsinw5pcosw. By contrast,

d~q sinw2p cosw!5
d~u2w!1d~u2w2p!

r
~4.3!

is localized along the complete straight lineq sinw
5p cosw. The extra radial weightr5q/cosw in ~4.1!, as
against~4.3!, reflects the fact that an angular incrementDu
defines a ‘‘wedge’’ in phase space~see Fig. 1!. Its manifes-
tations will be a recurrent theme in this paper.

A classical statistical state is aphase spaceprobability
distribution f cl (q,p)5 f cl(r ,u). Its phaseprobability distri-
bution Pcl(w) is the expectation ofd(u2w), that is, in the
picturesque language of Schleich and Wheeler@18#, the
‘‘overlap’’ of f cl(q,p) with dw(q,p) ~Fig. 2!:

Pcl~w!5E dq dpdw~q,p! f cl~q,p! ~4.4a!

5E
0

`

r dr f cl~r ,w!, ~4.4b!

the radial integral off cl(r ,w). The unormalizable ‘‘states’’
dw(q,p) thus act asphase probability measures. By analogy
with the quantum formalism, they may be called ‘‘classical
phase eigenstates.’’

The phase distribution~4.4! may be compared with the
‘‘orientation’’ distribution

FIG. 2. The shaded region represents a classical statef (q,p).
The phase distribution is the overlap off (q,p) with the infinitely
narrow wedge dw(q,p), represented by the radius at
anglew.
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Porien~w!5E dq dpd~q sinw2p cosw! f cl~q,p!

~4.5a!

5E
0

`

dr@ f cl~r ,w!1 f cl~r ,w1p!#, ~4.5b!

the overlap off cl(q,p) with the complete straight line~4.3!
~see Fig. 3!. This is the value atx50 of thew-quadrature
distribution

Pw~x!5E dq dpd~q sinw2p cosw2x! f cl~q,p!.

~4.6!

As pointed out by Schleich and his co-workers@19#, the
‘‘quadrature based’’ phase distribution@‘‘half’’ of ~4.5!#

Pquad~w!5E
0

`

dr f cl~r ,w! ~4.7!

suitably renormalized, gives a good idea of the true phase
distribution ~4.4!, in the case of states sufficiently localized
radially that the wedge radial weightr in ~4.4! is of little
consequence.

V. QUANTUM PHASE-SPACE DISTRIBUTIONS

Considering~4.4!, one naturally thinks of using quantum
phase spacedistributions for defining quantumphasedistri-
butions. We first recall in this section some basic results con-
cerning phase space representations of quantum states and
operators.

Consider a wave function

C~x!5R~x!eiS~x!, R~x!,S~x! real ~5.1!

~we here use, as position variables,x in configuration space,
andq in phase space!. It will be enlightening to also think of
x andq as ‘‘time,’’ of p as ‘‘frequency,’’ and ofC(x) as a
time-dependent signal. Another common representation of
C is its momentum~frequency! representation

C̃~p!5~2p!21/2E dx e2 ipxC~x! ~5.2!

which gives the momenta~frequencies! comprisingC. The
absolute squareuC̃(p)u2 is the ‘‘power spectrum’’ ofC. One
often has, however, a description involving both positionand
momentum~time and frequency!, that is, a phase-space rep-
resentation. For instance, in the process of hearing, one does
not perceive the detailed time variation of the air pressure,
nor its frequency spectrum, but rather a time-varying ‘‘local’’
frequency spectrum. Let us intuit the general phase space
appearance ofC(x):

We first note that̂ p&(x)5S8(x)5]S/]x appears as a
‘‘local’’ mean momentum atx. Thus, a crude phase-space
representation ofC(x) is a ribbon centered on the line
p5S8(q). The ribbon has a widthDp(x), due to the varia-
tions ofR(x). The relevant characteristic here is the relative
rate of variationuR8(x)/R(x)u: Sinceeipx produces relative
rates of variation of size'p, we have, roughly@8c#,

^p&~x!'S8~x!, Dp~x!'UR8~x!

R~x!
U. ~5.3!

For instance, ifC(x)5xa, thenDp(x)'x21, so thatxa gets
more and more sharply localized in momentum asuxu in-
creases.

The above argument is only qualitative. Can one build
quantitative phase-space representations? Since hearing
naturally provides a time-frequency representation of sound,
let us imitate that process: This can be modeled~very
crudely! as effected by a bank of damped oscillators of dif-
ferent natural frequencies@20#. The energy imparted by the
signalC(x) to the oscillator of frequencyp, at timeq, is
~approximately! a windowedFourier spectrum

f ~q,p!5~2p!21U E dx e2 ipxh~q2x!C~x!U2, ~5.4!

where h(x) is the damping function of the oscillator@as-
sumed independent of its natural frequency; the (2p)21 is
for normalization#. Of course,h(x) has its ownp width,
which adds to that ofC(x) @21#.

The windowed Fourier spectrum provides a quantitative
phase-space representation which, however, depends on a
choice of window function. Is there an ‘‘absolute’’ phase-
space representation? Somewhat surprisingly, there is: Con-
sider, first, the overlap of a real functionf (x) with is inver-
sion aboutq,

W~q!5E dx f~q1x! f ~q2x!. ~5.5!

This accurately portrays the whereabouts off (x), but with
an added feature:W(q) contains ‘‘inner interferences’’ be-
tween different parts off (x); for instance, if f (x) has two
humps, then in addition to imaging the two humps,W(q)
also has an extra hump at their midpoint~Fig. 4!.

As it stands,~5.5! is of little interest. Things become in-
teresting if wesimultaneouslyinvert in momentum: To invert
a ~complex! function C(x) in p, complex conjugate it, as
this causeŝp&(x)5S8(x) to change sign~this is the usual
time-reversal operation, better calledmotion reversal!. To
displaceC(x) by p, multiply it beeipx. Thus, corresponding
to f (x1q) in ~5.5!, we displaceC(x) by 2q, and then by

FIG. 3. The shaded region represents a classical statef (q,p).
The orientation distributionPorient(w) is the overlap off (q,p) with
the straight lined(qsinw2p cosw).
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2p, that is,C(x)→C(x1q)→e2 ipxC(x1q); correspond-
ing to f (q2x), we displaceC(x) by q and invert inx, then
displace by p and invert in p, that is C(x)
→C(x2q)→C(q2x)→eipxC(q2x)→e2 ipxC* (q2x).
The overlap ofC(x) with its inversion about (q,p) is then

W~q,p!5p21E dx e2 ipxC~q1x!e2 ipxC* ~q2x!, ~5.6a!

E dq dp W~q,p!5E dxuC~x!u2 ~5.6b!

@we addedp21 to get the normalization~5.6b!#. This is the
Wigner function@8#: It accurately portrays the phase-space
localization ofC(x), as evidenced by the ‘‘marginals’’

E dp W~q,p!5uC~q!u2, E dq W~q,p!5uC̃~p!u2. ~5.7!

However, inner interference structures superpose on the
‘‘true’’ phase-space features ofC(x), as the following ex-
ample will illustrate.

Let first C(x)5^xuqp&coh be a coherent state~3.3! cen-
tered on (q,p): Then

C~x!5^xuqp&coh5p21/4e2~1/2!iqpeipxe2~1/2!~x2q!2, ~5.8!

Wqp
coh~q8,p8!5p21e2~q82q!22~p82p!2. ~5.9!

Let nowC(x) be a superposition of two coherent states:

C112~x!5^xuq1p1&coh1^xuq2p2&coh. ~5.10!

Denotingu5(q,p) andu`u85qp82pq8, we have

W112~q,p!5W1
coh~q,p!1W2

coh~q,p!

1Wm
coh~q,p!cos@F1 1

2u1`u2#,

~5.11a!

qm5
q11q2
2

, pm5
p11p2
2

, ~5.11b!

F5~u2um!`~u12u2!. ~5.11c!

The phaseF is the area of the parallelogram defined by the
vectors (u2um) and (u12u2). So the interference term in
~5.11!, localized about the midpoint (qm ,pm), oscillates in
the direction perpendicular to the line (u12u2) with a wave-
length 2puu12u2u21 ~Fig. 5! @22#.

The Wigner function of a state operatorr̂ is defined as an
obvious extension of~5.6!: We write it as

W~q,p!5~2p!21E ds e2 isp^q1 1
2sur̂uq2 1

2s&.

~5.12!

More generally, theWeyl symbolof an operatorÂ, denoted
@Â#w(q,p) or Aw(q,p), is defined as@8#

@Â#w~q,p!5E ds e2 isp^q1 1
2suÂuq2 1

2s&. ~5.13!

It is (2p) times the ‘‘Wigner function’’ of the operatorÂ.
Reciprocally, a Wigner function is the Weyl symbol of a state
operatorr̂, normalized to Tr$r̂%. An example of Weyl sym-
bol is

@ uq1p1&coh^q2p2u#w~q,p!

52e2~q2qm!22~p2pm!2eiFe~1/2!i ~q1p22p1q2! ~5.14!

@F,qm ,pm as in ~5.11!#. The real part of~5.14! is just the
interference term in~5.11!.

One easily shows the following classical-like results@8#:

Tr$ÂB̂%5~2p!21E dq dp Aw~q,p!Bw~q,p!,

~5.15!

Tr$Â%5~2p!21E dq dp Aw~q,p!, ~5.16!

which we shall use repeatedly. It follows from~5.15! that

E dq dp W1~q,p!W2~q,p!5~2p!21Tr$r̂1r̂2%>0,

~5.17!

that is, the overlap of two Wigner functions is always posi-
tive. An example is the windowed spectrum~5.4!, which is
equal to the convolution ofWC(q,p) with the Wigner func-
tionWh(q,p) of h(x):

FIG. 4. ~a! A real function f (x) with two humps;~b! the corre-
spondingW(q) reproduces the two humps positively, and also has
an ‘‘interference’’ structure~of any sign! in the region of their mid-
point, because the reflection of each hump about that region over-
laps the other hump.

FIG. 5. Density plot showing the Wigner function of a superpo-
sition of two coherent states; note the interference structure between
the two ~positive! ‘‘true’’ phase-space structures~white is positive,
black is negative!.
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~2p!21U E dx e2 ipxh~q2x!C~x!U2

5E dq8dp8 WC~q2q8,p2p8!Wh~q8,p8!>0. ~5.18!

This may contain interference structures, but superimposed
on a positive background, for a net non-negative result. This
means that the smearing ofWC(q,p) with Wh(q,p) ~or with
any other Wigner function! either essentially wipes out inter-
ference structures, or, if only partially, also causes the ‘‘true’’
~positive! features to spread out into the interference regions,
to produce a net non-negative result.

As another example of~5.17!, we have

E dq8dp8 W~q8,p8!
1

pab
expF2

~q2q8!2

a2
2

~p2p8!2

b2 G
>0 ~ab>1!, ~5.19!

since any Gaussian of area>1 is the Wigner function of a
thermal oscillator state@8a#. A limiting case of~5.19! is the
integral ofW(q,p) over an infinite straight line~an infinitely
flattened elliptic Gaussian!, such as the marginal@see~5.7!#

E dq W~q,p8!5E dq dp d~p2p8!W~q,p!

5^p8ur̂up8&>0. ~5.20!

Still another example is

E
0

`

dr@W~r ,w!1W~r ,w1p!#5^p850ue2 iwĤr̂eiwĤup850&

>0 ~5.21!

obtained by replacing the ‘‘horizontal’’ lined(p2p8) in
~5.20! by the slanted line~4.3!; this amounts to replacing

up8& by the ‘‘rotated momentum state’’eiwĤup850&, whose
Weyl symbol is indeed~4.3!. ~By the Weyl symbol of a vec-
tor uC&, we understand the Weyl symbol of the operator
uC&^Cu.)

Because the marginals ofW(q,p) are preciselŷ qur̂uq&
and^pur̂up&, the Wigner-Weyl phase-space representation is
as sharp as possible. Coarser phase-space representations of
r̂ may be obtained by smearingW(q,p) with any functions
G(q,p):

f G~q,p!5E dq8dp8 W~q2q8,p2p8!G~q8,p8!,

E dq dp G~q,p!51. ~5.22!

Correspondingly, the marginals off G(q,p) are smearings of
^qur̂uq& and ^pur̂up&.

Putting, in ~5.22!, G(q,p)5p21e2q22p2, which is the
Wigner function off0(x)5p21/4e2(1/2)x2, the ground state
of Ĥ5 1

2(q̂
21 p̂2), we get the~non-negative! Q function

Q~q,p!5p21E dq8dp8 W~q8,p8!e2~q2q8!22~p2p8!2

~5.23a!

5coh^qpur̂uqp&coh. ~5.23b!

If r̂5uC&^Cu, thenQ(q,p)5 zcoh^qpuC& z2 is the windowed
spectrum~5.4!, with h(x)5p21/4e2(1/2)x2.

VI. QUANTUM PHASE DISTRIBUTIONS

Let us now return tophasedistributions, and apply the
classical definitions of Sec. IV to quantumphase-spacedis-
tributions. Since the Wigner functionW(q,p)5W(r ,u) is as
sharp as possible, we try, as a phase distribution,

Pw~w!5E dq dp dw~q,p!W~q,p!5E
0

`

r dr W~r ,w!.

~6.1!

Compare this with~5.21!: We note two differences:~i! The
integration measure isrdr , instead ofdr; ~ii ! Pw(w) is the
integral ofW(q,p) over half a straight line@Fig. 6~a!#. If
W(q,p) is only localized within a sector of angular width
less thanp, then the half line may be extended to a full line
without altering the value of the integral, so that one expects
Pw(w)>0, essentially~not strictly becauserdrÞdr). But if
W(r ,u) has an interference structure covering the origin,
thenbecause it starts suddenly at r50, the integral~6.1! is

FIG. 6. The ‘‘phase distribution’’ of a quantum state may be
expressed asP(w)5*dq dpG(q,p;w)W(q,p), whereW(q,p) is
the Wigner function of the state, and the function
G(q,p;w)5G(r ,u;w)→d(u2w) tends to a zeroangularwidth as
r→`, but not necessarily to a zero ‘‘true’’ width. In~a!,
G(q,p;w)5dw(q,p) is a sharp radius at allr ; in ~b!, the radius has
a finite true width at all r @for instance, the convolution of

dw(q,p) with p21e2q22p2#; in ~c!, the true width is finite near the
origin and tends to zero asr→`.
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sensitive to the oscillations ofW(r ,u) there, and may be
negative @23#. So, not being strictly non-negative,Pw(w)
cannot always do as a phaseprobability distribution.

As pointed out in Refs.@19#, the ‘‘quadrature based’’
phase distribution

Pquad~w!5E
0

`

dr W~r ,w! ~6.2!

is positive ifW(r ,u) is angularly localized within ap sector
@in which case~6.2! is equal to~5.21!#, and, suitably renor-
malized, closely resemblesPw(w) if W(r ,u) is sufficiently
localized radially@see after Eq.~4.6!#. The distribution~6.2!
has the advantage of being easily measurable—just measure
the expectation~5.21!—but is of restricted applicability.

To cure the nonpositivity ofPw(w), one may use, instead
of W(q,p), a phase-space distribution which is strictly non-
negative. Such may be obtained by smearingW(q,p) with a
Gaussian of area>1, as in~5.19!. To preserve as much as
possible the sharpness ofW(q,p), we choose a Gaussian of
minimum area51, for instancep21e2q22p2. There results
theQ function ~5.23!. So consider

PQ~w!5E dq dpdw~q,p!Q~q,p!5E
0

`

r dr Q~r ,w!

~6.3a!

5E dq dp GQ~q,p;w!W~q,p! ~6.3b!

5Tr$ĜQ~w!r̂%. ~6.3c!

To go from ~6.3a! to ~6.3b!, we transferred the smearing
~5.23a! to dw(q,p), defining

GQ~q,p;w!5p21E dq8dp8dw~q8,p8!e2~q2q8!22~p2p8!2

~6.4!

localized along a smeared radius of width'1@Fig. 6~b!#. In
~6.3c!, we expressedPQ(w) in terms of the POM~probabil-
ity operator measure!,

ĜQ~w!5E
0

`

r dr urw&coh^rwu ~6.5!

showing that PQ(w) is directly measurable @unlike
Pw(w)]. An actualquantum phase measurement, performed
by Noh, Fouge`res, and Mandel~NFM! @24#, was shown by
Freyberger and Schleich@25# to yield PQ(w). More basi-
cally, D’Ariano and Paris@26# show that NFM measure the
POM ~6.5!.

Despite its practical advantages, the phase distribution
PQ(w) seems coarse, being the ‘‘overlap’’ ofW(q,p) with
the fat radiusGQ(q,p;w)@Fig. 6~b!#. One senses that in the
case, for instance, of a squeezed state, for which
W(q,p)>0, or just of any state for whichPw(w)>0, the
phase distributionPw(w) is much more precise than
PQ(w).

One feels, in fact, that to assure positivity, it would suffice
to smear the sharp radiusdw(q,p) in ~6.1! only near its

abrupt beginning at the origin, to reduce sensitivity to pos-
sible oscillations ofW(q,p); the smearing ofdw(q,p) away
from the origin @as in ~6.4!# seems unnecessary, and just
spoils the finesse ofPw(w) there. So one might hope that a
phase distribution finer thanPQ(w), yet non-negative, would
be a compromise between~6.1! and ~6.3!, of the form

PG~w!5E
0

`

r dr E
0

2p

du G~r ,u;w!W~r ,u! ~6.6!

for some functionG(r ,u;w) tending smoothly to zero over
distances of order 1 all around the origin, except in the di-
rection u'w where it gradually tends to thesharp radius
d(u2w) asr→` @Fig. 6~c!#. This is the overall picture that
will emerge in this paper: We will find thatpure quantum
‘‘phase states,’’ such as the SG states~3.6!, have Wigner
functions of this general form; they are the closest possible
quantum analogs of the classical ‘‘phase eigenstates’’
dw(q,p).

VII. ORDERING RULES AND QUANTIZATION
OF CLASSICAL OBSERVABLES

A third line of attack on the ‘‘quantum phase’’@besides
using number shift operators and phase-space distributions#
consists in quantizing the classical phase tan21(p/q) by
means ofordering rulesfor the noncommuting operatorsq̂
and p̂. We recall in this section some basic facts concerning
ordering rules~complementary details are given in Appen-
dixes A and B!.

Given a~real! classical observableg(q,p), the ‘‘natural’’
way to construct a quantum observableĝ, reducing to
g(q,p) in the classical limit\→0, q̂→q, p̂→p, is as@8#

ĝ5g~ q̂,p̂!V5E dq dp g~q,p!D̂V~q,p!, ~7.1!

whereV specifies anordering rulefor q̂ andp̂. The integral
is over the whole phase plane, andD̂V(q,p) areV ordered
d operators:

D̂V~q,p!5@d~ q̂2q!d~ p̂2p!#V5D̂qpD̂VD̂qp
21 , ~7.2a!

D̂V5@d~ q̂!d~ p̂!#V , D̂qp5eipq̂2 iqp̂, ~7.2b!

where D̂qp are phase-space displacement operators. An or-
dering ruleV is completely specified by its ‘‘fiducial’’ op-
eratorD̂V . The ‘‘d property’’ @see~A.11!#

E dq dp D̂V~q,p!5~2p!Tr$D̂V%51̂ ~7.3!

is the only essential property required ofD̂V , so thatany
operatorD̂V trace normalized to (2p)21 can be used to de-
fine a formal ordering ruleV via ~7.1! and ~7.2! @27,28#.

One usually choosesD̂V Hermitian, to assure that
g(q̂,p̂)V also is. Also, although~7.1! obviously goes into
g(q,p) as\→0, one must still select~since\ is finite after
all! the ordering rule such that one gets the proper results in
the high excitation correspondence limit. This still leaves, in
general, many possibilities, so that there are in fact many
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different operatorsg(q̂,p̂)V corresponding tog(q,p). Other
~more or less subjective! criteria must be invoked to make a
‘‘best’’ choice.

If g(q,p)5g(r ,u)5g(u) is independent ofr , then

g~ q̂,p̂!V5E
0

2p

du g~u!ĜV~u!, ~7.4a!

where we defineV ordered angulard operators

ĜV~w!5@d~ tan21~ p̂/q̂!2w!#V5E
0

`

r dr D̂V~r ,w!.

~7.4b!

The ‘‘canonical’’ ordering is, for a number of reasons,
Weyl ordering@8,28#. The Weyl orderedd operatorD̂w is the
parity operator@29#:

D̂w5@d~ q̂!d~ p̂!#w5p21P̂, P̂5E dqu2q&^qu. ~7.5!

Weyl ordering and Weyl symbols~5.13! are dual notions, in
the sense that

Aw~q,p!52p Tr$D̂w~q,p!Â%, ~7.6a!

Â5@Aw~ q̂,p̂!#w5E dq dp Aw~q,p!D̂w~q,p!.

~7.6b!

One reason Weyl ordering is basic is thatD̂w is the
‘‘sharpest’’ possible, since

^quD̂wuq&5~2p!21d~q!, ^puD̂wup&5~2p!21d~p!.
~7.7!

Any ordering ruleV, for which D̂V5@d(q̂)d( p̂)#V or its
Weyl symbol

GV~q,p!5@D̂V#w~q,p!, E dq dp GV~q,p!51

~7.8!

arewell behaved, is a ‘‘coarse graining’’ of Weyl ordering in
the sense that

Â5g~ q̂,p̂!V

⇔Aw~q,p!5E dq8dp8g~q8,p8!GV~q2q8,p2p8!,

~7.9a!

that is, the Weyl symbol ofg(q̂,p̂)V is the smearing~convo-
lution! of g(q,p) with the ~well behaved! function
GV(q,p)@equal tod(q)d(p) if V5w#. Taking the Fourier
transform of~7.9a!, we get

G̃V~k,s!5
Ãw~k,s!

g̃~k,s!
, G̃V~0,0!51, ~7.9b!

where we denote, for any functionf (q,p),

f̃ ~k,s![E dq dp eikq2 ispf ~q,p!. ~7.10!

It follows that for Â to be expressible asÃ5g(q̂,p̂)V , for
someV, it suffices that

E dq dp Aw~q,p!5E dq dp g~q,p!. ~7.11!

The resultingGV(q,p) @given by ~7.9b!# may be more or
less singular, depending onÂ andg(q,p). An important ap-
plication of ~7.11!, for us, is to the case that
Aw(r ,u)→g(u) gets independent ofr as r→`:

@Â#w~r ,u!→g~u! ~r→`! ~7.12a!

implies

Â5g„tan21~ p̂/q̂!…V , ~7.12b!

for someV, sincee2«rAw(r ,u) ande
2«rg(u) have identical

integrals over phase space, as«→0. Reciprocally,~7.12b!
satisfies~7.12a! if GV(q,p) is localized about the origin:
Indeed, by~7.9!, the Weyl symbol of~7.12b! is the smearing
of g(u) with GV(q,p), and a ‘‘local’’ smearing does not
affect angular asymptotics, because theangular width of
GV(q2q8,p2p8) vanishes asr 85(q821p82)1/2→`.

Covariant orderings: If D̂V satisfies the equivalent condi-
tions

@Ĥ,D̂V#50⇔ i @Ĥ,D̂V~r ,u!#5
]

]u
D̂V~r ,u! ~7.13a!

⇔D̂V~r ,u!5eiuĤD̂V~r ,0!e2 iuĤ ~7.13b!

then we say that the ordering ruleV is covariant for Ĥ. In

that case,D̂V(r ,u) is generated fromD̂V(r ,0) bye
iuĤ. Also,

GV(r ,u)5@D̂V#w(r ,u) is independent ofu, and the Weyl
symbol of D̂V(r ,u) is just that of D̂V(r ,0) rotated by an
angleu.

An important family of covariant orderings was intro-
duced by Cahill and Glauber@30#: It is parameterized by a
continuous real numbers, with s521, s50, and s51
yielding normal, Weyl, and antinormal orderings~note that
our s is equal to minus thes of Cahill-Glauber!. The Weyl
symbol ofD̂s5@d(q̂)d( p̂)#s for s>0 is the circular Gaussian

Gs~q,p!5@D̂s#w~q,p!5
e2~q21p2!/s

ps
~s>0!.

~7.14!

The operatorsD̂s are thermal oscillator states fors>1, and
that multiplied by the parity operator for 0<s<1. At s51
~antinormal ordering!, the ‘‘temperature’’→0, and one gets

D̂s51~q,p!5~2p!21uqp&coh^qpu, uqp&coh5D̂qpu0&,
~7.15!

whereu0& is the ground state ofĤ, anduqp&coh are coherent
states. While many ordering rules, for arbitraryD̂V , seem
rather artificial, Cahill-Glauber orderings are ‘‘natural,’’ as
explained in Appendix B.
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V phase-space distributions. An ordering ruleV naturally
associates with any quantum stater̂ a phase-space distribu-
tion

fV~q,p!5Tr$D̂V~q,p!r̂%5Tr$@d~ q̂2q!d~ p̂2p!#Vr̂%,
~7.16a!

E dq dp fV~q,p!5Tr$r̂%. ~7.16b!

This can be expressed in the form~5.22!, if we letG(q,p) be
the Weyl symbol ofD̂V .

Quantization of the classical phase. The natural quantiza-
tions of the classical phase tan21(p/q) areV ordered phase
operators

f̂V5@ tan21~ p̂/q̂!#V

5E dq dp tan21~p/q!@d~ q̂2q!d~ p̂2p!#V .

~7.17!

The Weyl ordered phase operatorf̂w was first introduced,
and studied extensively with mathematical rigour, by Smith,
Dubin, and Hennings@9#. We shall quote some of their re-
sults later on. More general ordering rules were considered
independently in@10#. The phase operators we shall define
will all be expressible as~7.17!, for someV.

This completes our overview of some of the existing ap-
proaches to the quantum phase. It allowed us to set down a
number of results that we shall need, and announce some
general features to come out of our own analysis, which we
now begin.

VIII. PHASE CORRESPONDENCE

A state operatorr̂q8p85 r̂ r 8u8 will be said to belocalized
about (q8,p8)5(r 8,u8) if its position and momentum expec-
tations,^qur̂ r 8u8uq& and ^pur̂ r 8u8up&, are localized within fi-
nite intervals Dq and Dp about q85r 8cosu8 and
p85r 8sinu8, respectively. It may be represented by a box
centered at (q8,p8) in the (q,p) phase plane~Fig. 1!. As the
amplituder 8→`, the angle subtended by the box tends to
zero, and the phase becomes sharply defined asu8: So the
state becomes ‘‘classical’’ insofar as phase is concerned.
Such large amplitude localized statesare theonly quantum
states to which a classical phase can be assigned unambigu-
ously. Accordingly, an operatorÂ will be said tocorrespond
to the~classical! phase functionA(u) if its expectation with
any such ‘‘classical phase’’ state isA(u8), that is, if

Tr$Âr̂ r 8u8%→A~u8! as r 8→` ~ for any localized r̂q8p8!.
~8.1!

We will now express this condition in terms of Weyl sym-
bols.

In view of ~5.15!, we may rewrite~8.1! as

E
0

`

r dr E
0

2p

du Aw~r ,u!Wr 8u8~r ,u!→A~u8!

~r 8→`!, ~8.2!

whereWr 8u8(r ,u) is the Wigner function ofr̂ r 8u8 . The most
sharply localized quantum states aresqueezed states, such as
@see~B9!#

Wq8p8
sq

~q,p!5p21e2g~q2q8!22~p2p8!2/g, ~8.3!

whereg is a real number~the squeeze parameter!. This may
be represented by an ellipse in the Wigner phase plane, with
semiaxes parallel to theq and p axes. One may rotate the
state such than its major axis is perpendicular to the radius
r 8 ~Fig. 7!. One then has, forr 8 sufficiently large that the
angle subtended by the ellipse is small,

Wr 8u8
sq

~r ,u!'p21e2gr 82~u2u8!22~r2r 8!2/g. ~8.4!

Inserting~8.4! into ~8.2!, we obtain the requirement

~g/p!1/2E
0

`

r dr Aw~r ,u8!e2~r2r 8!2/g→A~u8! ~r 8→`!.

~8.5!

This must hold for any value ofg, in particularg→0 @ the
angular width of~8.4! then increases, but still gets sharp as
r 8→`#; asg→0, ~8.5! becomes

@Â#w~r ,u!→A~u! ~r→`!. ~8.6!

Thus, ~8.1! implies ~8.6!. Reciprocally,~8.6! implies ~8.1!
and ~8.2!, since it implies Aw(r ,u)Wr 8u8(r ,u)
→A(u8)Wr 8u8(r ,u) @since Wr 8u8(r ,u) is localized#, and
*r dr duW(r ,u)51. We thus conclude that~8.1! and ~8.6!
are equivalent ‘‘phase correspondence’’ principles.

We used, above, the fact that~8.1! implies
^ruuÂuru&→A(u) for any squeezed stateuru&. More gener-
ally, ~8.1!–~8.6! imply that for any two squeezed states
ur 1u1& and ur 2u2&:

^r 1u1uÂur 2u2&5~2p!21E
0

`

r dr E
0

2p

du Aw~r ,u!

3@ ur 1u1&^r 2u2u#w~r ,u!
~8.7a!

→A~u1!^r 1u1ur 2u2& ~r 1→`!.
~8.7b!

This is becauseI 12(r ,u)[@ ur 1u1&^r 2u2u#w(r ,u), localized
about the midpointum5(rm ,um) between the two states@see
~5.14!#, oscillates with a wavelengthuu12u2u21. The inte-
gral ~8.7a! is thus sizable only ifuu22u1u is not large, so that

FIG. 7. The shaded ellipse represents an amplitude squeezed
state centered at (q8,p8)5(r 8,u8).
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the points (r 1 ,u1) and (r 2 ,u2), together with the support of
I 12(r ,u), will subtend a vanishing angle asr 1→`: so we can
approximateAw(r ,u)'A(u1), whence~8.7b!.

In general the Weyl symbol of a product of operators is
not equal to the product of their Weyl symbols. However, if
Aw(r ,u) andBw(r ,u) get independent ofr asr→`, then we
have:

Aw~r ,u!→A~u!

Bw~r ,u!→B~u!J ⇒@ÂB̂#w~r ,u!→A~u!B~u! ~r→`!

~8.8a!

whence, also,

@Â#w~r ,u!→A~u!⇒@ f ~Â!#w~r ,u!→ f „A~u!… ~r→`!.
~8.8b!

To show~8.8!, we use the completeness of squeezed states,
and ~8.7!: We get, at larger ,

^ruuÂB̂uru&

5
1

2p E
0

`

r 8dr8E
0

2p

du8^ruuÂur 8u8&^r 8u8uB̂uru&

'
1

2p
A~u!B~u!E

0

`

r 8dr8E
0

2p

du8^ruur 8u8&^r 8u8uru&

5A~u!B~u!. ~8.9!

Since this holds for any squeezed state, there follows~8.8!.
The latter can also be shown in another, less intuitively clear
manner, as follows.

The Weyl symbol of a product of operators,ÂB̂, is given
in terms of the Weyl symbols of each operator by the Moyal
formula @31#

@ÂB̂#w~q,p!5eiL~],]8!Aw~q8,p8!Bw~q,p!uq85q,p85p
~8.10a!

L~],]8!5
]

]q

]

]p8
2

]

]p

]

]q8

5sin~u82u!F12 ]2

]r ]r 8
1

1

rr 8

]2

]u]u8G
1cos~u82u!F 1r 8 ]2

]r ]u8
2
1

r

]2

]u]r 8G ,
~8.10b!

wherer5(q21p2)1/2. Note thatL(],]8) reduces powers of
r by two units. Thus, if Aw(r ,u)→A(u) and
Bw(r ,u)→B(u) as r→`, then @ÂB̂#w(r ,u)→A(u)B(u)
1r24F(r ,u), whereF(r ,u) is a series in inverse powers of
r 2, whence~8.8!.

If Â or B̂ in ~8.10a! is quadratic in q̂ and p̂, then
L(],]8)nAw(q,p)Bw(q8p8)50 for n>3, and

2 i @Â,B̂#w~q,p!5$Aw ,Bw%PB~q,p! ~Â or B̂ quadratic!
~8.11!

realizing the Dirac correspondence~2.4!. In particular, since
$H,.%PB5]/]u, by ~2.2!, we have, for any operatorÂ,

2 i @Ĥ,Â#w~r ,u!5
]

]u
Aw~r ,u!, ~8.12a!

@e2 i tĤ ÂeitĤ #w~r ,u!5Aw~r ,u1t !, ~8.12b!

that is,e2 i tĤ causes a Weyl symbol to rotate clockwise, i.e.,
to evolve classically.

IX. PHASE d OPERATORS

An operatorĜ(w) will be called aphased operator if it
correspondsto the phased function d2p(u2w)@defined in
~2.9!#, that is, if it satisfies the equivalent conditions

Tr$Ĝ~w!r̂ ru%→d2p~u2w!
~r→`!

~9.1a!

@Ĝ~w!#w~r ,u!→d2p~u2w! ~9.1b!

for any localized stater̂ ru . Obviously, one may concoct any
functionG(r ,u;w)→d2p(u2w) asr→`, and build a phase
d operator with Weyl symbolG(r ,u;w) as

Ĝ~w!5E
0

`

r dr E
0

2p

du G~r ,u;w!D̂w~r ,u!. ~9.2!

Putting in particularG(r ,u;w)5d2p(u2w), we get

Ĝw~w!5E
0

`

r dr D̂w~r ,w!, @Ĝw~w!#w~r ,u!5d2p~u2w!

~9.3!

whose Weyl symbol is~by definition! d2p(u2w) at all val-
ues ofr . It is a special example ofV ordered phased op-
erator@see~7.4b!#

ĜV~w!5@d~ tan21~ p̂/q̂!2w!#V5E
0

`

r dr D̂V~r ,w!. ~9.4!

This satisfies ~9.1! provided the Weyl symbol
GV(q,p)5@D̂V#w(q,p) is localized about the origin@see af-
ter Eq.~7.12!#: By ~7.9a! @with g(r ,u)5d(u2w)], the Weyl
symbol @ĜV(w)#w(r ,u) is then a ‘‘local’’ smearing of the
sharp radiusd(u2w), which thus acquires afinitewidth @as
in Fig. 6~b!#, but still gets infinitely sharp inangularwidth as
r→`. In view of ~7.12!, any Ĝ(w) can, in fact, be expressed
as

Ĝ~w!5ĜV~w!~w! ~9.5!

for someordering ruleV(w) ~which may depend onw).
Putting w50, and noting that the Fourier transform of
d(u)5qd(p)Q(q) is d̃(k,s)52(k1 i0)22, we see that
GV(0)(q,p), equal to the Fourier inverse of2k2G̃(k,s;0), is
at worst a tempered distribution@32#; and likewise for any
value ofw.

We say thatĜ(w) is w normalizedif

E
0

2p

dwĜ~w!51̂. ~9.6!
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It is covariant if it satisfies the following equivalent condi-
tions:

i @Ĥ,Ĝ~w!#5
]

]w
Ĝ~w!, Ĝ~w!5eiwĤĜe2 iwĤ, ~9.7a!

@Ĝ~w!#w~r ,u!5@Ĝ#w~r ,u2w!, ~9.7b!

where Ĝ[Ĝ(0), and ~9.7b! follows from ~9.7a! by ~8.12!.

Thus, a covariantĜ(w) is generated fromĜ(0) by eiwĤ, and
its Weyl symbol is just that ofĜ(0) rotated byw. Using

e62p iĤ5e6p i ~since the eigenvalues ofĤ are n1 1
2!, we

deduce from~9.7a! that

e2 i tĤ Ĝ~w!eitĤ5Ĝ~w2t mod2p![Ĝ~w2t !. ~9.8!

In view of ~9.1b! and ~8.12!, any Ĝ(w) is asymptotically
covariant, in the sense that

@e2 i tĤ Ĝ~w!eitĤ #w~r ,u!→d~u1t2w! ~r→`!.
~9.9!

TheV orderedd operator~9.4! is alwaysw normalized,
since *r dr dw D̂V(r ,w)51̂ @see ~7.3!#; it is covariant if
D̂V is covariant ~7.13!. So the Cahill-Glaubers-ordered
phased operators

Ĝs~w!5@d„tan~ p̂/q̂!2w…#s5E
0

`

r dr D̂s~r ,w!

~9.10!

are w normalized and covariant. The Weyl symbol of
Ĝs(w) is the convolution of the sharp radiusd(u2w) with
the Gaussian~7.14! of width s, hence it is a radius of width
's, similar to that shown in Fig. 6~b!. Examples of nonco-
variant Ĝ(w) are

Ĝs,g~w!5@d„tan~ p̂/q̂!2w…#s,g5E
0

`

r dr D̂sg~r ,w!,

~9.11!

where (s,g) are ‘‘squeezeds ordering,’’ defined in~B19!,
and D̂s,g are squeezed thermal states.

X. PHASE STATES AND PHASE POM’S

If Ĝ(w)>0 is non-negative, we call it aphase state. This
is in general un-normalizable, similarly to position eigenkets
uq8&^q8u5d(q̂2q8) @whose Weyl symbols ared(q2q8)].
Even though such ‘‘states’’ can never be realized physically
~which would require infinite energies!, but can only be ap-
proached arbitrarily, it is customary to call them ‘‘states’’
anyway. They may be viewed as the«→0 limit of normal-
ized approximatephase statesĜ«(w), defined by@we here
invoke ~5.16!#

Ĝ«~w!5
Ĝ«8~w!

Tr$Ĝ«8~w!%
, Tr$Ĝ«~w!%51, ~10.1a!

@Ĝ«8~w!#w~r ,u!52p«2e2«r@Ĝ~w!#w~r ,u!, ~10.1b!

where we definedĜ«8(w) such that Tr$Ĝ«8(w)%→1 as
«→0 ~see Appendix H!.

If Ĝ(w) has the defining properties of a POM~probability
operator measure! @26#, namely, it isnon-negativeand w
normalized,

Ĝ~w!>0, E
0

2p

dw Ĝ~w!51̂, ~10.2!

then we call it aphase POM. For instance,ĜV~w! in ~9.4! is
always w normalized, by ~7.3!, and is non-negative if
D̂V>0. Thus, the Cahill-GlauberĜs(w), for s>1, are phase
POM’s.

A phase stateĜ(w) of the form

Ĝ~w!5uw&^wu ~10.3!

is calledprojective, or pure. Again, a pure phase stateuw&
should be viewed as the limit of a normalizableapproximate
phase state. WithĜ«(w) defined as in~10.1!, we have~see
Appendix H!

Ĝ«~w!5uw&«^wu, uw&«5
uw&«8

z8«^wuw&«8z1/2
, ~10.4a!

^quw&«85~2p!1/2«e2~1/2!«q/cosw^quw&. ~10.4b!

An important covariant and pure phase POM is the
SG-POM

ĜSG~w!5uw&SĜ wu, uw&SG5~2p!21/2(
n50

`

einwun&,

~10.5a!

where uw&SG are the Susskind-Glogower states~3.6!. That
ĜSG(w) indeed satisfies~9.1b! is shown by Herzog, Paul, and
Richter @33# @see also~E12! and ~E13!#. They show that
asymptotically

@ĜSG~w!#w~r ,u!'2r 2H J1„4r 2~u2w!…

4r 2~u2w! J→d~u2w!

~r→`!, ~10.5b!

whereJ1 is a Bessel function. Since the curly bracket$ % is
a function of r 2(u2w), the Weyl symbol~10.5b! has an
angular width Du;r22, whence we get a true width
rDu;r21. Its ‘‘height’’ ;r 2. Thus, the Weyl symbol of
ĜSG(w) in fact tends to asharpradius of zero true width~not
just zeroangularwidth! as r→`, hence is of the form that
we had surmised in~6.6! and Fig. 6~c!.

XI. PHASE OPERATORS

Since definite phases can be assigned only tolarge ampli-
tude localized states, we demand of a~Hermitian! phase op-
eratorf̂ only that the phase distribution

P~w!5Tr$d~f̂2w!r̂% ~11.1!
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attribute the correct sharp phaseu to any stater̂ ru localized
about (r ,u), as r→`: Hence, we must have, in view of
~8.1!–~8.6!,

Tr$d~f̂2w!r̂ ru%→d2p~w2u!
~r→`!

~11.2a!

@d~f̂2w!#w~r ,u!→d2p~u2w!, ~11.2b!

that is,d(f̂2w) must be a phased operator, as defined in
~9.1!. It follows from ~11.2!, and the trivial identify
f̂5*0

2pw dw d(f̂2w) that

@f̂#w~r ,u!→E
0

2p

w dw d2p~u2w!5u mod2p ~r→`!.

~11.3!

Thus, the Weyl symbol of a phase operator tends to the
single-valuedclassical phase

fcl5fcl ~r ,u!5u mod2p ~11.4!

as r→`, that is, f̂ correspondsto fcl(r ,u). Reciprocally,
~11.3! implies ~11.2! by ~8.8!: More precisely, we expect
from ~8.8! and~11.3! that @d(f̂2w)#w(r ,u) tends to a sharp
radius of zerotrue width @as in the case ofĜw(w) and
Ĝ SG(w)], not just zeroangular width @as in the case of
Ĝs(w),s.0#.

One may concoct any functionfw(r ,u)→u mod2p as
r→`, and build the phase operator

f̂5E
0

`

r dr E
0

2p

u du fw~r ,u!D̂w~r ,u!. ~11.5!

In view of ~7.12!, f̂5f̂V for someordering ruleV, where
we define theV ordered phase operator

f̂V5@ tan21~ p̂/q̂!#V5E
0

`

r dr E
0

2p

u du D̂V~r ,u!. ~11.6!

Sincefcl(q,p) has discontinuities in bothq andp, its Fou-
rier transformf̃cl(k,s) vanishes slowly at infinity~see, e.g.,
@32#!, so thatGV(q,p) is, at worst, a tempered distribution.
Reciprocally, f̂V satisfies~11.3! if GV(q,p) is localized
about the origin@by ~7.9a!, the sharp jump offcl(r ,u) at
u52p gets smoothed over the width ofGV(q,p), hence
over an asymptotically vanishingangularwidth#.

Any phase stateĜ(w) is an approximate eigenstate of any
phase operatorf̂, in the sense that

^ f ~f̂ !&G~w![Lim«→0 Tr$ f ~f̂ !Ĝ«~w!%5 f ~w! ~11.7!

so that, in particular,̂ f̂&G(w)5w, and Š(f̂2^f̂&)2‹G(w)50.
Equation~11.7! follows from

Tr$ f ~f̂ !Ĝ«~w!%

5
1

2p E
0

`

r dr E
0

2p

du@ f ~f̂ !#w~r ,u!@Ĝ«~w!#w~r ,u!

→«2E
0

`

r dr E
0

2p

du f ~u!e2«rd~u2w!5 f ~w!, ~11.8!

where we used the fact that as«→0, the integral is domi-
nated by larger , at which f (f̂)w(r ,u)' f (u), by ~11.3! and
~8.8!, and Ĝ«(w)w(r ,u)→2p«2e2«rd(u2w)@see ~10.1!#.
Similar results for the specific case ofĜSG(w) and f̂w were
obtained by Dubin, Hennings, and Smith@9~c!#.

The true eigenstates~eigen POM, strictly speaking! of f̂
are the pure phase states

d~f̂2w!5uw&^wu, f̂uw&5wuw& ~11.9!

No phase eigenstatesuw&, for any phase operator, have been
explicitly calculated yet. Only partial results concerning the
spectrum of the Weyl orderedf̂w have been obtained, by
Dubin, Hennings, and Smith@9b#.

Any phased operatorĜ(w) induces a phase operator

f̂G5E
0

2p

w dw Ĝ~w!. ~11.10!

Reciprocally,any phase operator can be expressed in the
form ~11.10!, trivially as

f̂5E
0

2p

w dw d~f̂2w!5E
0

2p

dwuw&w^wu ~11.11!

or, in view of ~11.6! and ~9.4!, as

f̂5f̂V5E
0

2p

w dw ĜV~w!. ~11.12!

In general,f (q̂,p̂)Vg(q̂,p̂)VÞ@ f (q̂,p̂)g(q̂,p̂)#V , so that

d~f̂V2w!5d„@ tan21~ p̂/q̂!#V2w… ~11.13a!

ÞĜV~w!5@d„tan21~ p̂/q̂!2w…#V . ~11.13b!

We note that

E
0

2p

dw f ~w!d~f̂V2w!5 f ~f̂V!5 f „@ tan21~ p̂/q̂!#V…,

~11.14a!

E
0

2p

dw f ~w!ĜV~w!5 f „tan21~ p̂/q̂!…V . ~11.14b!

These two integrals are equal if and only iff (w)5a1bw.
For instance,*0

2pw dw d(f̂V2w)5(11.12).
A phase POM satisfying, liked(f̂2w)5uw&^wu,

Ĝ~w!Ĝ~w8!5d~w2w8!Ĝ~w!, ~11.15a!

will be called pure orthogonal@to distinguish this kind of
orthogonality from another, trace orthogonality, to be intro-
duced in Sec. XVI#. We note that iff̂G5*0

2pw dw Ĝ(w),
then ~11.15a! implies

f̂GĜ~w!5wĜ~w!, Ĝ~w!f̂G5wĜ~w!, ~11.15b!

whence we get
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Ĝ~w!5d~f̂G2w!5uw&G^wu. ~11.15c!

It follows that any pure-orthogonal phase POMĜ~w! is pure,
is of the formd(f̂2w), and is the eigenPOM of a phase
operator, namelyf̂G .

XII. COMMUTATION RELATIONS

Let us now consider the commutator@Ĥ,f̂#, whose ini-
tially supposed impossible value,@Ĥ,f̂#5 i , caused some
confusion: By~8.12! and ~11.3!, we have

2 i @Ĥ,f̂#w~r ,u!5~]/]u!@f̂#w~r ,u!→122pd2p~u! ~12.1a!

~r→`!

@e2 i tĤf̂eitĤ #w~r ,u!5@f̂#w~r ,u1t !→u1t mod2p ~12.1b!

in correspondence with the classical result~2.8! for the
single-valuedphase. In the special case thatĜ(w) is w nor-
malized and covariant@see~9.6! and ~9.7!#, we get

i @Ĥ,f̂G#5E
0

2p

w dw~]/]w!Ĝ~w!, ~12.2a!

wheref̂G5*0
2pw dw Ĝ(w). Integrating~12.2a! by parts, us-

ing *0
2pdw Ĝ(w)51, we obtain

2 i @Ĥ,f̂G#51̂22pĜ, Ĝ[Ĝ~0!5Ĝ~2p! ~12.2b!

as we had anticipated in~2.10!. Also, by integrating the
equation

]

]t
e2 i tĤf̂eitĤ52 ie2 i tĤ@Ĥ,f̂#eitĤ51̂22pĜ~ t !

~12.3a!

we find that@34#

e2 i tĤf̂eitĤ5f̂1t22pE
0

t

dt8Ĝ~ t8! ~12.3b!

whose Weyl symbol gives us back~12.1b! in the form

@e2 i tĤf̂eitĤ #w~r ,u!

5@f̂#w~r ,u!1t22pE
0

t

dt8@Ĝ~ t8!#w~r ,u!

→u mod2p1t22pE
0

t

dt8d2p~ t82u!

5u1t, mod2p. ~12.4!

We likewise get@compare~2.6!#

eil@f̂,.#Ĥ5eilf̂Ĥe2 ilf̂5Ĥ1l22pE
0

l

dl8eil8f̂Ĝe2 il8f̂

~12.5a!

whose Weyl symbol tends, asr→`, to the classical result
@see~A7!#

e2l$f,.%PBH5H1l22pld2p~u!. ~12.5b!

It follows from ~12.3! that any pure-orthogonal phase
POM, necessarily of the formd(f̂2w), by ~11.15!, can
never be covariant, since

e2 i tĤd~f̂2w!eitĤ5dS f̂2w1t22pE
0

t

dt8Ĝ~ t8! D
Þd~f̂2w1t !. ~12.6!

This is effectively forbidden by the no-go identity~2.5!. Of
coursed(f̂2w) is, like any other phased operator, asymp-
totically covariant in the sense~9.9! @which here also follows
directly from ~12.1b! and ~8.8!#. Also, the Weyl symbol of
~12.6! is just the Weyl symbol ofd(f̂2w) rotated by an

angle t, as implied by~8.12!. Thus,e2 i tĤd(f̂2w)eitĤ and
d(f̂2w1t) are two different phase states, but ofequal
phasew2t.

XIII. POSITION REPRESENTATIONS

The Weyl ordered phased operatorĜw(w), whose Weyl
symbol is d(u2w) by definition, has position matrix ele-
ments@see Appendix D, and definition~4.2!#

^q8uĜw~w!uq&5e~1/2!i ~q822q2!tanw
1

cos2wUq1q8

2 UQS q1q8

cosw D .
~13.1!

In the case of a general phased operatorĜ(w), whose Weyl
symbol @Ĝ(w)#w(r ,u)→d(u2w) only asr→`, we have

^q8uĜ~w!uq&→^q8uĜw~w!uq& as q,q8→`. ~13.2!

The result ~13.1! was obtained by Hennings, Smith, and
Dubin @9~c!#; they also calculated the matrix elements of the
Weyl phase operatorf̂w ~see Appendix D!.

In the case of a pure phase stateĜ(w)5uw&^wu we deduce
from ~13.2! that

^quw&→
uqu1/2

cosw
e~1/2!iq2tanwQS q

cosw D ~q→`!. ~13.3!

The ‘‘chirp’’ e(1/2)iq
2tanw is characteristic of localization along

the radiusu5w in phase space, since it has a ‘‘local wave
number’’ @recall ~5.3!#
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^p&~q!5
]

]q
@ 1
2q

2tanw#5q tanw. ~13.4!

The same phase factor appears in~see Appendix C!

^queiwĤup50&5~2p i !21/2~cosw!21/2e~1/2!iq2tanw.
~13.5!

The rotated momentum stateeiwĤup50&, whose Weyl sym-
bol is @recall ~4.3! and ~5.21!#

@eiwĤup50&]w~q,p!5d~q sinw2p cosw!

5
d~u2w!1d~u2w2p!

r

~13.6!

is indeed localized along the rotatedp axis. The extra factor
(q/cosw)1/2 in ~13.3!, as against~13.5!, reflects the extra
‘‘wedge’’ weight r5q/cosu in @ uw&^wu#w(r ,u);d(u2w),
as against~13.6!. In view of ~5.3!, the q1/2 dependence im-
plies that the~true! phase-space width ofuw& decreases like
r21 as r→`.

XIV. NUMBER REPRESENTATIONS

We now consider matrix elements between eigenketsun&
of Ĥ5 1

2(q̂
21 p̂2). In view of ~5.15!, one has, for any opera-

tor Â,

2p^n8uÂun&5E
0

`

r dr E
0

2p

du@ un&^n8u#w~r ,u!@Â#w~r ,u!.

~14.1!

When (n82n)2!n1n8@1, the Weyl symbol

@ un&^n8u#w(r ,u) is an angular waveei (n82n)u effectivelylo-
calized on a ring of radius'(n1n8)21/2, and thickness
'1, for it vanishes rapidly on the outside, and oscillates
rapidly on the inside of that ring~see Appendix F!. It follows
that if Â corresponds toA(u), that is @Â#w(r ,u)→A(u) as
r→`, then@see~F6!–~F8!#

2p^n8uÂun&→E
0

2p

du ei ~n82n!uA~u!,

as n1n8→`,
~n82n!2

n1n8
!1, ~14.2!

that is,^n8uÂun& tends to the (n82n) Fourier coefficient of
A(u).

Applying ~14.2! to phased operatorsĜ(w) and phase op-
eratorsf̂, which correspond tod(u2w) andu mod2p, re-
spectively, we get, using~3.1!,

2p^n8uĜ~w!un&→ei ~n82n!w

^n8uf̂un&→pdnn81~12dnn8!
i

n2n8
J n1n8→`,

~n82n!2

n1n8
!1.

~14.3a!

~14.3b!

The asymptotics~14.3! may be taken as alternative charac-
terizations of phased operators and phase operators. The
Susskind-Glogower POM~10.5! distinguishes itself by as-
suming these asymptotic forms at all values ofn and n8,
since we have, from~3.6a! and ~3.9b!.

2p^n8uĜSGun&5ei ~n82n!w,

^n8uf̂SGun&5pdnn81~12dnn8!
i

n2n8
. ~14.4!

Let us now specialize to cases whereĜ(w) is, like
ĜSG(w), w normalized and covariant@see~9.6! and ~9.7!#.
The covariance~9.7! implies

^n8uĜ~w!un&5ei ~n82n!w^n8uĜun&. ~14.5!

Integrating this over w, using the w normalization
*0
2pdw Ĝ(w)51̂ and ~3.1a!, yields 2pdnn8^n8uĜun&5dnn8 ,
whence we get

^nuĜun&5~2p!21, ^nuf̂Gun&5E
0

2p

w dw^nuĜun&5p,

~14.6!

wheref̂G5*0
2pwdwĜ(w). We also get from the commuta-

tion relation~12.2! @compare the no-go~2.5!#

2 i ~n82n!^n8uf̂un&5dn8n22p^n8uĜun&, ~14.7a!

whence we deduce, in accord with~14.3!,

^n8uf̂Gun&5
2p i

n2n8
^n8uĜun&, n8Þn. ~14.7b!

Note that the above results pertain to our choice of phase
‘‘window,’’ namely (0,2p); they get slightly modified if a
different window is chosen@35#.

The matrix elementŝn8uĜun& for antinormal and Weyl
orderings are
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2p^n8uĜs51un&5~n8!n! !21/2GS n81n

2
11D

'12
1

4

~n82n!2

n81n
1•••, ~14.8!

2p^n8uĜwun&52~n2n8!/2Fn8!

n! G1/2 G~ 1
2n1m!

G~ 1
2n81m!

'11 1
2 ~2 !n

n82n

n81n
1••• , ~14.9!

whereG(z) are gamma functions, and the approximate val-
ues are forun82nu!n81n. @~14.8! is given in@26a#; ~14.9!,
given in @9b# and @10#, is for n8>n;m51 for n odd,m5 1

2

for n even.#. The matrix elements of the Cahill-Glauber
Ĝs , for any value ofs, have been calculated by Tanas, Mira-
nowicz, and Gantsog@36#. We calculate their asymptotic be-
haviors in Appendix G, and obtain

2p^n8uĜsun&512
1

4
s

~n82n!2

n81n

1
1

2
~2 !nS 12s

11sD ~n1n8!/2

~12s!
n82n

n81n
1•••

~n1n8→`! ~14.10!

@yielding ~14.8! at s51, and ~14.9! at s50#. Note that

@(12s)/(11s)# (n1n8)/2'e2(n1n8)s is exponentially small
for s.0 ~exponentially large fors,0!, so that the first-order
correction in (n1n8)21 passes from an (n82n) to an
(n82n)2 dependenceas soon as sÞ0, i.e., as soon as the
asymptotictruewidth s of @Ĝs#w(ru) departs from zero. Re-
calling that the WeylĜw5Ĝs50 , and the Susskind-Glogower
ĜSG, both havesharp radii asr→` @see after Eqs.~10.5!#,
we surmise that the asymptotic behaviors ‘‘sharp angular
width,’’ and ‘‘sharp true width,’’ correspond to the respective
conditions (n82n)2/(n1n8)!1, and the less stringent
un82nu/(n1n8)!1, for having 2p^n8uĜun&'1.

Pure phase states. Let nowĜ(w)5uw&^wu be a pure phase
state, and expand

uw&5 (
n50

`

un&^nuw&5~2p!21/2(
n50

`

un&cn~w!. ~14.11!

The asymptotics~14.3! imply that @37#

^nuw&→~2p!21/2einw as n→`. ~14.12!

This may be compared with the corresponding result for the

rotated momentum stateeiwĤup50&, whose Weyl symbol
d(q cosw2p sinw) is a complete line:

^nueiwĤup50&5ei ~n11/2!w^nup50&

→~2p!21/2einw
11einp

~2n!1/4
~n→`! ~14.13!

following from the known value of̂p50un& @see~K21!#. In
the next section, we will understand the differences between
~14.12! and ~14.13! via a phase-space analysis based on co-
herent states.

According to ~14.12!, a pure phase state tends to the
Susskind-Glogower statênuw&SG at largen @a conclusion
reached in a different way by Lerner, Huang, and Walters
@16#—see after Eqs.~3.11!#. This, together with the fact that
only largen contributes to larger in the Weyl phase plane,
implies that a pure phase state tends, likeĜSG(w), to a sharp
radius of zero true width, as we had already concluded after
Eqs.~11.4! and ~13.6!. @If ^nuw&'einw for n.n1 , say, then

^n8uw&^wun&'ei (n82n)w for n,n8.n1 , without the stringent
condition (n82n)2!(n1n8) needed if the width stays finite
as r→`—see after~14.10!.#

Let now Ĝ(w)5uw&^wu be a pure phase POM, so that
*dwuw&^wu51̂. This implies

~2p!21E
0

2p

dwcn8~w!* cn~w!5dn8n . ~14.14!

If moreoverĜ(w) is covariant, thenuw&5eiwĤuw50&, hence
cn(w)5cne

inw; then ~14.14! implies ucn u251, by ~3.1a!.
Thus, apure covariantphase POM is necessarily of the form
(xn real!

uw&5~2p!21/2(
n50

`

einw1 ixnun&, xn→0 as n→`,

~14.15!

that is, it is essentially the Susskind-Glogower POM~10.5!:
It follows that ^w8uw&5 SĜ w8uw& SGÞd(w82w) @see
~3.6c!#, showing again that a pure phase POM cannot be both
covariant and orthogonal, as was also concluded from~12.6!,
and from the no-go~2.5!.

Phasors. Following Bergou and Englert@7#, we may de-
fine ‘‘phasors’’ ê by the requirement

@ ê#w~r ,u!→eiu ~r→`!. ~14.16!

PuttingA(u)5eiu in ~14.2! and using~3.1a!, we get

^n8uêun&→dn8,n21 , n1n8→`,
~n82n!2

n1n8
!1. ~14.17!

Recalling Eqs.~3.10!, we see that the Lerner-Huang-Walter
~LHW! number-shift operatorsÊl , with ln→1 as n→`,
are phasors. Their eigenkets~3.11! on the unit circle
(b5eiw) satisfy~14.12!, so are phase states. This is not sur-
prising: Indeed,ê and exp(if̂), for any phase operatorf̂,
both correspond toeiu by @~8.8!#, that is they coincide in the
correspondence limit; so the eigenkets off̂ should corre-
spond to eigenkets ofÊl @but note thatÊl has additional
eigenkets,ubu,1 in ~3.11!, which are not phase states, hence
do not correspond to eigenkets off̂#.

In fact, in view of our assertion following Eq.~3.11!, any
pure phase state is an eigenket of some LHW phasor Eˆ

l . It
is thus not surprising that LHW phasors, such as the
Susskind-Glogower~SG! phasor, Eq.~3.4!, have been used
to generate pure phase states.
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Again, we may express

ê5@ei tan
21~ p̂/q̂!#V5F S q̂1 i p̂

q̂2 i p̂
D 1/2G

V

~14.18!

for some ordering ruleV. For instance, the Susskind-
Glogower Ê5@N̂11)21/2â5(ââ†)21/2â5@(â/â†)1/2#V

5{ @(q̂1 i p̂)/(q̂2 i p̂)#1/2} V , where the ordering ruleV
may be stated as ‘‘Express everything in terms ofâ and
â†, then replace allâ† by (ââ†)/â, and finally put all
(ââ†) to the left of all â. ’’

XV. COHERENT-STATE REPRESENTATIONS

We show in Appendix E that at larger , a pure phase state
has the coherent-state representation

coh^ruuw&'p21/4r 1/2e~1/2!iwe2~1/2!r2~u2w!2e~1/2!ir 2~u2w!

~r→`!. ~15.1!

This is localized along the radiusu'w, with height'r 1/2,
reflecting the ‘‘wedge’’ weightr . One may compare~15.1!
with the corresponding result for a rotated momentum state:

coh^ruueiwĤup50&'p21/4e~1/2!iw@e2~1/2!~u2w!2e~1/2!ir 2~u2w!

1e2~1/2!r2~u2w2p!2e~1/2!ir 2~u2w2p!]
~15.2!

localized along the complete lineu'$w or w1p%, with
height'1.

In view of ~8.7! and ~11.3!, we have, for any phase op-
eratorf̂,

coh^ruuf̂ur 8u8&coh→u8coh^ruur 8u8&coh ~r→`!. ~15.3!

It follows from ~15.1! and ~15.3! that any pure phase state
uw& is an ‘‘asymptotic eigenstate’’ of any phase operatorf̂,
in the sense that

coh^ruuf̂uw&→wcoh^ruuw& ~r→`!. ~15.4!

Indeed, using the completeness of coherent states@i.e., ~7.3!
applied to~7.15!#, we have

coh^ruuf̂uw&

5~2p!21E
0

`

r 8dr8E
0

2p

du8coh^ruuf̂ur 8u8&coh^r 8u8uw&

~15.5a!

'~2p!21E
0

`

r 8dr8E
0

2p

du8u8coh^ruur 8u8&coh^r 8u8uw&

'wcoh^ruuw&, ~15.5b!

where ~15.1! allowed us to approximateu8^r 8u8uw&
'w^r 8u8uw&.

Let us now understand the differences between the num-
ber representations~14.12! and ~14.13!: Using again the
completeness of coherent states, we have

2p^nuw&5E
0

`

r dr E
0

2p

du^nuru&coh^ruuw&, ~15.6a!

2p^nueiwĤup50&

5E
0

`

r dr E
0

2p

du^nuru&coh^ruueiwĤup50&. ~15.6b!

Now, at largen @see~E4!#

coh^ruun&'~2pn!21/4einue2~r222n!2/8n ~15.7!

is an angular waveeinu localized on a ring of radius
'(2n)1/2, and thickness'1. The integrals~15.6! get contri-
butions only from the regions where the radii~15.1! and
~15.2! intercept the ring~15.7! ~Fig. 8!. @Note that the phases
e2 inu and e(1/2)ir

2u'einu cancel; this is crucial, because
einu oscillates on a scaleDu'n21, which is very fast~as
n→`) compared to the angular width'r21'(2n)21/2 of
e2(1/2)r2(u2w)2.# The differences between~14.12! and~14.13!
are now easy to comprehend: The extra (2n)1/4 in ~14.12!
reflects the ‘‘wedge’’ weight r 1/2 in ~15.1!, equal to
r 1/2'(2n)1/4 at the ring~15.7!; the (11einp) comes from
the fact that~15.2! intercepts the ring at two places,u'w
and u'w1p. „Thus, the ‘‘1, 0, 1, 0, . . . ’’ oscillation of
^nup50& @or of ^q50un&], asn varies, arises from interfer-
ence in phase space, as beautifully analyzed by Schleich and
Wheeler@18#.… AWeyl phase-space analysis, done at the end
of Appendix F, also yields some insight, but not as complete
as above.

XVI. TRACE ORTHOGONALITY
OF PHASE d OPERATORS

Many phased operatorsĜ(w), for instance the Cahill-
Glauber Ĝs(w) and the SG-POM~10.5!, are not pure or-

FIG. 8. The shaded ring in the (q,p) phase plane represents
coh^qpun&, the overlap of a pure number staten& with coherent
statescoh^qpu. The small shaded circle represents a coherent state.
The fat radius in~a! representscoh^qpuw&, where uw& is a phase
state@of the type shown in Fig. 6~c!#; the fat line in~b! represents
coh^qpueiwĤup50&, whereeiwĤup50& is a rotated momentum state.
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thogonal~11.15!. Consider, however, the following integral,
whereĜ1(w) and Ĝ2(w) may be identical or different phase
d operators, andD is some interval:

E
D
dw8Tr$Ĝ2~w8!Ĝ1~w!%

5~2p!21E
D
dw8E r dr du@Ĝ2~w8!#w~r ,u!

3@Ĝ1~w!#w~r ,u!, ~16.1!

where we used~5.15!. Because@Ĝ(w)#w(r ,u)→d(u2w), as
r→`, one sees that~16.1! is infinite if the integration inter-
val D ~however small! contains w @so that the radius
d(u2w8) sweeps over the radiusd(u2w)] andfinite other-
wise ~see Appendix I for more details!. Thus, if we define
Ĝ1

«(«) as in ~10.1!, and if *dw8Ĝ2(w8)51̂, then we have

Tr$Ĝ2~w8!Ĝ1
«~w!%→d~w82w! ~«→0! ~16.2!

since *Ddw8Tr$Ĝ2(w8)Ĝ1
«(w)%→0 as «→0 if w¹D, and

*0
2pdw8Tr$Ĝ2(w8)Ĝ1

«(w)%5 Tr$Ĝ1
«(w)%51. We will call this

kind of orthogonalitytrace orthogonality.
Let us give some examples: The simplest is ifĜ1(w)

5Ĝ2(w)5d(f̂2w) are pure-orthogonal phase POM’s, in
which case

Tr$d~f̂2w8!d~f̂2w!%5d~w82w!Tr$d~f̂2w!%. ~16.3!

Another simple example is ifĜ1(w)5Ĝ2(w)5Ĝw(w) are
Weyl ordered phased operators, whose Weyl symbols
@Ĝw(w)#w(r ,u)5d(u2w): Then @Ĝw

« (w)#w(r ,u)
52p«2e2«rd(u2«), and we get exactly@using ~5.15!#

Tr$Ĝw~w8!Ĝw
« ~w!%5d~w82w!. ~16.4!

Let now Ĝ15Ĝ25uw&^wu be a purecovariant phase POM
@e.g., the SG-POM~10.5!#, whose scalar product is given by
~3.6c! @see after Eq.~14.15!#, that is, forw8'w,

^w8uw&' 1
2d~w82w!2

i

2p~w82w!
~w8'w!.

~16.5!

Although the integral*Ddw8 of ~16.5! is finite for anyD,
that of

Tr$Ĝ~w8!Ĝ~w!%5 z^w8uw& z2' 1
4d~w82w!21

1

4p2~w82w!2

~16.6!

is infinite if D containsw, finite otherwise, whence we get
~16.2!.

Trace orthogonality concerns transitionprobabilities, that
is, measured quantities. Pure orthogonality concerns transi-
tion amplitudes, and decides whether or notĜ(w) are eigen-
states off̂G5*w dw Ĝ(w). Pure implies trace orthogonal-
ity, but not the reverse. Trace orthogonality is relevant
because one adds transitionprobabilities into different final
states, whereas one adds transition amplitudes@such as
~16.5!# only into thesamefinal state: Indeed, the measure-

ment of a phase POMuw8&^w8u, on an approximate phase
stateuw&«, yields an outcomew inside the intervalD with
probability

Prob$wPD%5E
D
dw8z^w8uw&«z2. ~16.7!

This is different from z*Ddw8^w8uw&«z2, unless
^w8uw&5d(w82w). According to ~16.2!, the measurement
of any phase POMĜ2(w8) on any phase stateĜ1

«(w) has the
outcomew with probability 1 as«→0.

XVII. PHASE „QUASI…DISTRIBUTIONS
AND UNCERTAINTY RELATIONS

In the preceding sections, we tacitly associated two differ-
ent phase ‘‘distributions’’ with a phased operator Ĝ(w),
namely

Q~w!5Tr$Ĝ~w!r̂%, P~w!5Tr$d~f̂2w!r̂%, ~17.1!

where f̂5*0
2pw dw Ĝ(w). If Ĝ(w) is not pure orthogonal,

then d(f̂2w)ÞĜ(w), and P(w)ÞQ(w). By definition
~9.1!, bothQ(w) andP(w) attribute the correct sharp phase
to any large amplitude localized state. In the case of arbitrary
states, however,Q(w) may assume negative values; yet it
may still be useful as a ‘‘quasidistribution’’@for instance the
Weyl phase distribution~6.1!#. In the case ofĜV(w)@see
~9.4!#, Q(w) has the classical-like form

QV~w!5Tr$ĜV~w!r̂%5E
0

`

r dr f V~r ,w! ~17.2!

in terms of theV phase space~quasi!distribution ~7.16!. If
Ĝ(w) is a POM, satisfying~10.2!, then Q(w)>0 and
*0
2pdw Q(w)51, andQ(w) is a genuine probability distri-
bution. Defining~quasi!averaging operations

^ f ~w!&Q5E
0

2p

dw f ~w!Q~w! ~17.3!

^ f ~w!&P5E
0

2p

dw f ~w!P~w!5Tr$ f ~f̂ !r̂%5^ f ~f̂ !& ~17.4!

@these are the expectations of~11.14!#, we have

^w&Q5^w&P5^f̂&. ~17.5!

But in general,̂ f (w)&QÞ^ f (w)&P . Note that if Ĝ(w) is w
normalized andcovariant, and r̂5un&^nu, then, in view of
~14.5! and ~14.6!,

Q~w!5^nuĜ~w!un&5~2p!21, ~17.6!

that is,Q(w) ascribes a random phase to any pure number
stateun&, while P(w) @and alsoQ(w) if Ĝ(w) is noncovari-
ant# does so only for largen, sinced(f̂2w)@and a nonco-
variant Ĝ(w)] is only asymptotically covariant.

Number-phase uncertainty relations. Given an observable
Â, its dispersion or uncertainty, in the quantum stater̂, is

53 87PHASE STATES AND PHASE OPERATORS FOR THE QUANTUM . . .



DA5@Tr$~Â2^A&!2r̂%#1/2, ^A&5Tr$Âr̂%. ~17.7!

We getDA50 if and only if r̂5ua&^au is a pure eigenket of
Â. In the case of the harmonic oscillator, the uncertainty
DH in energy~or photon number! can have any value be-
tween 0 and̀ , with DH50 if r̂5un&^nu is a pure number
state. In the case of a phase operatorf̂, we have, in view of
~17.4!, the classical-like expressions

~Df!25E
0

2p

dw~w2^f&!2P~w!, ^f&5E
0

2p

w dw P~w!.

~17.8!

Becausew ranges over a finite window (0,2p), the disper-
sionDw is bounded above, being maximum ifP(w) is con-
centrated at both extremities of the window, such as

P~w!5H «21 for ~2p2 1
2«!<w<2p or 0<w< 1

2«
~«→0!

0 otherwise
~17.9!

in which caseDw5^w&5p @ it does not matter whether
~17.9! is realizable or not—all we want is an upper bound on
Dw#. Thus, although it issharply localized, the distribution
~17.9! nonetheless has maximum dispersion, because it
straddles the ‘‘discontinuity cut’’ atw50, so thatw52p on
one side of the cut, andw50 on the other side. Note that the
same distribution rotated away from the cut has zero disper-
sion; so the phase uncertainty depends very much on the
choice of ‘‘cut’’ or ‘‘window,’’ as was observed by Pegg and
Barnett@15#. In any case, we have

0<DH<`, 0<Dw<p. ~17.10!

We getDw50 if r̂5uw&^wu is a pure eigenstate off̂. It
follows from ~17.10! that, although the commutator@Ĥ,f̂#
Þ0, the energy-phase~or number-phase! uncertainty relation
is

DHDf>0. ~17.11!

The lower limit DHDf50 is realized if r̂5un&^nu, for
which DH50 andDf,p „at largen, the phase is totally
random, P(w)5(2p)21 @see after Eq.~17.6!#, so that
Df5p/31/2…. From a more general perspective, recall that
any two observables, such asĤ and f̂, satisfy the uncer-
tainty relation@38#

DHDf> 1
2 uTr$@Ĥ,f̂#r̂%u. ~17.12!

With r̂5un&^nu, we get Tr$@Ĥ,f̂#r̂%5^nu@Ĥ,f̂#un&50, and
thus recover~17.11!.

It has often been argued on phenomenological grounds~or
inferred from the impossible commutation relation
@Ĥ,f̂#5 i ) that the energy-phase uncertainty relation is

DHDf> 1
2 . ~17.13!

This contradicts the fact that DHDf50 for
r̂5un&^nu—yet it does have a certain validity: Consider the
specific case thatf̂5*0

2pw dw Ĝ(w), where Ĝ(w) is nor-
malized and covariant~e.g., the Susskind-Glogower or
Cahill-Glauber phase POM’s!. Then, in view of the commu-
tation relation~12.2b!, we get

DHDf> 1
2 u122p Tr$Ĝr̂%u5 1

2 u122pQ~0!u,
~17.14!

whereQ(w)5Tr$Ĝ(w) r̂% is the quasidistribution defined in
~17.1! @recall that it is different from the phase distribution
P(w)]. If r̂5un&^nu, thenQ(0)5(2p)21 by ~17.6!, and we
get againDHDf>0. This shows that the termQ(0) in
~17.14! is crucial: It may be expressed as@by ~5.15!#

Q~0!5Tr$Ĝr̂%5E
0

2p

dwE
0

`

r dr Gw~r ,u!Wr~r ,u!, ~17.15!

whereWr(r ,u) is the Wigner function ofr̂. Now,Gw(r ,u) is
concentrated along the radiusu50 @recall that
Gw(r ,u)→d(u) as r→`#. So, ifWr(r ,u) does not overlap
Gw(r ,u), that is, ifWr(r ,u) is localized away from the ori-
gin and fromu50 or 2p, then Tr$Ĝr̂%50, and~17.14! re-
duces to~17.13!. This conclusion, argued for a covariant
Ĝ(w) also holds in the general case, since, in~17.12!,

Tr$@Ĥ,f̂#r̂%5E
0

2p

dwE
0

`

r dr @Ĥ,f̂#w~r ,u!Wr~r ,u!

~17.16!

and 2 i @Ĥ,f̂#w(r ,u)→122pd(u) as r→`, according to
~12.1a!. We thus conclude that the energy-phase uncertainty
relation isDHDf>0, but that it is effectivelyDHDf> 1

2 for
states whose Wigner functions are localized away from the
origin and from the extremities of the phase window
(0,2p).

XVIII. SUMMARY OF RESULTS

Let us summarize the results obtained thus far. We ad-
dressed the question, how does the classical notion of
‘‘phase’’ apply to a quantum harmonic oscillator,Ĥ
5 1

2(q̂
21 p̂2), which cannot have sharp positionandmomen-

tum? Our approach was based on the observation that only
large amplitude localizedstates can be assigned definite
phases. Our only demand on a phase operator was, therefore,
that the phase distribution

P~w!5Tr$d~f̂2w!r̂% ~18.1!
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attribute the correct sharp phase to any such ‘‘classical
phase’’ state. This requires the following asymptotics for
Weyl symbols@u5tan21(p/q), r5(q21p2)1/2]:

@d~f̂2w!#w~r ,u!→d~u2w!
as r→`

~18.2a!

@f̂#w~r ,u!→u mod2p. ~18.2b!

We definedphased operators Ĝ(w) by the requirement,
similar to ~18.2a!, that

@Ĝ~w!#w~r ,u!→d~u2w! as r→`. ~18.2c!

A phased operator induces a phase operator

f̂G5E
0

2p

w dw Ĝ~w! ~18.3!

and in turn, a phase operatorf̂ induces a phased operator
d(f̂2w).

Properties of interest which a phased operator can have
are

e2 i tĤ Ĝ~w!eitĤ5Ĝ~w2t ! ~covariant!, ~18.4a!

E
0

2p

dw Ĝ~w!51̂ ~normalized!, ~18.4b!

Ĝ~w!>0 ~state operator!, ~18.4c!

Ĝ~w!5uw&^wu ~pure!, ~18.4d!

Ĝ~w!Ĝ~w8!5d~w82w!Ĝ~w! ~pure-orthogonal!. ~18.4e!

Ĝ(w) is a phase POM if it is non-negative andw normalized.
A pure-orthogonal phase POM is necessarily of the form
d(f̂2w), and can never be covariant because@Ĥ,f̂#5 i is a
no-go.

The asymptotics~18.2! imply the following for matrix
elements:

^n8uĜ~w!un&→~2p!21ei ~n82n!w

^n8uf̂Gun&→pdnn822p~12dnn8!
i

n82n
J ~n82n!2

n81n
→0

~18.5a!

~18.5b!

and

^q8uĜ~w!uq&→e~ i/2!~q822q2!tanw
uq1q8u
2cos2w

QS q1q8

cosw D ~q,q8→`!, ~18.5c!

whereQ(x,0)50, Q(x.0)51. For pure phase states, we
get

^nuw&→~2p!21/2einw ~n→`!, ~18.6a!

^quw&→
uqu1/2

cosw
e~1/2!iq2tanwQS q

cosw D ~q→`!.

~18.6b!

The ‘‘chirp’’ e(1/2)iq
2tanw in ~18.6b! is characteristic of local-

ization along the radiusp/q5tanw in phase space, since its

‘‘local’’ wave number is ^p&(q)5(]/]q)( 12q
2tanw)

5q tanw; the increasing amplitudeuqu1/2 reflects the increas-
ing ~true! width rDu of the ‘‘wedge’’ defined by an angular
incrementDu, and implies that the local momentum width
of uw& vanishes liker21 as r→`.

A phase state is un-normalizable, and can never be strictly
realized, which would require infinite energy. It may be
viewed as the limit«→0 of a normalizedapproximatephase
stateĜ«(w), or uw&«, defined through its Weyl symbol, or
position representation in the pure case, by

@Ĝ«~w!#w~r ,u!5@2p/K~«!#«2e2«r@Ĝ~w!#w~r ,u!,
~18.7a!

^quw&«5@2p/K~«!#1/2«e2~1/2!«q/cosw^quw&, ~18.7b!

where the normalization constantK(«)→1 as «→0. Any
phase state is an approximate eigenstate of any phase opera-
tor f̂, in the sense that

^ f ~f̂ !&G~w![Lim«→0 Tr$ f ~f̂ !Ĝ«~w!%5 f ~w!, ~18.8a!

so that, in particular,̂f̂&G(w)5w, and^(f̂2^f̂&)2&G(w)50.
Also, anypurephase stateuw& is an asymptotic eigenstate of
any f̂, in the sense that

coh^ruuf̂uw&→wcoh^ruuw& ~r→`!, ~18.8b!

whereuru&coh are coherent states.
Many phase POM’s are not pure orthogonal. However,

any phase POMĜ2(w) is trace orthogonalto any phase state
Ĝ1(w), in the sense that

Tr$Ĝ2~w8!Ĝ1
«~w!%→d~w82w! as «→0. ~18.9!

This implies that any phase POM measurement on any phase
state Ĝ1

«(w) yields the outcomew with probability 1 as
«→0.

In the special case thatĜ(w) is covariant andw normal-
ized, f̂G5*0

2pw dw Ĝ(w) satisfies
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2 i @Ĥ,f̂G#51̂22pĜ~0!,

e2 i tĤf̂Ge
itĤ5f̂G1t22pE

0

t

dt8Ĝ~ t8! ~18.10!

corresponding to the Poisson bracket$H,fcl% PB51
22pd(u) for the single-valued classical phase
fcl5u mod2p, and tofcl(t)5fcl(0)1t mod2p. If Ĝ(w)
is not both covariant andw normalized, then the above holds
only in the (r→`) correspondence limit. One may compare
~18.10! with the ‘‘canonical,’’ but impossible, value
@Ĥ,f̂#5 i initially presumed by Dirac@1#, causing some con-
fusion.

The ‘‘natural’’ quantization of a classical observable
g(q,p) is

g~ q̂,p̂!V5E dq dp g~q,p!D̂V~q,p!, ~18.11a!

whereV specifies anordering rule, and D̂V(q,p) are V
orderedd operators:

D̂V~q,p!5@d~ q̂2q!d~ p̂2p!#V5D̂qpD̂VD̂qp
† ,

~18.11b!

D̂V5@d~ q̂!d~ p̂!#V , D̂qp5eipq̂2 iqp̂, ~18.11c!

whereD̂qp are phase-space displacement operators. Any op-
eratorD̂, trace normalized to Tr$D̂%5(2p)21, satisfies the
‘‘ d property’’

E dq dp D̂~q,p!5E dq dp D̂qpD̂D̂qp
† 52pTr$D̂%51̂

~18.11d!

and can be used to define a formal ordering rule via~18.11!.
Any phase operatorf̂ and phased operatorĜ(w) can be
expressed as

f̂V5@ tan21~ p̂/q̂!#V , ~18.12a!

Ĝ~w!5@d„tan21~ p̂/q̂!2w…#V~f! ~18.12b!

for some ordering rulesV and V(w). Thereby, these
quantum observables are natural quantizations of the classi-
cal observables u5tan21(p/q) and d(u2w)
5d„tan21(p/q)2w….

Important phased operators are~i! the pure and covariant
~hence non-pure-orthogonal! Susskind-Glogower phase
POM

ĜSG~w!5uw&SĜ wu, uw&SG5~2p!21/2(
n50

`

einwun& ~18.13!

which assume the asymptotic forms~18.5a! and~18.6a! at all
values ofn. ~ii ! The Cahill-Glaubers-ordered phased op-
erators

Ĝs~w!5@d„tan~ p̂/q̂!2w…#s5E
0

`

r dr D̂s~r ,w!. ~18.14a!

This is covariant, and is a POM ifs>1, in which case
D̂s(q,p)5@d(q̂2q)d( p̂2p)#s are displaced thermal oscilla-
tor states. Ats50, we get the Weyl phased operator

Ĝw~w!5Ĝs50~w!5@d„tan~ p̂/q̂!2w…#w ~18.14b!

At s51, we get the coherent phase POM

Ĝcoh~w!5Ĝs51~w!5E
0

`

r dr urw&coh^rwu, ~18.14c!

where uru&coh are coherent states. The number matrix ele-
ments ofĜs(w) have the asymptotic forms

2p^n8uĜsun&512 1
4s

~n82n!2

n81n
1 1

2 ~2 !nS 12s

11sD ~n1n8!/2

3~12s!
n82n

n81n
1••• ~n1n8→`!

~18.14d!

showing the first corrections to~18.5a!. Another covariant
phase POM is the ‘‘number state POM’’

Ĝn~w!5~2p!21E
0

`

r dr D̂ rwun&^nuD̂rw
21 ~18.15!

considered by Busch, Grabowski, and Lahti@39#; note that
Ĝn50(w)5Ĝs51(w).

All phased operators have, by definition, vanishingan-
gular widths in the Weyl phase plane asr→`. The Weyl
Ĝw(w) has a nulltruewidth at all values ofr @see Fig. 6~a!#,
while pure phase states, such asĜ SG(w), have true widths
vanishing liker21 as r→` @Fig. 6~c!#. On the other hand,
Ĝs(w) for sÞ0 andĜn(w) have true widths which stay finite
~roughly equal tos andn1/2) as r→` @Fig. 6~b!#.

Two phase distributions associate with a phased operator
Ĝ(w), namely

P~w!5Tr$d~f̂G2w!r̂%, Q~w!5Tr$Ĝ~w!r̂%, ~18.16!

where f̂G5*0
2pw dw Ĝ(w). If Ĝ(w) is not a POM,Q(w)

may assume negative values, but may still be useful as a
‘‘quasidistribution.’’ If Ĝ(w)5ĜV(w), thenQ(w) is the ra-
dial integral of aphase-space~quasi!distribution:

Q~w!5E
0

`

r dr f V~r ,w!,

fV~q,p!5Tr$@d~ q̂2q!d~ p̂2p!#Vr̂%. ~18.17!

If Ĝ(w) is covariant, thenQ(w) assigns a random phase to
any pure number stateun&, whileP(w) does so only for large
n.

Unless Ĝw is pure orthogonal,Q(w)ÞP(w). It follows
that two different measurements associate with a nonor-
thogonal phase POMĜ(w): That of Ĝ(w), yielding Q(w),
and that off̂G , that is, of the phase POMd(f̂G2w), yield-
ing P(w). A non-POM phased operator Ĝ(w), such as

90 53ANTOINE ROYER



Ĝw(w), or a pure-orthogonal phase POMd(f̂G2w), leads to
only one measurement, that off̂G .

The energy-phase~or number-phase! uncertainty relation
is DHDf>0, the lower limitDHDf50 being realized by
pure number statesun&^nu; however, in the case of states
whose Wigner function is localized away from the origin and
from the ~single-valued! phase discontinuity atu50 or
2p, the uncertainty relation is effectivelyDHDf> 1

2.
One may ask, which is the ‘‘best’’ phased operator, or

phase POM, or phase operator? One has the general feeling
that ‘‘the sharper is the better.’’ DifferentĜ(w) are compared
for sharpness through their Weyl symbols. The sharpest
phased operator is, of course, the WeylĜw(w), whose Weyl
symbol d(u2w) has zero width at allr @40#. The sharpest
Cahill-Glauber phase POM is thes51 coherent phase POM,
since Ĝs(w)>0 only for s>1, and its true width's. Pure
phase POM’s, such as the Susskind-Glogower POM, are
sharper thanĜcoh(w), at least at larger , since their true
widths→0.

Finally, one may define ‘‘phasors’’ê by the requirement
@ ê#w(r ,u)→eiu as r→` @7#. The modulated number shift
operators@16#

Êl5 (
n51

`

un21&ln^nu, ln→1 as n→` ~18.18!

are phasors. Among their eigenkets are pure phase states
uw& with

uw&5~2p!21/2(
n50

` S )
m5n11

`

lmD einwun&, Êluw&5eiwuw&.

~18.19!

Reciprocally, any pure phase stateuw& is an eigenket ofsome
phasor of the form~18.18!. Such phasors have been widely
used to generate phase states. The most famous is the
Susskind-Glogower number shift phasor

Ê5 (
n51

`

un21&^nu ~18.20!

whose eigen-phase-states are theuw&SG in Eq. ~18.13!.

XIX. MEASUREMENTS

One may observe a phase stateĜ(w) by measuring, for
instance, its time-dependent position probability distribution,
that is @by ~5.7! and ~18.5c!#,

P~q,t !5^que2 i tĤ Ĝ~w!eitĤ uq&

5E dp@e2 i tĤ Ĝ~w!eitĤ #w~q,p!

;
uqu

cos2~w2t !
QS q

cos~w2t ! D ~q→`!. ~19.1!

This is the ‘‘projection’’ onto theq axis of a rotating ‘‘bea-
con’’ pointing in the directionw1t @see Fig. 9~a!#. When
cos(w2t).0, P(q,t) extends infinitely to positiveq, but fi-
nitely to negativeq, so that aq̂ measurement yields~almost!
certainly a large positive value; this situation reversessud-
denly as cos(w2t) changes sign@Fig. 9~b!#. This is indeed
characteristic of a sharp phase. The above procedure re-
quires, of course,many individual measurements, to be sig-
nificant.

Let us now envisage a genuine phase measurement: von
Neumann@41# showed how to measure,in principle, any
observable, such asf̂, pertaining to a systems, say. One
makes use of a microscopic ‘‘meter’’m, with position-
momentum operators@Q̂,P̂#5 i , and prepared at timet50
in a position eigenstateuQ0&. Let r̂ be the initial state ofs.
Let then s interact with m via an impulsive interaction
d(t)f̂ P̂ ~whether this can be implemented in practice for any
phase operatorf̂ is an open question!. After the interaction,
s1m are in the entangled state

e2 i f̂ P̂$uQ0&^Q0u ^ r̂%ei f̂ P̂5E dw dw8$uQ01w&^Q01w8u%m

^ $uw&^wur̂uw8&^w8u%s . ~19.2!

We inserted*dwuw&^wu51̂s , where uw& are eigenkets of
f̂, and used

e2 i f̂ P̂uQ0&muw&s5uQ01w&muw&s ~19.3!

FIG. 9. ~a! Under time evolution, the Wigner function of a phase
state, represented by the shaded radial ‘‘beacon,’’ rotates clockwise
in phase space@here, the initial phase wasp/2, i.e., the beacon was
vertical at timet50#; the probabilityP(x,t) of finding the oscilla-
tor at position x is the overlap of the beacon with the line
d(q2x). The expectation̂q̂& is zero when the beacon is vertical,
and6` otherwise; the dispersion is always infinite, except when
the beacon is vertical, in which case it can be~i! zero if the true
width w(r ) of the beacon vanishes asr→` ~the case depicted
here!, ~ii ! s if w(r )→s, and~iii ! infinite if w(r )→`@ for instance, if
w(r );r g with 0,g,1, so that the angular width
w(r )/r;r g21→0 still#. ~b! The shaded regions are those for which
P(x,t) is sizable@for the case depicted in~a!#; note the abrupt
changes when time passes multiples ofp.
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since f̂uw&5wuw& and e2 iw P̂uQ0&5uQ01w&. One then
measures the position of the meterm. The outcome is
Q01w with probability P(w)5^wur̂uw&, and s gets col-
lapsed into the eigenstateuw&^wu5d(f̂2w). Note thats in-
teracted only with themicroscopicsystemm, whose initial
state is controllable;m itself must interact strongly with
somemacroscopicapparatusM , in order to induce a macro-
scopically observable event. Because themicrostateof M is
intrinsically uncontrollable, it perturbs the state ofm in a
way which we cannot know; but the final state ofs itself is
precisely known@42#. @Of course, the above is an ideal limit,
which can only be approached, since phase ‘‘states’’uf& can
never be strictly realized physically, as this would require
infinite energy.#

A measurement where, as above, the final state is com-
pletely known in terms of the measurement outcome@what-
ever was the~generally unknown! premeasurement state#, is
calledcomplete, or preparatory, since itpreparesthe phase
stated(f̂2w). If s was already in a phase stateĜ(w0) @not
necessarily an eigenstate off̂#, then the trace orthogonality
~18.9! assures that the measurement outcome isw0 , with
probability 1~ideally!, so that the oscillator collapses into the
phase stated(f̂2w0). Thus, the state gets modified@unless
Ĝ(w0) was equal tod(f̂2w0)#, but thephaseis preserved.
So the measurement is ‘‘quantum~phase! nondemolishing’’
~QND! @11#.

After a f̂ measurement prepared the stated(f̂2w) at
time t50, the latter evolves into

e2 i tĤd~f̂2w!eitĤ5d~f̂ t2w!, f̂ t5e2 i tĤf̂eitĤ . ~19.4!

This is a phase state of phasew2t, eigenket of the phase
operatorf̂ tÞf̂1t @see~18.10!#, butnot of f̂. Still, one can
accurately monitor the phase by measuring thesame f̂
again, because a secondf̂ measurement, after a phase shift
t, say, will yield the outcomew2t with probability 1 ~be-
cause of trace orthogonality!, and~being QND! produce the
phase stated(f̂2w1t).

A general quantum measurement may involve a more
general initial meter state, ands2m interaction, than above.
Also, the final observable measured may pertain to bothm
ands. @In that case,s interactsdirectlywith the macroscopic
apparatusM , thereby getting perturbed in an unknowable

way, so that the measurement cannot be complete.# Whatever
its precise form,a general phase measurement defines a phase
POM Ĝ(w), and yields an outcomew with probability @43#

Prob$w%5Tr$Ĝ~w!r̂%. ~19.5!

In the von Neumann measurement,Ĝ(w)5d(f̂2w) is pure
orthogonal@this is required to get~19.3!#, but this need not
be the case: Indeed, any POM, pure orthogonal or not, canin
principle, be directly measured@43#. It is even possible,in
principle, to devise measurements for which Prob$w% is
given by ~19.5!, and which collapse the oscillator intoany
chosen final state@44#, e.g., a phase stateĜ8(w) @equal or not
to Ĝ(w)]. This would again allow us to precisely monitor the
phase, because of the trace orthogonality of phase states.

Noh, Fouge`res, and Mandel@24# measured the coherent
phase POM~18.14c!, yielding Qs51(w), the radial integral
of theQ function. Also, d’Ariano, Macchiavello, and Paris
@26b# show that an imperfect NFM measurement measures
the Cahill-Glauber ‘‘thermal coherent state’’ phase POM
~18.14a!, s>1.

The basic objective is to measurephase shifts. A phase-
shift measurement need not involve a phase operator, nor a
phase POM. Interferometric methods do not. Another phase-
POMless way of determining the phase shift induced by
some device is to compare input and outputphase-space
distributions: These can be measured by the method of
Smitheyet al., @46# who measured the Wigner function of a
quantum optical field, or otherwise@47#. Still another method
is described in Fig. 10. All the above methods require many
individual measurements.

Clearly, a most efficient way of measuring phase shifts
would be, ideally, by means of genuinecompletephase mea-
surements~of the first kind or of the non-pure-orthogonal
POM kind!, which would allow to both prepare sharply
phased states, and then monitor their phase evolution by
means ofsingle ‘‘phase nondemolishing’’ measurements.

APPENDIX A: ROTATIONS AND DISPLACEMENTS
IN THE „q,p… PHASE PLANE

We use the following coordinates in the (q,p) plane:

u5tan21~p/q!, r5~q21p2!1/2, R5H5 1
2 ~q21p2!.

~A1!

From ~2.2!, we get@denoting$.,.%PB5$.,.% for simplicity#

$H,.%5
]

]u
, et$H,.% f ~r ,u!5 f ~r ,u1t !, ~A2!

e2t$H,.%S qpD 5e2t$H,.%S r cosur sinu D 5S r cos~u2t !

r sin~u2t !
D 5S qtptD ,

~A3!

where we define

S qw

pw
D 5RwS qpD , Rw5S cosw sinw

2sinw cosw D . ~A4!

FIG. 10. To determine the~unknown! phase shiftDu induced by
some device, input a known, highly amplitude squeezed state
r̂ in'uq0&^q0u, say@in the figure, we putq050], and shift the out-

put state,r̂out5e2 iDuĤr̂ ineiDuĤ, by a known phaset; then measure

q̂, while varyingt; the measured distribution̂que2 i tĤ r̂outeitĤ uq& is
narrowest, and concentrates atq0 , when the~known! phaset is
equal to the~unknown! phase2Du mod2p.
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Thus,$H,.%5]/]u induces rotations of the phase plane, and
(qt ,pt) is the trajectory followed by the oscillator if it was at
(q,p) at timet50. Definingf5f(R,u)5u mod2p, we get

$f, f %52
]f

]u

] f

]R
52@122pd2p~u!#

] f

]R
, ~A5!

$f,R%52@122pd2p~u!#, $f,u%50. ~A6!

We deduce that

]

]l
e2l$f,.%R52e2l$f,.%l$f,R%5e2l$f,.%@122pd2p~u!#

5122pd2p~u! ~A7!

@since$f,u%50], whence follows~12.5b!.

In the quantum case,e2 iwĤ, where Ĥ5 1
2(q̂

21 p̂2), in-
duces rotations:

eiwĤS q̂p̂D e2 iwĤ5RwS q̂p̂D 5S q̂ cosw1 p̂ sinw

q̂ sinw1 p̂ cosw D [S q̂w

p̂w
D

~A8!

as is readily shown using@ q̂,p̂#5 i . Phase-space displace-
ment operators are defined as

D̂qp5eipq̂2 iqp̂5e~1/2!iqpe2 iqp̂eipq̂5e2~1/2!iqpeipq̂e2 iqp̂,
~A9a!

D̂qp$q̂,p̂%D̂qp
215$q̂2q,p̂2p%,

D̂qpuq8&5e~1/2!iqpeipq8uq81q&, ~A9b!

D̂qpD̂q8p85e2~1/2!i ~qp82pq8!D̂q1q8,p1p8 . ~A9c!

DenotingD̂qp5D̂ru , and using~A8!, we find that

e2 iwĤD̂qpe
iwĤ5D̂qwpw

⇔e2 iwĤD̂rue
iwĤ5D̂r ,u2w

~A10a!

⇔ i @Ĥ,D̂ru#5
]

]u
D̂ru , ~A10b!

D̂ru5D̂r cosu,r sinu5eiuĤD̂r ,0e
iuĤ5e2 ir p̂ u. ~A10c!

Using ~A9!, one shows that, for any operatorÂ,

E dqdpD̂qpÂD̂qp
† 52p TrÂ. ~A11!

APPENDIX B: ORDERING RULES AND WEYL SYMBOLS

Ordered d operators are defined asD̂V(q,p)
5D̂qpD̂VD̂qp

† , where

D̂V5@d~ q̂!d~ p̂!#V5~2p!22E dk ds@eikq̂2 is p̂#V . ~B1!

In terms of the canonical ‘‘action-angle’’ variablesR
5 1

2(q
21p2) andu5tan21(p/q), one has

d~q82q!d~p82p!5d~R82R!d2p~u82u! ~B2!

@following from d(sinu)5d2p(u); see~2.9!#, so that

D̂V~q,p!5D̂V~R,u!

5@d„12 ~ p̂21q̂2!2R…d2p„tan
21~ p̂/q̂!2u…#V , ~B3!

whence we get the special case~7.4!. From ~7.5!, we get
@usingq5r cosu, p5r sinu#

2pD̂w~q,p!52D̂qpP̂D̂qp
† 5E dse2 ispuq2 1

2s&^q1 1
2su,

~B4!

2p^q9uD̂w~q,p!uq8&5@ uq8&^q9u#q~q,p!

5eip~q92q8!dS q2
q81q9

2 D , ~B5!

2p^q9uD̂w~r ,u!uq8&

5ucosuu21e~1/2!i ~q922q82!tanudS r2
q81q9

2 cosu D . ~B6!

We have, reciprocally to~7.6a!,

^q8uÂuq&5~2p!21E dpei ~q82q!pAwS q1q8

2
,pD .

~B7!

Introduce the following Hamiltonian, ‘‘squeezed’’ relative to
Ĥ5 1

2(q̂
21 p̂2):

Ĥg5 1
2 ~gq̂21 p̂2/g!5âg

†âg1 1
2 , ~B8a!

âg5221/2~g1/2q̂1 i p̂/g1/2!, âg
†5221/2~g1/2q̂2 i p̂/g1/2!.

~B8b!

The Wigner function of the ground stateu0&g of Ĥg is the
elliptic Gaussian

@ u0&g^0u#w~q,p!5p21e2gq22p2/g. ~B9!

The displaced and rotated statesuqp&g,w5D̂qpe
iwĤu0&g are

squeezed statesfor the ~unsqueezed! HamiltonianĤ. Their
Wigner functions are obtained by rotating~B9!, and then
displacing it.

Applying ~7.6b! to theV orderedd operator~7.2!, we get

D̂V~q,p!5E dq8dp8GV~q82q,p82p!D̂w~q8,p8!,

~B10!

whereGV(q,p)5@D̂#w(q,p). Thus, ifGV(q,p) is well be-
haved, thenD̂7V(q,p) is a ‘‘coarse graining’’ ofD̂w(q,p).
Substituting ~B10! into ~7.1!, we get ~7.9a!. For Â to be
expressible asÂ5g(q̂,p̂)V , for someV, it suffices that
Ãw(0,0)5g̃(0,0) @which is equivalent to~7.11!#, since we
must have *dq dp GV(q,p)5G̃V(0,0)51. In general,
GV(q,p) is well behaved ifAw(q,p) is a ‘‘smoothing’’ of
g(q,p).
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For example, letg(q,p)5d(q)d(p): Then g̃(k,s)51, so
that anyÂ5D̂ satisfying

2p Tr$D̂%5E dq dp@D̂#w~q,p!51 ~B11!

@we used~A11!# is expressible atD̂5@d(q̂)d( p̂)#V as was
effectively asserted after Eq.~7.3!. As another example, let
g(q,p)5p21e2(q21p2)/a, and Aw(q,p)5p21e2(q21p2)/b.
Then G̃V(k,s)5e2(1/4)(b2a)(k21s2). If b>a, thenGV(q,p)
5p21e2(q21p2)/(b2a) is well behaved; but ifb,a, then
GV(q,p) is more singular than a tempered distribution, be-
ing defined only on test functions vanishing faster than
e2(q21p2)/(a2b).

It follows from ~7.2! and ~A10b! that

i @Ĥ,D̂V~r ,u!#5
]

]u
D̂V~r ,u!1 iD̂ ru@Ĥ,D̂V#D̂ru

21 , ~B12!

whence we get~7.13!. The ~covariant! Cahill-Glaubers or-
derings have

D̂s5H ~2ps!21P̂r̂ th~2 tanh
21s! ~0<s<1!,

~2p!21r̂ th~2 coth
21s! ~s>1!,

~B13!

whereP̂5*dqu2q&^qu is the parity operator, and

r̂ th~b!5
e2bĤ

Tr$e2bĤ%
, Ĥ5 1

2 ~ p̂21q̂2! ~B14!

are thermal states. Ats51 ~antinormal ordering!, the ‘‘tem-
perature’’ (2 tanh21s)21→0, so that D̂s515(2p)21u0&^0u,
andD̂s51(q,p) are coherent states. The operatorsD̂s for s,0
are related toD̂w(q,p) by

~ps!21E dq dp e2@~q2q8!21~p2p8!2#/sD̂s~q8,p8!5D̂w~q,p!

~s<0! ~B15!

and are highly singular, beingdeconvolutionsof D̂w(q,p),
which is already the sharpest possible.

Cahill-Glauber is a ‘‘natural’’ ordering of the creation and
annihilation operatorsâ521/2(q̂1 i p̂) andâ†. To see this, let
us define ‘‘left’’ and ‘‘right’’ superoperators Aˆ ← and Â→

~i.e., operators acting on operators! by their actions on any
operatorB̂ as

Â←B̂5ÂB̂, Â→B̂5B̂Â. ~B16!

Let the commutator@Â,B̂# be ac number. We defines or-
deringof Â and B̂ as follows:

f ~Â,B̂!s5 f ~Âs,B̂2s!1̂, Âs5S 11s

2 D Â←1S 12s

2 D Â→
~B17!

for any functionf (x,y). This makes sense, because the su-
peroperatorsÂs and B̂2s commute~provided @Â,B̂# is a c
number!. At s51, we getf (Â,B̂)s515 f (Â←,B̂→)1̂, that is

‘‘ Â to the left ofB̂’’ ordering. WhensÞ61, eachÂ or B̂ is
put partly to the left, partly to the right. One can show@45#
that Cahill-Glauber ordering iss ordering ofâ† and â:

f ~ q̂,p̂!s5g~ â†s,â2s!1̂ if f ~q,p![g~a* ,a!, ~B18!

wherea5221/2(q1 ip). This indeed yields normal ordering
at s51, and antinormal ats521.

An example of ordering which isnoncovariant for Ĥ

5 1
2 (q̂1 p̂2) is s ordering of thesqueezed~relative to Ĥ!

creation/annihilation operators defined in~B8b!. Here,
Gg,s(q,p) is an elliptic Gaussian

Gg,s~q,p!5@D̂g,s#w~q,p!5
e2 i ~gq21p2/g!/s

ps
~s>0!.

~B19!

For s>1, D̂g,s are thermal states forĤg , i.e., ‘‘thermal
squeezed states’’ forĤ, and that multiplied byP̂ for
0<s<1. Still other noncovariant orderings are obtained by

using the rotatedD̂g,w,s5eiwĤD̂g,se
2 iwĤ. Again, ass→1, the

‘‘temperature’’→0, andD̂g,w,s515u0&g,w,s^0u is a squeezed
state forĤ.

APPENDIX C: POSITION EIGENKETS ROTATED
IN PHASE SPACE

In view of ~A8!, the rotated position eigenkete2 iwĤuq& is
an eigenket ofq̂w , that is

e2 iwĤuq&5eix~w!uq& q̂w
, ~C1!

where an operator subscript on a ket will be used to indicate,
when necessary, the operator of which the ket is an eigenket,
for instance,âux& â5xux& â . The phasex(w) in ~C1! remains
to be chosen: Note that atw5 1

2p,p,3p/2,2p, . . . , etc., we
have q̂w5 p̂,2q̂,2 p̂,q̂, . . . , etc. Now, with the standard
choice of phase forup&, i.e., ^qup&5(2p)21/2eiqp, we have

^0uq& q̂5^0uq& p̂5^0uq&2q̂5^0uq&2 p̂5^0uq& q̂

5p21/4e2~1/2!q2, ~C2!

where u0&5u0&N̂ is the ground state ofĤ5N̂1 1
2. The sim-

plest way to let~C1! satisfy~C2! is to choosex(w) such that
^0uq& q̂w

5^0uq& for all w @another possibility would be

^0uq& q̂w
5e4iw^0uq&#. Since we also have ^0uq& q̂w

5e2 ix(w)^0ue2 iwĤuq&5e2 ix(w)e2(1/2)iw^0uq&, we must set
x(w)52 1

2iw. Thus,

uq& q̂w
5e~1/2!iwe2 iwĤuq&, uq& p̂5e~1/4!ipe2~1/2!ipĤuq&,

~C3!

where we also wrote down the special casew5 1
2p.

Using the definitions~A4!, we have~for 0<w<2p)
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d~pw!5d~q sinw2p cosw!5d„r sin~u2w!… ~C4a!

5
d„sin~u2w!…

r
5

d~w2u!1d~w1p1u!

r
~rÞ0!.

~C4b!

The Weyl symbol of the momentum stateu0& p̂ is
d(p)5d(rsinu), so that by~8.12!,

@eiwĤu0& p̂^0ue2 iwĤ#w~q,p!5d„r sin~u2w!…5d~pw!. ~C5!

Using ~B7!, we then find that

^q8ueiwĤu0& p̂^0ue2 iwĤuq&

5~2p!21E dp eip~q82q!dS q1q8

2
sinw2p cosw D

5
e~1/2!i ~q822q2!tanw

2pucoswu
. ~C6!

It follows that

^queiwĤu0& p̂5
e~1/2!iq2tanw

~2p cosw!1/2
~C7!

In fact, ~C6! implies ~C7! only up to a phaseei z(w) indepen-
dent of q; this was fixed by requiring that

N̂^0ueiwĤu0& p̂5p1/4e(1/2)iw. The choice of phase~C7! indeed
gives

N̂^0ueiwĤu0& p̂5E dq^0uq&^queiwĤu0& p̂

5p21/4~2p cosw!21/2E dq e2~1/2!q2~12 i tanw!

5p21/4e~1/2!iw~2p!21/2E dx e2~1/2!x2

5p21/4e~1/2!iw, ~C8!

where we setx5q(12 i tanw)1/25qe2(1/2)iw(cosw)21/2. By
using ~C3!, we find that

^queiwĤu0& q̂5e2~1/4!ip^quei ~w1p/2!Ĥu0p̂5
e2~1/2!iq2cotw

~22p i sinw!1/2
.

~C9!

There follows the standard result@48#

^queiwĤuq8&5^queiwĤe2 iq8 p̂u0& q̂5^que2 iq8 p̂weiwĤu0& q̂

5~22p i sinw!21/2

3expH 2
i

2sinw
@2qq82~q21q82!cosw#J

~C10a!

5
e~1/2!iq2tanw

~22p i sinw!1/2
expH 1

2 i cotwS q82
q

cosw D 2J ,
~C10b!

where we used~A10c!, ~A9b!, and ~C9!. We could, of
course, deduce~C6!, ~C7!, ~C9! from the known result
~C10!; but it is instructive to see how~C10! itself can be very
simply deduced fromWeyl symbols, as above. Using~C10b!,
we readily show that if̂ quC&5C(q) is a slowly varying
real function, hence localized about the axisp50 in phase
space@see~5.3!#, then

^queiwĤuC&'
e~1/2!iq2 tanw

~2p cosw!1/2
C~q/cosw! @C~q!real# ~C11!

localized about the linep'qtanw in phase space: This fol-

lows from ^queiwĤuC&5*dq8^queiwĤuq8&^q8uC& and, pro-
videdC(q8) varies slowly on the scale of tanw,

E dq8expH ~ 1
2 i cotw!S q82

q

cosw D 2J C~q8!

'C~q/cosw!~ icotw!21/2. ~C12!

Consider now the overlap ofeiwĤu0& p̂ with u0& p̂ :

p̂^0ueiwĤu0& p̂5 q̂^0ueiwĤu0& q̂5~22p i sinw!21/2. ~C13!

We also have, by use of~5.15!,

u p̂^0ue2 iwĤu0& p̂u25Tr$@ u0& p̂^0u#@eiwĤu0& p̂^0ue2 iwĤ#%

5E dq dpd~p!d~q sinw2p cosw!

5usinwu21 ~C14!

in accord with~C13!. Note that had we used the polar form
~C4b!, we would have gotten*0

`r21dr@d(w)1d(w2p)#,
which is undefined: This reflects the fact that~C4b! is not
valid at r50, which is in fact the only point at whichd(p)
andd(pw) overlap whenwÞ0. At w5p/2, ~C13! correctly
yields ^p50uq50&5(2p)21/2, and ~C14! becomes
(2p)21*dq dpd(q)d(p)5(2p)21: Note that this is the
overlap of two lines,d(q) and d(p), which overlap at the
singlepoint ~0,0!; but, also, each is infinitely high, leading to
a finite net overlap. Atw50, ~C14! has a nonintegrable sin-
gularity, because the two infinitely high lines then com-
pletely overlap.
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APPENDIX D: POSITION REPRESENTATIONS

1. Phased operators

We start with the Weyl orderedĜw(w)5*0
`rdr D̂w(r ,w):

Using ~B6!, we get

2p^quĜw~w!uq8&5e~1/2!i ~q22q82!tanw
uq1q8u
2 cos2w

QS q1q8

cosw D .
~D1!

One verifies that by substituting~D1! back into

@Ĝw~w!#w~q,p!5E ds eisp^q1 1
2suĜw~w!uq2 1

2s& ~D2!

one gets back@Ĝw(w)#w(q,p)5d(u2w), with

d~u2w!5d~p2q tanw!
uqu

cos2w
QS q

cosw D . ~D3!

In the case of a general phased operator, whose Weyl sym-
bol @Ĝ(w)#w(r ,u)→d(u2w) only as r→`, we get, using
~B7!,

2p^quĜ~w!uq8&5E dp ei ~q2q8!p@Ĝ~w!#wS q1q8

2
,pD

→~D1! as uq1q8u→`, ~D4!

where we used@Ĝ(w)#w(q,p)→ ~D3! asq21p2→`, hence
also asuqu→`.@One may also infer~D4! from the asymp-
totic identity of number matrix elements~see Sec. XIV!,
since^qun&Þ0 only if n> 1

2q
2, roughly.#

2. Pure phase states

Let now Ĝ(w)5uw&^wu be pure: Putting firstq85q in
~D4! yields ^quw&'(2p)21/2(uqu1/2/cosw)Q(q/cosw); then
q8Þq implies

^quw&'~2p!21/2
uqu1/2

cosw
e~1/2!iq2tanwQS q

cosw D ~q→`! ~D5!

up to a phase depending only onw. This indeed gives back
~D4!, becauseuqq8u1/25u(X1d)(X2d)u1/25Xu12(d/X)2u
'X, whereX5 1

2(q1q8),d5 1
2(q2q8).

3. The Weyl phase operator

We now evaluate the matrix elements off̂w . By ~B7!,

2p^quf̂wuq8&5E
2`

`

dp eip~q2q8!fS q1q8

2
,pD , ~D6!

wheref(q,p)5tan21(p/q). As p ranges from2` to 0 to
1`, f(q,p) ranges from 3p/2 to 2p50 to 1

2p if q.0, and
from 3p/2 to p to 1

2p if q,0. We may thus write

f~q,p!5H f0~q,p!12pQ~2p!, q.0 ~D7a!

2f0~q,p!1p, q,0, ~D7b!

wheref0(q,p) is the branch of tan21(p/q) which ranges
from 2 1

2p to 0 to 1
2p asp ranges from2` to 0 to`. We

next evaluate

E
2`

`

dp eibpf0~q,p!5f0~q,p!
eibp

ib U
2`

`

2
q

ibE2`

`

dp
eibp

p21q2
, ~D8!

where we performed an integration by parts, using
(d/dp)f0(q,p)5q21(11p2/q2)21. The first term in~D8!
contributes LimL→`

1
2pcos(Lb)/ib50 ~as a generalized func-

tion!. The second integral is evaluated by the method of resi-
dues~poles at6 iq), yielding

E
2`

`

dp eibpf0~q,p!5~ ip/b!e2uqbu sgn~q!. ~D9!

We thus get

2p^quf̂0uq8&5
ip

x2y
e2uq22q82u sgn~q1q8!. ~D10!

To get ^quf̂wuq8&, one must, in view of~D7!, add to~D10!
the Fourier transforms of 2pQ(2p) or of p, namely
2p(q82q1 i«)21 or pd(q82q), depending on the sign of
q1q8. Smith, Dubin, and Hennings@9~b!# obtain equivalent
results ~different in some details because they measure
angles differently from us!.

APPENDIX E: COHERENT-STATE REPRESENTATIONS

The ground state ofĤ5 1
2(q̂

21 p̂2) is given by

u0&5p21/4ue2~1/2!q̂2&5p21/4ue2~1/2!p̂2&, ~E1!

where, following Dirac, we denote byuC(q̂)& the ket whose
position representation isC(q): Thus, ^quC(q̂)&5C(q),
and likewise,̂ puf( p̂)&5f(p). Using ~A9!, we get, for co-
herent states,

uqp&coh5D̂qpu0&5p21/4e2~1/2!iqpueipq̂e2~1/2!~ q̂2q!2&
~E2a!

5p21/4e~1/2!iqpue2~1/2!~ p̂2p!2&
~E2b!

In terms of polar coordinates, we have, using~E2a! and
q5rcosu, p5r sinu :

^quru&coh5p21/4e~1/2!iq2tanu

3exp@2 1
2 ~q2r cosu!2~11 i tanu!# ~E3!

with local wave number ^p&(q)'(]/]q) 12@q
2

2(q2r cosu)2]tanu5r sinu characteristic of localization
along the line p5r sinu. We also have, usingR
5 1

2(q
21p2),

^nuRu&coh5~n! !21/2e2R/2Rn/2einu ~E4a!

'~2pn!21/4e2~R2n!2/~2n!einu ~E4b!
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@where we used~K16!#. This is localized on a ring of radius
R'n, or r'(2n)1/2, and widthDR'n1/2, or Dr'1 @since
rDr5DR]. The height'n21/2. Following Schleich and
Wheeler@18#, we may represent the successive ‘‘n rings’’ by
nonoverlapping rings of uniform height, each extending from
r5n1/2 to r5(n11)1/2 @where r5R1/2]; their width
'n21/2, so that we must set their heights'1.

Let us now consider@by ~E2b!#

p̂^0uru&coh5p21/4e2~1/2!r2sin2ue~1/2!ir 2sinu cosu ~E5a!

'p21/4@e2~1/2!r2u2e~1/2!ir 2u1e2~1/2!r2~u2p!2

3e~1/2!ir 2~u2p!# ~r→`!. ~E5b!

We also have, in view of~A10c!,

e2 iwĤuru&coh5e2 iwĤD̂ruu0&5D̂r ,u2we
2 iwĤu0&

5e2~1/2!iwur ,u2w&coh, ~E6!

whence we get~15.2!. The absolute square of~E5a! is theQ
function of u0& p̂ , and is thus equal to the convolution of its
Wigner functiond(p) with p21e2q22p2, which is indeed
equal top21/2e2p2.

Consider now a phase stateuw&. Let, first, w50: So at
large q, ^quw50&'(2p)21/2q1/2Q(q), by ~D5!. Then, at
large r :

coh^ruuw50&5E dqcoh^ruuq&^quw50&

'~2p!21/2E dqcoh^ruuq&(r cosu)1/2

3Q~r cosu!

'coh^ruu0& p̂~r cosu!1/2Q~cosu!

'p21/4r 1/2e2~1/2!ir 2ue2~1/2!r2u2

~r→`!. ~E7!

The second near equality is becausecoh^ruuq& is sizable only
at q'r cosu; the third because (2p)21/2*dquq&5u0& p̂ ; the
fourth becauseQ(cosu)coh^ruu0& p̂ is given by theu'0 term

in ~E5b!. Noting now thatuw50&5e2 iwĤuw& is a phase state
of phasew50, we get, using~E7!,

coh^ruuw&5coh^ruueiwĤuw50&5coh^r ,u2wuw50&e~1/2!iw

'p21/4r 1/2e~1/2!iwe2~1/2!r2@~u2w!21 i ~u2w!#

~r→`!. ~E8!

Note that asr→`, the phasee(1/2)ir
2(u2w) oscillates rapidly,

as a function ofu, inside the Gaussiane2(1/2)r2(u2w)2. The
asymptotic form~E8! was obtained by Barnett and Pegg
@Ref. @15#, Eq. ~43!# for the Susskind-Glogower states
uw&SG @they differ by a phasee(1/2)w because they use

uw& SG5eiwN̂uw50&SG, whereN̂5Ĥ2 1
2#.

We now show that, reciprocally,~E8! implies ~D5! for
wave functions: Using the completeness of coherent states
@or ~A11!#, we have

^quw&5~2p!21E
0

2p

duE
0

`

r dr ^quru&coh^ruuw&. ~E9!

For largeq/cosw, we can use~E8! for coh^ruuw&, since the
real Gaussians in~E3! and ~E8! force r'q/cosw. Putting
s5r2q/cosw, we write r 25q2/cos2w12(q/cosw)s1s2, and
put r adr'(q/cosw)aQ(q/cosw)ds. Now, because of
e2(1/2)r2(u2w)2 in ~E8!, (u2w) is of order q21, which is
small at largeq: Expanding all functions ofu in powers of
(u2w), and retaining only terms of order>0 in q @treating
(u2w) asq21#, we get, noting that cosw(11i tanw)5eiw,

^quru&coh'p21/4expH 1
2 iq

2F tanw1
u2w

cos2w

1
~u2w!2

cos2w
tanw G J e2~1/2!s2cosweiw ~E10a!

coh^ruuw&'
e~1/2!iw

p1/4 S q

cosw D 1/2
3expH 2

1

2

q2

cos2w
~u2w!2~112i tanw!

2 1
2 i

q2

cos2w
~u2w!2 i

qs

cosw
~u2w!J ,

~E10b!

where we used 1/cos2u51/cos2w12(u2 'w)tanw/
cos2w1•••. Note that the rapidly oscillating phases
e6(1/2)i (q/cosw)2(u2w) in ~E10a! and ~E10b! cancel one another
in the integral~E9!. We get

^quw&'
e~1/2!iw

2p3/2 S q

cosw D 3/2QS q

cosw D E
0

2p

duE
2`

`

ds expH 2
1

2S q2

cos3w D ~u2w!2eiw2 1
2s

2eiw cosw2 i
qs

cosw
~u2w!J

5~2p2!21/2QS q

cosw D q3/2

cos2wE0
2p

du expH 2
1

2S q2

cos3w D ~u2w!2~eiw1e2 iw!J 5~D5!. ~E11!

53 97PHASE STATES AND PHASE OPERATORS FOR THE QUANTUM . . .



One could also show the above, more simply, first forw50
and then for anyw by using~C11!.

From ~E8!, we deduce that

ucoh^ruuw&u2'p21/2re2r2~u2w!2 ~r→`! ~E12!

We also have, in view of~5.15!, and the fact that the Wigner
function of a large amplitude coherent state is given by~8.4!
with g51,

ucoh^ruuw&u2'p21E
0

2p

du8E
0

`

r 8dr8@ uw&^wu#w~r 8,u8!

3e2r 82~u82u!2e2~r 82r !2 ~E13a!

'p21/2r E
0

2p

du8@ uw&^wu#w~r ,u8!e2r2~u82u!2.

~E13b!

Comparing~E13b! with ~E12!, we see that asr→`, the

angular functione2r2(u2u8)2 does not get broadened by con-
volution with @ uw&^wu#w(r ,u8); this again implies that the
latter tends to asharp radius of zero width~not just zero
angularwidth! as r→`.

APPENDIX F: ASYMPTOTICS
OF NUMBER MATRIX ELEMENTS

In view of ~E4a!, the number matrix elements of coherent
states D̂coh(r ,u)5(2p)21uru&coh^ruu are given by @recall
thatR5 1

2(q
21p2)5 1

2r
2#

2p^n8uD̂s51~r ,u!un&5
ei ~n82n!u

~n!n8! !1/2
e2RR~n1n8!/2 ~F1!

'
@~n1n8!/2#!

~n!n8! !1/2
ei ~n82n!u

p1/2~n1n8!1/2

3expH 2
@R2 1

2 ~n1n8!#2

n1n8
J

~n1n8@1! ~F2!

@by ~K16!#. At (n1n8)@1, this is radially localized about
R' 1

2(n1n8), or r'(n1n)1/2, with a dispersion
DR'(n1n8)1/2, or Dr'1 @sinceDR'rDr #. Note that if

FIG. 11. Density plot showing the real part of
^n8uD̂w(r ,u)un&, Eq. ~F4!, for n515 andn8518 ~white is positive,
black is negative!.

FIG. 12. ~a! The functionf nn8(r ), Eq. ~F4c!, and~c! r f nn8(r ),
for n515, n8518. ~b! The radial part of̂ n8uD̂s(r ,u)un&, Eq. ~G1!
[R5

1
2r

2], for n515, n8518, and three different values ofs:
s50.1 ~full line!, s50.4 ~long dashes!, and the approximation~F2!
to s51 ~short dashes!.
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n1n8→`,
~n82n!2

n1n8
!1, ~F3!

then @ 1
2 (n1n8)#!'(n!n8!) 1/2, by ~K8b!, so that the radial

Gaussian in~F2! is normalized@also, if ~F3! holds, then~F2!
follows directly from ~E4b!#.

We will suppose in the following thatn8>n @to get the
reverse, simply usên8uD̂un&5^nuD̂un8&* , since D̂†5D̂#.
The matrix elements of the Weyl orderedD̂w(q,p) are given
by ~G1! with s50:

^n8uD̂w~r ,u!un&5@ un&^n8u#w~r ,u! ~F4a!

5ei ~n82n!u f nn8~r !
~F4b!

f nn8~r !5~2p!212~1/2!~n82n!11

3~2 !nS n!n8! D
1/2

r n82ne2r2Ln
n82n~2r 2!.

~F4c!

Here,Ln
n82n(2r 2) is a generalized Laguerre polynomial, of

orderr 2n, havingn zeros roughly spaced byDr'n21/2. The
function ~F4! is shown in Fig. 11. Forn@1, f nn8(r ) has the
general shape shown in Fig. 12~a!: It consists of a hump
aroundr'(n81n)1/2; farther out, it vanishes liker 2ne2r2;
on the inside, it oscillates rapidly with a wavelengthn21/2,
and is approximately given, forr@n21/2, by @from ~K19!#

f nn8~r !'~2 !n221/4p23/2n21/4r21/2

3cos@~8n!1/2r2 1
2 ~n82n!p2 1

4p#1O~n21/2!.

~F5!

Thus, if n@1, then~F4! is effectivelylocalized on a ring of
radiusr'(n81n)1/2 and of width'1, since it vanishes rap-
idly outside it, and oscillates rapidly inside it. We note that
the oscillations of~F4! average to zero when smeared with
p21e2q22p2: Indeed, we then get~F1!, since D̂coh(q,p) is
the convolution ofD̂w(q,p) with p21e2q22p2@see~B10! and
~B9! (g51)#.

We have, for any operatorÂ,

2p^n8uÂun&5E
0

`

rdr E
0

2p

du^n8uD̂w~r ,u!un&Aw~r ,u!

~F6a!

5E
0

`

drE
0

2p

du ei ~n82n!ur f nn8~r !Aw~r ,u!,

~F6b!

where we used̂ n8uÂun&5 Tr$un&^n8uÂ%, and then~5.15!
and~F4a!. The functionr f nn8(r ) has the allure shown in Fig.
12~c!. Let Â correspondto A(u), so thatAw(r ,u)'A(u) for
r.r a , say. It follows that if r.r a , then smoothing of
Aw(r ,u)'A(u) with p21e2q22p2 affects only its angular
behavior; this will not be felt in the part of the integral~F6b!
coming from regions whereei (n82n)u varies slowly on the

scale of the angular widthDu'r21 of p21e2q22p2 ~see Fig.
11!, that is, from regionsr.r b'10un82nu, say. Let then
r c5Max$r a ,r b%, and let (n1n8).r c15, say, so that the
final hump of f nn8(r ) lies beyondr c : This requires in par-
ticular that (n1n8)1/2.r b , hence (n1n8)1/2@un82nu, that
is, ~F3! must be satisfied. Let us now break up the integral
~F6! into two pieces,r,r c and r.r c . In the outer (r.r c)
part of the integral, we can smoothAw(r ,u)'A(u) with
p21e2q22p2 without changing the value of the integral, as
just argued; transferring the smoothing toD̂w(r ,u) changes
the latter intoD̂coh(r ,u), so that we get a contribution@pro-
vided ~F3! is satisfied#

I out'E
r c

`

r dr E
0

2p

du^n8uD̂coh~r ,u!un&A~u! ~F7a!

'E
0

2p

du ei ~n82n!uA~u!, ~F7b!

where we used~F2! with (n1n8)!'(n!n8!) 1/2 @under~F3!#.
The inner part (r<r c) of the integral~F6! contributes, in
view of ~F5! ~we neglect unessential factors!

I in;n21/4E
0

r c
drAw~r ,u!r 1/2

3cos@~8n!1/2r2 1
2 ~n82n!p2 1

4p#. ~F8!

As n gets large, the oscillations of the cos, of wavelength
'n21/2, get increasingly rapid: So, provided only that
Aw(r ,u) is bounded, ~F8!< MaxuAw(r ,u)ur c

1/2n21/4n21/2

;n23/4, which gets negligible asn→`, compared to the
outer contribution~F7!, or ordern0. There follows~14.2!.

We will now use a Weyl phase-space analysis to under-
stand the differences between ~14.3a!, i.e.,
2p^n8uĜ(w)un&→ei (n82n)w, and the corresponding result for
a rotated momentum state

B̂~w!5eiwĤup50&^p50ue2 iwĤ ~F9a!

whose Weyl symbol is

@B̂~w!#w~r ,u!5
d~u2w!1d~u2w2p!

r
. ~F9b!

We have

2p^n8uB̂~w!un&'eiw~n82n!
4

~n1n8!1/2
,

S n1n8→`,
un82nu
n1n8

!1D , ~F10!

if ( n,n8)5~even, even!, and zero otherwise, where we used
~14.13! with nn85(N1n)(N2n)5N2(12n2/N2)'
1
4 (n1n8)2, if N5 1

2(n1n8), n5 1
2(n82n). Putting

Â5B̂(w) in ~F6! and using~F9b!, we get
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^n8uB̂~w!un&5ei ~n82n!w@11eip~n82n!#I nn8 ~F11a!

I nn85E
0

`

dr f nn8~r !. ~F11b!

Because 11eip(n82n)50 if n82n is odd, ~F11a!50 if
(n,n8)5~even, odd! or ~odd, even!, as it must. If
(n,n8)5~odd, odd!, then~F11a! must vanish, so thatI nn8 has
to vanish. Let us analyze~F6! with Â replaced byB̂(w),
similarly as we did above for the case that
Aw(r ,u)→A(u). Here, we have, rather, Bw(r ,u)
→r21B(u). This varies slowly radially providedr@1. So
for r.r c5Max$10, r b%, say @r b as defined after~F6!#, we
can again smoothBw(r ,u) with p21e2q22p2 without alter-
ing the value of ther.r c part of the integral~F6!, which
thus contributes

I out5~n1n8!21/2, ~F12!

where we approximatedr21'(n1n8)21/2 in the region of
the (n1n8) ring. Consider now the inner integralr,r c :
Due to the factorr21/2 in ~F5!, it is dominated by the region
(0, r 0), wherer 0'n21/2 is the first zero off nn8(r )@see Fig.
12~a!#; this contributes

I in;n21/4E
0

r0
dr r21/2;n21/4r 0

1/2;n21/2. ~F13!

Later oscillations inf nn8(r ) modify the exact value ofI in ,
but not its order inn, nor its overall sign. Here,I in is of the
same size asI out. Also, we easily see that the sign ofI in
@which is the same as that off nn8(r,r 0)], and the sign of
I out @always ‘‘plus’’ since the final hump;r 2ne2r2# are the
same ifn is even, and opposite ifn is odd@sincef nn8(r ) has
n zeros between 0 and the final hump#. For n odd, I in and
I out must cancel exactly. We may then surmise that they have
the same absolute value also whenn is even, and thus expect
I nn852I out52(n1n8)21/2, as is indeed the case, from com-
paring with ~F10!. Thus, the extra factor 4(n1n8)21/2 in
~F10!, as compared to 2p^n8uĜ(w)un&→ei (n82n)w, has the
following origin: (n1n8)21/2 from the extrar21 in ~F9b!,
roughly equal to (n1n8)21/2 in the region of the (n1n8)
ring; a factor 2 because the inside region contributes the
same as the outside one whenn is even@the opposite whenn
is odd#; another 2 because~F9! intercepts the ring twice~see
Fig. 8!.

APPENDIX G: NUMBER MATRIX ELEMENTS

The matrix elementŝn8uD̂s(R,u)un& were given by Ca-
hill and Glauber in the last equation on page 1881 of Ref.
@30# „a square root is missing there; theirs is minus ours,
their a is our 221/2(q1 ip), and their T(a,s)
5pd (2)(â2a) @their Eq. ~6.13!# is our 2pD̂s(q,p)
52p@d(q̂2q)d( p̂2p)#s…: For n8>n,

2p^n8uD̂s~R,u!un&5S n!n8! D
1/2S 2

11sD
n82n11S s21

s11D
n

3e2 i ~n82n!uR~n82n!/2e22R/~11s!

3Ln
n82nS 4R

12s2D , ~G1!

where Ln
n82n(x) are generalized Laguerre polynomials

~K17!. At s51, only the term of ordern in the Laguerre
polynomial survives@because of the prefactor (s21)n#, and
we get ~F1!. At s50, we get~F4!. Figure 12~b! shows the
radial part of~G1! for three values ofs, showing the transi-
tion from ~F4! at s50 @Fig. 12~a!# to ~F1! at s51. Denote

N5 1
2 ~n1n8!, n5 1

2 ~n82n!. ~G2!

We now have@recall thatR5r2#

2p^n8uĜsun&5E
0

`

2r dr^n8uD̂s~r,0!un& ~G3a!

52(2)nS n!n8! D
1/2S 2

11sD
n82n11S 12S

11sD
n

3E
0

`

rn82n11dr expS 2
2r2

11sD
3Ln

n82nS 4r2

12s2D ~G3b!

5 1
2 ~2 !nS n!n8! D

1/2

~12s!

3S 12s

11sD ~1/2!~n81n!

Fn~n,s!, ~G3c!

where we denoted

Fn~n,s!5E
0

`

dx xne2~1/2!~12s!xLn
2n~x!. ~G4!

This is evaluated in Appendix J. Puttings50, and using
~J3!–~J4c!, we get~recall thatn8>n)

2p^n8uĜs50un&52~n2n8!S n8!n! D 1/2G~
1
2n1 1

21 1
2mn!

G~
1
2n81

1
21 1

2mn!

~mn5n mod2!. ~G5!

Puttings51, and using~J2a! and ~K10b!, we get

^n8uĜs51un&5~n8!n! !21/2G~N11! ~G6!

as is also immediate from ~F1!, whereby
2p^n8uĜs51un&5(n8!n!)21/2*0

`dRRNe2R5~G6!, by ~K1!.
Let us now obtain largeN approximations: To first order in
N21, we have, by~K8!,

Sm!n! D
1/2

5S ~N1n!!

~N2n!! D
1/2

'Nn~11 1
2n/N!. ~G7!
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Using this together with ~J6!, noting that n2n

5(N2n)2n'N2n(11n2/N), andn21'N21(11n/N), we
get

2p^n8uĜsun&512
sn2

2N
1

~2 !n

2N S 12s

11sD
N

~12s!n1•••.

~G8!

Equation~G8! for s50 ands51 can also be obtained di-
rectly from ~G5! and ~G6! by using~K8!.

APPENDIX H: NORMALIZED PHASE STATES

Let Ĝ«(w) be defined as in~10.1!, and consider@by
~5.16!#

K~«!5Tr$Ĝ«8~w!%5«2E
0

`

r dr E
0

2p

du e2«r@Ĝ~w!#w~r ,u!.

~H1!

As «→0, the integral~H1! is dominated by larger , at which
@Ĝ(w)#w(r ,u)'d(u2w), so that we get

K~«!→«2E
0

`

r dr e2«r51 ~«→0!. ~H2!

We may rewrite~10.1a! as

@Ĝ«~q,p!#w~q,p!5@2p/K~«!#«2e2«q/cosw@Ĝ~w!#w~q,p!

~«→0! ~H3!

since, as«→0, the factore2«r5e2«q/cosu differs from 1 only
at large r , where cosu'cosw because @Ĝ(w)#w(r ,u)
'd(u2w). We obtain, using~B7!,

^quĜ«~w!uq8&5@qp/K~«!#«2e2~1/2!~q1q8!/cosw^quĜ~w!uq8&
~H4!

andK(«) can be expressed as

K~«!5 Tr$Ĝ«8~w!%52p«2E dq e2«q/cosw^quĜ~w!uq&.

~H5!

If Ĝ(w)5uw&^wu, then the above imply~10.4! and ~18.7b!
with

K~«!52p«2E dq«2«q/coswz^quw& z2. ~H6!

Using the asymptotic form~D5!, one verifies again that
K(«)→1 as«→0, and we have

^quw&«'~2p!1/2
q1/2

cosw
«e2~1/2!«q/coswe2~1/2!iq2tanwQS q

cosw D
~q→`,«→0!. ~H7!

APPENDIX I: TRACE SCALAR PRODUCTS
OF PHASE STATES

We here estimate in an intuitive manner ‘‘scalar products’’

S~w!5Tr$Ĝ2~w!Ĝ1~0!%

5
1

2p E dq dp@Ĝ2~w!#w~q,p!@Ĝ1~0!#w~q,p!, ~I1!

whereĜ(w) are phased operators. Their Weyl symbols sat-
isfy

h~r ;u;w![@Ĝ~w!#w~r ,u!→d~u2w! as r→`. ~I2!

We representh(r ,u;w) by a ribbon centered on the radius
u5w, with an angular widthv(r ), hence true width
w(r )5rv(r ), depending onr ~Fig. 13!; the value of
h(r ,u;w), i.e., its ‘‘height,’’ is taken uniform across the
width of the ribbon, and given by

h~r !5v~r !215rw~r !21 ~I3!

in order that the integral of the height over a cross section of
the ribbon be equal to*0

2pdud(u2w)51. We suppose that
w2(r )>w1(r ) for all r . Referring to Fig. 13~b!, we have

2pS~w!'E
0

`

dr v~r !h1~r !h2~r !, ~I4!

where the overlap incrementv(r )dr is given by

v~r !5H w1~r !, 0<r<r a,

w1~r !1w2~r !

2
2rw, r a<r<r b ,

0, r>r b ,

~I5a!

~I5b!

~I5c!

wherer a(w) and r b(w) are the solutions of

r aw5
w2~r a!2w1~r a!

2
, r bw5

w2~r a!1w1~r a!

2
, ~I6!

FIG. 13. ~a! The Wigner function of a phase state;~b! the over-
lap of two phase states.
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@a simple way to get~I5b! is to note that the length markedz
on Fig. 13~b! has the two obvious expressions
z5w11w22v andz5rw1 1

2w11
1
2w2#.

Example 1. Let the ~asymptotic! widths w1(r )5w1 and
w2(r )5w2 be independent ofr @this corresponds, e.g., to the
Cahill-Glauber Ĝs(w), whose width's#. We here have
r a5(w22w1)/w, r b5(w11w2)/w, hi5r /wi , so that

2pS~w!'E
0

r a
dr w1

r 2

w1w2
1E

r a

r b
drFw11w2

2
2rw G r 2

w1w2

~I7a!

5 f ~w1 ,w2!uwu21 ~wÞ0!, ~I7b!

where f (w1 ,w2) is an algebraic function of little interest. If
we putw15w25«, we haver a50, r b5«/w, and

2pS~w!'E
0

«/w

dr~«2rw!~r /«!25 1
12«2uwu23 ~wÞ0!.

~I8!

The zero width Weyl case was treated in~16.4!. Note that if
we replaceĜw

« (w) in ~16.4! by a normalized~approximate!
rotated momentum state

@ r̂«~w!#w~r ,u!52p«e2«r@d~u2w!1d~u2w2p!#/r ,
~I9a!

Tr$r̂«~w!%5~2p!21E
0

`

r dr du@r̂~w!#w~r ,u!51, ~I9b!

then we get

Tr$Ĝw~w8!r̂«~w!%5d~w82w!1d~w82w2p!. ~I10!

Also, if we replaceĜ1 in ~I7! by a smearedrotated momen-
tum state of constant true width, then the height
h1(r )5w1

21 ~instead ofr /w1), and we getS(w)'uwu22.
Example 2. v1(r )5v2(r )5gr2y. Here r a50, while r b

is the solution ofrw5rv(r )5gr 12y, that is,r b5ug/wu1/y.
Then

2pS~w!5E
c

r b
dr v~r !h~r !25E

c

r b
dr~gr 12y2rw!r 2y/g2

~I11a!

5
y

2g~y11!~y12!
uw/gu2~y12!/y ~wÞ0!,

~I11b!

where we started the integration at some arbitrary distance
c>1@ the formv(r )5gr2y, divergent asr→0, only applies
to largerr values#, and neglected the~finite! integration con-
stant coming from the lower integration limitc @this can be
lumped with the~finite! contribution toS(w) from regions
near the origin#. As y→` ~zero width!, we get
S(w)'(1/gy)uw/gu21. As y→0, we get

2pS~w!→~y/4g!uw/gu2`

5H ` if uwu<g

0 if uwu.g
~y→0, yÞ0, wÞ0!.

~I12!

At y50, corresponding to a wedge of constantangular
width g, of uniform height 1/g, the value ofS(w) is obvi-
ously that given on the right of~I12!.

The casey51, that isw(r )'g/r , corresponds to pure
phase states@see after Eq.~13.6!#, such as the Susskind-
Glogower POM@see~10.5!#. We here get

2pS~w!'
1

12g
uw/gu22 ~wÞ0! ~I13!

in accord with ~16.6!. @For y.0, i.e., increasing angular
width, our approximate calculation loses its validity; but it is
obvious that sincev1(r ) andv2(r ) then eventually overlap
as r→`, we haveS(w)5` for all values ofw.#

APPENDIX J: A SPECIAL INTEGRAL

This appendix concerns the integral

Fn~n,s!5E
0

`

dx e2~1/2!~12s!xxnLn
2n~x!, ~J1!

where Ln
a(x) are generalized Laguerre polynomials. Since

this integral is likely to come up in various problems~be-
sides phase! concerning the quantum harmonic oscillator, we
give it a more detailed treatment than is strictly required for
our present needs. We use abbreviations such as~GR 8.445!
to refer to Eq. 8.445 of Gradshteyn and Ryzhik@49#.

1. Results obtained

We obtain the expressions

Fn~n,s!5S 2

12sD n11

n!(
j50

n S 2n1n

n2 j D S 2n21

j D S 2

12sD j
~J2a!

5S 2

12sD n11

n!(
j50

n S 2n

n2 j D S 2n21

j D ~2 !n2 j

3S 11s

12sD
j

~J2b!

5~2 !n22n11S 1

12sD
n1n11 ~n12n!!

n! ~n21!!
Kn~n,s!,

~J3!

whereKn(n,s) has the following equivalent expressions:
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Kn~n,s!522n1n(
k50

n S nkDB~n,n1k11!S s21

2 D n2k

~J4a!

5~2 !n22n~12s!n(
k50

n S nkD
3B~n1n2k,n1k11!S s11

s21D
k

~J4b!

5 (
k50

n S nkDB~n,sk!s
n2k ~J4c!

5E
0

p

dw~sinw!2n21~11cosw!@cosw1s#n,

~J4d!

whereB(x,y) is the beta function~K2!, and we denote

mk5k mod2, sk5
1
2 ~k111mk!5H 1

2k1 1
2 ~k even!

1
2k11 ~k odd!.

~J5!

We also get the largen approximation

Fn~n,s!52~2 !n
1

12s S 11s

12sD
n1n

n2n
~n12n!!

n!

3F12
n~2n111sn!

2n

1
~2 !n

2n S 12s

11sD
n1n

~12s!n1••• G . ~J6!

The form~J2a! is that obtained by directly substituting~K17!
into ~J1! and integrating the term by term using~K4! and
~K10!; it is also obtained by Tanas, Miranowicz, and Gantsog
@36#. The forms~J4a! and~J4b! follow for ~J2a! and~J2b! by
use of~K11! and~K2!. It is not trivial to pass from one to the
other of the forms~a!, ~b!, ~c!, except in special cases: For
instance, one verifies that puttings51 in ~J2a! and in ~J2b!
yields the same result@in ~J2a!, we get ( n

n1n21) by ~K12!,
while in ~J2b!, only the term j50 survives, yielding
(2)n( n

2n)5( n
n1n21) by ~K10b!#. Also, multiplying both

~J2a! and ~J2b! by (12s)n, we get terms (12s)n2 j in both
sums, so that ats51, only the termsj5n survive, yielding
in both cases (n

2n21).

2. Proofs

We denote byC $zn%A(z) the coefficient ofzn in A(z).
Using the generating functions~K.18!, we have

Fn~n,s!5C $zn%~11z!2n1nE
0

`

dx e2~1/2!~12s!x2zxxn ~J7a!

5C $zn%~12z!22n21E
0

`

dx e2~1/2!~12s!x2xz/~12z!xn

~J7b!

5C $zn%~2n1n!!ezz2n

3E
0

`

dx e2~1/2!~12s!xJ2n„2~xz!1/2…. ~J7c!

~a! From ~J7a! we get, using~K3!,

Fn~n,s!5S 2

12sD
n11

n!C $zn%~11z!2n1nF11
2z

12sG
2n21

~J8a!

whence we get~J2a! on expanding, using~K9! and ~K13!.
~b! From ~J7b!, we get, using~K3!,

Fn~n,s!5S 2

12sD
n11

n!C $zn%~12z!2nF11
11s

12s
zG2n21

,

~J8b!

whence we get~J2b! on using ~K9! and ~K13!. ~c! From
~J7c!, we get, using ~J9b! below with b52z1/2, g

5 1
2 (12s), u5b2/8g5z/(12s):

Fn~n,s!522n11~12s!2n21
~n12n!!

~n21!!

3C $zn%e2zs/~12s!(
k50

`
1

k!
B~n,sk!S 2z

12sD
k

~J8c!

whence we get~J3!–~J4c! on expanding the exponential, and
using ~K13!. We next show that~J4a! and ~J4b! are both
equal to ~J4d!: Following Smith, Dubin, and Hennings
@9~b!#, we use the representation~K2b! of the beta function,
and get

~J4a!522n1n11E
0

p/2

df~cosf sinf!2n21 cos2f

3 (
k50

n S nkD ~cosf!2kS s21

2 D n2k

52nE
0

p/2

2df~sin2f!2n21~11cos2f!

3@cos2f2 1
2 ~12s!#n5~J4d!,

where we used cos(2f)52(cosf)221, and putw52f. Simi-
larly, we get
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~J4b!5~2 !n~12s!n22n11E
0

p/2

df~cosf sinf!2n21cos2f

3 (
k50

n S nkD (sinf)2~n2k!~cosf!2kS s11

s21D k
5~12s!nE

0

p

2df~sin2f!2n21~11cos2f!

3Fsin2f1S s11

s21D cos2fGn5~J4d!.

Finally, expanding@ #n in ~J4d!, and using~K2!, we get
~J4c!.

3. An integral with a Bessel function

E
0

`

dx e2gxJ2n~bx1/2!

5 1
4bS p

g3D 1/2e2u@ I n21/2~u!2I n11/2~u!# ~J9a!

5b~2g!23/2
22n

G~n!
e2uun21/2(

k50

n

B~n,sk!
~2u!k

k!

S u5
b2

8g D , ~J9b!

where~GR 8.445!

I a~u!5e2~1/2!ipaJa~e~1/2!ipu!

5~ 1
2u!a(

j50

`
~u/2!2 j

j ! ~a1 j !!
@2p,arg~u!< 1

2p#.

~J10!

The result~J9a! is given in ~GR 6.614.1!. To get ~J9b!, we
write

@ I n21/2~u!2I n11/2~u!#

5~ 1
2u!n21/2(

j50

` F ~u/2!2 j

j ! ~n1 j2 1
2 !!

2
~u/2!2 j11

j ! ~n1 j1 1
2 !! G

5~ 1
2u!n21/2(

k50

`

~2u/2!kAk~n!,

Ak~n!5
1

~ 1
2k2 1

2mk!!G~n1sk!

5
p21/22k

k!

G~sk!

G~n1sk!

5p21/22k
1

k!G~n!
B~n,sk!,

where we used ~E5! to transform (12k2 1
2mk)!

5p1/2k!G(sk)
21.

4. Asymptotic form of Kn„n,s…

Kn~n,s!5E
0

p

dw~sinw!2n21~11cosw!~cosw1s!n. ~J11!

As n→`, only the regionsw'0 and w'p, where
ucosw1su may be locally maximum~depending on the value
of s!, contribute to low orders inn21. Thus

Kn~n,s!'E
0

p

dw~sinw!2n21~11cosw!~cosw1s!n1~2 !n

3E
0

p

du~sinu!2n21~12cosu!~cosu2s!n, ~J12!

where we put u5p2w, and used *0
pdw5*0

pdu,
sinw5sinu, cosu52cosu. Then

Kn~n,s!'D1~s!2D2~s!1~2 !nD2~2s!, ~J13!

Di~s!52E
0

`

w dw~w2!n21f i~w2!@cosw1s#n ~J14a!

f 1~w2!5S sinww D 2n21

512
2n21

6
w21•••, ~J14b!

f 2~w2!5
1

2S sinww D 2n21

~12cosw!5 1
4w21•••.

~J14c!

We now expand

n log~cosw1s!5n log~11s!2t2ng~ t/n!, ~J15a!

t5
nw2

2~11s!
,

g~ t/n!5S 22s

6 D ~ t/n!21S s2213s116

90 D ~ t/n!31•••.

~J15b!

We then have

Di~s!5~11s!nS 212s

n D n

3E
0

`

dt e2ttn21f i S 212s

n
t De2ng~ t/n!

5~11s!n1n2nn2nG~n! f i S 212s

n
n* De2ng~n* /n!,

~J16!

where we define (n* )k5G(n1k)/G(n)
5n(n11)•••(n1k). Expanding, we get, to ordern21,
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f 1S 212s

n
n* De2ng~n* /n!

5F12
2n21

6

212s

n
nG F12n

22s

6

n~n11!

n2 G
5F12

2n22sn~12n!

2n G ~J17a!

f 2S 212s

n
n* De2ng~n* /n!

5F ~11s!n

2n
1O~n22!G @11O~n21!#

5
~11s!n

2n
~J17b!

whence we get

Kn~n,s!5~11s!n1n2nn2nG~n!F12
n~2n111sn!

2n

1
~2 !n

2n S 12s

11sD
n1n

~12s!n1••• G . ~J18!

Substituting this onto~J3!, we get~J6!.

APPENDIX K: USEFUL FORMULAS

In the following, GR 3.621.5 refers to Eq. 3.621.5 in
Gradshteyn and Ryzhik@49#.

1. Gamma and beta functions

These are given by~GR 3.621.5, 8.384.1, 8.384.6!

G~z!5E
0

`

dt tz21e2t5~z21!G~z21!, G~z11!5z! ~K1!

B~x,y!5
G~x!G~y!

G~x1y!
~K2a!

52E
0

p/2

df~sinf!2x21~cosf!2y21

~Rex.0, Rey.0!. ~K2b!

We will use ~K1! in the form ~GR 3.381.4!

E
0

`

dx x~1/2!ae2gx5g2@~1/2!a11#G~ 1
2a11!

5g2@~1/2!a11#~ 1
2a!!. ~K3!

Denotingmn5n mod2 @so thatmeven50, modd51#, we have

E
0

p

dw~sinw!x~cosw!n5mn11BS x11

2
,
n11

2 D ,
mn5n mod2 ~K4a!

since sinw is symmetric, cosw antisymmetric about
w5p/2. It follows that

E
0

p

dw~sinw!x@~cosw!n1~cosw!n11#

5BS x11

2
,
n111mn

2 D . ~K4b!

‘‘Duplication formula’’ ~GR 8.335.1!,

G~2x!5p21/222x21G~x!G~x1 1
2 !

⇔k!5p21/22kS k2D ! S k21

2 D ! ~K5!

Stirling’s formula,

G~z!5~2p!1/2zz21/2e2zS 11
1

12z
1••• D , ~K6a!

ln~n! !5 1
2 ln2p1~n1 1

2 !ln~n11!2~n11!1O~n21!,
~K6b!

n!'~2p!1/2~n11!n11/2e2~n21!'~2p!1/2nn11/2e2n,
~K6c!

where the last equality follows from (n11)n11/2

5nn11/2(111/n)n11/2'nn11/2e. For « fixed, we have, to
first order inz21,

G~z1«!5G~z!z«S 11
«22«

2z
1••• D , ~K7!

where we expanded in powers ofz21, noting that
(11«/z)z5ez ln(11«/z)5e«2(1/2)«2/z. Using then N!
5G(N11), we get, to first order inN21,

~N1«!!5N!N«S 11
«1«2

2N D , ~K8a!

~N1«!!

~N2«!!
5N2«e«/N, ~N1«!! ~N2«!!5~N! !2e«2/N,

~K8b!

where we noted that (N11)«5N«(11«/N).

2. Binomial expansion

~11z!x5 (
n50

` S xnD zn, ~K9!

where the binomial coefficients satisfy

S xkD 5
x!

k! ~x2k!!
, x!5G~x11!, ~K10a!

S 2x

j D 5
~2x!!

j ! ~2x2 j !!
5

~2 ! j~x211 j !!

j ! ~x21!!
5~2 ! j S x211 j

j D ,
~K10b!
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B~x,y!215xS x1y21

y21 D 5yS x1y21

x21 D , ~K11!

(
j50

n S xj D S y

n2 j D 5S x1y

n D , ~K12!

where ~K12! follows from expanding
(11z)x1y5(11z)x(11z)y, and using

S (
i50

`

aiz
i D S (

k50

`

bkz
kD 5 (

n50

`

zn(
j50

`

ajbn2 j . ~K13!

3. Poisson distribution

We obtain a largen approximation for

Pn~x!5
1

n!
xne2x. ~K14!

This is maximum at 05dPn /dx5(nxn212xn)e2x, i.e., at
x5n. We now expand lnPn(x) in powers ofn

21, neglecting
terms of ordern21 and smaller. We first expand

n lnx5n lnn1~x2n!2
~x2n!2

2n

1
~x2n!3

3n2
1•••. ~K15!

SincePn(x);exp@21
2(x2n)2/n], we see that (x2n) has a

dispersion;n1/2, so is of ordern1/2. We therefore neglect, in
the expansion~K15!, terms (x2n)k11/nk;n(12k)/2 for
k>3, which areO(n21). Using then Stirling’s formula
~K6b!, we obtain

Pn~x!'~2pn!21/2expF2
~x2n!2

2n
1

~x2n!3

3n2

1O~n21!G ~K16a!

'~2pn!21/2@e2~1/2!~x2n!2/n1O~n21/2!#. ~K16b!

4. Laguerre polynomials

The Laguerre polynomials are given by

Ln
a~x!5(

j50

n
~2 ! j

j ! S a1n

n2 j D xj . ~K17!

Generating functions~GR 8.975!,

~11z!ge2xz5 (
n50

`

znLn
g2n~x! ~ uzu,1!, ~K18a!

~12z!2a21e2xz/~12z!5 (
n50

`

znLn
a~x! ~ uzu,1!,

~K18b!

Ja„2~xz!1/2…ez~xz!2a/25 (
n50

`
zn

G~n1a11!
Ln

a~x!

~a.21!, ~K18c!

whereJa is a Bessel function. Asymptotic form~GR 8.978!,

Ln
a~x!'p21/2n~1/2!a21/4e~1/2!xx2~1/2!a21/4 cos@2~nx!1/2

2 1
2ap2 1

4p#1O~n~1/2!a23/4! ~K19!

for n21!x,xm , wherexm is given by 2(nxm)
1/2'np, i.e.,

xm' 1
4np2.

5. Harmonic oscillator eigenkets

We have the generating function@50#

p21/4 exp@2 1
2x

2121/2lx2 1
2l2#5 (

n50

`

ln~n! !21/2wn~x!,

~K20!

where wn5^xun& are the eigenfunctions of Ĥ
5 1

2@x
22(d/dx)2#. Puttingx50, we find

wn~0!5H 0 ~n odd!

p21/4
~2 !n/2~n! !1/2

2n/2~ 1
2n!!

'p21/2~2 !n/2~2/n!1/4 ~n even, n→`!,
~K21!

where we used~K6!. The momentum eigenfunctions are deduced by using~C3!: We thus havêp50un&'p21/2(2/n)1/4 for n
even and large.
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