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Phase states and phase operators for the quantum harmonic oscillator
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How does the classical notion of “phase” apply to a quantum harmonic oscillblter%(dzﬂaz),
[§.p]=i#%, which cannot have sharp positiamd momentum? A quantum stafecan be assigned a definite
classicalphase only if it is darge-amplitude localized stat®©ur only demand, therefore, on(Hermitian
phase operatoib is that the phase distributid®(¢) = Tr{ 5(&— @)p} attribute the correct sharp phase to any
such “classical phase” state. This requires that the Weyl synilegl,(q,p) of ¢ tend to § mod2x as
r—, where 9=tan (p/q) andr=(qg2+p?)¥2 There are infinitely many such phase operators. Each is
expressible asp=[tan X(p/d)],, where Q specifies anordering rule for g and p. The commutator
—i[I:|,<}5]= 1— 2] 8(tan™1p/q) ], corresponds to the Poisson bracidt ¢} pg=1—275(6) for thesingle-
valuedclassical phase. = 6 mod2w. Phase statek(¢) are defined by the condition that their Weyl symbols
[T(¢)]w(r,0)— 8(6— @) asr—oo. If moreover [3"del'(¢)=1, thenT'(¢) is a phase probability operator
measurg POM). In particular,ﬁ(;j)—zp) is a phase POM. NormalizabBpproximatephase stateﬁg(go) are
defined b){f‘f((p)lw(l’,ﬁ) =2me e’sf[f“(cp)]w(r,e), e<1. Phase states are not, in general, “pure orthogonal”
in the sensd’(¢)['(¢")=6(¢—¢")I'(¢), unless they are of the fori(¢— ¢). However, any phase state
I';(¢) is trace orthogonalto any phase POM',(¢), in the sense that ¥, (¢’ )5 (¢)}—8(¢—¢') as
e—0. This implies that measurement of the Pdl\él((p') on the statd:§(¢) yields the outcomep with
probability 1 ase— 0. Phase measurements of the first kind are possilpeinciple; they would allow one to
prepare(approximatg phase states and monitor their phase evolution in a quaftphase nondemolishing
manner. Cases of special interest are the Susskind-Glogower and the Cahill-Glauber ordered phase states and
operators. The energy-phas@r number-phage uncertainty relation isAHA@$=0, the lower limit
AHA ¢=0 being realized by pure number states; however, for states whose Wigner functions are localized
away from the origin and from the extremities of tteingle-valued phase window (0,2), the uncertainty
relation is effectivelyAHA ¢= %

PACS numbsd(s): 03.65—w, 42.50.Dv

. INTRODUCTION In any case, since the Hamiltoni&h generates time evo-
lution, hence phase shifts, one would expect a phase operator
Phase changes in harmonic oscillators underlie interferp to satisfy
ometry, and the measurement of time. Indeed, phase shifts
correspond to time displacements. A phase shift induced
on a quantum state by some device, or just by the passage of
time, is aparameterin a time evolution operator, whose - o
measuremente.g., by interferometiyneed not involve a Eigenstates of such @ would remain eigenstates under
phase operatorStill, it would be desirable to dispose of a Phase shifts, so that it would be possible to monitor them
might, hopefully, allow topreparesharply phased states, and ately, the requiremert..3), initially proposed by Dira¢1],
monitor their evolution in a “quantum nondemolishing” iS impossible to satisf{2—4], leading to the belief, for some

[A,0]=ice tHpelt=ftt. 1.3

(QND) manner. time, that a quantum phase operator does not gxisich is
Classically the phase of an oscillator with sharp position trué if one defines it by1.3)].
g and momentunp is the angle Various approaches to the “quantum phase” have been
proposed, eliciting enormous literature for such a circum-
6=6(q,p)=tan *(p/q) (1.1 scribed subject. Some of these approaches will be reviewed

in the first part of this paper. We restrict ourselves to those
(in units where the mass and frequency of the oscillator ar@pproaches which are more or less directly relevant to our
unity). But what is the phase, or phase distribution, of aown. In particular, we do not discuss very interesting treat-

guantum oscillatofwe usef=1), ments by Shapiro and Shepdfs], and by Bar[6], making
A use of “doubled” Hilbert spaces, or of Liouville space.
H=3(g2+p?), [q4,p]=i, (1.2 In this paper, we acknowledge that “phase” is an essen-

tially classical notion, as was emphasized by Bergou and
which cannot have sharp positiamd momentum? Although Englert[7]. A classical phase can be assigned unambiguously
the notion of “phase shift” is clear in the quantum contéxt to a quantum state only if it is Erge amplitude localized
parameter in a time evolution operatothat of “phase” it-  state By this we mean a stat&q/p, for which the expecta-
self appears rather fuzzy. tions (q|pqp'/q) and(p|pqpr|p) are localized within inter-
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p r=(q?+p)'  p=|al=2"Yq+ip|=2"V7,

Aq (2.1b

2 e g W&% m Ap where we defined three different radial variablesis the
Pt radial distancep=|«| is widely used in the quantum optics
% % : literature;R, equal to the classical oscillator Hamiltonian, is

D ) ; the “action variable” canonically conjugate to the angle

= M : q Indeed, thecanonical transformation ¢,p)—(R,68) pre-

qQ' serves the form of Poisson brackgig]
FIG. 1. The shaded box represents a quantum ptafe whose of og of ag of g of ag
position and momentum transition probabilitigsj|pq://q) and {f 'g}PBIE ap  ap aq TR IO 90 9R 2.2

(plpgpr|p), are localized aboutq(,p’)=(r’,6"), with spreads
(uncertainties Aq and Ap. The box subtends an angled at the

so that
origin of phase space. If the amplitudé is large enough that the
phase uncertaintA @ is negligably small, therf)q,p, can be as- 90
signed the phase’. {R,0}pg=1{H,0}pg=—=1. (2.3

a0

vals Aq and Ap aboutq’ and p’, and such that the box ) )
AgxAp subtends avanishingangle at the origin of the 1he radial measures adR=rdr=2pdp, and integrals over

(9,p) plane(Fig. 1). Our only demand, therefore, on(ieler- ~ Phase space will bgdqd p=Jordr [57d6, etc.

mitian) phase operatop is that thephase distribution Considering(2.3), we see that the demaii#i, 0]=i, set
R by Dirac[1] for a quantum phase operat@r accords with
P(@)=Tr{8(¢—¢)p} (1.9 his cherished correspondends|
attribute the correct sharp phase to any such “classical {.,}pe=—i[.,] (2.9

phase” state. Infinitely many different Hermitian operators

then qualify as “phase operators.” Each is expressible as between classical Poisson brackets and quantum commuta-
- o tors. As already mentloneﬁl,-l,e]—l is impossible to satisfy
p=[tan” *(p/§)]q, (1.5  [2-4]. This is readily seen by considering its matrix elements

between number states), whereH|n)=(n+)|n):
where () specifies arordering rule[8] for the noncommut- ¢s) [n)=(n+2)In)

ing operatorsy andp. Thereby,¢ is a “natural” quantiza- (n'[[A,81InY=(n"—n)(n’| 8|y =i 5, 2.5
tion of the classical observablé=tan *(p/q). The “ca- ’ mn
nonical” ordering is Weyl ordering8]. The Weyl ordered
phase operator was first introduced and studied extensive
(both for its fundamental physical significance and math-
ematical interestby Smith, Dubin, and Hennind®]. More
general ordering rules were considered independently in
[10]. where\ is any real number, so that the kas'“’ln> would
We will find that phase measurements of the first kind arébe normalizable(if 6 is Herm|t|ar) eigenkets oH with con-
possible, inprinciple: They would allow to prepare sharply tinuouseigenvaluesi+3+\.
phased states, and monitor them in a “quanigimasé non- The above is really not surprising: The phageaised in
demolishing” (QND) manner 11]. (2.3 is a multiple-valuedfunction of (g,p). Indeed, to get
Since the paper is rather long, a self-contained summar{?.2), it is essential that be acontinuousfunction ofg and
is given in the two concluding sections XVIII and XIX. The p. Therefore, no well-behaved quantum observable can cor-
rest of the paper is organized as follows: Sections II-VlIrespond tod, because a quantum measurement can only have
review some of the existing literature, and also serve to seafefinite (single-valuedl outcomes. One should really refer to
down a number of results that we shall need, and announcesingle-valuedclassical phase, such as
general features to come out of our own treatment. Sections
VIII-XVII constitute the subject proper. Detailed calcula- ¢=¢(q,p)=60 mod2s. 2.7
tions have been relegated to appendixes, to let the discussion
flow more smoothly. Appendixes A—I contain details of cal- This satisfies, instead ¢H, 6}pg=1,
culations and complementary information to that given in the

fmplymg that§=oo1. Moreover[H 0]—| would imply that

N N= 4 ), (2.6)

text. Appendix J is purely mathematical. Appendix K re- 2
groups various known formulas which we require. {H'¢}PB_ﬁ_l_2“52w( 0), 238
Il. MULTIPLE- AND SINGLE-VALUED PHASES where the Dirac comb
We will use polar coordinates in the(p) phase plane: o

o=t (pla), ReH(q.p)=1(q24p?). (213 527(9)52_% 8(6—2mn)=5(6 mod2m) (2.9
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expresses the sudden2 jumps suffered byp as 6 passes

multiples of 2. One might therefore expect a phase opera- E=(N+1)"¥2a=2 |n}n+1|,
tor ¢ to satisfy, rather thapH, #]=i, the commutation rela- n=0
tion "
A Ef=a'(N+1)"%2=3 |n+1)n|. (3.4)
—i[H,¢]=1-27T, (2.10 A=0

- PN N One then hagcompare(3.2
wheref', defined by(2.10, i.e., 2af=1+i[H,3], should scompare(3.2)]

be some quantum analog é%,.(6). This will indeed turn Bt — EloN _
out to be the case. Eflm=In+1), Elm=(1-80)ln-1), (353

[N.E]=—E, [NEN=E", (3.5
Il. QUANTUM PHASE FROM NUMBER SHIFT
OPERATORS EETZL ETé=1_|O><0|, (350)
In this section, we give a brief overview of what has been . R
the main line of thought on the quantum phase. We will need (E)"N(EH™=N+m (3.50
the results
(EN™N(E)™=N-m-+m|0)(0]+(m—1)[1)(1|
2 o,
(277')_1f de ™ Me=4g ., (3.13 +(m=2)[2)(2[+ -+ +|m—1)(m—1],
0

(3.59

where E™ indeed appears as a discrete analoqeb"l"g in
(2.6). However, since it annihilates the vacuuf,is not
(3.1b invertible, hence not unitary: Indeed, it cannot be, for other-
wise it could be used to shil down to negative eigenvalues
The relation(2.6), though impossible, points to energy [contrary to(3.58].
shift operators, i.e., number shift operators, as quantum ana- The Susskind-Glogower number shift operaohas the
logs of e*?. Since the latter do not suffer the multivalued- following unormalizable eigenkets:
ness thaty does, one suspects their quantum analogs to be
less problematic tha# itself. The familiar number shift op-

2 o, i
(277)71JA pdoe el 7n)¢:775nn'_(1_5nn')T
0 n n

_ -12 i E Qi
erators are the creation and annihilation operators: |¢)se=(2) ngo e™In), El¢)sc=€"|¢)sc. (3.69
a=2""q+ip), a'=2""g-ip), N=ata=H— i These constitute a complete but nonorthogonal set of vectors
(3.29 [4I
A ~ . R A R 2 ~
[a,a']=1, [N,a]=-4&, [N,a']=a". (3.2p JO dele)slel=1, (3.6b
The reIatior[NA,é]= —a is indeed similar tq2.6) written in o
the form[N,e'?]=—e'?. The eigenstates & are coherent s @'|@)se=(2m) LD, einle=e")
states n=0
1 ) i ¢ —¢
n ing :E"'%&(QD _(P)_ECOt >

“ pe
h_ h_ he o= (1/2)
lap)°oh=|a)®"= | pe' #)oN= g~ (12p 2 T)MW (3.39 B

where (3.6b follows from (3.18, and the principal part is
understood in c{¢’ — ¢). The “phase states|¢)sg have
many compelling properties, and the “phase distribution”
These are the archetypical localized states, withdefined by

Ag=Ap=1 (see Fig. I They indeed acquire a definite

a=2"Y(q+ip)=pe’?, ala)=ala). (3.3H

phase as their amplitudgs—co, but not at lesser values of Psd @) =sd @|p|¢)sa (3.7
p. Let us try, then, to modify a: Noting that

aNa'=(N+1)?, we see that a closer similarity wit2.6), is widely used[14]. However, not being orthogondlp)sg
and also withe™'?=r~Y%(q+ip), will be obtained if, fol-  cannot be the eigenkets of a Hermitian operator.

lowing Susskind and Glogow¢8], we define “ex@” opera- This prompted Pegg and Barnéti5] to consider a finite

tors as Hilbert space{|n), n=1,2,...,s}, wherein



S

- in6; 27|
|6J>PB:(S+1) 1/220 emel,

“Tsir

j=0,1,...,s (3.8

are orthogonal eigenkets of a Hermitian phase operator

S

;bPB:nZO|0j>0J'<0j|! Opel 0,)= 6, 6;).  (3.8b

An elegant formalism ensug45]. In the limit s— oo,

s+1 1/2 . .
(ﬁ) |0;)pe—16)sc: Ppe—dsc,  (3.99

where[by (3.1b]

~ 2
bso= [0 deledsdel=m+ 3 In")==(r|.
0 n’#n n—n

(3.9

Still, |¢)sg are not eigenkets apsg, even though the latter
is a well behaved operator.

The SG operatoE and the annihilation operatérbelong
to a general family of “modulated” number shift operators

Ex=2 [n—1\u(n|, Ao=0, (3.108
n=0

Em=[n—1)\,, EJln)=|n+1)\,; (310D

introduced by Lerner, Huang, and Walté¢fs6]. The eigen-
kets ofE, are given by

- BCh— B”C
|'8>:n§=:o Cn|n>a Ch= A = Hn 0
E\|B)=BIB). (3.11)

Susskind-Glogower corresponds)tg 1 andB=¢€'¢. The
annihilation operatora corresponds tox,=n%2 Not all
states(3.11) have a definite phage.qg., the coherent states
(3.3 at smallp]: In fact, any pure statg¥)==Xc,|n) is an
eigenket|8) of some operator E, given by (3.103 with
An=PBCn_1/Cy. Lerneret al. [16] argued that for(3.11) to
qualify as “phase states,” they should haye=e'¢, and
A—1 as n—o, so thatc,—(conste'"?, that is, they
should tend to the Susskind-Glogower) s asn— .
Leonhardt, Vaccaro, Bohmer, and P&liV] discuss sev-
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FIG. 2. The shaded region represents a classical §{atg).
The phase distribution is the overlap fffg,p) with the infinitely
narrow wedge J,(q,p), represented by the radius
anglee.

at

tions of phase. We first discuss, in this sectiafgssical
phase distributions.
A central role is played here by the angukafunction

B a
(60— @)=06,(0,p)= cosp o(q sing—p COSP)@<—COS‘P),
4.1
where
o 0 (x<0)
=11 (x>0). 4.2
The step function in4.1) assures that)/cosp>0, i.e., that

5¢_(q,p) is localized over only half of the straight line
gsing=pcosp. By contrast,

(O0—@)+8(0—p—m)
r

8(q sing—p cosp) = 4.3

is localized along the complete straight ling sine
=p cosp. The extra radial weight=g/cosp in (4.1), as
against(4.3), reflects the fact that an angular incremém
defines a “wedge” in phase spa¢see Fig. 1 Its manifes-
tations will be a recurrent theme in this paper.

A classical statistical state is phase spacerobability
distribution f ¢ (q,p)="f(r,8). Its phaseprobability distri-
bution P(¢) is the expectation o6(6— ¢), that is, in the
picturesque language of Schleich and WhedlE8], the
“overlap” of f(q,p) with 6,(q,p) (Fig. 2:

Pd(@):f dq dps,(q,p)fu(q,p) (4.4a

eral approaches of the above kind in a unified way, using as

underlying notions(i) covariance under phase shi#’™,

and (i) invariance under the Susskind-Glogower number
shift ET. Note, however, that although it has many compel-

ling properties, the number shi" is not unique, as indi-
cated above.

IV. CLASSICAL PHASE DISTRIBUTIONS

fwr dr fy(r,e), (4.4b
0

the radial integral off 4(r,¢). The unormalizable “states”
5?(q,p) thus act asphase_ probability measureBy analogy_
with the quantum formalism, they may be called “classical
phase eigenstates.”

Another line of attack on the quantum phase emphasizes The phase distributioti4.4) may be compared with the

phase distributionsather thanoperatorsfor phase or func-

“orientation” distribution
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p which gives the momentérequencies comprising¥. The
absolute squargV(p)|? is the “power spectrum” of’. One
. often has, however, a description involving both posithowl
Yoy momentum(time and frequency, that is, a phase-space rep-
o resentation. For instance, in the process of hearing, one does
not perceive the detailed time variation of the air pressure,
nor its frequency spectrum, but rather a time-varying “local”
@ g frequency spectrum. Let us intuit the general phase space
appearance o¥(x):
We first note that(p)(x)=S'(x)=49S/dx appears as a
“local” mean momentum atx. Thus, a crude phase-space
FIG. 3. The shaded region represents a classical §tat@).  representation of¥’(x) is a ribbon centered on the line
The orientation distributiofP,;e,{ ) is the overlap off (q,p) with ~ P=S'(q). The ribbon has a widtiAp(x), due to the varia-
the straight lines(gsing—p cosp). tions of R(x). The relevant characteristic here is the relative
rate of variation|R’ (x)/R(x)|: Sincee'P* produces relative
rates of variation of size=p, we have, roughly8c],

Poner(q:)=f dqg dps(q sing—p cosp)fy(q,p)

R'(x)
(pP)(X)=S'(x), Ap(x) R | (5.3
=J dr[fy(r,e)+fy(r,e+m)], (4.5b For instance, if? (x) =x, thenAp(x)~x"1, so thatx® gets
0 more and more sharply localized in momentum|ssin-
creases.

the overlap off ;(q,p) with the complete straight lin&4.3)
(see Fig. 3 This is the value ak=0 of the ¢-quadrature
distribution

The above argument is only qualitative. Can one build
gquantitative phase-space representations? Since hearing
naturally provides a time-frequency representation of sound,
let us imitate that process: This can be modelgdry

— i — _ crudely as effected by a bank of damped oscillators of dif-
Pe(x) f dq dpa(q sing—p cosp—x)Ta(q.p). ferent natural frequencig®0]. The energy imparted by the
(4.6) signal ¥ (x) to the oscillator of frequency, at timeq, is

(approximately a windowedFourier spectrum

As pointed out by Schleich and his co-workdrk9], the
“quadrature based” phase distributi¢thalf” of (4.5)] 2

dx € P*h(q—x)¥(x)| , (5.9

f(a.p)=(2m) "
Pquac(‘P): fo dr fo(r,e) 4.7

where h(x) is the damping function of the oscillat¢as-
sumed independent of its natural frequency; ther2! is
suitably renormalized, gives a good idea of the true phaséor normalizatiod. Of course,h(x) has its ownp width,
distribution (4.4), in the case of states sufficiently localized which adds to that o (x) [21].

radially that the wedge radial weight in (4.4) is of little The windowed Fourier spectrum provides a quantitative
consequence. phase-space representation which, however, depends on a
choice of window function. Is there an “absolute” phase-
V. QUANTUM PHASE-SPACE DISTRIBUTIONS space representation? Somewhat surprisingly, there is: Con-

sider, first, the overlap of a real functidifx) with is inver-
Considering(4.4), one naturally thinks of using quantum sjon about,

phase spacédistributions for defining quantumphasedistri-
butions. We first recall in this section some basic results con-
cerning phase space representations of quantum states and W(Q):f dx f(q+x)f(q—x). (5.5
operators.
Consider a wave function This accurately portrays the whereaboutsf@f), but with
_ an added featureV(q) contains “inner interferences” be-
V(x)=R(x)e'S™, R(x),S(x) real (5.)  tween different parts of (x); for instance, iff(x) has two
humps, then in addition to imaging the two hump¥(q)
(we here use, as position variabl&sin configuration space, also has an extra hump at their midpofRtg. 4).
andq in phase spagelt will be enlightening to also think of As it stands,(5.5) is of little interest. Things become in-
x andq as “time,” of p as “frequency,” and of¥(x) as a teresting if wesimultaneouslynvert in momentum: To invert
time-dependent signal. Another common representation af (comple® function ¥'(x) in p, complex conjugate it, as
V¥ is its momentum(frequency representation this causesp)(x)=S'(x) to change sigrthis is the usual
time-reversal operation, better calledotion reversal. To
displaceW (x) by p, multiply it be e'*. Thus, corresponding

T _ -12 —ipx
W(p)=(2m) f dx e (x) (5.2 to f(x+q) in (5.5, we displace¥ (x) by —q, and then by
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(a)

w—)x

(b)

FIG. 4. (a) A real functionf(x) with two humps;(b) the corre-

0 =
=

-6 -4 -2 0 2 4 6

FIG. 5. Density plot showing the Wigner function of a superpo-
sition of two coherent states; note the interference structure between

spondingW(q) reproduces the two humps positively, and also hasthe two (positive) “true” phase-space structurdgahite is positive,

an “interference” structuréof any sign in the region of their mid-

black is negative

point, because the reflection of each hump about that region over-

laps the other hump.

—p, that is, ¥ (x) -V (x+q)—e P*¥(x+q); correspond-
ing to f(g—x), we displace¥ (x) by g and invert inx, then
displace by p and invert in p, that is ¥(x)
— W (x—q)—¥(g—x)—eP¥(q—x)—e PXT*(q—x).
The overlap of¥’ (x) with its inversion aboutd,p) is then

W(q,p)=7-r_1J dx e PP (q+x)e PP*(q—x), (5.6a

| dadowap- [ axweor e

[we addedr ! to get the normalizatioi5.6b)]. This is the

Wigner function[8]: It accurately portrays the phase-space

localization of W (x), as evidenced by the “marginals”

f dp Wa,p)=|¥(q)|? qu Wq,p)=|¥(p)|% (5.7

The phaseb is the area of the parallelogram defined by the
vectors (1—u,,) and (U;—U,). So the interference term in
(5.1, localized about the midpointqg,,p,), oscillates in
the direction perpendicular to the lina,(—u,) with a wave-
length 2rr|u; —u,| ! (Fig. 5 [22].

The Wigner function of a state operafotis defined as an
obvious extension of5.6); We write it as

Wiap)=(2m * [ ds e (a+islpla-39).
(5.12
More generally, theNeyl symbobf an operatoA, denoted
[Alw(q,p) or A,(g,p), is defined a$8]

[A]W<q,p>=f ds e g+ 1s|Alg—1s). (5.13

It is (27) times the “Wigner function” of the operatoA.
Reciprocally, a Wigner function is the Weyl symbol of a state
operatorp, normalized to Typ}. An example of Weyl sym-

However, inner interference structures superpose on thgOI 1S

“true” phase-space features oF (x), as the following ex-
ample will illustrate.

Let first W(x)=(x|qp)°°" be a coherent stat8.3) cen-
tered on @,p): Then

W (x)= <x|q p>coh: 77—1/46—(1/2)iqpeipxe—(1/2)(x—q)2, (5.9

WYq' p)=n"le" @907 (59

Let now ¥ (x) be a superposition of two coherent states:

W12 =(X[Q1p2)* M (x|a2p) " (5.10
Denotingu=(q,p) andu/Au’=qgp’—pq’, we have
W15(q,p)=Wi"tg,p)+W5™(q,p)
+ Wi, p)cog @+ 3us/\ug],
(5.113
szg- pm:@, (5.11h
®=(u—uy,)\(u;—Uu,). (5.110

[1d1p1)°°d2p2l (. p)

=26 (A= am*~ (P~ P i P o(1/2)i(d1p2~ P107)

(5.19

[®,9m,Pm as in(5.11)]. The real part 0f5.14) is just the
interference term irg5.11).
One easily shows the following classical-like resiiB%

Tr{Aé}=(2w>—1f dq dp Ay(q,p)Bu(d,p),
(5.15

Tr{A}=(2w)’1f dqg dp Ay(d,p), (5.1

which we shall use repeatedly. It follows frofh.15 that

f dqg dp Wi(q,p)Wa(q,p)=(27) 1Tr{p1p,} =0,
(5.17

that is, the overlap of two Wigner functions is always posi-
tive. An example is the windowed spectru4), which is
equal to the convolution diVy(q,p) with the Wigner func-
tion W,,(q,p) of h(x):
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2
(2m)~*

f dx € "P*h(gq—x)¥(x)

(a)

=qu’dp’ Wy(g—q',p—p")Wip(q’,p")=0. (5.18

This may contain interference structures, but superimposed
on a positive background, for a net non-negative result. This
means that the smearing Wfy(q,p) with W,,(q,p) (or with
any other Wigner functioneither essentially wipes out inter-
ference structures, or, if only partially, also causes the “true”
(positive features to spread out into the interference regions,
to produce a net non-negative result.

As another example db.17), we have

P | (a-a9")* (p—p’)?
qudp W(q.p)ﬁexp[— Z 2

=0 (ab=1), (5.19

since any Gaussian of areal is the Wigner function of a
thermal oscillator statg8al. A limiting case of(5.19 is the
integral of W(q,p) over an infinite straight linéan infinitely
flattened elliptic Gaussiansuch as the margingsee(5.7)]

FIG. 6. The “phase distribution” of a quantum state may be

expressed a®(¢)=/dq dpl’(d,p;¢)W(a,p), whereW(q,p) is
the Wigner function of the state, and the function

f dq W(q’p,):f dg dp 8(p—p’)W(q,p) I'(q,p;9)=TI'(r,0;90)— 8(0— ¢) tends to a zerangular width as
r—o, but not necessarily to a zero “true” width. Ina),
=<p’|i)|p’)>0 (5.20 I'(q,p;¢)=46,(q,p) is a sharp radius at atl, in (b), the radius has

a finite true width at allr [for instance, the convolution of
8,(d,p) with w’le’qz’pz]; in (c), the true width is finite near the

Still another example is AN
origin and tends to zero as—.

xdr[W(r,(P)'f'W(r,gD-l- m)]={(p’'=0 e_i<P':|Aei(p|:| p’'=0 | |
fo < | ver > Q(q,p)=7r’1f dq'dp’ W(g',p’)e (@)%~ (p=p"?
(5.233

_ coh, ~ coh
obtained by replacing the “horizontal” lineS(p—p’) in ="Xaplplap)™ (5239
(5.20 by the slanted ling4.3); this amounts to replacing If p=|¥)(¥|, thenQ(q,p)=|°Yqp|¥)|? is the windowed
|p’) by the “rotated momentum states'*"|p’ =0), whose spectrum(5.4), with h(x):W—lme—(l/Z)xz.
Weyl symbol is indeed4.3). (By the Weyl symbol of a vec-

=0 (5.21

tor |\I’>, we understand the Weyl Symb0| of the Operator VI. QUANTUM PHASE DISTRIBUTIONS
[W)(Wl.)
Because the marginals &%(g,p) are preciselxq|i\)|q> Let us now return tgphasedistributions, and apply the

and(p|p|p), the Wigner-Weyl phase-space representation iglassical definitions of Sec. IV to quantupmase-spacelis-
as sharp as possible. Coarser phase-space representationgfigfitions. Since the Wigner functiow(q,p)=W(r, 6) is as
p may be obtained by smearitWy(q,p) with any functions sharp as possible, we try, as a phase distribution,
G(q,p): »
PW(<p)=f dg dp 5¢(q,p)W(q,p)=fo rdr W(r,e).
fe(q,p)=f dq'dp’ W(a—q',p—p")G(d’,p’), 6.1)

Compare this with5.21): We note two differencesi) The
f dq dp Gq,p)=1. (5.22 integration measure igdr, instead ofdr; (i) P,,(¢) is the
integral of W(qg,p) over half a straight line[Fig. 6@)]. If
W(q,p) is only localized within a sector of angular width
- 2 less thanm, then the half line may be extended to a full line
(q|p|q>_ and_(p|p|p>. 12 o? o without altering the value of the integral, so that one expects
Putting, in (5.22, G(q,p)=m "€ 1 2—p , which is the  p_(4)=0, essentiallynot strictly becausedr #dr). But if
Wigner function ofpo(x) =7 e~ (¥2*" the ground state W(r,6) has an interference structure covering the origin,
of H=3(G2+ p?), we get the(non-negative Q function thenbecause it starts suddenly a0, the integral(6.1) is

Correspondingly, the marginals 6§(q,p) are smearings of
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sensitive to the oscillations di(r,#) there, and may be abrupt beginning at the originto reduce sensitivity to pos-
negative[23]. So, not being strictly non-negativ®,,(¢) sible oscillations ofV(q,p); the smearing o6,(q,p) away

cannot always do as a phagmbability distribution. from the origin[as in (6.4)] seems unnecessary, and just
As pointed out in Refs[19], the “quadrature based” spoils the finesse d?,,(¢) there. So one might hope that a
phase distribution phase distribution finer thaPq(¢), yet non-negative, would

be a compromise betwedf.1) and (6.3, of the form

Pquat{@):fwdr W(r, o) (6.2 B 2
0 Pp(cp)ZL r drf0 do I'(r,0;0)W(r,6) (6.6

is positive if W(r, 6) is angularly localized within ar sector
[in which case(6.2) is equal to(5.21)], and, suitably renor- for some functionl’(r, 8;¢) tending smoothly to zero over
malized, closely resemble3,(¢) if W(r,#) is sufficiently  distances of order 1 all around the origin, except in the di-
localized radially[see after Eq(4.6)]. The distribution(6.2)  rection #~¢ where it gradually tends to thsharp radius
has the advantage of being easily measurable—just measus¢d— ¢) asr —o [Fig. 6(c)]. This is the overall picture that
the expectatior{5.20)—but is of restricted applicability. will emerge in this paper: We will find thgbure quantum

To cure the nonpositivity oP,,(¢), one may use, instead “phase states,” such as the SG stat@s6), have Wigner
of W(q,p), a phase-space distribution which is strictly non-functions of this general form; they are the closest possible
negative. Such may be obtained by smealivi@,p) with a  quantum analogs of the classical “phase eigenstates”
Gaussian of arez 1, as in(5.19. To preserve as much as §,(q,p).
possible the sharpness ¥f(q,p), we choose a Gaussian of

minimum area= 1, for instancer~te~%~P°. There results VIl. ORDERING RULES AND QUANTIZATION
the Q function (5.23. So consider OF CLASSICAL OBSERVABLES

o A third line of attack on the “quantum phasébesides
Pq(w):f dqg dpéq,(q,p)Q(q,p):f rdrQ(r,e) using number shift operators and phase-space distriblitions
0 consists in quantizing the classical phase tgp/q) by

(6.39 means ofordering rulesfor the noncommuting operatots
andp. We recall in this section some basic facts concerning
=j dqg dpI'o(d,p;¢)W(Q,p) (6.3  ordering rules(complementary details are given in Appen-
dixes A and B.
S A Given a(real) classical observablg(q,p), the “natural”
=Trilo(e)p}. (6.39 way to construct a quantum observalde reducing to

To go from (6.33 to (6.3b), we transferred the smearing 9(q.p) in the classical limiti —0, §—q, p—p, is as[8]

(5.233 to 5,(q,p), defining R
@:g(q,ﬁ)n:f dg dp g4q,p)Aa(d,p), (7.9
FQ(q,p;cp)=w*1f dg'dp’ 6,(q’,p’)e (@4 ~(=p"? L

6.4 where() specifies arordering rulefor g andp. The integral

is over the whole phase plane, aAd(q,p) are () ordered

localized along a smeared radius of widtHl[ Fig. 6b)]. In 6 operators

(6.30, we expresse®q(¢) in terms of the POMprobabil- ~ R . N

ity operator measuje Aq(q,p)=[8(q—q)d(p—p)la= quAQqu ) (7.29
A * Aq=[8(0)8(P)]q, Dgp=e'Pa~aP, 7.2b
FQ((P): JO r drlrg0>00h<r(p| (65) ) Q [ (Q) (p)]ﬂ. qp ( )

where D, are phase-space displacement operators. An or-

showing that Po(¢) is directly measurable[unlike dering rule() is completely specified by its “fiducial” op-

P.(¢)]. An actual quantum phase measurement, performeceratorAg . The “& property” [see(A.11)]

by Noh, Fougees, and Mande{NFM) [24], was shown by

Freyber’ge_r and Schlei(_:[iZS] to yield Po(¢). More basi- f dq dpﬁﬂ(q,p)=(2w)Tr{AQ}=i 7.3

cally, D'Ariano and Pari§26] show that NFM measure the

POM (6.5). ) ) _ R

Despite its practical advantages, the phase distributioff the only essential property required Af,, so thatany

Po() seems coarse, being the “overlap” (q,p) with operatorA, trace normalized to (2) ! can be used to de-

the fat radiusl"o(q,p; ¢)[Fig. 6b)]. One senses that in the fine a formal ordering ruld) via (7.1) and(7.2) [27,28.

case, for instance, of a squeezed state, for which One usually choosef\, Hermitian, to assure that

W(q,p)=0, or just of any state for whictP,,(¢)=0, the g(q,p)q also is. Also, although7.1) obviously goes into

phase distributionP,(¢) is much more precise than g(q,p) asf—0, one must still seledisincet: is finite after

Pole). all) the ordering rule such that one gets the proper results in

One feels, in fact, that to assure positivity, it would sufficethe high excitation correspondence limit. This still leaves, in
to smear the sharp radius,(q,p) in (6.1 only near its general, many possibilities, so that there are in fact many
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different operatorg)(q,p) corresponding tg(q,p). Other
(more or less subjectiyeriteria must be invoked to make a
“best” choice.

If g(g,p)=9(r,0)=4g(0) is independent of, then

2 ~
9(9,p) o= . dé g(0)I'a(0), (7.43

where we defind) ordered angularé operators

Fole)=[ 8(tan X(PI§) — ¢)Jo= f:r dr Aa(r.e).
(7.4b

The “canonical” ordering is, for a number of reasons,

Weyl ordering[8,28]. The Weyl ordered operatorj,, is the
parity operatof29]:

Rum[0@a@)lu=n M1, Ti= [ da-ayal. @9

Weyl ordering and Weyl symboib.13 are dual notions, in
the sense that

Au(a,p)=27 Tr{A,(q,p)A}, (7.69
A=[Aw(a,|a>]w=f dg dp A/(a,p)Ay(a,p)-
(7.6b

One reason Weyl ordering is basic is th&;, is the
“sharpest” possible, since

(alAula)=( (p|Aulp)=(2m) ~15(p).

(7.7

Any ordering rule€), for which Aq=[8(3)8(P)]q or its
Weyl symbol

2m)~ta(q),

Ga(a,p)=[Ag]u(a,p), qu dp Gy(g,p)=1
(7.8

arewell behavedis a “coarse graining” of Wey!l ordering in
the sense that

A=g(8,P)q

@Aw(q,p)=f dq'dp’g(q’,p")Ga(d—q’,p—p’),
(7.9

that is, the Weyl symbol ofi(Q,p) is the smearingconvo-
lution) of g(q,p) with the (well behaved function
Ga(q,p)[equal tos(q) 8(p) if Q=w]. Taking the Fourier
transform of(7.99, we get

Go(k s)—AW(k’S)
ST Bks)

where we denote, for any functidifq,p),

G(0,0=1, (7.9

ANTOINE ROYER

?(k,s)zf dq dp é<a-isPf(q,p). (7.10

It follows that for A to be expressible a&=g(q,p)q, for
some(}, it suffices that

f dq dp Av(q,p)=f dgdpgq,p). (7.1

The resultingGq(q,p) [given by (7.9H] may be more or
less singular, depending gviandg(q,p). An important ap-

plication of (7.1, for us, is to the case that
A,(r,0)—g(6) gets independent af asr —oo;
[Alu(r,0)—9(8) (r—) (7.123
implies
A=g(tam *(p/§))q , (7.12b

for some(), sincee™ °'A,,(r,6) ande *"g(#) have identical
integrals over phase space, @s»0. Reciprocally,(7.12b
satisfies(7.12a if Gg(q,p) is localized about the origin:
Indeed, by(7.9), the Weyl symbol 0{7.12h is the smearing
of g(6) with Go(qg,p), and a “local” smearing does not
affect angular asymptotics, because tegular width of
Go(a—q’,p—p’) vanishes as’=(q'?+p’?) 2o

Covariant orderingslf A, satisfies the equivalent condi-
tions

[ﬁ,&njzo@i[ﬁ,ﬁﬂ(r,e)]z%Ag(r,a) (7.133

SAg(r,0)=¢ Hﬁ'ﬁﬂ(r ,O)e‘”’ﬁ‘ (7.13h

then we say that the ordering ru is covariantfor H.

that caseAQ(r 0) is generated fronAQ(r 0) by e oH Also
Gq(r,0)= [AQ]W(r ¢) is independent ofy, and the Weyl
symbol of AQ(r 0) is just that ofAQ(r 0) rotated by an
angleé.

An important family of covariant orderings was intro-
duced by Cabhill and Glaubg¢B0]: It is parameterized by a
continuous real numbes, with s=—1, s=0, ands=1
yielding normal, Weyl, and antinormal orderingsote that
our s is equal to minus the of Cahill-Glaube). The Weyl

symbol ofA,=[ 5(§) 8(p) ] for s=0 is the circular Gaussian
. e (@*+pA)s
Gs(a,p) =[As]w(a,p)= s (s=0)

(7.19

The operatorsf&S are thermal oscillator states fse1, and
that multiplied by the parity operator for9s<1. At s=1
(antinormal ordering the “temperature”—0, and one gets

As—1(q,p)=(2m) " Yap)*Xap|, [ap)®"=Dg,l0),
(7.19

where|0) is the ground state dfi, and|qp)c" are coherent
states. While many ordering rules, for arbitraky,, seem
rather artificial, Cahill-Glauber orderings are “natural,” as
explained in Appendix B.
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() phase-space distribution&n ordering rule) naturally
associates with any quantum state phase-space distribu-
tion

fo(9,p) =Tr{Aq(q,p)p}=TH{[ 8(8—q) 8(p— p)]ap},
(7.163

| dadp w@p-Tip e
FIG. 7. The shaded ellipse represents an amplitude squeezed
This can be expressed in the fot@22), if we letG(q,p) be  state centered ag(,p’)=(r',6").
the Weyl symbol ofA, .
Quantization of the classical phasehe natural quantiza- whereW,, ,(r, 6) is the Wigner function op,, . The most
tions of the classical phase tal{p/q) are() ordered phase sharply localized quantum states ampieezed statesuch as

operators [see(B9)]
$o=[tan (p/d)]q WES (q.p) = le M@0 ey (g3
:f dq dptan Y(p/q)[8(G—q)8(p—p)]q . wherey is a real numbefthe squeeze parameteThis may
be represented by an ellipse in the Wigner phase plane, with

(7.17 semiaxes parallel to thg and p axes. One may rotate the
. state such than its major axis is perpendicular to the radius

The Weyl ordered phase operatey, was first introduced, r’ (Fig. 7). One then has, for’ sufficiently large that the
and studied extensively with mathematical rigour, by Smith,angle subtended by the ellipse is small,
Dubin, and Henning$9]. We shall quote some of their re-
sults later on. More general ordering rules were considered Wff”(,,(r,6)~wfle*”'zwf"')2*(’*”)2’7. (8.9
independently i10]. The phase operators we shall define
will all be expressible a§7.17), for some(}. Inserting(8.4) into (8.2), we obtain the requirement

This completes our overview of some of the existing ap-
proaches to the quantum phase. It allowed us to set down w2 |’ Na—(r=r")2y / /
number of results that we shall need, and announce somzww) Jo rdrAu(r.6e A0 ().
general features to come out of our own analysis, which we (8.5

now begin.
This must hold for any value of, in particulary—0 [the

VIIl. PHASE CORRESPONDENCE angular width of(8.4) then increases, but still gets sharp as
) A r'—o]; asy—0, (8.5 becomes

A state operatopq,r = p; Will be said to belocalized )
about @’,p’)=(r’,0") ifits position and momentum expec- [Alu(r,0)—A(6) (r—o). (8.9
tations,(q|p,+¢/|q) and(p|p,:¢|p), are localized within fi-
nite intervals Aq and Ap about q’=r'cos¥ and Thus, (8.1) implies (8.6). Reciprocally,(8.6) implies (8.1)
p’=r'sing’, respectively. It may be represented by a boxand (8.2, since it implies A,(r,0)W,/,(r,6)
centered atd’,p’) in the (q,p) phase plan¢Fig. 1). Asthe ~ —A(0" )W, (r,60) [since W,,4(r,0) is localized, and
amplituder’ — o, the angle subtended by the box tends tofr dr d6W(r,#)=1. We thus conclude thd8.1) and (8.6)
zero, and the phase becomes sharply defined’aSo the are equivalent “phase correspondence” principles.
state becomes “classical” insofar as phase is concerned. We used, above, the fact that8.1) implies
Suchlarge amplitude localized stateare theonly quantum  (r 6|A|r 8)—A(#6) for any squeezed stafed). More gener-
states to which a classical phase can be assigned unambically, (8.1)—(8.6) imply that for any two squeezed states
ously. Accordingly, an operatak will be said tocorrespond ~ [r161) and|r,6,):
to the(classical phase functiorA(6) if its expectation with

any such “classical phase” state A49’'), that is, if <r101|A|r202>=(277)‘1Jxr er—sza AT, 0)
~ 0 0
Tr{Ap, o} —A(8") asr'—o (forany localizedpgp).
(8.3) X[ [r162)(r262| |u(r,6)
We will now express this condition in terms of Weyl sym- ®.73
bols.
A(01)(r164|r,6 r{—o).
In view of (5.15, we may rewrite(8.1) as —AO(ra01r202)  (ra—2e) (8.7b
0 27 . .
' This is becausd (1, 8)=[|r10:){r,6,|1(r,0), localized
dfdGA JOW, 1 (1r,0)—A(O ause o 10141 202] Jw
fo rar 0 ol ) Wrr (1, 0) (6) about the midpointi,= (r -, 6,,) between the two stat¢see

(5.14)], oscillates with a wavelengthu;—u,| 1. The inte-
(r'—,), (8.2  gral(8.79 is thus sizable only ifu,—u,| is not large, so that
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the points ¢,,6,) and (,,6,), together with the support of
I 15(r, 6), will subtend a vanishing angle ag—: so we can
approximateA,,(r, ) ~A(6,), whence(8.7b.

In general the Weyl symbol of a product of operators is
not equal to the product of their Weyl symbols. However, if

Ay(r,6) andB,(r, 6) getindependent af asr — o, then we
have:

An(r,0)—A(0)

B.(r 6)B(g)| = [ABIu(T.6)~A(0)B(6) (r—2)

(8.8a

whence, also,

[Alu(r,0)—A(0)=[f(A)](r,0)—F(A(0) (r—c=).
(8.8b

To show(8.8), we use the completeness of squeezed states,

and(8.7): We get, at large,

(r 6| AB|r )

1 o0 2m ~ ~
=—f r’dr’f do’{r6|Alr’ 6" r'¢’|B|r 6)
2 0 0

1 o 2m
~o A(6)B(0)f0 r’dr’fO do’(ro|r' o yr'o’|r o)
=A(0)B(0). (8.9

Since this holds for any squeezed state, there foll(3\8).

The latter can also be shown in another, less intuitively clear

manner, as follows. .
The Weyl symbol of a product of operatoisB, is given
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realizing the Dirac corresponden¢24). In particular, since
{H,.}pg=3/36, by (2.2), we have, for any operatgk,

—i[ﬁ,A]W(r,a):a%AW(r,e), (8.123

[e A ] (r,0)=Au(r,6+1),  (8.12H

that is,e "™ causes a Weyl symbol to rotate clockwise, i.e.,
to evolve classically

IX. PHASE 6 OPERATORS

An operatorf(<p) will be called aphases operatorif it
correspondso the phases function &, .(6— ¢)[defined in
(2.9], that is, if it satisfies the equivalent conditions

THT()pr o} — S22(0— @) (9.13
[T(@)Jw(r,0)— 62,(0—¢) (9.1b
for any localized stat@,,. Obviously, one may concoct any

functionI'(r, 6; ¢) — 6,,.(0— ¢) asr—x, and build a phase
6 operator with Weyl symbol'(r, 6;¢) as

(r—s)

~ ® 2w ~
F(@):j rdrf do I'(r,0;0)A,(r,0). (9.2
0 0
Putting in particulad’(r, 8; ¢) = 8,.(0— ¢), we get

fw(<p>=f0°or dr Au(r,),  [Tu(@)Iu(r.0)=82,(0—¢)
9.3
whose Weyl symbol igby definition &,,.(0— ¢) at all val-

in terms of the Weyl symbols of each operator by the Moyalues ofr. It is a special example df} ordered phasé op-

formula[31]

[Aé]wm,p)=eiA”'ﬁ’)AW(q',p'>BW(q,p>|q'—q~p’(ép

103
PPN P
( [} )_aq ap/ (9p aq/
s — ol (92+1 7
=sin( N2 grar T 9690
. oo 1 5 1 4
cod 7 arae T aear |’

(8.10b

wherer =(g%+ p?) Y2 Note thatA(d,d’) reduces powers of
r by two wunits. Thus, if Ay(r,6)—A(6) and
Bu(r,0)—B(6) as r—oo, then [AB],(r,0)—A(6)B(0)
+r~%F(r,6), whereF(r,6) is a series in inverse powers of
r?, whence(8.9).

If A or B in (8.109 is quadratic ing and p, then
A(9,0")"A,(9,p)B,(9'p’)=0 for n=3, and

—i[A,B]w(a,p)={A,,Bu}re(q,p) (A or B quadratiy
8.11)

erator[see(7.4b]

oo

fn(¢)=[5(tan71(ﬁ/a)—@)]Q=f rdrdg(r,e). (9.9

0

This satisfies (9.1) provided the Weyl symbol
Ga(q,p)=[Aq]lw(d,p) is localized about the origifsee af-
ter EQ.(7.12]: By (7.93 [with g(r,0) = 5(6— ¢)], the Weyl
symbol [Tq(¢)]w(r,6) is then a “local” smearing of the
sharp radiusS(6— ¢), which thus acquires finite width [as
in Fig. 6(b)], but still gets infinitely sharp iangularwidth as
r—oo. In view of (7.12), anyI'(¢) can, in fact, be expressed
as

[(@)=Tgy(¢) (9.5

for someordering ruleQ(¢) (which may depend orp).
Putting ¢=0, and noting that the Fourier transform of
5(0)=qd8(p)O(q) is &(k,s)=—(k+i0)"2, we see that
Go(0)(a,p), equal to the Fourier inverse ofk’T'(k,s:;0), is
at worst a tempered distributidi32]; and likewise for any
value of . A

We say thafl'(¢) is ¢ normalizedif

2 ~ ~
fo del'(p)=1. (9.6
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It is covariantif it satisfies the following equivalent condi- where we definedi™ (¢) such that TH* (¢)l—1 as

tions:
A J A . e o
I[H,F(cp)]=£F(<p), I(@)=e"*"Te™'*" (9.79

[T(@)]u(r,0)=[T]u(r,0— o),

where fEf(O), and (9.7 follows from (9.79 by (8.12.
Thus, a covarianf'(¢) is generated fronf’(0) by et and
its Weyl symbol is just that of’(0) rotated by¢e. Using

+

e*?2mH=g*7 (since the eigenvalues dfi are n+3), we
deduce from(9.73 that

(9.7b

e M (p)e™ =T(p—t mod2m)=I(e—1t). (9.9

In view of (9.1b and (8.12, any f(cp) is asymptotically
covariant in the sense that

[e™ ™ l(@)e™ ] (r,0)—8(6+1—g) (r—2).
9.9

The () ordereds operator(9.4) is alwayse normalized,
since [r dr de Ag(r,¢)=1 [see(7.3)]; it is covariant if
Aq is covariant(7.13. So the Cahill-Glaubers-ordered
phases operators

P @) =[ S(tanpId) - ¢)]o= f:r dr Ay(r,e)
(9.10

are ¢ normalized and covariant. The Weyl symbol of

I's(¢) is the convolution of the sharp radiudg 60— ¢) with
the Gaussiari7.14) of width s, hence it is a radius of width
~s, similar to that shown in Fig. ®). Examples of nonco-
variantI'(¢) are

£, (e)=Totanpli) =)l = [ 1 dr Buyir.o)

(9.1)

where 6,y) are “squeezeds ordering,” defined in(B19),
andj , are squeezed thermal states.

X. PHASE STATES AND PHASE POM’S

If f((p)>O is non-negative, we call it phase stateThis

is in general un-normalizable, similarly to position eigenkets

l[a’}q’|=6(q—q’) [whose Weyl symbols aré(q—q’)].

£—0 (see Appendix hl

If I'(¢) has the defining properties of a PQgrobability
operator measuy€g 26], namely, it is non-negativeand ¢
normalized

- 2m ~ ~
I'(¢)=0, JO de I'(e)=1, (10.2

then we call it aphase POMFor instancefg(cp) in (9.9 is
always ¢ normalized, by (7.3, and is non-negative if
Aqn=0. Thus, the Cahill-Glaubdr(¢), for s=1, are phase
POM's. A

A phase statd'(p) of the form

[(¢)=|e)¢l (10.3

is called projective or pure. Again, a pure phase state)

should be viewed as the limit of a normalizakleproximate
phase state. Withh*(¢) defined as in(10.1), we have(see
Appendix B

(¢)=le)*(gl, |¢>8=$;>8,|m, (10.43
<q|§0>8’:(277)1/28e7(l/2)8q/003p<q|QD>. (1O4D

An important covariant and pure phase POM is the
SG-POM

T'sd¢)=|e)s( ¢, |<P>se:(277)‘1’220 e"?|ny),
(10.53

where |¢)sg are the Susskind-Glogower statt&6). That
I'se( @) indeed satisfief9.1b is shown by Herzog, Paul, and
Richter [33] [see also(E12 and (E13]. They show that
asymptotically

Jl(4r2( 06— ¢))

[f‘SG(QD)]W(r10)~2r2[ 4r2(0_ ¢) }*)5(6_ (P)

(r—), (10.5

whereJ; is a Bessel function. Since the curly bracket is
a function ofr?(6—¢), the Weyl symbol(10.50 has an

angular width Ag~r~2, whence we get a true width

-1 “ H n 2
Even though such “states” can never be realized physicalffA¢~1 = Its “height” ~r<. Thus, the Weyl symbol of

(which would require infinite energigsbut can only be ap-

I's(¢) in fact tends to aharpradius of zero true widtknot

proached arbitrarily, it is customary to call them “states” just zeroangularwidth) asr—c, hence is of the form that

anyway. They may be viewed as the~0 limit of normal-

ized approximatephase state§8(¢), defined by[we here
invoke (5.16)]

' (o)

= 7 T f‘s ) :1,
Ty e

()= (10.1a

[T () 1u(r,0)=2me%e ' [[(¢)]y(r,0), (10.1H

we had surmised i6.6) and Fig. &c).

Xl. PHASE OPERATORS

Since definite phases can be assigned onlgrpe ampli-
tude localized statesve demand of @Hermitian phase op-
erator ¢ only that the phase distribution

P(e)=TH&(¢—¢)p} (11.1)
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attribute the correct sharp phagdo any statep, , localized

about ¢,6), asr—«: Hence, we must have, in view of

(8.1)—(8.6),
TH{S8($= @)} — S24( 0~ 6)
[6(d— @) Ju(r,0)— 62,(0— o),

(11.23

(r—o
(11.2h

that is, 5((})—<p) must be a phasé operator, as defined in
(9.9. It follows from (11.2, and the trivial identify

d=[5"p de 8(p—¢) that

~ 2
[(f)]w(r,ﬂ)ﬂfo ¢ do 6,,(0—¢)=0 mod2m (r—).
(11.3
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where we used the fact that as-0, the integral is domi-
nated by large, at whichf(¢),(r,0)~f(6), by (11.3 and
(8.8, and I'*(¢)y(r,0)—2me%e " 5(6— ¢)[see (10.1)].
Similar results for the specific case B§g(¢) and ¢,, were
obtained by Dubin, Hennings, and Smj®(c)]. R

The true eigenstatggigen POM, strictly speakingf ¢
are the pure phase states

S(p—e)=le)Xel, Jle)=0|e) (119

No phase eigenstaté¢g), for any phase operator, have been
explicitly calculated yet. Only partial results concerning the
spectrum of the Weyl ordereg,, have been obtained, by
Dubin, Hennings, and SAmithb].

Any phaseé operatorI’(¢) induces a phase operator

Thus, the Weyl symbol of a phase operator tends to the

single-valuedclassical phase

$ha= ¢a (r,0)=6 mod2m (11.4

asr—o, that is, fﬁ correspondso ¢(r,0). Reciprocally,
(11.3 implies (11.2 by (8.8): More precisely, we expect
from (8.8) and(11.3) that[ 5(¢— @) Jw(r, 6) tends to a sharp
radius of zerotrue width [as in the case of’,(¢) and
['se(¢)], not just zeroangular width [as in the case of
I's(¢),s>0].

One may concoct any functiow,(r,8)— 68 mod27 as
r—oo, and build the phase operator

~ o0 27 ~
¢=f r drf 0 dO ¢, (r,0)A,(r,0). (11.5
0 0

In view of (7.12), ;S: ;SQ for someordering ruleQ), where
we define the() ordered phase operator

bo=[tan X(p/d)]0= fwr drfzwe do Ag(r,6). (11.6
0 0

Since ¢ (q,p)_has discontinuities in both andp, its Fou-
rier transformg(k,s) vanishes slowly at infinitysee, e.g.,
[32]), so thatGq(q,p) is, at worst, a tempered distribution.
Reciprocally, ¢ satisfies(11.3 if Go(q,p) is localized
about the origin[by (7.93, the sharp jump ofp(r,68) at
0=2m gets smoothed over the width &(q,p), hence
over an asymptotically vanishirangular width].

~ 27 ~
¢r:fo ¢ de I'(p). (11.10

Reciprocally,any phase operator can be expressed in the
form (11.10, trivially as

~ 2 “ 2
¢=f ¢ de 5(<b—so)=j dele)e(e| (11.1D
0 0
or, in view of (11.6) and(9.4), as

PN 2w -
b= o= fo ¢ do I'g(@). (11.12

In general,f(a,f))ﬂg(d,f))gsﬁ[f(f],ﬁ)g(é],ﬁ)]ﬂ, SO that
S(po—@)=8(tan {(p/9)]o—¢)  (11.132
#o(@)=[8tan 1(p/§) — ¢)]q .

We note that

(11.138

2m -~ -~
. de f(¢)8(po—¢)=1(¢pq)="F({tan” *(p/A)]n),
(11.14a

27 N
fo do (@) Tale)=ftam {(p/d)a. (11.14

Any phase stat&(¢) is an approximate eigenstate of any These two integrals are equal if and onlyf{fe)=a+be.

phase operatog, in the sense that
(H(P)r(p=Lim,_o THH(HT*(¢)}=F(g) (11.7

so that, in particular(&)p(q,):(p, and(((’}\s_<(’2)>)2>r(¢):0.
Equation(11.7) follows from

Tr{f($)[%()}

1 © 2w R R
o JO r dffo do[f(&)Ju(r, O[T *(¢)]u(r,6)

—>82J:r dr Ozwda f(0)e 2" 8(0—p)=Ff(¢), (11.8

For instance/§"¢ de 8(¢g—¢)=(11.12).
A phase POM satisfying, liké(¢— ¢)=|¢){¢|,

[(e)l(¢")=5(¢— ") (¢),

will be called pure orthogonal[to distinguish this kind of
orthogonality from another, trace orthogonality, to be intro-
duced in Sec. XV]. We note that if¢r=[3"¢ do T'(¢),
then(11.15a implies

(11.153

ol (e)=0l(¢), T(¢)pr=ol(p), (11.15b

whence we get



T(¢)=8(¢r—e)=|e)r{¢|. (11.159

It follows that any pure-orthogonal phase PCfN/tp) is pure,

is of the form 3(¢—¢), and is the eigenPOM of a phase tially supposed impossible valugH, ¢]=

operator, namelypr .

—i[H,$lu(r,0)=(130)[ $1u(r,0) —1—278,,(6)

[e7 ™ b€ ™1, (r,0)=[ $1u(r,0+1)— 6+t mod2m

in correspondence with the classical res(@t8) for the

single-valuedphase. In the special case thdtp) is ¢ nor-
malized and covarianitsee(9.6) and(9.7)], we get

iH,br]= f ¢ de(al0e)T(¢), (12.23

Whereqbr f @ do f(cp). Integrating(12.23 by parts, us-
ing f Tde F((p)=l, we obtain
—i[H,¢r]=1-27L, I'=I(0)=T(27) (12.2H

as we had anticipated if2.10. Also, by integrating the
equation

Eefitﬁa’eitﬁ:_Iefitﬁ[lil,(},]ei“:':i—ZWf(t)
(12.3a
we find that[34]
I t .
g itH ¢eltH: ¢+t—27TJ' dt'T'(t") (12.3h
0

whose Weyl symbol gives us bac¢k2.1h in the form
[e " de™],(r.6)

~ t ~
=[¢]W<r,a>+t—2wfodt’[r<t'>]w<r,0)

t
—0 m0d2’7T+t—2’7Tf dt’ 8,,.(t" — 6)
0

=0+t, mod2s. (12.9

We likewise gefcompare(2.6)]

MO =g ye M= +)\—27rfkd)\’e”";’fe‘”"3’
0
(12.53

whose Weyl symbol tends, as—o, to the classical result
[see(A7)]

e MedreH=H+\— 27\ 5,.(6). (12.5h
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Xll. COMMUTATION RELATIONS

Let us now consider the commutat[d%l ;z)], whose ini-
, caused some
confusion: By(8.12 and(11.3), we have

(12.13
(r—e)
(12.19

It follows from (12.3 that any pure-orthogonal phase
POM, necessarily of the fornd(¢—¢), by (11.15, can
never be covariant, since

e-itH 5((},_90)@“:': 5( (A[)—go+t—27TJtdt’l:(t’)>
0

#8(p—p+1). (12.6

This is effectively forbidden by the no-go identitg.5). Of
coursed(d— @) is, like any other phasé operator, asymp-
totically covariant in the seng®.9) [which here also follows
directly from (12.19 and (8.8]. Also, the Weyl symbol of
(12.9 is just the Weyl symbol of5(¢—¢) rotated by an
anglet, as implied by(8.12. Thus,e™'" 8(d—¢)ett and
8(¢dp— o+1t) are two different phase states, but agqual
phasep—t.

XIll. POSITION REPRESENTATIONS

The Weyl ordered phasé operatorf“w(go), whose Weyl
symbol is 6(6— ¢) by definition, has position matrix ele-
ments[see Appendix D, and definitiof#.2)]

T — a(1/2)i(q"%2~g?)tanp ‘q+q | 9+q’
<q |FW((P)|Q> € COSz(p‘ 2 | cosp
(13.9

In the case of a general phaB@peratorf‘(cp), whose Weyl
symbol[T'(¢) ] (r,0)— (60— ¢) only asr—oo, we have

(13.2

The result(13.1) was obtained by Hennings, Smith, and
Dubin [9(c)]; they also calculated the matrix elements of the
Weyl phase operatop,, (see Appendix D

In the case of a pure phase sth{g) =| ¢ )(¢| we deduce
from (13.2 that

(9'|T(@)|a)—(q’'|Tu(¢)|a) as q,q’—.

| 1/2 q

(1/2|q2tan<p
05 @(—Coap) (g—®). (13.3

(alo)— 2

The “chirp” e(¥2ia%am is characteristic of localization along
the radiusf= ¢ in phase space, since it has a “local wave
number”[recall (5.3)]
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J
(p)(q)= E[%qztarkpkq tanp. (13.4
The same phase factor appeargsae Appendix €

<q|ei¢:|:|| p=0)= (27Ti)—1/2(COSP)—1/26(1/2)iq2tan<p_

(13.5

The rotated momentum staﬂé”'l'lpzoy whose Weyl sym-
bol is [recall (4.3) and (5.21)]
[e'*"p=0)]w(q,p)=5(q Sing—p cosp)

O0—)+8(0—p—m)
r

(13.9

is indeed localized along the rotatpdaxis. The extra factor
(g/cosp)? in (13.3, as against(13.5), reflects the extra
“wedge” weight r=g/cos? in [|@){¢|lw(r,0)~ (60— ¢),
as against13.6). In view of (5.3), the "> dependence im-
plies that the(true) phase-space width ¢fp) decreases like
r asr—oe,

XIV. NUMBER REPRESENTATIONS

We now consider matrix elements between eigenkets
of H=
tor A,

2a(nV [ () el 0
~ i
<n,|¢|n>_>775nn’+(l_ 5nn’)m

The asymptotic§14.3 may be taken as alternative charac-
terizations of phase operators and phase operators. The (n|F|n) (2m)~

Susskind-Glogower POM10.5 distinguishes itself by as-
suming these asymptotic forms at all valuesnofind n’,
since we have, fron(3.6a and(3.9b.

2m(n’|Tsgn)y=e" e,

<nl|:ﬁSG|n>:775nn'+(1_5nn')ﬁ- (14.9

Let us now specialize to cases whef“ecp) is, like

fSG(cp), ¢ normalized and covariarisee (9.6) and (9.7)].
The covarianc€9.7) implies

(n'[T(g)lmy=€'™""(n’|T|n). (149
Integrating this over ¢, using the ¢ normalization
J2™de T(@)=1 and (3.13, yields 276, (n’'||n)= 60,
whence we get
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R o 27 A
27-r<n’|A|n>=f0 r er'0 daf|ny{n’ |1 (r,0)[Alu(r,6).
(14.1

When  (@'—n)’<n+n’>1, the Weyl symbol
[In)(n’|]w(r,6) is an angular wave' (" ~M? effectivelylo-
calized on a ring of radiuss(n+n’)"*2 and thickness
~1, for it vanishes rapidly on the outside, and oscillates
rapidly on the inside of that ringsee Appendix F. It follows
that if A corresponds t&\(6), that is[A],(r,0)—A() as
r—oo, then[see(F6)—(F8)]

N 2 o,
27-r<n’|A|n>ef dg e ~MIA(g),
0

(n'—n)?

as
n+n’

n+n’—o, <1, (14.2

that is,(n’|A|n) tends to the i’
A(0) X

Applying (14.2 to phases operatord’(¢) and phase op-
erators¢, which correspond té(6— ¢) and 8 mod2mw, re-
spectively, we get, usin¢3.1),

—n) Fourier coefficient of

(n'—n)2 (14.3a

n+n’'—ow, ——— <1,

n+n (14.3H

~ 27 ~
L (B = [ detalPlm=n.
(14.6

where ¢F f ¢d¢f(¢). We also get from the commuta-
tion relation(12.2) [compare the no-g@2.5)]

—i(n"—n){n'|$|n)=8,n—2m(n’|T|n), (14.73
whence we deduce, in accord with4.3),
(n’ |¢F|n)— (n |F|n) n'#n. (14.7H

Note that the above results pertain to our choice of phase

“window,” namely (0,27); they get slightly modified if a
different window is chosefi35].

The matrix element¢n’|T|n) for antinormal and Weyl
orderings are
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R n'+n following from the known value ofp=0|n) [see(K21)]. In
2m(n'|I's=4/n)=(n"!n! )1/2F( +1 the next section, we will understand the differences between
(14.12 and(14.13 via a phase-space analysis based on co-
1(n'—n)? herent states.
~l=a T T (14.8 According to (14.12, a pure phase state tends to the
Susskind-Glogower statén|¢)sg at largen [a conclusion
s reached in a different way by Lerner, Huang, and Walters
> n—nyz| N * ! F(zn+p) [16]—see after Eq93.11)]. This, together with the fact that
w(n’|Tyn)=2 _— . :
n! L(in'+p) only largen contributes to large in the Weyl phase plane,
implies that a pure phase state tends, likg(¢), to a sharp
~1+1(—)n n’—n+ o (14.9 radius of zero true width, as we had already concluded after
2 n +n ' : Egs.(11.4 and(13.9. [If (n|¢)~€e'"¢ for n>n,, say, then

(n’|o)(@|n)y~e (™ ~M¢ for n,n’>n,, without the stringent
whereT'(z) are gamma functions, and the approximate val-condition (0’ —n)?<(n+n’) needed if the width stays finite
ues are fotn’ —n|<n’+n. [(14.8) is given in[264; (14.9), asr—o—see after(14.10.]
given in[9b] and[10], is for n’=n;u=1 for n odd, u= Let now ['(¢)=|¢)(¢| be a pure phase POM, so that
for n even]. The matrix elements of the Cahill- Glauber fde|e){e|=1. This implies
FS, for any value ofs, have been calculated by Tanas, Mira-

nowicz, and Gantso[36]. We calculate their asymptotic be- . (* _
haviors in Appendix G, and obtain (27) . decy (@)*Cn(@)=6nrn.  (14.14

R 1 (n'—n)? VIR i —aioH| =
2m(n’|Tdny=1-> If moreoverT'(¢) is covariant, thefig)=e'*"|p=0), hence

s 47 n'+n cn(@)=c,e"?; then (14.14 implies |c,|?=1, by (3.13.

Thus, apure covarianiphase POM is necessarily of the form
1-s| ) 1 n/_n_|_ (xn rea)
_( s ( Sprnt
(n+n'—x) (14.10 [@)=(2m) 2%, emeinin), x, -0 asn—ee,
i

[yielding (14.8 at s=1, and (14.9 at s=0]. Note that (14.19

[(1-9)/(1+85)]"" M2~ (""M)s is exponentially small that s, it is essentially the Susskind-Glogower PQM.5:

for s>0 (exponentially large fos<0), so that the first-order |+ follows that <<P lo)= s’ | @) sc* 8¢’ — @) [see
correction in @+n’)"* passes from ann(—n) to an  (3.69], showing again that a pure phase POM cannot be both
(n’—n)? dependencas soon as 0, i.e., as soon as the covariant and orthogonal, as was also concluded b6,
asymptotictrue width s of [FS]W(r 0) departs from zero. Re- and from the no-g@2.5).

calling that the WeyF =TI's_g, and the Susskind-Glogower Phasors Following Bergou and Engleff7], we may de-
I'sg, both havesharpradii asr—« [see after Eqs(10.5], fine “phasors”é by the requirement

we surmise that the asymptotic behaviors “sharp angular . _

width,” and “sharp true width,” correspond to the respective [Elu(r,0)—€e'’ (r—o). (14.16
conditions f’—n)?/(n+n’)<1, and the less stringent

- i il ;
In" —n|/(n+n")<1, for having 2r(n’|n)~1. Putting A(6)=¢€'? in (14.2 and using(3.13, we get

Pure phase stateset nowI'(¢) =|¢){¢| be a pure phase (n'—n)?
state, and expand (n'|e|ny— 68y p—1, N+n'—oo, W<l' (14.17
. e Recalling Egs(3.10, we see that the Lerner-Huang-Walter
= n){n|e)=(2m) Y2, |n)c,(¢). 14.1 ) - .
) n§=:0| Hnle)=(2m) n§=:o| enle) ( 3 (LHW) number-shift operatorg, , with \,—1 asn—oo,

are phasors. Their eigenket8.11) on the unit circle

The asymptotic$14.3 imply that[37] (B=¢€'?) satisfy(14.12, so are phase states. This is not sur-
_ prising: Indeedg and expi¢), for any phase operatap,
(n|@)—(2m) Y%"¢ as n—ow. (14.12  both correspond te'? by [(8.8)], that is they coincide in the

correspondence limit; so the eigenkets @fshould corre-
This may be compared with the corresponding result for th%pond to eigenkets df)\ [but note thatEA has additional
rotated momentum state'*"“|p 0), whose Weyl symbol eigenkets|B|<1 in (3.11), which are not phase states, hence

S8(g cosp—p sing) is a complete line: do not correspond to eigenkets of.
X In fact, in view of our assertion following E¢3.11), any
(nle'*H|p=0)=¢€'("*2¢(n|p=0) pure phase state is an eigenket of some LHW phagorl€

is thus not surprising that LHW phasors, such as the
Susskind-Glogowe(SG) phasor, Eq(3.4), have been used
to generate pure phase states.

inm

H(ZW)_llzein‘DW (n~>00) (1413
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Again, we may express
a+if) 1/2

e=[e tan‘l(pfq)]ﬂz L
q—1Ip

(14.18

Q

for some ordering rule). For instance, the Susskind-
Glogower E=[N+1) 2a=(aa" Ya=[(a/ah?],
={[(q+ip)/(q—ip)]*%} o, where the ordering rule}
may be stated as “Express everything in termsaofnd
a', then replace alla" by (aa")/a, and finally put all
(aa") to the left of alla.”

XV. COHERENT-STATE REPRESENTATIONS

We show in Appendix E that at large a pure phase state
has the coherent-state representation

coh<r 0| o) ~m" U4 126(12)ipg— (12r2(9— ¢)ze(1/2)ir2( 0— )

(r—o0).

(15.1

This is localized along the radiug~ ¢, with height~r*?,

reflecting the “wedge” weightr. One may comparél5.1)
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FIG. 8. The shaded ring in theq(p) phase plane represents
N gpln), the overlap of a pure number stat® with coherent
states®Yqp|. The small shaded circle represents a coherent state.
The fat radius in(a) represents®qp|¢), where|e) is a phase
state[of the type shown in Fig. @)]; the fat line in(b) represents

o gple'H|p=0), wheree'¢"|p=0) is a rotated momentum state.

with the corresponding result for a rotated momentum state:

coh<r 0|ei<p|:| | p=0)~m" 1/46(1/2)i<p[e—(1/2)(0— zp)ze(1/2)ir2(0— )
+ e—(1/2>r2<o— <p—77>26(1/2>ir2<.9— zp—ﬂ')]
(15.2

localized along the complete lin@~{¢ or ¢+}, with
height~1.
In view of (8.7) and (11.3, we have, for any phase op-

erator ¢,
coh<r0|gb|rr0/>coh_>0/coh<r0|r;0r>coh (r—o), (15.3

It follows from (15.1) and (15.3 that any pure phase state

|@) is an “asymptotic eigenstate” of any phase operator
in the sense that

N 6 Bl o)— ePNr 0lg) (r—»). (154

Indeed, using the completeness of coherent sfaws(7.3)
applied to(7.195], we have

“r 6] dl¢)

o0 27 A~

=(2'7T)71J rrdrrJ’ darcoh<r9|¢|rr9/>coh<rr6r|¢>
0 0

(15.5a

% 2m

~(2w)*1f r’dr’f dg’ 0 «ralr' 6"y°r" 0’| )
0 0

~ N1 6| p), (15.50

where (15.1) allowed us to approximated'(r’6’|e)
~o(r' 6’| ).

o0 27
27T<n|(p>=f rdrf dé(n|r 6)°r 6| o), (15.63
0 0
2m(n|e'*"|p=0)
o 2T S
=f rdrf dé(n|r 6)r ge'*"|p=0). (15.60
0 0
Now, at largen [see(E4)]
coh<r 0|n>%(2ﬂ_n)71/4ein 0e7(r272n)2/8n (15'7)

is an angular wavee"? localized on a ring of radius
~(2n)*2, and thickness=1. The integral§15.6 get contri-
butions only from the regions where the radi5.1) and
(15.2 intercept the rind15.7) (Fig. 8). [Note that the phases
e " and er*?~gin? cancel; this is crucial, because
e'"? oscillates on a scald 6~n~1, which is very fast(as
n—o) compared to the angular widdyr ~*~(2n) "2 of

e~ (W2r¥9-¢)* ] The differences betwedd4.12 and(14.13

are now easy to comprehend: The extra?* in (14.12
reflects the “wedge” weightr'? in (15.1), equal to
r¥2~(2n)Y* at the ring(15.7); the (1+€"™) comes from
the fact that(15.2 intercepts the ring at two placeé~ ¢

and 9~ ¢+ 7. (Thus, the 4, 0, +, 0, ... " oscillation of
(n|p=0) [or of (g=0|n)], asn varies, arises from interfer-
ence in phase space, as beautifully analyzed by Schleich and
Wheeler{18].) A Weyl phase-space analysis, done at the end
of Appendix F, also yields some insight, but not as complete
as above.

XVI. TRACE ORTHOGONALITY
OF PHASE 6 OPERATORS

Let us now understand the differences between the num-

ber representation§14.12 and (14.13: Using again the
completeness of coherent states, we have

Many phases operatorsf(<p), for instance the Calhill-
GlauberT'y(¢) and the SG-POM10.5, are not pure or-
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thogonal(11.19. Consider, however, the following integral, ment of a phase PONk'){¢’'[, on an approximate phase
wherel';(¢) and F2(<p) may be identical or different phase state|¢)®, yields an outcomep inside the intervalA with

S operators, and is some interval: probability
fAd¢,Tr{f2(¢,)fl(¢)} Pr0b[<peA}=deo’lw’Iqo)alz- (16.7
_ -1 ) 8o This is different from [f,de'(¢'|@)]?, unless
(2m) Ld‘p fr dr dé[Ta(e") Ju(r.6) (¢'ley=6(¢'— ¢). According to(16.2, the measurement

- of any phase POM',(¢") on any phase staté(¢) has the
X[T1(@)u(r,0), (16.)  outcomey with probability 1 ase— 0.

where we use@s.15. Becausg¢I'(¢) ]y (r,0)— (06— ¢), as

r—oo, one sees thdtl6.]) is infinite if the integration inter-
val A (however smajl contains ¢ [so that the radius
6(6—¢') sweeps over the radiu¥ 6— ¢)] andfinite other- In the preceding sections, we tacitly associated two differ-

Fs(s) as in(10.1), and Ifquo'rz(go )= 1 then we have namely

XVII. PHASE (QUASI)DISTRIBUTIONS
AND UNCERTAINTY RELATIONS

THTo(e ) T5(@)}— 8¢’ — @) (e—0) (162 Q(e)=Tr{I(¢)p}, P(@)=TrH{d(d—)p}, (17.D

since [,dg' THT2(¢")T5(¢)}—0 ase—0 if @A, and  where =127 do T'(¢). If T(p) is not pure orthogonal,
[57de THTH(¢")T(¢)} = TH{Ii(¢)}=1. We will call this  then 5(4— ) #T(¢), and P(¢)#Q(¢). By definition
kind of orthogonalitytrace orthogonality . (9.1), bothQ(¢) andP(¢) attribute the correct sharp phase
Let us give some examples: The simplest isl'if(¢)  to any large amplitude localized state. In the case of arbitrary
=I'5(¢)=6(¢p—¢) are pure-orthogonal phase POM’s, in states, howeveiQ(¢) may assume negative values; yet it
which case may still be useful as a “quasidistributiorffor instance the

- e . - Weyl phase distribution(6.1)]. In the case off‘g(cp)[see
T{o(¢p—@")o(d—¢)}=d(¢'—@)TH{o(d—¢)}. (163 (9.4] Q(¢) has the classical-like form

Another simple example is if“l(cp)zfz(cp)sz(cp) are . A :x:
Weyl ordered phase5 operators, whose Weyl symbols Qﬂ(go)=Tr{FQ(qo)p}=fo rdrfo(r,e) (17.2

[Cu(@)u(r,0)=8(0—¢):  Then  [[{(e)]u(r,0)
=2me®e *'5(6—=), and we get exactljusing (5.15] in terms of theQ) phase spacéquasdistribution (7.16). If
r e / r is a POM, satisfying(10.2, then =0 and
Tilw(eOTu(e)}= (e’ = ¢). (16.9 f(z()’(fc)hp Q(¢)=1, andQ(g ig (a gg)nuine prQof)q;i)ility distri-
Let now fl:f2:|(p><(p| be a purecovariant phase POM bution. Defining(quas)averaging operations
[e.g., the SG-POM10.5], whose scalar product is given by o
(3.60 [see after Eq(14.15], that is, fore’~ ¢, (f(9))o= fo de f(¢)Q(¢) (17.3

(¢'|@)y~368(¢"—¢)— (¢'~@).

2 r_ 27 A “
e 165 (HeDe=| o (@P(e)=THH(®)p}=(1(d) (7.4
0

Although the integralf ,d¢' of (16.5 is finite for anyA,

that of [these are the expectations(dfl.14], we have

(@)o=(¢)p=(9). (17.5

(e )T @)} = ¢ | )P~} 8(¢" — )2+ 170 =) .
L S But in general{f(¢))o#(f(¢))p. Note that if[(¢) is ¢

(166 normalized anccovariant and p=|n){n|, then, in view of
is infinite if A containse, finite otherwise, whence we get (14.5 and(14.6,
(16.2. -
Trace orthogonality concerns transitiprobabilities that Q(@)=(n|T(¢)|ny=(2m) "1, (17.9

is, measured quantities. Pure orthogonality concerns transi-

tion amplitudes and decides whether or nb(¢) are eigen- that is, Q(¢) ascribes a random phase to any pure number
states ofgr= ¢ do I'(¢). Pure implies trace orthogonal- Stateln), while P(¢) [and alsoQ(¢) if T'(¢) is noncovari-

ity, but not the reverse. Trace orthogonality is relevantanf does so only for larga, since 8(¢— ¢)[and a nonco-
because one adds transitiprobabilitiesinto different final variant['(¢)] is only asymptotically covariant.

states, whereas one adds transition amplitugesch as Number-phase uncertainty relatianSiven an observable
(16.95] only into thesamefinal state: Indeed, the measure- A, its dispersion or uncertainty, in the quantum sfatés
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— A 22471/2 — T A 2 2m
AATITHAZIPIT O ZTHARE GTD (2= [ Taete—(a)P(e). (9= | "o do P(o).
We getAA=0 if and only if p=|a)(al is a pure eigenket of 0 0 (17.9
A. In the case of the harmonic oscillator, the uncertainty '
AH in energy(or photon numbgrcan have any value be-
tween 0 ande, with AH=0 if p=|n)(n| is a pure number Becausep ranges over a finite window (0, the disper-
state. In the case of a phase operatowe have, in view of  sion A ¢ is bounded above, being maximumH{¢) is con-

(17.4), the classical-like expressions centrated at both extremities of the window, such as

e ! for (2m—ie)<e<2m or O<¢p<ie

P(o)= (e—0) 17.
() 0 otherwise (7.9
|
in which caseAp=(¢)= [it does not matter whether AHA¢=2[1—27 Tr{[pY =%|1-27Q(0)|,
(17.9 is realizable or not—all we want is an upper bound on (17.19

Ag]. Thus, although it isharply localized the distribution

(17.9 nonetheless has maximum dispersion, because {thereQ(¢)=Tr{I'(¢)p!} is the quasidistribution defined in
straddles the “discontinuity cut” ap=0, so thatp=2m on  (17.1) [recall that it is different from the phase distribution
one side of the cut, and=0 on the other side. Note that the P(¢)]. If p=|n)(n|, thenQ(0)=(2) ! by (17.6, and we
same distribution rotated away from the cut has zero dispeiget againAHA ¢=0. This shows that the ter®(0) in

sion; so the phase uncertainty depends very much on th@7.14 is crucial: It may be expressed Hsy (5.15]
choice of “cut” or “window,” as was observed by Pegg and

Barnett[15]. In any case, we have . 27 B
Q(O)=Tr{l"p}=f dcpf rdr Ly(r,0)W,(r,0), (17.19
O0sAH=s», 0sAp<. (17.10 ° 0

R ) ) A whereW,(r, 0) is the Wigner function op. Now, T, (r,6) is
We getAe=0 if p=[¢)(¢| is a pure eigenstate ab. It  concentrated along the radiusd=0 [recall that
follows from (17.10 that, although the commutatdH, ¢ ] L'\(r,0)— 8(0) asr—ce]. So, if W,(r,6) does not overlap
#0, the energy-phasier number-phaseuncertainty relation  T',(r,6), that is, if W,(r, 6) is localized away from the ori-
IS gin and fromé#=0 or 27, then T{I'p}=0, and(17.14 re-
duces to(17.13. This conclusion, argued for a covariant

AHA¢=0. (17.1) (4) also holds in the general case, since(lf.12,

The lower limit AHA¢=0 is realized if p=|n)(n|, for A 2 o A
which AH=0 andA¢< (at largen, the phase is totally Tf{[H,¢]ﬁ}:f d‘Pf rdr[H,@]u(r,0)W,(r,0)
random, P(¢)=(27) ! [see after Eq.(17.6], so that 0 0 171
A ¢=m/3"%). From a more general perspective, recall that (17.18
any two observables, such &bk and ¢, satisfy the uncer-

tainty relation[38] and —i[H,¢](r,0)—1—-275(6) asr—o, according to

(12.13. We thus conclude that the energy-phase uncertainty
relation iSAHA ¢=0, but that it is effectiveNAHA ¢= 3 for
states whose Wigner functions are localized away from the
) . R origin and from the extremities of the phase window
With p=[n)(n[, we get T{[H,#]p}=(n|[H,¢][n)=0,and (0,27).
thus recover17.11).

It has often been argued on phenomenological grotmds
inferred from the impossible commutation relation

AHA¢=L|Tr{[H,$]p}. (17.12

XVIIl. SUMMARY OF RESULTS

[I:|,<A;S]=i) that the energy-phase uncertainty relation is Let us summarize the results obtained thus far. We ad-
dressed the question, how does the classical notion of
AHA¢=3. (17.13  “phase” apply to a quantum harmonic oscillatoH

=1(g%+ p?), which cannot have sharp positiand momen-
This contradicts the fact that AHA¢=0 for tum? Our approach was based on the observation that only
p=|n)(n|—yet it does have a certain validity: Consider thelarge amplitude localizedstates can be assigned definite
specific case thapp=[2"¢ d¢ I'(¢), whereT'(¢) is nor-  phases. Our only demand on a phase operator was, therefore,
malized and covariant(e.g., the Susskind-Glogower or that the phase distribution
Cahill-Glauber phase POM'sThen, in view of the commu- .
tation relation(12.2h, we get P(@)=Tr{8(¢— ¢)p} (18.1)
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attribute the correct sharp phase to any such “classical Properties of interest which a phasdeoperator can have
phase” state. This requires the following asymptotics forare
Weyl symbols] §=tan X(p/q), r=(g%+p?)¥7: e
e "M (p)e'™=I(¢—t) (covarianj, (18.43

[5(¢=@)Tulr,6)— 56— ¢) (18.23 ,

R as r—o T A - )

[$1u(r,0)— 6 mod2m. (18.21 . de I'(¢)=1 (normalized, (18.4h
We definedphase § operators f(go) by the requirement, f((P)>O (state operator (18.49

similar to (18.23, that X
I(@)=[e)¢| (pure), (18.49

f‘(<p)f(<p’) =0(¢'— ¢)f(<p) (pure-orthogonal (18.4¢

f(<p) is a phase POM if it is non-negative apdchormalized.

[T(@)]u(r,0)—8(0—¢) asr—w. (1829

A phaseé operator induces a phase operator

(} :JZ’T‘P de f(¢) (18.3 A pure-orthogonal phase POM is necessarily of the form
r ' 8(¢d— @), and can never be covariant becalldes]=i is a
. no-go.
and in turn, a phase operatgrinduces a phasé operator The asymptoticg18.2 imply the following for matrix
(d— o). elements:
|
nr f‘ n 2 —lei(ﬂ'—ﬂ)go (1SSa
< | ((P)| >4’( 77) (nr_n)Z
03 i +n
<n |¢F|n>_>775nn’_277(1_5nn’)m n-n (18.5bH
and
i (1202 q?an (919 o[+ /
(@'[l'(e)a)—e 20029 0| cogp | (A=), (18.50

where®(x<0)=0, ®(x>0)=1. For pure phase states, we where the normalization constalt(e)—1 ase—0. Any
get phase state is an approximate eigenstate of any phase opera-
tor ¢, in the sense that

(n|@y—(2m) Y% (n—c0), (18.63
a2 q (F(D)rp=Lim,_o T{H(H)[*(e)}=F(¢), (1882
<0||¢>>—>@9(1/2)'q taw@(@) (g—e2).

(186h SO that, in particular(&)r(¢)=go, and<(<}—<<}5))2)r(‘p)=0.
' Also, anypure phase statgp) is an asymptotic eigenstate of

The “chirp” e(¥2a%a% in (18,6 is characteristic of local- any ¢, in the sense that

ization along the radiup/q=tany in phase space, since its .
“local” wave number is (p)(q)=(d/dq)(39%tanp) Nr 6 ple)— N role) (r—o), (18.89
=q tanp; the increasing amplitudg|/? reflects the increas-
ing (true) width r A @ of the “wedge” defined by an angular where|r )°°" are coherent states.
incrementA ¢, and implies that the local momentum width ~ Many phase POM'’s are not pure orthogonal. However,
of |¢) vanishes liker ~1 asr— . any phase PONI';(¢) is trace orthogonalo any phase state

A phase state is un-normalizable, and can never be strictly,(¢), in the sense that
realized, which would require infinite energy. It may be
viewed as the limit — 0 of a normalizedhpproximatephase & e /

A T r S(e'— as 0. (18.

stateI*(¢), or |¢)®, defined through its Weyl symbol, or {FaleDi(e)i= 3¢ ~¢) e (18.9

position representation in the pure case, by L
This implies that any phase POM measurement on any phase

[T2(@)]u(r,0)=[27/K(e)]e2e = [T (¢)]u(r,0), state () yields the outcomep with probability 1 as
(18.73 &—0. .
In the special case thdi(¢) is covariant andp normal-
(aleye=[2m/K ()] Y2 (M2ea/0%(q| o), (18.7h  ized, ¢r=J3"¢ de I'(¢) satisfies
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—i[H,¢r]=1-271(0), This is cova[iant, arjd is a POM =1, in which case
A((q,p)=[8(g—q) 8(p—p) s are displaced thermal oscilla-
tor states. As=0, we get the Weyl phasé operator

Tw(e)=Ts_o(@)=[Stan(p/q)— ¢)],, (18.14H

At s=1, we get the coherent phase POM

LA L ~ t ~
e*ItH (f)re'tH: d)r_,_t_zﬂ.f dtT(t’) (18.10
0

corresponding to the Poisson brackdH,d} pg=1
—2mwo(#) for the single-valued classical phase
¢g= 60 mod2m, and to ¢y (t) = ¢y(0)+t mod2m. If T'(¢) . . o
is not both covariant ang normalized, then the above holds Fc°h(<p)=FS:1(zp)=f r dr|r<p>°°h<rzp|, (18.149
only in the (r—<) correspondence limit. One may compare 0
(18.10 with the *“canonical,” but impossible, value

- . ) here |r 6)°°" are coherent states. The number matrix ele-
[H,$]=i initially presumed by Dira¢1], causing some con- W Iro) ! X

ments ofl's(¢) have the asymptotic forms

fusion.
The “natural® quantization of a classical observable L2 1—g| (02
g(a,p) is 2w<n'|fs|n>=1—%s% +3(=)" (1+S
0(@pa= | da dp gapdatap), (8112 ™ )
n’+n
where ) specifies anordering rule and Aﬂ(q,p) are () (18.149

orderedé operators:
- . . NP showing the first corrections t(18.53. Another covariant
Aq(q,p)=[6(d—q)(p—p)]a=DgpAaDgp, phase POM is the “number state POM”
18.11h

Ag=[88)8(P)]q, |5 :eipﬁ—iqﬁ), (18.119 f‘n(QD):(ZTf)_lJ rdrl5r¢|n><n|I5r‘<p1 (18.19

whereD , are phase-space displacement operators. Any OR:onS|dered by Busch, Grabowski, and Lal@®]; note that
eratorA trace normalized to '{A} (27) 71, satisfies the Thoo(e)= Fs ().
“ 6 property” All phase 6 operators have, by definition, vanishiag-
gular widths in the Weyl phase plane as-c. The Weyl
f dq dpﬁ(q,p)=f dq dp bqungpzzﬂ-Tr{A}zi I'w(¢) has a nulttrue width at all values of [see Fig. €],
18.11 while pure phase states, suchlagg(¢), have true widths
(18.119 vanishing liker 1 asr— [Fig. 6(c)]. On the other hand,
and can be used to define a formal ordering rule(¥ta1).  L's(¢) for s#0 andl'y(¢) have true widths which stay finite

~ l/ .
Any phase operatots and phases operatorl(¢) can be (foughly equal tcs andn 9) asr— [Fig. 6b)].
expressed as Two phase distributions associate with a phasgperator

f(go), namely

P(e)=THd(¢r—¢)p}, Qe)=THT(¢)p}, (18.16

L
Fle)=[otan A(Pa)=ela) (18120 o5 _ pon, de [(g). If T(g) is not a POM.Q(¢)

quantum observables are natural quantlzatlons of the classiquasidistribution.” If T(¢) = 1ﬂn((ﬁ) thenQ(¢) is the ra-
cal observables ¢=tan *(p/q) and 5(60— @) dial integral of aphase-spacéquasjdistribution:
= S(tan *(p/a) — ). -
Important phasé operators aréi) the pure and covariant :f rdr fa(r
(hence non-pure-orthogonal Susskind-Glogower phase Qle) 0 olr ),
POM

bo=[tan *(P/d)]q, (18.12a

fo(a,p)=Tr{[8(G-a)d(p—p)lap}.  (18.17

T — — -1/2 i ~
Fse(@)=[¢)sclel,  [¢)se=(2m) nZO e™ln) (1813 |t {(y) is covariant thenQ(e) assigns a random phase to
any pure number stata), while P(¢) does so only for large

which assume the asymptotic forr(is8.59 and(18.6g atall  N-

values ofn. (ii) The Cahill-Glaubers-ordered phas& op- UnlessﬁP is pure orthogonalQ(¢)# P(¢). It follows
erators that two different measurements associate with a nonor-

thogonal phase PONI(¢): That of (), yielding Q(¢),
and that of¢r, that is, of the phase POM( ¢ — ¢), yield-

I'y(@)=[ d(tanp/q) — :Fdﬁ,. 18.14
s(e)=[o0tan(p/a) ~ ¢)ls o O S(r.¢) ( 2 ing P(¢). A non-POM phases operatorI'(¢), such as
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are phasors. Among their eigenkets are pure phase states
v |o) with
: loy=(2m) 2> ( I1 hm)em“’ln% E\lo)=€¢|¢).
n=0 \ m=n+1
(18.19

Reciprocally, any pure phase st&e is an eigenket ofome
phasor of the form(18.18. Such phasors have been widely

x used to generate phase states. The most famous is the
Susskind-Glogower number shift phasor

E=> |n—1)n| (18.20
n=1
whose eigen-phase-states are [thesg in Eq. (18.13.

XIX. MEASUREMENTS
FIG. 9. (a) Under time evolution, tht_a V\ilgner furlctlon ofaphase_ One may observe a phase stﬁl(ep) by measuring, for
state, represented by the shaded radial “beacon,” rotates clockwise 7 .. - AT
. o : Ihstance, its time-dependent position probability distribution,
in phase spackhere, the initial phase was/2, i.e., the beacon was

vertical at timet=0]; the probabilityP(x,t) of finding the oscilla- that is[by (5.7) and(18.50],
tor at positionx is the overlap of the beacon with the line N o
8(q—x). The expectatioqq) is zero when the beacon is vertical, P(q,t)=(qle """ T'(¢)e""|q)
and +« otherwise; the dispersion is always infinite, except when A .
the beacon is vertical, in which case it can (bezero if the true :f dp[e—itHf*((P)eitH]W(q’p)
width w(r) of the beacon vanishes as-« (the case depicted

here, (ii) s if w(r)—s, and(iii) infinite if w(r)—oc[ for instance, if

w(r)~r” with 0<y<1, so that the angular width ~ al C ( q (q—). (19.1
w(r)/r~r?=1=0 sitill]. (b) The shaded regions are those for which cos(e—t) | coge—t)

P(x,t) is sizable[for the case depicted if@)]; note the abrupt

changes when time passes multiplesmof This is the “projection” onto theq axis of a rotating “bea-

con” pointing in the directiong+t [see Fig. 8a)]. When

- - cosfp—1t)>0, P(q,t) extends infinitely to positive, but fi-
Iw(¢), or a pure-orthogonal phase POM¢r— ¢), leads to  pjtely to negativey, so that & measurement yield@imos)
only one measurement, that @t . certainly a large positive value; this situation reversad-

The energy-phaséor number-phaseuncertainty relation  denly as cosg—t) changes sigiFig. 9b)]. This is indeed
is AHA¢=0, the lower limitAHA ¢=0 being realized by characteristic of a sharp phase. The above procedure re-
pure number statef)(n|; however, in the case of states quires, of coursemanyindividual measurements, to be sig-
whose Wigner function is localized away from the origin andnificant.
from the (single-valued phase discontinuity a®/=0 or Let us now envisage a genuine phase measurement: von
277, the uncertainty relation is effectivelyHA ¢=3. Neumann[41] showed how to measurén principle, any

One may ask, which is the “best” phas& operator, or  gpservable, such ag, pertaining to a systers, say. One
phase POM, or phase operator? One has the general feeligghkes use of a microscopic “metenth, with position-
that “the sharper is the bettgr." Differeitt( ¢) are compared momentum operato@,ﬁ]ﬂ, and prepared at time=0
for sharpness through their Weyl symbols. The sharpesh a position eigenstati,). Let p be the initial state of.
phases operator is, of course, the Well,(¢), whose Weyl  Let then s interact with m via an impulsive interaction
symbol 5(6— ¢) has zero width at alf [40]. The sharpest  s(t) $P (whether this can be implemented in practice for any
Cahill:Glauber phase POM is thee=1 coherent phase POM, phase operatop is an open questionAfter the interaction,
sincel's(¢)=0 only for s=1, and its true width~s. Pure st m are in the entangled state
phase POM'’s, such as the Susskind-Glogower POM, are

sharper thanl*® , at least at large, since their true R

widtr?s—>0. 2 ) e*""P{IQo)(Qol@P}eWP:f de de'{|Qo+¢)(Qot @’ [}m
Finally, one may define “phasorsd by the requirement R

[€],(r,0)—e'? asr—o [7]. The modulated number shift {leXelple’' e l}s.  (19.2

operatorq 16|

We insertedfde|¢)(@| =15, where|p) are eigenkets of
¢, and used

I’é}\:nzl|n_1>)\n<n|’ Aol asn—e (18.18 eii$ﬁ|Q0>m|‘P>s:|Q0+‘P>m|‘P>s (19.3
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way, so that the measurement cannot be compMthatever

) %’* its precise form,a general phase measurement defines a phase
‘/1 [\ POMTI'(¢), and yields an outcome with probability [43]
> > > A
48 _’ > IEI Prold ¢} =Tr{I'(¢)p}. (19.5

In the von Neumann measuremehfyp) = (¢ — ¢) is pure
orthogonal[this is required to get19.3], but this need not
be the case: Indeed, any POM, pure orthogonal or notjrcan
principle, be directly measuref#3]. It is even possiblein
principle, to devise measurements for which b is
given by (19.9, and which collapse the oscillator intmy
chosen final statg44], e.g., a phase staté (¢) [equal or not
toI'(¢)]. This would again allow us to precisely monitor the
phase, because of the trace orthogonality of phase states.

Noh, Fougees, and Mande]24] measured the coherent
phase POM18.149, yielding Q<—;(¢), the radial integral
o . of the Q function. Also, d’Ariano, Macchiavello, and Paris
measures the p05|.t|_on of the metar. The outcome is [26b] show that an imperfect NFM measurement measures
Qot¢ with probability P(¢)=(¢|p|e), ands gets col- o canil-Glauber “thermal coherent state” phase POM
lapsed into the eigenstate)(¢|= 6(¢$— ¢). Note thats in- (18.143, s=1.
teracted only with themicroscopicsystemm, whose initial The basic objective is to measuphase shiftsA phase-
state is controllablem itself must interact strongly with  ghift measurement need not involve a phase operator, nor a
somemacroscopi@pparatudl, in order to induce a macro- phage POM. Interferometric methods do not. Another phase-
scopically observable event. Because tthierostateof M is  pomiess way of determining the phase shift induced by
intrinsically uncontrollable, it perturbs the state @fin @  gome device is to compare input and outpliase-space
way which we cannot know; but the final statesoitself is  gjistributions: These can be measured by the method of
precisely knowr{42]. [Of course, the above is an ideal limit, gmitheyet al, [46] who measured the Wigner function of a
which can only be approached, since phase “stafgg”can _quantum optical field, or otherwi$d7]. Still another method
never be strictly realized physically, as this would requirejs gescribed in Fig. 10. All the above methods require many
infinite energy _ _ individual measurements.

A measurement where, as above, the final state is com- Clearly, a most efficient way of measuring phase shifts
pletely known in terms of the measurement outcc[mbet— would be, ideally, by means of genuinempletephase mea-
ever was thegenerally unknownpremeasurement statés  gyrements(of the first kind or of the non-pure-orthogonal
called complete or preparatory since itpreparesthe phase powm kind, which would allow to both prepare sharply
stated(¢—¢). If s was already in a phase stdtepo) [Nt phased states, and then monitor their phase evolution by
necessarily an eigenstate ¢f, then the trace orthogonality means ofsingle “phase nondemolishing” measurements.
(18.9 assures that the measurement outcomegs with
probability 1(ideally), so that the oscillator collapses into the

FIG. 10. To determine th@nknowrn phase shifi\ # induced by
some device, input a known, highly amplitude squeezed stat
p"=|0o)(qol, sayl[in the figure, we puto=0], and shift the out-

put state p®'=e~ "4 p"e!4%, by a known phase; then measure

g, while varyingt; the measured distributiofg|e™ """ p"e't|q) is
narrowest, and concentrates g, when the(known phaset is
equal to the(unknown) phase— A # mod2sr.

since ¢|¢)=o|¢) and e 1*"|Qy)=|Qo+¢). One then

APPENDIX A: ROTATIONS AND DISPLACEMENTS

phase staté(¢— ¢o). Thus, the state gets modifigdnless IN THE (q,p) PHASE PLANE
I'(¢y) was equal tos(¢— ¢g)], but thephaseis preserved.
So the measurement is “quantufphas¢ nondemolishing” We use the following coordinates in thg,p) plane:
(QND) [11]. A

After a ¢ measurement prepared the staégh— ) at  0=tan (p/q), r=(q?+p*)'% R=H=3(q*+p?).
time t=0, the latter evolves into (A1)

e ith S 0)elth = 5 bi— o), g},t:efitﬁ ;{)enﬁ_ (19.4  From(2.2), we get[denoting{., }pg={.,.} for simplicity]

This is a phase state of phage-t, eigenket of the phase
operatorg;# ¢+t [see(18.10], butnotof ¢. Still, one can
accurately monitor the phase by measuring #zme ¢
again, because a secogdmeasurement, after a phase shift q r cosd r cog 6—t) O
t, say, will yield the outcomep—t with probability 1 (be- et{Hv-}( )=et{Hv-}( )z( . )z( )
cause of trace orthogonaljtyand (being QND produce the rsin(6—t)

{H,_}:%, e (r,0)=f(r,0+1),  (A2)

r sing

phase staté(¢— ¢+1). (A3)
A general quantum measurement may involve a more L ore we define

general initial meter state, arsd- m interaction, than above.

Also, the final observable measured may pertain to lmoth .

ands. [In that cases interactsdirectly with the macroscopic (%) - » (q) # :< cosp  sing (A4)

apparatusM, thereby getting perturbed in an unknowable P, ~ f\p)’ # |\ —sing cosp/’
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Thus,{H,.}= /36 induces rotations of the phase plane, and 89" —q)d(p’—p)=8(R'—R)8,,(0'—6) (B2

(q:,py) is the trajectory followed by the oscillator if it was at

(g,p) attimet=0. Defining¢= ¢(R, ) = 6 mod2r, we get

ag of

of
{o.f}=—55 5= (1278015, (AS)

{¢. R} =—[1-2m8,,(0)], {,0}=0. (AB)
We deduce that

d
ﬁe_)\{d) JR=— e—h{aﬁ,-})\{qg'R}: e_”{‘ﬁ"}[l— 276,,(0)]

=1-276,,(6) (A7)

[since{®, 6} =0], whence follows(12.5h.

In the quantum cases~'¢H, where H=1(§2+p?), in-
duces rotations:

eleH ? eieH— 7 ?
p p

g cosp+p sine q

1]

=\ g sing+p cosp | = P
®

(A8)

as is readily shown usinfjg,p]=i. Phase-space displace-

ment operators are defined as

D= eiPi19P— e(1/2iapg-iaPeipd— g~ (12iapeiplg-iah,

(A9a)

Daptd.p}Dgp ={G-a.p—p},
ISqp|Q'>29(1/2)i(weipq/|(4'+CI)' (A9b)
|5qp|5q,p,:e—(1/2)i(qp’—pq’)f)mq,‘mp, . (A9c)

Denotinglﬁqp=l§,g, and using(A8), we find that
e*i“"qf)qpe‘*”ﬁzIf)quw@e*i‘*"l'f)r,,e‘“"qzf)m,,q,

(A103)
©i[H,D,4]= < Dy, (A10b)

D1 6=Dr cos,r sing= e ng)r,Oei PH—g by, (A100)

Using (A9), one shows that, for any operat,&r
J dqdpD,,AD} =2 TrA. (A11)

APPENDIX B: ORDERING RULES AND WEYL SYMBOLS

Ordered & operators are defined asAQ(q,p)

—quAQqu, where

Ra=To(@s(Pla=(2m) 2 [ dk dgeh® =, (B)

In terms of the canonical “action-angle” variableR
=13(g?+p?) and#=tan *(p/q), one has

[following from &(sing)=&,,(6); see(2.9)], so that
Ag(a,p)=A4(R,0)
=[8G(p*+8°) —R) &y, (tan (p/§)— O], (BI)

whence we get the special caég4). From (7.5), we get
[usingg=r cosf, p=r sind]

2mA,(q,p)= Zﬁqpﬁﬁaf f dse 'SP|q—3s)(q+ 35|,

(B4)
27(q"|Aw(a.p)|a’y=[]a"}{a"|14(q.p)
) " , /+ n
—glhl@ q)5(q_q 2q ) (B5)
2m(q"[Au(r,0)|q")
=|cosg| - 1e<1’2>'<q”2‘4’2>ta"95( r— 2;29) (B6)
We have, reciprocally t¢7.63,
(a'|Alg)=(2m)" 1f dpel@ ~IPA (q il ,p).
(B7)

Introduce the following Hamiltonian, “squeezed” relative to
H=%&+p):
H,=3(y@?+p% y)=ala,+3, (B83)

A — 2—1/2( '}’1/26{+ iﬁ/,),l/Z) ) T =2~ 1/2( ,yl/2q —i I:)/,y1/2)_
(B8b)

The Wigner function of the ground stafe),, of I:|y is the
elliptic Gaussian

[10),(0[Tw(,p) =7~ e~ 9"~ P*7, (BY)

The displaced and rotated stateg), ,= qpe'“’H|O)y are
squeezed statdsr the (unsqueezedHamiltonianH. Their
Wigner functions are obtained by rotatin®9), and then
displacing it.

Applying (7.6b) to the() ordereds operator(7.2), we get

An(q,p)=f dq'dp’Ga(a’—q,p’ —p)Au(q’,p"),
(B10)

WhereGQ(q,Ap)z[A]W(q,p). Thus, ifGn(q,p) is well be-
haved, them\7Q(q,p) is a “coarse graining” ofA,(q,p).

Substituting (B10) into (7.1), we get(7.93. For A to be
expressible aA=g(q,p)o . for someQ, it suffices that
A,(0,0)=g(0,0) [which is equivalent to(7.11)], since we
must have fdq dp Gy(q,p)=Gn(0,0)=1. In general,
Gq(q,p) is well behaved ifA,(d,p) is a “smoothing” of
g(a,p).



94 ANTOINE ROYER 53

For example, leg(q,p) = &(q) 5(p): Theng(k,s)=1, so
that anyA= A satisfying
27 Tr{&}=f dg dgfAl(q.p)=1 (B11)

[we used(A11)] is expressible ah=[8(8)5(P)],, as was

“A to the left of B” ordering. Whens# *+ 1, eachA or B is
put partly to the left, partly to the right. One can shp#b]
that Cahill-Glauber ordering is ordering ofa’ anda:

f(8,p)s=0(a™,a"91 if f(q,p)=g(a*,a), (B1Y)

effectively asserted after E¢7.3). As another example, let Wherea=2"Y4q+ip). This indeed yields normal ordering

9(q,p) =7t~ @*PYa and A (q,p)=m"te (@ PN,
Then G (k,s) =~ WAC-aC+s) |t h=a thenGg(q,p)
=7 le~(@®+P2/(0-2) 5 well behaved: but ifo<a, then

Gq(q,p) is more singular than a tempered distribution, be-

ats=1, and antinormal as= —1. A
An example of ordering which isioncovariantfor H

=1(g+p? is s ordering of thesqueezedrelative to H

ing defined only on test functions vanishing faster thanC»s(d:P) is an élliptic Gaussian

e~ (@®+p?/(a-b).
It follows from (7.2) and (A10b) that

i[H,AQ(r,a)]z%Aﬂ(r,a)ﬂﬁ,g[ﬂ,ﬁg]b;ﬂl, (B12)

whence we get7.13. The (covarianj Cabhill-Glaubers or-
derings have

i (2ms) Ulpy(2 tantis) (0<s<1)

S| (27) (2 cothLs) (s=1), (B13

Whereﬁzqu|—q)<q| is the parity operator, and

- e AH - o
pin(B)= ————, H=3(p?+0?)

) B14
Tr{e Pt} (B19

are thermal states. At=1 (antinormal ordering the “tem-
perature” (2 tanh's)"'—0, so thatAs_;=(2m) *|0)(0],
andAs-1(q,p) are coherent states. The operatggor s<0
are related ta\,(q,p) by

(wsYlf dg dp el PPYIsA(q",p) =Au(a.p)

(s<0) (B15

and are highly singular, beindeconvolutionsof Aw(q,p),
which is already the sharpest possible.

Cabhill-Glauber is a “natural” ordering of the creation and

annihilation operatora=2"%(g+ip) anda’. To see this, let
us define “left” and “right” superoperators A and A~
(i.e., operators acting on operatptsy their actions on any
operatorB as

A~B=AB, A“B=BA. (B16)
Let the cqmmutgto[A,é] be ac number. We defines or-
dering of A andB as follows:

1+s

2A—I—

f(A,B)s=f(ASB )1, AS= A~

(B17)

1-s).
2

creation/annihilation operators defined iB8h). Here,
R e~ 1(va®+p?y)is
G, s(d,p)=[A, slw(d,pP)= — (s=0).
(B19

For s=1, A%S are thermal states foI:Iy, i.e., “thermal
squeezed states” foH, and that multiplied byIT for
Os=ss<1. Still other noncovariant orderings are obtained by
using the rotated,, , ;=e'*"A, .e7'¢". Again, ass— 1, the
“temperature”—0, andA,, , s—1=10), . «0| is a squeezed
state forH.

APPENDIX C: POSITION EIGENKETS ROTATED
IN PHASE SPACE

In view of (A8), the rotated position eigenkef“"'z'|q> is
an eigenket ofy,, that is

e ¥flg)=e"?|qg)g . (CD
where an operator subscript on a ket will be used to indicate,
when necessary, the operator of which the ket is an eigenket,
for instancea|x);=x|x)s. The phase(¢) in (C1) remains

to be chosen: Note that at= 3, 7,3w/2,27, . . ., etc., we
have q,=p,—Q,—p.q, ..., etc. Now, with the standard
choice of phase fop), i.e.,(q|p)=(27) %%, we have

(0la)g=(0la)p=(0la) 5=(0la) =(0la)g

_ _ 2
= 7 Vo= (1207

(C2
where|0)=|0)y is the ground state ofl=N+ 1. The sim-
plest way to le{C1) satisfy(C2) is to choosey(¢) such that
(0|q>%=<0|q> for all ¢ [another possibility would be

<O|q>a¢=e4i“’<0|q)]. Since we also have<0|q>a¢
=e X(e)(0|e"'¢H q)=e X(?)e~ (12i¢(0|q), we must set
x(@)=—73ie. Thus,

|q>%: e(1/2)i<pe—i<p|:1|q>, |q)p= e V4 'n-e—(l/Z)iTrI:1|q>,
(C3

for any functionf(x,y). This makes sense, because the su-

peroperatorsA® and B™S comrr)ute(provigedA[A,I%] isac
numbeyj. At s=1, we getf(A,B)s—1=f(A~,B7)1, that is

where we also wrote down the special cgse 3.
Using the definitiongA4), we have(for 0< p<21)
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6(p¢):5(q Sin(p—p COS(p)=5(I’ S|r(0_§0)) (C4a <q|ei‘P|:||q’>:<q|ei‘P':'e_iq’bl(:))a:<q|e_iqlﬂp¢ei¢’ﬁ|o>a

=(—2mi sing) 1?2
_5(Sin(0—(,o)) _ (o= 0)+ (et m+6)

r+0). i
r r ( (CA),b) Xexp[—ZSim[qu’—(qurq’z)co&‘xp]]
(C103
The Weyl symbol of the momentum statg); is ,
. (1/2)iq“tany 2
8(p)= &(rsind), so that by(8.12), € 1 , G
(= 2mi singo)l;zex 21 Colp( q cosp/ |’
(C10b

[e'¢"0)5(0le™"*"](q,p)=&(r sin(6—¢))=5(p,). (C5)
where we used(A10c), (A9b), and (C9). We could, of
course, deducdC6), (C7), (C9 from the known result
(C10; but it is instructive to see hoWC10) itself can be very
simply deduced from Weyl symbols, as above. Usi@g0b),

we readily show that i{q|¥)=W¥(q) is a slowly varying

Using (B7), we then find that

I aieH . —igH
(q'[e'*"[0)(0[e™"*"|q) real function, hence localized about the axis-0 in phase
. q+q’ spacegsee(5.3)], then
=(2w)‘1f dp €P “”5( sing—p cosp
A (1/2)ig? tanp
(1/2)i(q'?-g?)tanp e vy~ ¥ (g/co ¥ (q)real] (C11
e s (dl |>W(q sp) [W¥(q)real] (C1)

21| cosp|
localized about the linp~qtany in phase space: This fol-

It follows that lows from (qg|e'¢"|¥)=[dq’'(qle'*"|q")(q’|¥) and, pro-
vided¥(q') varies slowly on the scale of tan

. e(l/2)iq2tan<p q 2
<Q|e""H|0>ﬁ:W (C7) f dq’exp[(%i CO&P)(Q"@) ]‘I’(Q’)
~W(qg/cosp)(icotp) 2. (C12

In fact, (C6) implies (C7) only up to a phase'‘(¥) indepen- )
dent of q; this was fixed by requiing that consider now the overlap @ *#"|0)s with |0)s:
R(0]e'H]0) 5= m'Me(M2i¢ The choice of phastC7?) indeed

gives 5(0[€'#H0)5=4(0|e'#"| 0= (—2i sing) 12 (C13

- - We also have, by use @6.15),
i(0le'*#[0);= [ dafola)(ale’*lo);

Y4 12 (U2q2(11 tany) |p(0le™"#"0)p|2=Tr{[|0)5(O[1[e'*"'|0)5(0le~"*"]}
=g Y2 cosp)” qu e _

=f dg dpd(p)a(q sing—p cosp)

__—1/4(112)ig —1/2 —(1/2)x2
= e 2 dx € .
T (2m) f X — |sing| 1 (C14

— W*1/4e(1/2)i(p’ (CS)
in accord with(C13). Note that had we used the polar form
(C4b), we would have gotterfgr ~1dr[ 8(¢) + 8(¢— )],
where we sek=q(1—i tanp)?’=qe Y2¢(cosp) Y2 By  which is undefined: This reflects the fact thH&4b) is not
using (C3), we find that valid atr =0, which is in fact the only point at which(p)
and &(p,,) overlap whenp+0. At ¢=7/2, (C13) correctly
— yieldsl (p=0|g=0)=(27) 12, . and (C14 becomes
. . . - g~ (Haliatco (27)"fdq dps(q) 8(p)=(27) *: Note that this is the
<Q|e"oH|0>a:e_(m)'”<Q|e'(‘p+7/2)H|0ﬁ:(_ i sing) 72 overlap of two lines,5(q) and 8(p), which overlap at the
(C9) singlepoint (0,0); but, also, each is infinitely high, leading to
a finite net overlap. Atp=0, (C14) has a nonintegrable sin-
gularity, because the two infinitely high lines then com-
There follows the standard res(it8] pletely overlap.
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APPENDIX D: POSITION REPRESENTATIONS
1. Phaseé operators
We start with the Weyl ordereﬁw(<p)=fg°rdrﬁw(r,<p):
Using (B6), we get
q+q’
CoSsp

la+q’|
2 coo

(D1)

2W<q|fw(¢)|q,> = e(llz)i(qz—q'z)tarkp

One verifies that by substitutingp1) back into

[mm(q,m:jds &g+ 3sTu(e)la—3s)  (D2)
one gets backl',(¢)1w(d,p)=8(6— ), with
8(6— @)= 8(p—q tany) d @(i) (D3)
4 P—qfane coSe |cosp/

In the case of a general phageoperator, whose Weyl sym-
bol [T'(¢) ]w(r,0)— (60— ¢) only asr—o, we get, using
(B7),

2 [ V= (a—a")pr[ a+a’
mal'(¢)[a")=| dp ¢ [T(9)Iw| ——P

—(D1) as|g+q|—, (D4)
where we use«ﬂf(qo)]w(q,p)—> (D3) asg?+ p?>—, hence
also as|q|—.[One may also infetD4) from the asymp-
totic identity of number matrix elementsee Sec. XIYV,
since(qg|n)+0 only if n=39?, roughly]

2. Pure phase states

Let now f(go)=|<p)<<p| be pure: Putting firsg’'=q in
(D4) vyields (g|e)~(27) Y4(|q|Y% cosp)O(ag/cosp); then
g’ #q implies

i) (q—=) (D5)

1/2
(ale)=~(2m) *1’2me<1/2)iq2tan¢®
cosp

cosp

up to a phase depending only gn This indeed gives back
(D4), because|qq’|Y?2=|(X+ 8)(X—8)|Y?=X|1—(8/X)?|
~X, whereX=3(q+q’),6=3(q—q’").

3. The Weyl phase operator

We now evaluate the matrix eIements;(aI,. By (B7),

- ® . , +q’
SR LR L2

where ¢(q,p) =tan 1(p/q). As p ranges from— to 0 to
+, ¢(q,p) ranges from 3r/2 to 27r=0 to 37 if >0, and
from 37/2 to 7 to 37 if q<0. We may thus write

(D73
(D7b)

$0(Q,p) +27O(—p),
- ¢O(q!p)+ ,

gq>0

¢<q,p>={ a<0,

ANTOINE ROYER
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where ¢o(q,p) is the branch of tan'(p/q) which ranges
from — 34 to O to 37 asp ranges from—o to 0 tox. We
next evaluate

J o

o0

_ elbp
ébp¢o(q,p)=¢o(q,p)w

—oo

q (= eibp
“ib)_.Pprrge (PP

where we performed an integration by parts, using
(d/dp) o(a,p)=0q X(1+p?/q?) L. The first term in(D8)
contributes Lim _..37cos(b)/ib=0 (as a generalized func-

tion). The second integral is evaluated by the method of resi-

dues(poles at*iq), yielding

f " dp €Pgo(q,p) =(im/b)e 10 sgr(q). (DY)

We thus get

~ i la2_ 2 ,
2m(dl gola’y= 3=y e 1" sgnia+a’). (D10)
To get(q|fj>w|q’), one must, in view ofD7), add to(D10)
the Fourier transforms of 20(—p) or of 7, namely
2m(q'—q+ie) ! or w8(q’' —q), depending on the sign of
g+q’. Smith, Dubin, and Hennind®(b)] obtain equivalent

results (different in some details because they measure

angles differently from us

APPENDIX E: COHERENT-STATE REPRESENTATIONS
The ground state dfl = 3(G2+ p?) is given by
|O>= W—1/4|e—(1/2)a2>: 77’1’4|e’(1’2)’32>, (E1)

where, following Dirac, we denote B (q)) the ket whose
position representation i¥(q): Thus, {(q|¥(q))=""(q),
and likewise{p| ¢(p))= ¢(p). Using (A9), we get, for co-
herent states,

~ _ _ ; A a2
|qp>coh:qu|o>:7T R (1/2>qu|elpqe (112)(q q)>

(E2a

— g~ Udgl112iap| g (2P~ p)2>
(E2b)

In terms of polar coordinates, we have, usitif2a and
g=rcosd, p=r sing:

(q|r )= 7~ H4gl 1/2)iq2tany
xex] —3(q—r cos)%(1+i tand)] (EJ

with  local wave number (p)(q)~(d/dq)3[q>
—(q—r coh)?tand=r sind characteristic of localization

along the line p=r sind. We also have, usingR

=3(a*+p?),
(n| R0>°0h=(n! )*llZeleanlzeine (E4a
~(2n)~ Y4~ (R- m%(2n)giné (E4b)
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[where we usedK16)]. This is localized on a ring of radius

R~n, or r~(2n)"? and widthAR~n?, or Ar~1 [since

rAr=AR]. The height~n~'2 Following Schleich and

Wheeler{ 18], we may represent the successiverings” by

nonoverlapping rings of uniform height, each extending from

p=nY2 to p=(n+1)Y2 [where p=RY; their width
~n~12 so that we must set their heightsl.
Let us now considefby (E2b)]

A<O|r 0>coh: ﬂ_—1/4e—(1/2)r23in20e(1/2)ir2sina cosd (E59
p
~ W—lm[e—(1/2)r2926(1/2)ir20+e—(1/2>r2(e—w)2
X @MRIr(6-m1  (r _o0). (E5b)
We also have, in view ofA10c),
e ¥f|r g)°"=e "D ,|0) =D, 4 ,e”'¢"|0)
— e7(1/2)i¢|r’0_ (P>coh, (E6)

whence we getl5.2. The absolute square ¢E59 is theQ

function of |0)5, and is thus equal to the convolution of its
Wigner function §(p) with wfle*qupz, which is indeed

equal torr Y2 P’.

Consider now a phase state). Let, first, =0: So at
large q, (q|e=0)~(27) Yq*%®(q), by (D5). Then, at
larger:

Ny 6| o= 0) = f dgr 6la)(ale=0)

~(2m)~¥2 f dg™Xr 6la)(r coss)™?

XO(r cosd)
~Nr 9|0)5(r cosd) 0 (cost)

~ V4t 1/2e—(1/2)ir20e—(1/2)r202
(r—e). (E7)

The second near equality is becai€¥r 6|q) is sizable only
atg~r cog; the third because (@) *?/dq|g)=|0)s; the
fourth becaus® (cosd)®r 6|0); is given by thed~0 term
in (E5h). Noting now thal ¢ =0)=e"'*"| ¢) is a phase stat
of phasep=0, we get, usindE7),

e[ g 312 q
o= o) ©laomg

— (277_2)1/2@( a
COSp

D

N1 6] o) = 0]e 4] o= 0) =1, 0 | ¢ = O} V21¢

~ Uy 1/2e(1/2)i¢e—(1/2)r2[(0— ©)2+i(60-9)]
(r—ow). (E8

Note that as —, the phase¥2"*(?=¢) oscillates rapidly,
as a function ofé, inside the Gaussiag™V2r*(9=9)° The
asymptotic form(E8) was obtained by Barnett and Pegg
[Ref. [15], Eqg. (43)] for the Susskind-Glogower states
|¢)se [they differ by a phasee?¢ because they use
@) se=€"*N@=0)sg, WwhereN=H—3].

We now show that, reciprocallfE8) implies (D5) for

wave functions: Using the completeness of coherent states

[or (A11)], we have

27 o
(q|<p)=(27r)*1f0 dajo r dr{q|r8)*°Yre|e). (E9

For largeq/cosp, we can uséE8) for ©Yr 6|¢), since the
real Gaussians ifE3) and (E8) force r~q/cosp. Putting

s=r—q/cosp, we write r’=qg%/coSe+2(g/cosp)s+s’, and

put redr=~(g/cosp)*®(g/cosp)ds Now, because of
e~ (W2r%(0-¢)* in (EY), (9—¢) is of orderq?, which is

small at largeq: Expanding all functions of in powers of

(6— ¢), and retaining only terms of ordex0 in q [treating

(60— ¢) asq 1], we get, noting that cag1+i tanp) =e€'¢,

t + b~ ¢
ang cos

<q| r 6>coh~ 771’4exp‘ %iqZ

(0—¢)?

+ ta
cose e

eie | g ) 1/2

co ~ 1
Xr 6l o)~ —a- coss

] e—(1/2)52c03pei ¢ (Eloa

19 r o
X ex —2CO§¢(0—¢) (1+2i tanyp)
L 4 . Qs
~3lo2e ¢(0_‘P)_'_cogp(9_¢)]’
(E10b

where we used 1/c68=1/cogp+2(0—"¢)tan ¢/
coge+---. Note that the rapidly oscillating phases
e+ (V2)i(a/cos)’(0-¢) jn (E109 and (E10B cancel one another
in the integral(E9). We get

2 o 1 2 . . S
J d&J dsexp[—i( a )(e—go)ze""—%sze""COSp—iq—(G—<p)

coSp cosp

q¥2 (2w 1/ g2
D LI _ 2( Al —i _
00, deo exp[ 2<CO§¢>(0 @) (e'?+e “’)]—(DS).

(E1D)
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FIG. 11. Density plot showing the real part of
(n’|Ay(r,8)|n), Eq.(F4), for n=15 andn’ =18 (white is positive,

black is negative

One could also show the above, more simply, firstger 0
and then for anyp by using(C11).
From (E8), we deduce that

Vg —r(0-0)° (E12

| 6] @) |2~ 7~ (r—)

We also have, in view of5.15), and the fact that the Wigner
function of a large amplitude coherent state is giver(&y)
with y=1,

coh 2.1 2m ’ * ' ’ Y
|Xr 6] @)|“~m do’' [ r'dr'[le)(e|lu(r',6")
0 0

12000 2 et N2
r'e(o G)e(r r)

xXe (E13a

;vw‘imffzwd9T|¢>OM]wU,Hﬁe"aw’aﬂ-
0
(E13b

Comparing (E13bH with (E12, we see that as—o, the

angular functiore "“(*~¢)* does not get broadened by con-

volution with [|){¢|]w(r,0"); this again implies that the
latter tends to asharp radius of zero width(not just zero
angular width) asr—oo.

APPENDIX F: ASYMPTOTICS
OF NUMBER MATRIX ELEMENTS

ANTOINE ROYER

TN N
LUV

FIG. 12. (a) The functionf . (r), Eq. (F40, and(0) rf,n(r),
for n=15,n’=18. (b) The radial part of n’|A4(r,6)|n), Eq.(G1)
[R= %rz], for n=15, n’=18, and three different values o
s=0.1(full line), s=0.4 (long dashes and the approximatiotF2)
to s=1 (short dashes

i(n"—n)e

2m(n’|Ag_1(r,0)|n)y= —,|)1,7e‘RR(“+”/)’2

(F1)

ei(n’fn)a

,n.1/2(n + n/)1/2

[(n+n")/2]!
(n!n/!)1/2

[R—$(n+n")7?
S T

(n+n'>1) (F2

In view of (E4a, the number matrix elements of coherent [by (K16)] At (n+n")>1, this |s radially localized about

states A®\r, 0) = (27) ~Yr 6)r 6| are given by[recall
thatR=3(g?+ p?) = r?]

R~%(n+n’), or r=(n+n)Y?2 with a dispersion
AR~(n+n")2 orAr~1 [sinceAR%rAr]. Note that if
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(n"—n)? scale of the angular width §~r ~* of 7~ le~%~P* (see Fig.
W<1’ (F3) 11), that is, from regiong >r,~10n’—n|, say. Let then
re=Max{r,,ry}, and let 6+n')>r.+5, say, so that the
then[3(n+n’)]'~(n!n"1)*2 by (K8b), so that the radial final hump off..(r) lies beyondr: This requires in par-
Gaussian in(F2) is normalizedalso, if (F3) holds, then(F2)  ticular that ¢1+n’)1’2_>_rb, hence (+n")"?>|n"—n|, that
follows directly from (E4b)]. is, (F3) must be satisfied. Let us now break up the integral
We will suppose in the following that’=n [to get the (F6) into two piecesy <r. andr>r.. In the outer (>r.)
reverse, simply use{n’|&|n>=(n|ﬁ|n’>*, since AT:A]. part of 2the2 integral, we can smooth,(r,8)~A(6) with
The matrix elements of the Weyl orderéq,(q,p) are given e~ 9P without changing the value of the integral, as

n+n’—oo,

by (G1) with s=0: just argued; transferring the smoothinthQ,(r,e) changes
R the latter intoA®\r, ), so that we get a contributidipro-
(n"[Ay(r,0)[ny=[[n)(n"[]u(r,6) (F43  vided (F3) is satisfied
:ei(n’—n)afnn,(r) 3 2w ) Ao
(F4b) | ouf™ ot dr . de(n’|ANr,8)|n)A(H)  (F73
fone ()= (277) " 121720 ~m+1 2
n! 12 ' 2 ! 2 %J\O da el(n 7n)0A(0), (F7b)
n n"—Nnag—r n —n
X (—) (F) r e "L, "(2r9).
(Fag) where we usedF2) with (n+n’)!~(n!n’1)2 [under(F3)].

The inner part (=<r.) of the integral(F6) contributes, in

Here, Lﬂ,’”(Zrz) is a generalized Laguerre polynomial, of view of (F5) (we neglect unessential factprs

orderr?", havingn zeros roughly spaced hyr~n~*2 The )

function (F4) is shown in Fig. 11. Fon>1, f,.(r) has the |m~n—1/4f CdrAW(r,a)rl’z

general shape shown in Fig. (B2 It consists of a hump 0

aroundr ~(n’ +n)2 farther out, it vanishes like*e ""; 1 1y L

on the inside, it oscillates rapidly with a wavelength'?, xcod (8n) ™ —z(n'—n)m— ], (Fg)

and is approximately given, far>n~%2, by [from (K19)] o
As n gets large, the oscillations of the cos, of wavelength

fonr (1)~ (— )2~ Yz~ 32~ 14~ 112 ~n~2 get increasingly rapid: So, provided only that

v 1. . e A,(r.6) is bounded, (FO< Max|/A,(r,0)|r¥n=1n-12

xcog(8n)* T —3(n"—n)m—37]+O0(n" ™). ~n~%4 which gets negligible as—», compared to the
(F5) outer contribution(F7), or ordern®. There follows(14.2).

We will now use a Weyl phase-space analysis to under-
Thus, if n>1, then(F4) is effectivelylocalized on a ring of  stand the differences between (14.33, ie.,

radiusr ~(n’ +n)Y? and of width~1, since it vanishes rap-
idly outside it, and oscillates rapidly inside it. We note that
the oscillations of(F4) average to zero when smeared with
7 e % P’ Indeed, we then getF1), since Aq,p) is
the convolution ofA,,(q, p) with wfle*quz[see(Blo) and

(B9 (y=1)]. . whose Weyl symbol is
We have, for any operata,

2m(n'|T(¢)|ny— €' ~M¢ and the corresponding result for
a rotated momentum state

B(¢)=e'*"|p=0)(p=0|e~i*" (Foa

S(0—@)+6(0—¢— )

~ o0 2 ~ A —
2w(n’|A|n)=f rdrf do(n’|Ay(r,0)|nYA,(r,0) [B(e)]u(r.6) r - (FoD
0 0
(F6a We have
] 2w
= drf do e ™Mot (1)AL(r.0), . o 4
fo 0 nn( ) w( ) 27-r<n’|B(<p)|n>~e""(” -n) 15,
(F6b) (n+n’)
where we usedn’|A|n)= Tr{|n)(n’|A}, and then(5.15) , In’ —n|
and(F4a. The functionrf ,,, (r) has the allure shown in Fig. n+n'—eo, —— <1/, (F10

12(c). Let A correspondo A(6), so thatA,,(r,8)~A(6) for

r>ra, say. It follows that ifr=>r,, then smoothing of if (nn’)=(even, evej) and zero otherwise, where we used
A(r,0)=A(6) with 7~ 1e~ 9P affects only its angular (14.13  with  nn’=(N+»)(N—»)=N2(1—1?/N?)~
behavior; this will not be felt in the part of the integk&@6b)  Z(n+n’)2, if N=3(n+n’), v=%(n'—n). Putting
coming from regions where'™ ~™¢ varies slowly on the A=B(¢) in (F6) and using(F9b), we get
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n! 1/2 2 n"—n+1
F) (1+s)

n

s—1

s+1

(n'[B(e)|n)=e""Me[1+e """l (Flla

27-r<n’|AS(R,0)|n)=

|nn':fxdf -y (F11b w @~ 1(n' =MoR(N' —n)/2g—2R/(1+s)
0
oo 4R
XLn Ez , (Gl)

Because ¥€&™™ "MW=0 if n'—n is odd, (F113=0 if
(n,n")=(even, odd or (odd, evep as it must. If \here L"'""(x) are generalized Laguerre polynomials
(n,n")=(odd, odd, then(F113 must vanish, so that,y has  (K17). At s=1, only the term of orden in the Laguerre
to vanish. Let us analyzé~6) with A replaced byB(¢),  polynomial survive§because of the prefactos 1)"], and
similarly as we did above for the case thatwe get(F1). At s=0, we get(F4). Figure 12b) shows the
Au(r,0)—A(6). Here, we have, rather,B,(r,6) radial part of(G1) for three values 0§, showing the transi-
—1~'B(6). This varies slowly radially provided>1. So  tion from (F4) ats=0 [Fig. 12a)] to (F1) ats=1. Denote

for r>r,=Max{10, ry}, say[r, as defined afte(F6)], we
can again smootlB,,(r,#) with 7 Le~ 9P without alter-
ing the value of the >r_ part of the integraF6), which
thus contributes

N=2%(n+n’), v»=2%(n'—n). (G2

We now havdrecall thatR= p?]

2m(n'[Fdny= | 2p do(n’|Ay(p.0)In G3

Iout:(n—’_n,)_llza (F12) 7T< | S| > J;) P p< | S(p )| > ( a
1/2 "—n+1/q_

where we approximated™*~(n+n’) "2 in the region of :2(_)n<l> 2 TSy

the (n+n’) ring. Consider now the inner integrakr,: n'! l+s 1+s

Due to the factor “*2in (F5), it is dominated by the region

. \ . oo 2
(0, ry), wherery~n~2is the first zero of ,, (r)[ see Fig. Xf n'-n+1g, exd — 2p
12(a)]; this contributes 0 p p 1+s
: wun' o 427 (G3b)
Iin~n*1’4f “dr r-2-n V4l =12 (F13 nol1-¢?
0

n! 1/2
o _ :%(—)n<—,,) (1-s)

Later oscillations inf,,,,(r) modify the exact value of;,, n:
but not its order im, nor its overall sign. Herd,, is of the
same size a$ ;. Also, we easily see that the sign bf

[which is the same as that ¢f,/ (r<ry)], and the sign of
I out [@lways “plus” since the final hump- r2“e"2] are the
same ifn is even, and opposite if is odd[sincef,,,/(r) has
n zeros between 0 and the final humpor n odd, I, and o ; )

| out Must cancel exactly. We may then surmise that they have Fa(v,s)= J dx x'e” (H2=sX v(x), (G4

the same absolute value also wheis even, and thus expect 0

lnw =2l0u=2(n+n") "% as is indeed the case, from com- This is evaluated in Appendix J. Putting=0, and using
paring with (F10. Thus, the extra factor At-n')"*?in  (33_(340, we get(recall thatn’=n)

(F10, as compared to 2(n’|T'(¢)|n)—€'(™ ~M¢ has the
following origin: (n+n’)~%2 from the extrar * in (F9b),

(1/2)(n" +n)
Fn(v,s), (G390

1-s
1+s

where we denoted

'nr!)llzr(%n-i—%-l—%,un)

roughly equal to §+n’) "2 in the region of the f+n’) 2m(n’|Tg_g[n)=2""" 5 rin i+,

ring; a factor 2 because the inside region contributes the

same as the outside one wheis even[the opposite when (mn=n mod2). (G5

is odd]; another 2 becaug&9) intercepts the ring twicésee

Fig. 8). Puttings=1, and usingJ23 and (K10b), we get
(n'|Tszq|n)y=(n"tn1) "2 (N+1) (G6)

APPENDIX G: NUMBER MATRIX ELEMENTS . . .
as is also immediate from (F1), whereby

The matrix element$n’|Ay(R, 6)|n) were given by Ca- 2a(n’|Ts_y|n)=(n’Inl) "¥2[zdRRYe R=(G6), by (K1).
hill and Glauber in the last equation on page 1881 of RefLet us now obtain larg& approximations: To first order in
[30] (a square root is missing there; theiis minus ours, N1, we have, by(K8),
their a is our 2 Y¥q+ip), and their T(a,s) /
=78d(a—a) [their Eq. (6.13] is our 2wA(q,p) (ﬂ!)lz
=2a[8(9—q)d(p—p)]ls): Forn'=n, n!

1/2

(N+p)! N
~N"(1+35vIN). (G7)

(N—7w)!
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FIG. 13. () The Wigner function of a phase state) the over-
lap of two phase states.

Using this together with (J6), noting that n™”
=(N—»)""=~N""(1+v?N), andn~'~N"1(1+ »/N), we
get

s> (—)"(1-s\N 1
NN (s TS

(G

2m(n’|Tgn)y=1—

Equation(G8) for s=0 ands=1 can also be obtained di-
rectly from (G5) and (G6) by using(K8).

APPENDIX H: NORMALIZED PHASE STATES

Let fe(¢) be defined as in(10.1), and considerby
(5.16]

~ © 2w ~
K(£)=Tr{FS’(<p)}=82fo rdr . do e *"[T(¢)]u(r,6).
(H1)

As £—0, the integralH1) is dominated by large, at which
[T(¢)lw(r,0)~ (60— ), so that we get

K(S)HSZJ‘%I’ dre =1 (g—0). (H2)

0

We may rewrite(10.19 as

[T2(a,p)1w(a,p) =[27/K (&) ]e%e*V¥[T(¢)]u(q,p)
(e—0) (H3)
since, az —0, the factore™*'= e~ *9°¥ djffers from 1 only

at large r, where co$~cosp because[f“(cp)]w(r,a)
~Jd(6— ¢). We obtain, usingB7),

(qlf*(@)|a’y=[qm/K(e)]e2e~(M2ara Vs g p)|q")
(H4)

andK(e) can be expressed as
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K(e)= Tr{fe'up)}:zﬂszf dg e *%(q|T(¢)|a).
(H5)
If f(go)=|<p)(<p|, then the above imply10.4) and (18.7H
with

K(S):ZWSZJ dqsfsq/°0‘°‘9|<q|go>|2. (H6)

Using the asymptotic form(D5), one verifies again that
K(e)—1 ase—0, and we have

1/2
<q|(p>8~(277)1/2q 8e(1/2)sq/cos(,oe(1/2)iq2tan<,o®< a )
COSp COSp
(q—»,e—0). (H7)

APPENDIX I: TRACE SCALAR PRODUCTS
OF PHASE STATES

We here estimate in an intuitive manner “scalar products”
S(@)=TH{2(¢)T'1(0)}

l ~ ~
:Zqu da () Jw(a,p)[I'1(0)]w(a.p),  (11)

Wheref(<p) are phase’ operators. Their Weyl symbols sat-

isfy
h(r;6;0)=[T(¢)1u(r,0)— 80— ) asr—=. (12)

We represenh(r,8;¢) by a ribbon centered on the radius
0=, with an angular widtho(r), hence true width
w(r)=rw(r), depending onr (Fig. 13; the value of
h(r,#;¢), i.e., its “height,” is taken uniform across the
width of the ribbon, and given by
h(r)=w(r) *=rw(r)?! (13)

in order that the integral of the height over a cross section of
the ribbon be equal tg3"d95(#— ¢)=1. We suppose that
w,(r)=w,(r) for all r. Referring to Fig. 1&), we have

2nS(0)~ | “dr () () hy(r), (14)
where the overlap incremen(r)dr is given by
Wl(r)! Osrsra: (ISa)
wo(r)+wy(r
o= MO0 rsrer,, 05D
0, r=ry (I5¢)

wherer ,(¢) andr(¢) are the solutions of

_ Wz(ra)_Wl(ra)

Wz(ra) +Wl(ra)
ra(P 2 1 =

rb(p_ 2 ) (|6)
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[a simple way to getl5b) is to note that the length marked
on Fig. 13b) has the two obvious expressions
Z=W;+W,—v andz=r @+ 3w+ 3W,].

Example 1 Let the (asymptoti¢ widths w;(r)=w; and
w,(r) =w, be independent af [this corresponds, e.g., to the
Cahill-Glauber I';(¢), whose width ~s]. We here have
ra=(Wo—wq)/ o, rp=(w;+w,)/ ¢, hy=r/w,;, so that

2

) frad r2 frbd Wi+ W, r
7S(p)=~ . rw1W1W2+ . r 5 —re WoW,
(I7a)
=f(wy,wy)le| ™t (¢#0), (17b)

wheref(w;,w,) is an algebraic function of little interest. If
we putw;=w,=¢, we haver,=0, r,=¢/¢, and

el
2775(<P)~f dr(e—ro)(rle)®=15e°l¢| % (@+#0).
0
(18)
The zero width Weyl case was treated(ir6.4). Note that if

we replacel’;,(¢) in (16.4 by anormalized(approximate
rotated momentum state

[p°(@)]w(r,0)=2mee *"[8(0— )+ 8(6—@—m)]lr,
(19a)

Tr{ﬁs(so)}:(ZW)*lf:r drdélp(e)]w(r,0)=1,  (19b)

then we get
TH{TW(@ )P (@)} =8¢ — )+ 8(¢'— o—m). (110)

Also, if we replacel’; in (I7) by asmearedotated momen-
tum state of constant true width,
hy(r)=w; * (instead ofr/w;), and we geS(¢)~|¢| 2.

Example 2 w1(r)=w,(r)=yr Y. Herer,=0, while r,
is the solution ofr e=rw(r)=yr'Y, that is,r,=|y/¢|".
Then

2wS(¢)= Lrbdr v(r)h(r)?= fcrbdr(yrl_y—r¢)r2Y/y2
(1119

y

I A PR AE T
Sy Dy

(¢#0),
(111b)

ANTOINE ROYER

then the height

53
27S(@)— (yl4y) el y| ™~
o if Je|<y
0 it lo|>y (y—0, y#0, ¢#0).
(112)

At y=0, corresponding to a wedge of constagular
width vy, of uniform height 14, the value ofS(¢) is obvi-
ously that given on the right di12).

The casey=1, that isw(r)=y/r, corresponds to pure
phase stategsee after Eq(13.6], such as the Susskind-
Glogower POM[see(10.5]. We here get

1
2775(<p)~1—2y|¢/7|72 (¢#0) (113)

in accord with(16.6. [For y>0, i.e., increasing angular
width, our approximate calculation loses its validity; but it is
obvious that sincev,(r) and w,(r) then eventually overlap
asr—o, we haveS(¢)=c for all values ofe.]

APPENDIX J: A SPECIAL INTEGRAL

This appendix concerns the integral

Fn(v,8)= JO dx e (M2A=sixyr| 2v(x), 32

where L (x) are generalized Laguerre polynomials. Since
this integral is likely to come up in various problerise-
sides phaseconcerning the quantum harmonic oscillator, we
give it a more detailed treatment than is strictly required for
our present needs. We use abbreviations sudiG&s8.445

to refer to Eq. 8.445 of Gradshteyn and RyzMi9].

1. Results obtained

We obtain the expressions

2 \"" & (2vn)(—v=1) 2 i
s=( ] (I
(J29
vl 0 —v\[—-v—1
:(ﬁ) V!iZO(“—j>( j )(_)’
1+s\]
XE (J2b

where we started the integration at some arbitrary distance

c=1[the formw(r)=yr 7Y, divergent as —0, only applies
to largerr valued, and neglected théinite) integration con-
stant coming from the lower integration limit[this can be
lumped with the(finite) contribution toS(¢) from regions
near the origih As y—o (zero width, we get
S(@)=~(1lyy)|elyl~*. Asy—0, we get

n+v+1 (n+2V)!
mKn(V-S),

J3

—v+t 1
(-)2 1(1Ts>

whereK,(»,s) has the following equivalent expressions:
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n _ n—k
Kn(v,5)=22""> (n>B(v,v+k+1) 2)
k=o |\ k 2
(J4a
" /n
=(-)"2?(1-9)" X (k)
k=0
s+1)k
XB(n+v—k,v+k+1)| — (J4b
s—1
" /n
=> ( )B(v,o-k)snk (340
k=0 \ k

= fwdq:(sin(p)b*l(1+cos<p)[coap+s]”,
0
(J40

whereB(X,y) is the beta functioriK2), and we denote

(k even

(k odd).
(J9

1 1
sk+3

/.Lk:k mod2, O'k:%(k+ 1+,u.k)=
sk+1

We also get the large approximation

. PV 1 [1+s\"? _,(n+2v)!
v(2v+1+sv)
X 1l-—F
2n
(_)n 1_S n+wv
+ 5n |\ 11s (1=-s)v+---|. (J6)

The form(J23 is that obtained by directly substitutirigf17)
into (J1) and integrating the term by term usirig4) and

103

Fn(y,s): Z{Zn}(l+z)2v+nf dx e7(1/2)(1fs)x—zxxy (376)
0

— Z?{Zn}(l_z)—Zv—ljde e—(l/Z)(l—S)X—Xﬂ(l—Z)XV
0

J7b
=Z{z"}(2v+n)le’z™”
X f dx e MRA=9xg, (2(x2)Y?). (79
0
(a) From (J79 we get, usingK3),
2 v+1 27 —v—1
— | 7N 2v+n
F.(v,s) (1_3) v Z{Z2"(1+2) 1+ 1—s
(J8a

whence we getJ23 on expanding, usingK9) and (K13).
(b) From (J7b, we get, usingK3),

—v—1

(J8b

1+s
1+——z
-S

2 v+1
Fn(V,S)Z(lTS) v 22" (1-2)7" 1

whence we getJ2b on using(K9) and (K13). (c) From
(J79, we get, using (J9b below with B=2zY2 y

=1(1-s), u=pB%8y=2z/(1-59):

_ 1 (n+2p)!

Fn(V,S)ZZ_V+1(1—S) W

oo

1 —z\k
o M a—29(1-9)
X #{z"}e kEO K B(V,O'k)( 1—S> (J89

whence we getJ3-(J49 on expanding the exponential, and
using (K13). We next show thatJ4g and (J4b are both
equal to (J4d: Following Smith, Dubin, and Hennings
[9(b)], we use the representatidii2b) of the beta function,

(K10); it is also obtained by Tanas, Miranowicz, and Gantsogang get

[36]. The forms(J4a and(J4b follow for (323 and(J2b by

use of(K11) and(K2). It is not trivial to pass from one to the
other of the formga), (b), (c), except in special cases: For

instance, one verifies that puttirsg=1 in (J2@ and in(J2b

yields the same resulin (329, we get (*1~1) by (K12),

while in (J2b, only the term j=0 survives, yielding
()"CH=""""Y by (K10b)]. Also, multiplying both
(J29 and(J2b by (1—s)", we get terms ()"} in both

sums, so that =1, only the termg =n survive, yielding
in both cases (% %).

2. Proofs

We denote byZ{z"}A(z) the coefficient ofz" in A(2).
Using the generating function&.18), we have

(J4a:22”+”*1fW/2d¢(cos¢ sing)?" "1 cog¢
0

n _ n—k
DANEES

w2
:znfo 2d¢(sin24)?” Y1+ cos2p)
X[cosp—3(1-5)]"=(J4d),

where we used cos@=2(cosp)’>—1, and putp=2¢. Simi-
larly, we get



104 ANTOINE ROYER 53

(J4h=(—)"(1—s)"22"*1 f;lzd¢(cos¢ sing)2” lcog ¢
s+1\X
s—1

=(1—s)”j0W2d¢(sin2¢)2V‘1(1+0052¢)

XZ

)(sm¢)2<“ K(cosp)?K| —+

sm2¢+ =(J4d.

ST )c052¢

Finally, expanding[ ]" in (J4d, and using(K2), we get
(J40.

3. An integral with a Bessel function

f dx e 7J,,(Bx*?)
0

-\ 112
=%ﬂ<?) e [l —gp(u) =1, q(u)] (J9a
—v k
_18(2'}’)3/25(]})3 v— 1/22 B(V O-k)( ku)
_ B
(@) (990

where(GR 8.445

Ia(u) — e*(l/Z)iﬂn'aJa(e(lIZ)iﬂTu)

S
(2u >Z,|(<ua+),) [ m<argu)=im].

(J10

The result(J93 is given in(GR 6.614.). To get(J9b, we
write

[l 1p(U) =1 (U)]

©

2j
=(bu) 12y (u/2)

jHv+j—3)!

(u/2)2j+1
l(v+j+3)

=(%u>”‘1’2k20 (—ul2)*A(v),

Aw(v)=
(k= 3! T (v+ay)
B 7771/22k I‘(o_k)
kI T(v+oy)
~ 1125k
2 KIT( )B(V YOy
where we wused (E5 to transform &k—3u)!

=7Y%KIT (a) 2.

4. Asymptotic form of K,(»,s)
Kn(v,8)= jo de(sing)?’"Y(1+cosp)(cosp+5s)".  (J1))

As n—x, only the regions¢~0 and ¢~m, where
|cosp+9 may be locally maximungdepending on the value
of s), contribute to low orders im~*. Thus

Kn(v,s)~Joﬂdgo(singo)z”_l(1+C03p)(003p+s)”+(—)”
><Fda(sine)b—l(l—cos9)(coa9—s)“, (12
0

where we put =m— o,
sing=sind, co¥Y=—cosl. Then

and used [jde=[gd6,
Kn(7,8)~D1(S)—Dy(s)+(—)"D2(—s), (13

Di<s>=2f:<p de(¢?)" M (¢?)[cosp+s]" (I14a

sing |21 2v—1
fl<¢2>=(—“’) —1- 2, (314D
@ 6
1/ sing| 271
f2(¢2)=§<7) (1—cosp)=3¢?+---.
(J149
We now expand
n log(cosp+s)=n log(1+s)—t—ng(t/n), (J15a
2(1+s)’
/_2—3/22— 16) 1
g(t/n)= & (t/n)<+ T (t/n)*+
(J15h
We then have
+2s\”
Di(s)=(1+s)" )
xfwdt e 't i, 2Jrzst)e"g“’”)
0
2+2s "
=(1+9)"2'n" T ()f; V*>e”9<V m,
(J16
where we define ) K=T(v+k)/T(v)
=p(v+1)---(v+k). Expanding, we get, to order 1,
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2+2s
n

1

p* ) efng(v*/n)

2v—12+2s
6 n

v [1-n=—0—=—5—

6 n

2—-sv(v+ 1)}

2v2—sp(1—v)
2n

(3173

2+2s
n

2

p* ) efng(v*/n)

(1+s)v

-2
°n +0(n™9)

[1+0(n~ 1]

_(1+S)V
~2n

(317

whence we get

v(2v+1+sv)

Ko(7,8)=(1+8)"""2"n""T'() 5

1_

n+v

(1=9)p+- -

1-s
1+s

+(—)“
2n

(J18

Substituting this ontd@J3), we get(J6).

APPENDIX K: USEFUL FORMULAS

In the following, GR 3.621.5 refers to Eq. 3.621.5 in

Gradshteyn and Ryzhil49].

1. Gamma and beta functions
These are given b{GR 3.621.5, 8.384.1, 8.384.6

F(z)=f:dt 7 le t=(z—1)I'(z—1), I'(z+1)=2! (K1)

CT(OL(Y)

B(x,y)= T(x+y) (K2a)

72
=2 f de(sing)> 1(cosp)?~*
0

(Rex>0, Rgy>0). (K2b)

We will use (K1) in the form(GR 3.381.4
focdx X(l/2)aefyX= ,yf[(1/2)a+l]r(%a+ 1)
0

=y 2 UG a), (K3)

Denotingu,=n mod2[so thatueye=0, togs=1], we have

™ o N Xx+1 n+1
f de(sing)*(cosp)"= u, 1B —
0

“n=n mod2 (K4a)

since sip is symmetric,
o=m/2. It follows that

cog antisymmetric about

foﬂdcmsinsov[(cosp)%(cow)““]

_ % n+ 12+ Mn (Kab)
“Duplication formula” (GR 8.335.},
[(2x)=a Y2217 (x)T'(x+ 2)
k! =771/22k(;)! k_Tl>l (K5)
Stirling’s formula,
I(z)=(2m)Y%Z* Y2 7 1+ L. ., (K6a)
12z

In(n)=%In27+(n+3HIn(n+1)—(n+1)+0(n" 1),
(K6b)

n! %(277)1/2(n+ 1)n+1lze—(n—1)~(277_)1/2nn+1/2e—n,
(K6c)

where the last equality follows from ng1)""%2

=n""Y(1+1/m)""2~n"*1%  For ¢ fixed, we have, to

first order inz™ 1,

2

i
T

€
1+

I[(z+e)=T(2)z° , (K7)

where we expanded in powers o !, noting that

(1+elz)?=g? el =g~ W% Using  then NI
=T'(N+1), we get, to first order ilN"?,
e+e?
(N+e)l =NIN°| 14+ — |, (K8a)
(N+¢g)! 26 /N 2
— £nE | o) = 1)2ae“/N
(N=o)] N<fe®™ (N+e&)!(N—g)!=(N!)“e® '™,
(K8b)
where we noted thatN+1)*=N?(1+&/N).
2. Binomial expansion
'
(1+2)*=> | _|2", (K9)
n=0\N
where the binomial coefficients satisfy
X X!
= e—— I:
k= Kx—=R1” x!'=T(x+1), (K10a)
—x)_ (=) () (x=1+)) j(x—lﬂ'
i) x=pt T ix=1)! j
(K10b)
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Xx+y—1 X+y—1 a+n
71: = ll J
B(x,y) '=x y—1 ) Y| g ) (K11) Le(x)= 120 nj (K17)
n
Xty . .
= , enerating function .97,
2 ( )( _J) . (K12)  Generating functionéGR 8.975
where (K12) follows from expanding "
X+y__ X y H
(1+2) (1+2)*(1+2)?, and using (1+z)7e*"z=2 2L %) (|z<1), (K18a)
=0
(E aizi)<2 bkzk)zz ">, ab,;. (K13)
=0 k=0 n=0 j=0 %
(1-z) e 2=3 2'Lix) (7<),
. . . n=0
3. Poisson distribution (K18b)
We obtain a large approximation for
1 - n
— _—_yNa—X 12yaz —al2_ I B4
Pa(x)= —x"e”%. (K14) J.2(x2)Y)e*(x2) n§=)o FnrarD o™

This is maximum at &dP,/dx=(nx""1—x"e™, i.e., at
x=n. We now expand IR,(x) in powers ofn~1, neglecting
terms of ordem™! and smaller. We first expand

Inx=n | (x—n)*
n Inx=n Inn+(x—n)— N
(x—n)*
+ T +... (K15)

SinceP,(x) ~exd —3(x—n)?/n], we see thatX—n) has a
dispersion~n'?, so is of orden'?

the expansion(K15), terms &—n)k"/nk~n=K"2 for

. We therefore neglect, in

(a>—1), (K180

wherelJ,, is a Bessel function. Asymptotic forGR 8.978,

Lﬁ(X) ~ 7T—l/2n(1/2)a— 1/4e( 1/2)XX—(1/2)a— 1/4 COE{ 2( n X) 1/2

—sam—;m]+0O(nt2e"34 (K19)

for n l<x<xm, wherex,, is given by 26x,)Y?>~nm, i.e.,

k=3, which areO(n~!). Using then Stirling’s formula X~ .

(K6b), we obtain

(x—m)? (x—n)°
~ —1 _
Pn(X)=~(27n) Zex;{ on T 3
+0(n™ Y (K16a)
%(277_”)71/2[e7(1/2)(xfn)2/n+O(n71/2)]‘ (K16b)
4. Laguerre polynomials
The Laguerre polynomials are given by
0 (n odd
en(0)= —1/4( )n/2(n|)1/2
2n/2( n)'

—1/2( )n/2(2/n)1/4 (n even, n—>OO)

5. Harmonic oscillator eigenkets

We have the generating functi¢g0]

124 212\ x—1)2]= E A"(n!) ™ Y20, (x),
(K20)

—-1/4 EXF[

where ¢@,=(x|n) are the eigenfunctions of H

=3[x2—(d/dx)?]. Puttingx=0, we find

(K21)

where we usedK6). The momentum eigenfunctions are deduced by ugi®y: We thus havép=0|n)~ = Y4(2/n)¥* for n

even and large.
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