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Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are
analyzed and the single-particle density of states for different self-adjoint extensions is calculated. The single-
particle density of states is shown to be a symmetric and periodic function of the flux, which depends only on
the distance from the nearest integer. The Krein-Friedel formula for this long-range potential is shown to be
valid when regularized with thez function. The limit when the radiusR of the flux tube shrinks to zero is
discussed. ForRÞ0 and in the case of an anomalous magnetic momentgm.2 ~note, e.g., that
gm52.002 32 for the electron! the coupling for spin-down electrons is enhanced and bound states occur in the
spectrum. Their number does depend on a regularization and generically does not match with the number of
zero modes in a given field that occur whengm52. Provided the coupling with the interior of the flux tube is
not renormalized to a critical one, neither bound states nor zero modes survive the limitR→0. The Aharonov-
Casher theorem on the number of zero modes is corrected for the singular field configuration. Whenever a
bound state does survive theR→0 limit it is always accompanied by a resonance. The presence of a bound
state manifests itself in the asymmetric differential scattering cross section that can give rise to the Hall effect.
The Hall resistivity is calculated in the dilute vortex limit. The magnetic moment coupling and not the spin is
shown to be the primary source for the phase-shift flip that may occur even in its absence. The total energy of
the system consisting of particles and field is discussed. An application to persistent currents in the plane for
both spinless and spin one-half fermions is given. Persistent currents are also predicted to exist in the field of
a cosmic string. The second virial coefficient of anyons with a short-ranged-function interaction is calculated.
The coefficient is shown to be remarkably stable when such an interaction is switched on. Several suggestions
for new experiments are given.

PACS number~s!: 03.65.Bz, 03.80.1r, 05.30.2d, 73.50.2h

I. INTRODUCTION

In this paper we will report on several physical phenom-
ena and calculate several quantities in the presence of the
Aharonov-Bohm ~AB! potential @1#, which, in the radial
gauge, is given by

Ar50, Aw5
F

2pr
5

a

2pr
F0 . ~1!

Usually,F5aF0 is the total flux through the flux tube and
F0 is the flux quantum,F05hc/ueu. The AB potential will
be considered here in a more general sense since formally the
same potential~of nonmagnetic origin! is generated around a
cosmic string. The parameterF is then 1/QHiggs,
a5e/Q Higgs, andF052p/e in the units\5c51 with e
andQHiggs being, respectively, the charge of a test particle
and the charge of the Higgs particle@2#. Experimentally, the
situation of an infinitely thin flux tube is realized when a flux
tube has a radiusR which is negligibly small when compared

to all other length scales in the system. Therefore, both a flux
tube with a nonzero and the zero radius will be considered.
In the case whereR.0, we shall allow generally for some
additional interaction inside a flux tube, since such an inter-
action arises, for example, in the case of the magnetic mo-
ment coupling. The limitR→0 will then depend on the
physics inside the flux tube. In a rigorous mathematical
sense, different physics inside the flux tube will be described
by different Hamiltonians given as a certain self-adjoint ex-
tension of a formal differential operator.

First we shall concentrate on the calculation of the single-
particle density of states~DOS!. The reason is that the DOS
is the quantity of basic interest and provides an important
link between different physical quantities. Knowledge of the
DOS determines@via the Laplace transform, see Eq.~140!
below# the partition functionZ(b), virial coefficients, and in
the case of the Dirac equation a relation between effective
energy, induced fermion number, and the axial anomaly
@3,4#. It has been used@5# to calculate the persistent current
of free electrons induced in the plane by the AB potential@6#.
The DOS will be calculated in two different ways: first, di-
rectly through the resolvent and second, by only using the
scattering properties of the AB potential. After the DOS and
differential scattering cross sections are calculated, various
applications are discussed.

The plan of the paper is as follows. We shall start with the
case of the impenetrable flux tube when the flux tube is ex-
terior to the system. In Sec. II the basic facts about the non-
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relativistic AB scattering in this case are summarized. There
are neither bound states nor zero modes and the DOS is
determined solely in terms of the continuous spectrum. The
single-particle DOS is calculated there directly from the re-
solvent. One finds that for integera resolvents do differ by a
phase factor. However, when the arguments coincide they are
identical and they do have the same trace and yield a DOS
identical to that in free space. We shall confirm the expecta-
tion of Comtet, Georgelin, and Ouvry@7# that the change of
the DOS is concentrated at the zero energy@see Eq.~22!
below#.

Different self-adjoint extensions in the case of a pen-
etrable flux tube are discussed in Sec. III. Let the coupling
constant be negative,e52ueu. Then different self-adjoint
extensions arise because, in the channelsl52n and
l52n21, wheren is the integer part ofa, there are two
linearly independent square integrable at zero solutions of an
eigenvalue equation. These two channels are also the only
two channels where a bound state can occur. Bound states
are shown to parametrize different self-adjoint extensions
and the change in the conventional phase shifts. Calculation
of the changen l is reviewed. Knowledge of the phase shift
is then used in Sec. IV to calculate theSmatrix and scatter-
ing cross sections. TheSmatrix is shown to depend nontrivi-
ally on a and not to be a periodic function ofa. Neverthe-
less, theS matrix gives rise to differential and transport
scattering cross sections which are periodic functions ofa
with period 1. In the presence of a bound state, one finds in
contrast to the case of the impenetrable flux tube that the
differential scattering cross section ceases to be symmetric
with respect to the substitutionw→2w @see Eq.~63!#, where
w is a scattering angle. The asymmetry is easy to understand
because~for a>0) bound states are only formed in the chan-
nels for which l<0. The results are then used in Sec. V
where the validity of the Krein-Friedel formula@8,9# for the
DOS is established for a singular potential. It is shown that
the Krein-Friedel formula when regularized with thez func-
tion gives the correct DOS. This enables us to calculate the
DOS for different self-adjoint extensions. The Krein-Friedel
formula gives the DOS as the sum over phase shifts@see Eq.
~66!# and thereby relates the DOS directly to the scattering
properties. It is therefore very useful to have its extension to
singular ~especially Coulomb! potentials. One finds that
whenever a bound state is present in the spectrum it is al-
ways accompanied by aresonance@Eq. ~72!#. Rather surpris-
ingly, the shape of the resonance@given in Eq.~73!# is notof
the Breit-Wigner form. Since the latter is a direct conse-
quence of analyticity it poses an interesting question on the
analytic structure of scattering amplitudes for singular poten-
tials. The existence of theresonanceis quite unexpected. It
will influence the transport properties of electrons in the cur-
rently almost accessible experimental regime@10#, and the
persistent current of free electrons in the plane@5#. In the
limit of a zero energy bound state the resonance goes to zero,
too, where it merges with the bound state into the continuous
spectrum leaving behind the phase-shift flip.

In Sec. VI the calculation of the number of bound states
for a flux tube of finite radiusRÞ0 is given. The situation is
considered where a short-range potential is placed inside the
flux tube. The motivation is that vortices that can be realized
in real experiments, such as in a superconductor of type II,

definitely do have a nonzero radius. Another realistic realiza-
tion of the penetrable flux tube is that suggested originally by
Rammer and Shelankov@11# and later realized experimen-
tally by Bending, Klitzing, and Ploog@10#, i.e., to put a type
II superconducting gate on top of the heterostructure contain-
ing the two-dimensional electron gas~2DEG! ~see Fig. 1!.

When a magnetic field is switched on, the conventional
superconductor is penetrated by vortices of flux witha51/2.
Therefore, electrons from the heterostructure do not move in
the homogeneous magnetic field but in the field of a pen-
etrable flux tube. Electrons can penetrate to their core, in
which case the potential arises as the result of the magnetic
moment coupling. If the gyromagnetic ratiogm is less than 2,
gm,2, the coupling with magnetic field is not sufficiently
strong to form bound states. If the gyromagnetic ratiogm is
exactly equal to 2~i.e., the magnetic moment is not anoma-
lous! zero modes may occur in the spectrum@12,13#. Their
number equals, respectively,n21 or n, wheren is the inte-
ger part ofa, depending on whether or not the flux is an
integer. There is no zero mode fora<1 @12,13#. In the re-
gion gm.2, i.e., exactly where the gyromagnetic ratio of
electron (gm52.002 32) lies, the coupling with magnetic
field is enhanced and bound states do occur. In contrast to
zero modes@12#, one finds that the number of bound states
doesdependon a regularization. For example, in the case of
the cylindrical shell regularization@14# their number is gen-
erally higher than for the homogeneous field regularization
@see Eq.~104!#. The differences are attributed to the different
energies of magnetic field inside the flux tube. In any case,
however, the number of bound states does not match with the
number of zero modes. The question about the existence of a
bound state in thel52n21 channel is discussed. Although
generically it is true that only one bound state is present for
0,a,1, provided 12a is sufficiently small, the second
bound state does appear~cf. Ref. @15#!.

An interpretation of different self-adjoint extensions and
the R→0 limit are studied in Sec. VII. The existence of a
critical coupling is established. In the case of the magnetic
moment interaction with the interior of the flux tube, the
critical coupling corresponds to the case of the normal mag-
netic moment with the gyromagnetic ratiogm52. Provided
the coupling with the interior of the flux tube is weaker,
bound states do not form at all. If the coupling is stronger
than the critical value, then, although bound states do exist

FIG. 1. Black layer is a superconductor of type II put on top of
the heterostructure containing the two-dimensional electron gas
~shaded region!. Homogeneous magnetic field can only penetrate
the superconductor in Abrikosov vortices. Therefore, electrons in
the inverse layer of the heterostructure do not move in the homo-
geneous magnetic field but in the field of a penetrable flux tube.
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for anyRÞ0, theydisappearin the limit R→0. Although it
might seem surprising at first, the fact is a translation of the
result of Berezin and Faddeev@16# established more than 30
years ago that the nontrivialR→0 limit of a potential for-
mally given by the Dirac delta functiond(r ) requires a
renormalizationof the coupling with the interior of the flux
tube~see Ref.@17# for more details!. Reference@18# provides
some other examples when one encounters the necessity of a
renormalization in the quantum mechanics. At first sight the
renormalization might seem to be artificial and only a math-
ematical obscurity. However, one knows that the anomalous
magnetic moment always has a form factor that does depend
on the energy@19#. Therefore, in the realistic situation the
renormalization is provided by nature itself.

The point spectrum@20# at the critical coupling is also
considered. One finds that in the limitR→0 there are no
zero modes in the AB potential for anya. The Aharonov-
Casher and the index theorems@12,13,21# are corrected in
the sense that they do not give, respectively, the actual num-
ber of zero modes in a given finite-flux background but
rather an upper bound. In the presence of a singular field
configuration such as the AB potential, the square integrabil-
ity of solutions must also be checked at the position of a
singularity of the field. It is shown that at such a point the
square integrability fails. Another argument showing why it
happens is to note that the only two channels in theR→0
limit where the spectrum can differ from the conventional
one arel52n and l52n21. However, forRÞ0, zero
modes@see Eq.~90!# only occur in channels 0> l>2n11,
and hence they are never present in those described above.

In the presence of a bound state the conventional phase
shift ~7! acquires a generally energy dependent contribution
~37!. In the limit R→0 bound states are possible in two
different channels,l52n and l52n21. However, when
RÞ0, the bound state does not occur generally in the
l52n21 channel. Therefore, it is natural to expect that the
phase-shift flip occurs generally only in thel52n channel.
According to this discussion the conditions for the occur-
rence of the phase-shift flip given by Hagen@14# are neces-
sary but not sufficient. Moreover, since the origin of the at-
tractive potential inside the flux tube can be arbitrary, our
calculation shows@Eqs. ~35! and ~70!# that the phase-shift
flip occurs even in the absence of the spin. Also, in the case
of particles with a spin it is not the spin but the magnetic
moment coupling that is the primary source for the phase-
shift flip. A nice interpretation of the phase-shift flip appears
if the bound state energy is renormalized to zero. The phase-
shift flip then occurs as the result of merging the bound state
and the resonance into the continuous spectrum. Although
the observation of the phase-shift flip is usually attributed to
Hagen@14#, it was observed earlier in a complementary situ-
ation: in the scattering of a general two-dimensional mag-
netic field satisfying the finite-flux condition in the long-
wavelength limit~see Ref.@21#, pp. 437 and 438!. A duality
can be observed@see Eq.~111!#, important from the experi-
mental point of view. Imagine two flux tubes with different
radii which are otherwise negligibly small when compared to
other length scales in the system. Then the scattering prop-
erties of the flux tube with a radiusR1 at momentumk1 are
the same as that of radiusR2 at momentumk2 , provided that
k1R15k2R2 .

Starting with the next section, applications to the total
energy of the system~particles and a magnetic field!, the
Hall effect, a persistent current, and the second virial coeffi-
cients are considered. We shall show that our results are not
only of academic but also of practical interest thanks to the
recent developments in the fabrication of microstructures and
in mesoscopic physics~see Ref.@23# for a recent review!.
The total energy of the system and its stability against mag-
netic field creation are discussed in Sec. VIII. In general, the
diamagnetic inequality@24# tells us that that the matter is
stable. The latter was proven under the assumption of mini-
mal coupling that implicitly assumes a normal magnetic mo-
ment. In our calculations we shall allow for speculation that
the magnetic moment is independent of momenta. We shall
ignore the fact that the anomalous magnetic moment has a
form factor that vanishes at high momenta. Under these hy-
potheses one can show that in the nonrelativistic case in
211 dimensions, a window may exist for the magnetic mo-
mentgm.2 in which the inequality isviolated. The reason is
the formation of bound states that decouple from the Hilbert
space by taking away negative energy. Although the dynam-
ics, return fluxes, and the form factor must all play an im-
portant role in the full~quantum-field theory! discussion of
the stability, our relation~114! is nevertheless interesting be-
cause it gives the stability condition in terms of the ratio of
the rest and the electromagnetic energies.

In Sec. IX we shall examine consequences of the asym-
metry of differential scattering cross sections. The asymme-
try has important consequences as it gives rise to the Hall
effect. The Hall resistivity is then calculated in the dilute
vortex limit @see Eq.~118!#, i.e., when the multiple-scattering
contribution is ignored. In Sec. X the results are applied to
the persistent current of free electrons in the plane pierced by
a flux tube. Both the spinless and the spin one-half cases are
dicussed. The above mentioned resemblence between the
electromagnetic AB potential and the field produced by a
cosmic string@2# will enable us to conclude that the persis-
tent current might appear in the latter case, too. Once again
condensed matter physics both gives the motivation and pro-
vides a test laboratory for a phenomenon that can occur at
different length scales in the Universe. Finally, in Sec. XI,
the second virial coefficient of anyons interacting with a
pairwise interaction proportional to the Diracd function is
calculated. Note that such an interaction appears in the non-
relativistic limit of planar field theories@25,26#. It will be
shown that the second virial coefficients are remarkably
stable when the interaction is switched on. The calculation is
performed directly in the continuum without any use of the
customary devices that makes the energy levels discrete,
such as a finite box@27# or harmonic potential regularization
@7,28#. We shall show that the use of thez-function regular-
ization reproduces the correct answer for the second virial
coefficients of noninteracting anyons@7,27#, and generalizes
results of Blumet al. @28# for nonrelativistic spin one-half
anyons.

Note that one has the unitary equivalence between a spin
1/2 charged particle in a two-dimensional~2D! magnetic
field and a spin 1/2 neutral particle with an anomalous mag-
netic moment in a 2D electric field@29#. In our presentation
we confine ourselves essentially to the nonrelativistic Schro¨-
dinger and Pauli equations. The results for the Dirac and the
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Klein-Gordon equations, the induced fermion number, the
relation between the phase-shift flip and the axial anomaly,
and the DOS in the spacetime of a gravitational vortex in
211 dimensions@30# are discussed elsewhere@4#. For the
problems related to the gauge transformations that are not
discussed here we refer to the review of Ruijsenaars@31#.

II. IMPENETRABLE FLUX TUBE
AND THE DENSITY OF STATES

Let us start with the nonrelativistic case and an impen-
etrable flux tube. We shall consider the Pauli Hamiltonian,

H5

S p2
e

\c
AD 2

2m
2m̂•B, ~2!

where m̂5m ŝ/s is the magnetic moment operator,ŝ is the
spin operator, ands is the magnitude of the particle spin. For
an electronme52gmueu\/4mc52mBgm/2, wheremB is the
Bohr magneton andgm is the gyromagnetic ratio that char-
acterizes the strength of the magnetic moment@19#. Naively,
gm52 but one knows that within quantum electrodynamics
me acquires radiative corrections which depend on the fine
structure constanta QED (51/137). Within this framework
we have@see Eq.~118.4! of Ref. @19##

me5
e\

2mcS 11
a QED

2p
20.328

a QED
2

p2 D . ~3!

By separating the variables and assuminge52ueu, the total
Hamiltonian is written as a direct sum,H5 % lHl , of channel
radial HamiltoniansHl in the Hilbert spaceL2@(0,̀ ),rdr #
@1,31#,

Hl52
d2

dr2
2
1

r

d

dr
1

n2

r 2
1gm

a

r
szd~r !. ~4!

Heren5u l1au, a is the total fluxF in the units of the flux
quantumF05hc/ueu, and sz561 is the projection of the
spin on the direction of the flux tube@1,31#. The Schro¨dinger
equation is recovered upon settingsz50.

In the case of the impenetrable flux tube the spectra of
both the Pauli and the Schro¨dinger equations are identical.
Let us first consider the conventional setup where wave func-
tions are zero at the position of the flux tube. There are
neither zero modes nor bound states in this case, as they are
incompatible with the boundary conditions. To discuss the
spectrum, note that for positive~negative! energies the eigen-
value equation in thel th channel reduces to the~modified!
Bessel equation of the ordern5u l1au,

Hlc l5k2c l , ~5!

with k5A2mE/\. The boundary condition selects only
regular solutions at the origin and the ‘‘spectrum’’ is given
by

c l~r ,w!5Ju l1au~kr !e
il w. ~6!

Generally, specifying the boundary conditions at infinity~or
at zero! is necessary only for thosel for which all solutions

of ~5! are square integrable at infinity~or at zero!: the so-
called limit circle case~see Ref.@32#, p. 152!. In general,
square integrability takes the place of boundary conditions at
infinity ~or at zero! if one of the solutions of~5! is notsquare
integrable at infinity~or at zero!: the so-calledlimit point
case~see Ref.@32#, p. 152!. From the rigorous point of view,
one can speak about an impenetrable flux tube only provided
that a is not an integer. Then all wave functionsc l ~6! are
zero at the origin. SinceJ0(0)51, this is not the case for a
flux tube with an integer flux and the physics may be differ-
ent from that in free space. In what follows, we shall ignore
this subtlety, and assume that thel50 channel wave function
c l ~6! is in the spectrum, and even in this case we shall call
the flux tube an impenetrable flux tube.

The AB potential~1! is long-rangedand the conventional
phase shiftsd l ’s @1#,

d l5
1
2p~ u l u2u l1au!, ~7!

are singular: they do not depend on the energy and do not
decay to zero forE→`. Relation~7! can be intuitively un-
derstood as follows. The AB potential creates ‘‘vorticity’’
2a, and positive and negative angular momentum wave
functions ‘‘go around’’ the origin, respectively, in the coun-
terclockwise and the clockwise directions@31#.

The DOS will be calculated directly from the resolvent
~the Green function! Ga(x,y,E1 i e) according to the for-
mula

ra~E!52
1

p
Im TrGa~x,x,E1 i e!. ~8!

The integrated density of statesNa(E) is then as usual given
by

Na~E!5E
2`

E

ra~E8!dE8. ~9!

The eigenfunction expansion for the resolvent in polar coor-
dinatesx5(r x ,wx) is @33#

Ga~x,y,E!5
m

p\2E
0

` kdk

q22k2

3 (
l52`

`

eil ~wx2wy!Ju l1au~krx!Ju l1au~kry!.

~10!

By using Eq.~8!, one can check that the resolvent~10! gives
the two-dimensional free density of states
r0(E)5(m/2p\2)V for a5nPZ, i.e., whena is an integer,
with V5*d2r being the infinite volume. In the latter case,
the sum in Eq.~10! can be taken exactly by means of Graf’s
addition theorem~Ref. @34#, relation 9.1.79!,

(
l52`

`

eil ~wx2wy!Ju l1au~krx!Ju l1au~kry!

5e2 in~wx2wy!J0~kux2yu!. ~11!
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By taking the integral in Eq. ~10! ~assuming that
q25q21 i e, andr x,r y) one finds

E
0

` kdk

q22k2
J0~kux2yu!52 i

p

2
H0

~1!~qux2yu!. ~12!

Therefore,

Gn~x,y,E!52 i
m

2\2e
2 in~wx2wy!H0

~1!~qux2yu!. ~13!

One can also perform the integral

E
0

` kdk

q21 i e2k2
Jn~krx!Jn~kry!52

p i

2
Jn~qrx!Hn

~1!~qry!

~14!

first and then take the remaining sum with the same result
~13!. Note that Eq.~14! is also valid for nonintegraln. The
Bessel functions are analytic functions and the integrals in
Eqs. ~12! and ~14! are taken simply by the residue theorem
by using a suitable contour in the complex plane~see Fig. 2
and Appendix A!.

From the ‘‘formal scattering’’ point of view, taking the
residue atk5uqu1 i e corresponds to choosing outgoing
boundary conditions. From the point of view of
L2@(0,̀ ),rdr #, it corresponds to taking the boundary value
of the resolvent operator on the upper side of the cut at
@0,̀ ) in the complex energy plane@35#. Note that

G l
1~x,y,E!52 i

m

2\2e
il ~wx2wy!Jn~qrx!Hn

~1!~qry! ~15!

is the resolvent ofHl in theupper halfof the complex plane
of q @35#. Jn(qrx) is square integrable~in the measurerdr !
near the origin, andHn

(1)(qry) is square integrable near in-
finity. Obviously, the resolvent is not defined for real positive
q since there is no solution of the Bessel equation that is
square integrable at infinity for suchq @35# ~see also asymp-
totic formulas in Appendix B!. The point spectrum in a strict
sense is empty. The spectrum is purely continuous and lies
on @0,̀ ) where the partial resolventG l

1 ~the Fourier trans-
form of the retarded Green function! has a cut@35#. The

partial resolventG l
2 in the lower half of the complex plane

~the Fourier transform of the advanced Green function! is the
complex conjugate ofG l

1 @35#,

G l
2~x,y,E!5 i

m

2\2e
2 i l ~wx2wy!Jn~qrx!Hn

~2!~qry!. ~16!

Note that the total Green functionGn(x,y,E) in the presence
of an integer flux nÞ0 @see Eq. ~13!# differs from
G0(x,y,E) by a phase factor. However, to calculate the DOS
one needs the value ofGn(x,y,E) at wx5wy and hence the
result for the integer flux will be the same as ata5n50.
The limiting value of the resolvent operator on the lower side
of the cut is the complex conjugate of~13!, the discontinuity
across the cut

Gn~x,x,E1!2Gn~x,x,E2!52 i ~m/\2!, ~17!

and

2~1/p!ImGn~x,x,E1!5m/~2p\2! ~18!

which confirms our normalization.
Whenevera¹Z, Graf’s theorem cannot be used. To pro-

ceed further with this case we use the fact that~14! has an
analytic continuation on the imaginary axis in the complex
momentumplane

E
0

` kdk

q21k2
Jn~krx!Jn~kry!5

p i

2
Jn~ iqr x!Hn

~1!~ iqr y!

5I n~qrx!Kn~qry!, ~19!

whereI n andKn are modified Bessel functions@34#. One can
obtain this result either by performing the integral directly or
by performing the analytic continuation in~14!. To sum over
l one uses the integral representation of these functions
@32,34#. Following the steps given in Ref.@37# one can sepa-
rate thea-dependent contribution

DGa~x,x,E!5Ga~x,x,M !2G0~x,x,M !

52
m

\2

sin~hp!

~2p!2
E

2`

`

dq

3E
2`

`

dve2Mrx~coshq1coshv!
eh~q2v!

11eq2v ,

~20!

whereM52 iA2mE/\ andh is the nonintegral part ofa,
0<h,1. After taking the trace over spatial coordinates, us-
ing formulas 3.512.1 and 8.334.3 of Ref.@36# ~see Appendix
A!, and returning back to the real momentum axis, one fi-
nally finds

TrDGa~x,x,E!52h~12h!
1

2E
• ~21!

Hence, the changeDra(E)5ra(E)2r0(E) of the DOS in-
duced by the AB potential in thewhole spaceis concentrated
at zero energy where it is proportional to thed function,

FIG. 2. Contours of integration in the complex plane.
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Dra~E!52
1

p
Im TrDGa~x,x,E1!52 1

2h~12h!d~E!.

~22!

This result is similar to the result~137! that was obtained in
the context of anyonic physics@7# ~see also Sec. XI below!.
The same term has been obtained by Berry@38# as the lead-
ing term in the semiclassical approximation to the change of
the DOS for the AB ~circular, heart shaped, and Africa
shaped! quantum billiards. Thereby, the semiclassical ap-
proximation turns out to be exact in theR→` limit, whereR
is the characteristic length of the billiards.

Let us now take the case wherea is negative and of the
form a52n2h<0 wheren>0 is a positive integer and
h ~the fractional part ofa) satisfies 0<h,1. One can
readily repeat the same procedure to obtain the change in the
DOS. The result is exactly the same as in~22!,

Dr2a~E!5Dra~E!52 1
2h~12h!d~E!. ~23!

Therefore,Dra(E) as a function ofa is a symmetric func-
tion under the transformationa→2a. Moreover, one can
show thatDra(E) as a function ofa is only a function of a
distance from the nearest integer. Indeed, under the substitu-
tion

h8512h ~24!

one finds thatDra(E) is form invariant, namely,

Dra~E!52 1
2h~12h!d~E!52 1

2h8~12h8!d~E!. ~25!

III. PENETRABLE FLUX TUBE
AND SELF-ADJOINT EXTENSIONS

Physically, self-adjoint extensions in the presence of an
Aharonov-Bohm potential can be understood as follows. In
channels withu l1au.1, one has a unique choice for the
resolvent ofHl in L2@(0,̀ ),rdr #. Apart from Ju l1au(kr),
there does not exist any other linearly independent solution
of Eq. ~5! which is square integrable at the origin. Similarly,
apart fromH u l1au

(1,2) (kr), there does not exist any other linearly
independent solution of Eq.~5! which is square integrable at
infinity in the upper~lower! complex half-plane ofk. In this
case, the HamiltonianHl is said to be in the limit point case
at both infinity and the origin@32#, and the square integra-
bility takes the place of boundary conditions. An ambiguity
in defining the resolventG l

6@see Eqs.~15! and ~16!# of Hl

arises only in the channels withu l1au,1, i.e., with
l52n,2n21. There are exactly those values ofl for which
Eq. ~5! has two linearly independent~and hence all! square
integrable at the origin solutions. These solutions can be
taken to beJu l1au and J2u l1au . Then, if Ju l1au(qrx) is re-
placed in either~15! or ~16! by any linear combination of
Ju l1au(qrx) andJ2u l1au(qrx), one obtains a well defined re-
solvent ofHl . To any particular choice of the linear combi-
nation corresponds a particular self-adjoint extension of
Hl . For these values ofl , the AB potential is said to be in
the limit circle case at zero~see Ref.@32#, p. 152!, and
boundary conditions at the origin must be specified to define
a resolvent uniquely.

From the formal mathematical point of view the above

discussion is repeated as follows. Formal differential opera-
torHl in L

2@(0,̀ ),rdr # is real and hence commutes with the
involution operator~complex conjugation! in the Hilbert
space. Therefore, by the von Neumann theorem~see Ref.
@32#, p. 143!, whenHl is defined as a symmetric operator on
a dense set inL2@(0,̀ ),rdr # such asC0

`(0,̀ ) ~the set of
infinitely differentiable functions that are zero at the origin
and decay exponentially at infinity! it always can be ex-
tended to a self-adjoint operator. According to theorem X.11
of Ref. @32#, except for the channels withu l1au,1, the
operators Hl are already essentially self-adjoint on
C0

`(0,̀ )@ their deficiency indices are (0,0)#. Only the opera-
tors Hl with u l1au,1, i.e., with l52n,2n21, admit a
nontrivial one-parametric family of self-adjoint extensions
@31,35# ~their deficiency indices are (1,1)@31#!. Therefore, in
these two cases the Hamiltonian as a self-adjoint operator in
the Hilbert space is not defined uniquely. Different self-
adjoint extensions give different Hamiltonians which corre-
spond to different physics inside the flux tube and different
boundary conditions at its boundary~see an example in Ref.
@32#, pp. 144 and 145!.

To identify the particular self-adjoint extension one starts
with the finite flux tube of radiusR and takes the limit
R→0 ~see Sec. VII!. We shall consider the situation with
bound states of energyEl52(\2/2m)k l

2 in the l52n and
l52n21 channels, and withn5@a# denoting the nearest
integer smaller than or equal toa. This happens when a
sufficiently strong attractive short-range potential is placed
inside the flux tube. In the nonrelativistic case for spin-down
fermions this is the case when their magnetic moment ex-
ceeds the value 2, such as in the case of the electron which
hasgm52.002 32@4,39#. For negative energy, the eigenvalue
equation withHl leads to the modified Bessel equation and
the wave function is given by

Bl~r ,w!5K u l1au~k l r !eil w. ~26!

K u l1au(k l r ) decreases exponentially forr→` and for
u l1au,1 it is in L2@(0,̀ ),rdr #, although it is singular at
the origin ~see Appendix B!. Nevertheless, if we want the
bound state to be in the Hilbert space the scattering states~6!
in the channelsl52n and l52n21 have to be modified.
They become a combination of the regular and singular
Bessel functions,

c l~r ,w!5@Ju l1au~kr !2AlJ2u l1au~kr !#e
il w. ~27!

This is becauseHl has necessarily to be a symmetric opera-
tor. This means that the radial partsx(r ) of any two states
c1(r ) andc2(r ) in the Hilbert space have to satisfy

r @] rx1* ~r !x2~r !2x1* ~r !] rx2~r !#5rW@x1* ,x2#→0 ~28!

in the limit r→0, whereW[,] denotes theWronskian. The
condition ~28! is nothing but the boundary condition at the
origin: in the limit r→0 the logarithmic derivative
rx8(r )/x(r ) of any state in the given Hilbert space takes a
fixed value @40#. This is a translation of the mathematical
analysis in terms of deficiency indices@31# into more physi-
cal terms. Obviously, the Wronskian will vanish when the
asymptotic forms forr→0, up to orderO(r ), of any two
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states are identical. For the general scattering solution~27!
for 0,n,1 one has~see Appendix B!

Jn~kr !2AJ2n~kr !;2
A

G~12n! F S kr2 D 2n

2
1

A

G~12n!

G~11n! S kr2 D nG1O~r 22n!.

~29!

The asymptotic form of~26! is then determined by that of
Kn(z) @see Eq.~B4! of Appendix B#

Kn~z!; 1
2G~n!F S z2D

2n

2
G~12n!

G~11n! S z2D
nG1O~z22n!. ~30!

Therefore, the condition~28! determinesAl in the channels
l52n and l52n21 to be

A2n5~k/k2n!
2h5~E/uE2nu!h,

A2n215~k/k2n21!
2~12h!5~E/uE2n21u!12h, ~31!

i.e.,energy dependent. According to~27! and~31! the bound
state energy determines the spectrum ofHl in the Hilbert
space that is different for different bound state energies.
Therefore, in physical terms, it is the bound state energy that
parametrizes different self-adjoint extensions.

Quite surprisingly, the influence of the bound state on the
wave function~27! is most pronounced in the limitEb→0.
ThenAl→` and the regular wave function changes to the
singularone,

c l~r ,w!5Ju l1au~kr !e
il w→c l~r ,w!5J2u l1au~kr !e

il w. ~32!

On the other hand, in the limit of a bound state with infinite
bound energy,Al→0 and

c l~r ,w!5@Ju l1au~kr !2AlJ2u l1au~kr !#e
il w→c l~r ,w!

5Ju l1au~kr !e
il w. ~33!

By using the formula~9.2.5! of Ref. @34# one finds that the
radial part of the general solution~27! behaves forr→` as
follows:

Rl~r !;const3S e2 ikr1
12Ale

ipu l1au

12Ale
2 ipu l1au e

2 ip~ u l1au11/2!eikr D .
~34!

By comparing with its behavior fora50 one finds thel th
channel Sl matrix to be Sl5e2id l with

d l5d l~E!5 1
2p~ u l u2u l1au!1D l~E!. ~35!

The changeD l5D l(E) of the conventional phase shift~7! is
determined by the equation

e2iD l5
12Ale

ipu l1au

12Ale
2 ipu l1au , ~36!

with the solution given by

D l5arctanS sin~ u l1aup!

cos~ u l1aup!2Al
21D . ~37!

Here we have tacitly assumed thatAl→0 ash→0. For the
discussion of this point see the end of Sec. VI. Note that
when the bound state energy is changed,Eb→Eb8, and con-
sequentlyk→k8, then the phase shiftd l(k) in the corre-
sponding channel at momentumk equals tod l8(k8), the
phase shift in the same channel when the bound state energy
is Eb8, provided that

k85
k8

k
k. ~38!

The energy of the bound state breaks the classical scale in-
variance and sets a scale to the problem. Equation~38! then
expresses the scaling transformation under which the prob-
lem is invariant.

One sees again that the most pronounced influence on the
phase shift is in the limitEb↑0. ThenAl

2150,

d l5
1
2p~ u l u1u l1au!, ~39!

and one has the phase-shift flip when compared to the con-
ventional phase shift~7!. Using the fact that phase shifts are
only defined modulop one finds

d2n5
1
2p~n2h!.2 1

2pa→ 1
2pa,

d2n215
1
2p~n1h!. 1

2pa→2 1
2pa. ~40!

IV. THE S MATRIX
AND SCATTERING CROSS SECTIONS

Once phase shifts are calculated, the form of scattering
amplitudes, theS matrix, and cross sections can be dis-
cussed. The scattering amplitudef (k,w) in two space dimen-
sion is defined as the coefficient in front ofeikr /r 1/2 in the
asymptotic expansions asr→0 of the wave function~see
Ref. @41# for a more rigorous definition!,

c l~r ,w,w8!;eikr cos~w2w8!1 f ~k,w2w8!
eikr

r 1/2
, ~41!

wherew8 is the direction of the incident plane wave. The
scattering amplitudef (k,w) is related to theSmatrix,

~S21!~k,w!5~ ik/2p!1/2f ~k,w!, ~42!

where 1 stands here for the unit operator. In the partial-wave
expansion one has

f ~k,w!5~2p ik !21/2 (
l52`

`

~e2id l ~k!21!eil w, ~43!

which expresses the scattering amplitude in terms of the
phase shiftsd l(k). The differential scatteringcross sectionis
given by

S ds

dw D ~k,w!5u f ~k,w!u2. ~44!
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In conventional AB scattering, the phase shiftsd l ’s are
given by Eq.~7!. One then finds that

e2id l5H e2 ipa, l>2n

eipa, l<2n21,
~45!

where, as above,n stands for the integer part,@a#, of a.
Therefore, theSmatrix, sa

0(w), in the AB potential is given
by

sa
0~w!:5

1

2p (
l52`

`

e2id l1 i l w

5
cos~pa!

2p (
l52`

`

eil w

1 i
sin~pa!

2p
e2 inwF (

l52`

21

2(
l50

` Geil w, ~46!

where the superscript 0 means that we are dealing with con-
ventional AB scattering. Now, the sum in the first term in Eq.
~46! gives thed function d(w). ProvidedwÞ0 the second
sum in Eq.~46! ~as well as the first sum! can be taken exactly
@42# and one finds that the term in parentheses gives

e2 iw
1

12e2 iw 2
1

12eiw
52

1

eiw21
• ~47!

It is obviously singular atw50. Therefore, care has to be
taken to define the sum at this point. One has to resist the
temptation to extrapolate the result from those atwÞ0 be-
cause the result is not continuous atw50. One can show that
the result is given by@31#

sa
0~w!5d~w! cospa1 i

sinpa

p
e2 inw P

1

eiw21
, ~48!

where P denotes an analog of the principal value. Formally,

P
1

eiw21
5 lim

e↓0

1

2 F 1

eiw2~12e!
1

1

eiw2~11e!G . ~49!

The result~48! can be verified by taking the inverse Fourier
transform and using the formula

PE
2p

p

dw
eikw

eiw21
5H p, k>1

2p, k<0.
~50!

Note that there is nothing particular about thed function
term in theS matrix in the presence of an AB potential. In
fact, S(w)5d(w) is theS matrix in free space~in the ab-
sence of any scatterer!, as can be checked directly by substi-
tuting a50 in Eq. ~46!. The d function in Eq.~48! simply
means that a fraction cospa of an incident beam passes
through the flux tube without being scattered.

In the case of negativea52uau the analog of~45! is

e2id l5H eipuau, l>n11

e2 ipuau, l<n.
~51!

By repeating the above procedure leading to~48!, one finds
that theSmatrix in the present case is

s2uau
0 ~w!5d~w!cospuau1 i

sinpuau
p

einw P
1

e2 iw21
• ~52!

This result fors2uau
0 (w) can be verified independently by

taking the inverse Fourier transform and using the formula

PE
2p

p

dw
eikw

e2 iw21
5H p, k<21

2p, k>0.
~53!

A comparison of relations~48! and ~52! shows that, under
the transformationa→2a,

s2uau
0 ~w!5suau

0 ~2w!. ~54!

According to Eq.~42!, the scattering amplitude is given
by

f a~k,w!5~2p/ ik !1/2 @sa21#~k,w!. ~55!

For wÞ0 one finds

f a
0~k,w!5~1/2p ik !1/2

sin~pa!

sin~w/2!
e2 i ~n11/2!w. ~56!

Hence, providedwÞ0, one has by using Eq.~44!

S ds0

dw D ~k,w!5
1

2pk

sin2~pa!

sin2~w/2!
• ~57!

The total scattering cross section is infinite fora¹Z and
vanishes foraPZ @31#. For the purpose of the experiment,
note that the differential scattering cross section~57! is sym-
metricunderw→2w.

When bound states are present in thel52n and in the
l52n21 channels, theS matrix and the scattering ampli-
tude f a(k,w) are modified. First one finds that

sa
0→sa5sa

01Dsa
0 , ~58!

where

Dsa
0~w!5 (

l52n21

2n

@e2i ~d l1D l !2e2id l#eil w

52i (
l52n21

2n

e2id l1 iD l1 i l wsinD l . ~59!

Here,D l is the change~37! of the conventional AB phase
shift ~7! in the channel l . Similarly, one introduces
D f a

0(k,w) as

f a~k,w!5 f a
0~k,w!1D f a

0~k,w!. ~60!

According to Eq.~55! one has

D f a
0~k,w!5~2i /pk!1/2 (

l52n21

2n

e2id l1 iD l1 i l wsinD l . ~61!

Nevertheless, the property~54! of theSmatrix still holds and
even in the presence of bound states one has
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s2uau~w!5suau~2w!. ~62!

To prove this it is sufficient to show that a phase shift
d l(E) in the l52n ( l52n21) channel fora>0 is the
same as that in thel5n ( l5n11) channel fora<0. In the
case of conventional phase shifts one can check for this prop-
erty directly from Eqs.~45! and ~51!. Since bound state en-
ergies andu l1au remain invariant under the transformation
a→2a and l→2 l , according to Eq.~37!, D l , and hence
the phase shift~35!, remains invariant, too.

Note that ifa changes by61, theSmatrix @see Eqs.~48!
and ~58!# as a function ofa is not a periodic function ofa
and changes nontrivially. This is analogous to the fact that, as
was shown in Sec. II, the Green’s function also depends non-
trivially on a. However, such as in the latter case when the
Green’s function gave the single-particle DOS which was
periodic ina with respect to the substitutiona→a61, theS
matrix will be shown to give scattering cross sections that
are periodic ina with the same period, too. In the absence of
bound states this follows immediately from Eq.~57!. In the
presence of bound states, the differential scattering cross sec-
tion for wÞ0 is calculated by using Eqs.~44! and ~61!,

S ds

dw D ~k,w!5S ds0

dw D ~k,w!1
8p

k (
l52n21

2n

sin2D l

1
4

k

sin~pa!

sin~w/2!
@sinD2ncos~D2n2pa1w/2!

1sinD2n21cos~D2n211pa2w/2!#. ~63!

The periodicity of the differential cross section with respect
to the substitutiona→a61 then follows from Eq.~63!.
Note that in the presence of bound states, the differential
cross section becomesasymmetricwith regard tow→2w
~what is equivalent, with regard toa→2a). The origin of
the asymmetry is easy to understand as bound states for
a>0 are formed only in channels withl<0.

For completeness we also give the result for the so-called
transportscattering cross sections tr , defined by

s tr :5E
2p

p

~12cosw!
ds

dw
dw ~64!

@see Ref.@43#, Eq. ~139.7!#. One finds

s tr5
2

k
sin2~pa!1

16p2

k (
l52n21

2n

sin2D l

2
8p

k
sin~pa!@sinD2nsin~D2n2pa!

2sinD2n21sin~D2n211pa!#. ~65!

As is the differential scattering cross section, the transport
scattering cross section is also periodic with respect to the
substitutiona→a61.

V. THE KREIN-FRIEDEL FORMULA
AND THE RESONANCE

Now we shall show that to calculate the change of the
integrateddensity of states~IDOS! in the whole space, one
can use the Krein-Friedel formula@8#. The latter gives the
contributionDNa(E) of the scattering states to the change of
the IDOS induced by the presence of a scatterer, directly as
the sum over phase shifts,

DNa~E!5
1

p (
l

d l~E!5~2p i !21ln detS, ~66!

S being the total on-shellS matrix. As has been shown in
Sec. IV, theSmatrix ~48! is singular as a consequence of the
singularity of phase shifts~35! which in general do not decay
whenE→`. Therefore, theSmatrix ~48! or ~58! cannot be
substituted directly into the Krein-Friedel formula~66!. This
can also be seen from the fact that the sum~66! over phase
shifts is not absolutely convergent. We remind the reader that
the sum of a series that is not absolutely convergent is am-
biguous in a conventional sense. If suitably rearranged, the
~conventional! sum of such a series can take any prescribed
value. Thus, to deal with such a series, care must be taken. In
the present case of the AB potential we have found that it is
the z-function regularization which gives the correct answer
~22!. In the absence of bound states

ln detS5 (
l52`

`

2id l5 ip (
l52`

`

~ u l u2u l1au!

5 ipF2(
l51

`

l2 (
l52n

`

~ l1a!1 (
2`

2n21

~ l1a!G
5 ipF2(

l51

`

l2s2(
l50

`

~ l1h!2s2(
l51

`

~ l2h!2sGU
s521

5 ip@2zR~s!2zH~s,h!2zH~s,12h!# U
s521

52 iph~12h!, ~67!

wherezR and zH are the Riemann and the Hurwitzz func-
tions ~see Appendix D!. Thus, by using Eq.~66!, the change
of the DOS is

Dra~E!52h~12h!d~E!/2. ~68!

This result is exactly~22!. Therefore, despite the AB poten-
tial being long-ranged, the Krein-Friedel formula can still be
used when regularized with thez function. In the case where
a is negative and equals2n2h, the calculation of the
change of the DOS is essentially the same. The only change
is that now

u l1au5H l1a, l>n11

2 l2a, l<n.
~69!

By using the Krein-Friedel formula one again reproduces the
result ~23!.
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As has been discussed in Sec. III, under the influence of
bound states the phase shifts are changed only in two chan-
nels, l52n and l52n21. Therefore, the contribution of
scattering states to the change of the IDOS is then

DNa~E!52 1
2h~12h!1

1

p
arctanS sin~hp!

cos~hp!2~ uE2nu/E!hD
2
1

p
arctanS sin~hp!

cos~hp!1~ uE2n21u/E!~12h!D , ~70!

whereE2n and E2n21 are the binding energies inl52n
and l52n21 channels. By using the arguments given in
the proof of relation~62! one finds that the presence of
bound states does not spoil the property~23! of the DOS, and
the IDOS is still a symmetric function ofa,

DN2uau~E!5DNuau~E!. ~71!

Note that for 0,h,1/2 theresonanceappears at

Eres5
uE2nu

@cos~hp!#1/h
.0. ~72!

The phase shiftd2n(E) ~35! changes byp in the direction of
increasing energy and the integrated density of states~70!
has a sharp increase by 1~see Fig. 3!. The profile of the
resonance@the argument of arctan in Eq.~35!# is given by

Ehtanhp

Eh2Eres
h 5

G

Eh2Eres
h , ~73!

whereG is the width of the resonance,

G5Eres
h tanhp. ~74!

Note that the profile~73! is notof the Breit-Wigner form,

G

E2Eres
~75!

~see Ref.@41#, para. 145!.
For 1/2,h,1 the resonance is shifted to thel52n21

channel.h51/2 is a special point since resonances occur in
both channels at infinity. Therefore, the contribution of the
arctan terms in~70! does not vanish asE→`, but instead
gives the value21. Here, we have assumed that bound states

are in both thel52n and l52n21 channels. As we shall
see in Sec. VI, it is generally easier to form the bound state
in the l52n channel than in thel52n21 channel. There-
fore, unlessh is sufficiently large, only the bound state in
l52n is present and the above considerations have to be
appropriately modified. The above discussion also shows that
even in the generic case, when bound states are present, the
DOS still depends only on the distance from the nearest in-
teger. Equation~72! shows that if the energy of the bound
state goes to zero,Eb↑0, the resonance also approaches zero
energy,Eres↓0. Therefore, in the limitEb↑0 the resonance
merges with the bound state. As will be discussed in more
detail in Sec. VII both the resonance and a bound state dis-
appear from the point spectrum and leave behind thephase-
shift flip.

Having calculated phase shifts~35! for a generic self-
adjoint extension, one can calculate the time delayDt asso-
ciated with the energy derivative of the phase shift@41#,

Dt52\
dd~E!

dE
• ~76!

One sees immediately that ifl is different from2n and
2n21, then the time delay isDt50. The time delay~76!
can be nonzero only in the channelsl52n and l52n21,
and at the energy corresponding to the resonance the time
delay is infinite.

VI. REGULARIZATION

To identify the physics that underlies different self-adjoint
extensions we have considered the situation where the AB
flux tube is regularized by a flux tube of a finite radiusR,
and the magnetic fieldB inside it satisfies the constraint~89!.
This situation was discussed first in Ref.@44#. The discussion
of this case has direct relevance to experiment since vortices
usually realized in experiments are not singular and do have
a nonzero radius@10,11,23#. In order for a bound state to
exist, the matching equation for logarithmic derivatives of
the exterior~see Appendix B! and interior~see Appendix C!
solutions in thel th channel must have a solution. The loga-
rithmic derivative of the exterior solution~26! is given by

O l~x!5x
K u l1au8 ~x!

K u l1au~x!
<2u l1au. ~77!

It depends only on the fluxa and not on a particular regu-
larization of the interior of the flux tube. Here, parameterx is
given by

x5kR5
A2muEbu

\
R, ~78!

whereEb is the bound state energy.O l(x) decreasesfrom
2u l1au to 2` asx→` ~see Appendix B!. Therefore,

O l~x!<H 2a1u l u, l>2n

a2u l u, l<2n21.
~79!

In contrast, the logarithmic derivative of the interior solu-
tion depends on botha and the particular distribution of the

FIG. 3. Typical energy dependence of the phase shift in the
channel with a bound state.
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magnetic field inside the flux tube. For example, in the case
of a homogeneousfield regularization~see, e.g., Ref.@39#!
and in the absence of the magnetic moment coupling
(gm50) or any other additional interaction inside the flux
tube the logarithmic derivative of the interior solution~C1! is

I l~x!52a1u l u12a
a

b

M ~a11, b11, a!

M ~a,b,a!
, ~80!

whereM (a,b,a) is the Kummer hypergeometric function
@34#, and

a5
u l u1 l11

2
1~x2/4a!> 1

2 ,

b5u l u11>1. ~81!

For those values ofa andb one obtains, by using Eq.~C8!,

2a

b

M ~a11, b11, a!

M ~a,b,a!
.0. ~82!

Hence,

I l~x!.2a1u l u>2u l1au ~83!

and it is impossible to get a bound state in this case because
the matching equation,

O l~x!5I l~x!, ~84!

cannot be satisfied for anyx. Since

M ~0, b, a!51, ~85!

one finds that Eq.~84! might have a solution provideda50
andx50. Now, our purpose will be to break the constraint
~81! on a which implies ~82!. In particular, one can show
that parametera can becomenegativeif an attractivepoten-
tial V(r ) is placed inside the flux tube,

V~r !ur<R52
\2

2m

a

R2 c~R!, ~86!

andV(r )50 otherwise. This amounts to changingx2/4a in
~81! to x2/4a2c/4. If one writes c(R) as c(R)
52@11«(R)# one finds

a5
u l u1 l

2
1

x2

4a
2

«~R!

2
,

b5u l u11. ~87!

The attractive potential can be either put in by hand, or, if the
Pauli Hamiltonian~2! is used, as arising from the magnetic
moment coupling of the electrons with the spin opposite to
the direction of magnetic fieldB. In the latter case
«(r )5const is determined by the anomalous part of the mag-
netic moment,

«5~gm22!/2. ~88!

Equation~87! shows that the critical value ofa50 corre-
sponds to the case wheregm52, i.e., the case where the

magnetic moment is not anomalous, andl<0. In this case
the matching equation~84! does have a solution atx50 for
0> l>2n. If one substitutes the value ofx into either the
exterior ~26! or the interior~C1! solution one would obtain
nonsense: ‘‘solutions’’ that do not depend onr ~in the case of
the exterior solution the limitx→0 is in fact singular!. A
more subtle method is needed@12# to show that in this case
zero modes do appear. Since the magnetic field is not singu-
lar anymore the Aharonov-Casher theorem@12,13# applies.
The Aharonov-Casher theorem@12# tells us that in a general
finite-flux magnetic fieldB(r ), for which

E
V
B~r !d2r5F5const, ~89!

the 2D Pauli Hamiltonian atgm52 has exactly ]a@21 zero
modes,

e2f~r !, e2f~r !~x12 ix2!, . . . ,e
2f~r !~x12 ix2!

n21. ~90!

Here, ]a@ stands for the nearest integerlarger than or equal
to a, and, for a given magnetic fieldB(r ), the function
f(r ) is defined by

f~r !5
e

hcER2lnur2r 8uB~r 8!d2r 8. ~91!

If a is an integern, then the number of zero modes is
n21; if not, their number isn5@a#. For a<1 no zero
mode is present in the spectrum@12,13#. The proof of the
theorem uses the fact that the Pauli Hamiltonian forgm52
can be written as the square of the Euclidean two-
dimensional massless Dirac operator@12#. The result only
depends on the total fluxa and not on a particular distribu-
tion of a magnetic fieldB. The source of the attractive po-
tential ~86! inside the flux tube is not important to the for-
mation of zero modes.

Now, if «.0, i.e.,gm.2, the parametera can even be-
come negative. One hasa,0 for l<0, «.0, and x
P@0,A2a«). We shall show that there are at leastn11
bound states for any finiteR in this case. In other words, if
the attractive potential~86! is situated inside the flux tube,
the coupling with the interior of the flux tube becomes suf-
ficiently strong for the particle to be confined~on the cyclo-
tron orbit! insideit: the wave function~26! of the bound state
decays exponentially outside the flux tube. In what follows
we shall confine ourselves tol<0. The reason is that in order
that a be negative for l51, we must choose
gm5212«.6. This is the value ofgm that is out of experi-
mental interest. Obviously, ifl.1, then the minimal value of
gm that doesa negative is proportional tol and hence larger
than the minimal value ofgm for l51. The number of bound
states is given by the number of channels in which the
matching equation~84! can be satisfied with a solution
xl.0. The matching equation~84! implies that the ratio in
Eq. ~82! has to benegative,

a

b

M ~a11, b11, a!

M ~a,b,a!
,H 0, l>2n

2u l u1a, l<2n21.
~92!
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This can be satisfied for 0> l>2n and21,a,0 only if
~see Appendix C!

M ~ uau,b,a!,2. ~93!

The latter constraint on the values ofa does not impose any
physical restrictions since it allows forgmP@2,6), i.e., for
almost all realistic values ofgm . Since Eq.~85! holds, it is
clear from Eq.~87! that Eq.~93! can always be satisfied. It is
sufficient to look for a bound state energyEb having roughly
the form @see Eqs.~78! and ~87!#

uEbu52a
2m

\2R2 ~«2t !, ~94!

wheret (0,t!«) is some small positive number. Therefore,
one concludes that there are at leastn11 bound states at any
finite R ~cf. Refs. @39,45#!. To satisfy Eq. ~92! for
l<2n21 is more difficult because the condition becomes
more restrictive. Indeed, it is sometimes stated in the litera-
ture that forn50 and homogeneous regularization only one
bound state can exist~see, e.g., Refs.@15# and@39#!. We shall
show that although generally it is true, in some circum-
stances the (n12)th bound state in thel52n21 channel
doesappear. It is clear from Eq.~92! that the condition to be
satisfied gets weaker as 12h gets smaller. In particular, one
always can choosex such that forhP(12s,1#, 0,s!1,

M ~ uau, b, a!<22g ~95!

@see Eq.~85!#, where 0,g!1 is some small number. Then
for these values ofx andh, the left-hand side of Eq.~92! is
uniformly bounded,

a

b

M ~a11, b11, a!

M ~a,b,a!
,2g̃,0. ~96!

Sincea2u l u→0 whenh→1, there exists as̃, 0,s̃<s,
such that Eq. ~92! is satisfied for a givenx and h
P(12s̃,1) in the l52n21. Therefore, the actual number
of bound states can, in principle, be higher thann11 since
the condition ~92! can be satisfied even for some
l<2n21. An illustrative example is provided by acylindri-
cal shellregularization@14,39# in which the magnetic field is
given by

B~r !5
a

2pR
d~r2R!. ~97!

As has already been discussed, the exterior solution~26! is
the same as in the homogeneous field regularization. Only
the interior solution changes. We shall denote its logarithmic
derivative by the superscriptc. By using the results of Ref.
@39# it can be shown that the matching equation takes the
form

O l~x!5I l
c~x!52a1u l u2a«1

1

2b
x21O~x4!, ~98!

where b is as defined by Eq.~81! or Eq. ~87!. As in the
previous case, the matching equation~98! for gm.2 can be

satisfied for 0> l>2n. However, apart from these values of
l , Eq. ~98! can be satisfied forl below l52n provided that

u l u2a,
a«

2
• ~99!

Note again that whenl52n21, one does not generally
have a bound state, as is also the case of the cylindrical shell
regularization. However, if

h.
12n«/2

11«/2
, ~100!

a bound state does appear in thel52n21 channel. As is
seen from Eq.~99!, whenn increases, this bound state ap-
pears for ever smallerh. Eventually, for

n>n05]2/«@ ~101!

the restriction~99! on h disappears. Moreover, in this case
bound states can appear, even for a positivel , provided that

l,
a«

2
, ~102!

or, equivalently, that

a>
4

gm22
• ~103!

However, by taking into account that for the electron
gm2250.002 32, the flux has to be of order;2000 for this
to be the case. To conclude, according to Eqs.~99! and~102!
the number of bound statesN b in the cylindrical shell regu-
larization is

N b511n1@a~gm22!/4#1@a~gm12!/42n#. ~104!

Here [ ] denotes the integer part. The number~104! of bound
states in the cylindrical shell regularization is generally
higher than that in the homogeneous field regularization.
One can understand the physical origin of this difference in a
simple way. In the cylindrical shell regularization, the energy
EB of magnetic field isinfinite for anyRÞ0 and in this sense
the magnetic field inside the flux tube is much stronger than,
for example, in the homogeneous field regularization when

EB5
p

2
B2R25

F2

2pR2 ~105!

staysfinite for any nonzeroR. Therefore, in contrast to the
number of zero modes given by the Aharonov-Casher theo-
rem @12,13#, the number of bound statesdoes dependnot
only on the total fluxa but on a particular distribution of the
magnetic fieldB, and hence on the energy of the magnetic
field, also. A similar check with the 1/r regularization~see
Ref. @39#! allows us to make the hypothesis that their number
is less than or equal toN b and that the bound is saturated
when one uses the cylindrical shell regularization of the AB
potential.

In two dimensions forRÞ0 andl arbitrarily small, the
Schrödinger equation always has a bound state in the poten-
tial lV(r ) ~86! in the absence of the AB potential@43#. For

680 53ALEXANDER MOROZ



RÞ0 the potentiallV(r ) is not singular and the wave func-
tion of the bound state is not singular, either. Now, if the AB
potential is put on top oflV(r ) the bound state in general
disappearsin its presence. Therefore, the discussion in this
section implies that, generally, the AB potential has a
deconfiningeffect on the bound state@15#. Providedl>2
and in the presence of the AB potential the wave function of
a bound state~26! is singular and the phase shifts@see Eq.
~35!# are changed. Then, in the limith→0, the singular wave
function ~26! becomes the regular one and the phase shifts
must have their conventional values~7!. Only the singular
bound state wave function necessitates the change of phase
shifts. This explains whyAl→0 in ~27! ash→0, which has
already been used above in the calculation ofD l .

VII. THE R˜0 LIMIT AND THE INTERPRETATION
OF SELF-ADJOINT EXTENSIONS

In this section we shall examine the limitR→0 subject to
the condition~89!. In the case when the flux tube is exterior
to the system and particles are not allowed to interact with its
interior, theR→0 limit is trivial as there are neither zero
modes nor bound states. Therefore, in what follows we shall
confine ourselves to the case when the flux tube is a part of
the system and particles do interact with its interior. In the
rigorous mathemetical sense the limitR→0 is described by
some self-adjoint extension, and we shall discuss a corre-
spondence between theRÞ0 case and the limiting case.

In the limit R→0 the potentialV(r ) as defined by Eq.
~86! goes formally to thed function,

V~r !ur<R→2@11«~0!#
\2

m

a

r
d~r !. ~106!

As has been shown above, until the magnetic momentgm
reaches its critical valuegm52, nothing is changed with re-
spect to the case of the impenetrable flux tube, and the limit
R→0 is again trivial. The limit becomes nontrivial at the
critical coupling when ]a@21 zero modes~90! exist@12,13#.
In this case the symmetry of the spectrum with regard to
a→a61 is lost. Then, asR→0 we shall show that zero
modes~90! disappear from the point spectrum and merge
with the continuous spectrum. Indeed, in the limitR→0 the
magnetic fieldB(r ) is given by

B~r !52pad~r !. ~107!

In this case,f(r ) defined by Eq.~91! can be calculated
exactly. One finds

f~r !5a lnur u. ~108!

The zero modes~90! are then obviously singular at the origin
and they are not elements ofL2@(0,̀ ),rdr #. As R→0, zero
modes~90! get more and more singular at the position of the
flux tube and eventually, at the limit, they become noninte-
grable and merge with the continuous spectrum. In the latter
case one has to check for square integrability not only at
infinity but at the position of singularities of the field, too. It
is here where the theorems fail. Another argument for the
disappearing of zero modes at theR→0 limit is to note that
the only two channels at which the spectrum can differ from

that of an impenetrable flux tube are the channels with
l52n and l52n21. However, for anyRÞ0, zero modes
never occur in these two channels. Instead, they are in chan-
nels with 0> l>2n11 @12,13#. If one suspects that zero
modes can appear in some channels different from those
given in Eq.~90!, one can check directly that for whateverl ,
the functions given by Eq.~90! are not square integrable
either at infinity or at the origin. Therefore, in the limit
R→0 the symmetry of the spectrum under the substitution
a→a61 is again recovered. The best method of illustrating
this point is to consider a situation whengm2252«.0 and
stays constant asR→0. Whenevergm.2 @or gm52 with an
attractive potentialV(r )52«/R2, «.0 arbitrary small#
bound states occur in the spectrum. They correspond to so-
lutions xl.0 of Eq. ~84!. Note that the solutions are only a
function ofa. They do not change whenR changes. Sincex
is given by Eq.~78! one finds that asR→0 the bound state
energyEb scales as

El52
\2xl

2

2mR2
• ~109!

In other words, in addition to the breaking the symmetry
a→a61 of the spectrum, in the presence of bound states
the scale invariance is also broken@46,47#. Nevertheless, one
finds that bound statesdecouplein theR→0 limit from the
Hilbert spaceL2@(0,̀ ),rdr # and take away thenonperiod-
icity of the spectrum~undera→a61) that persists for any
finite R. What is left behind is nothing but theconventional
AB problem with the change of the density of states given by
~22!. To show this, note thatAl→0 in the general scattering
solution~33! in the limit k→`. Hence, in the limit the regu-
lar state~6! is recovered. Another argument is to note that the
bound state~26! is a function ofkr and decays exponentially
askr→`. Therefore, sincek→` asR→0, the wave func-
tion goes to zero and thereby disappears from the spectrum.
The electron is confined inside a flux as in a black hole and
ceases to communicate with an outside world.

The above fact might at first be surprising, however it has
been demonstrated by Berezin and Faddeev@16# more than
30 years ago that a nontrivial limitR→0 for a d-function
potential exists only if the coupling constant isrenormalized.
The latter is necessary for a proper mathematical definition
of the Schro¨dinger operator with thed-function potential
@15,16#. In other words, in order to obtain the bound state in
the limit R→0 it is necessary that

«~R!→0 ~110!

as R→0 in Eq. ~86! @39,46,48#. The actual energy of the
bound state then depends on the details of the interaction and
the details of renormalization. Obviously, in this case the
symmetry of the spectrum undera→a61 is broken. Since
the spectrum and phase shifts do not change until the attrac-
tive potential inside the flux tube is renormalized to its criti-
cal strength and a bound state is formed, this generalizes the
result of Ref.@49# that the AB scattering in the case of open
boundary conditions at the flux tube boundary coincides with
the AB scattering with Dirichlet boundary conditions. In
other words, provided the attractive potential inside the flux
tube is not renormalized to its critical value and remains
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either weaker or stronger than the critical potential, then the
flux tube remains impenetrable in the limitR→0.

If a bound state is present, the phase shift in a correspond-
ing channel acquires an energy dependent term~37!. The
latter, in the limit of zero bound energy, gives rise to the
phase-shift flip. Therefore, it is natural to assume that the
change~37! of the phase shift or the phase-shift flip will
occur in the limitR→0 only in these channels where the
bound state occurs forRÞ0. When the phase-shift flip takes
place, the symmetrya→a61 is again broken. Our calcula-
tion @see relations~35! and ~39!# shows clearly that the
phase-shift flip@14# is not connected to the spin but may
occur in its absence as well.

As has been mentioned, solutions of the matching equa-
tions are only functions of the flux,a andx (5kR). On the
other hand, scattering solutions are functions of the fluxa,
the ratiok/k @see Eq.~31!#, andkr. From the experimental
point of view it is useful to remark the followingduality: the
physics at a given radiusR1 of the flux tube and at momen-
tum k1 is identical to that atR2 andk2 , provided

k25
k1R1

R2
• ~111!

When Eq.~111! holds, then the relative combination of the
regular and the singular Bessel functions in Eq.~27!, and
hence the phase shift, are the same. Therefore, provided one
has only a vortex of a finite radiusR1 at disposal, one can
examine the physics of almost singular vortices with a radius
R2!R1 by performing experiments at verysmall momenta
k, i.e., such thatR1!1/k. It is in the latter situation where
the phase-shift flip has been established@22#. Moreover, it is
easier to realize experimentally.

VIII. ENERGY CALCULATIONS

In this section we shall assume thatgm is a fixed constant
and that no renormalization ofgm occurs. The energy of the
system consisting of particles and field will be evaluated for
a sequence of flux tubes of decreasing radii subject to the
constraint that the total fluxF ~89! is the same in each.
Therefore, dynamical phenomena such as the induction of
the electric field and return fluxes will be ignored. One rea-
son for this rough approximation is that we do not know
better.

Let us now discuss the cases wheregm is, respectively,
less than, equal to, or greater than 2. It has been already
shown that up togm52 no bound state is present in the
spectrum and the change of the density of the scattering
states is still given by Eq.~22!. Zero modes which occur for
gm52 atRÞ0 are regular at the origin and do not change
phase shifts asR→0. Because the energy of the magnetic
field ~105! tends to infinity asR→0 the system consisting of
particles and field is definitelystablewith respect to sponta-
neous creation of the AB field.

When gm.2, then bound states occur in the spectrum.
Their energy is given by Eq.~109! and scales to2` when
R→0, in the same way~as 1/R2) that the magnetic field
energy~105! does to1`. As has been shown in Sec. VII,
provided «(R) is not renormalized in the limitR→0, the
bound states decouple in the limit from the Hilbert space

L2@(0,̀ ),rdr # @Al→0 in Eq. ~27! in the limit# and take
away the nonperiodicity of the spectrum with regard to
a→a61 that persists for any finiteR. What is left behind is
nothing but theconventionalAB problem with a change of
the density of states~22!.

In what follows the homogeneous field regularization will
be used. Note that the homogeneous magnetic field optimizes
the energy functional

E5E
V
B2~r !d2r ~112!

subject to the constraint~89!. Bound state solutionsxl for the
homogeneous field regularization determine the function
X(a,gm),

X~a,gm!5~4pa2!21(
l
xl
2~a,gm!>0. ~113!

By comparing the coefficients in front of 1/R2 in Eqs.~105!
and ~109!, one finds that whenever the ratio of the rest en-
ergy to the electromagnetic energy is less thanX(a,gm),

mc2

e2
, X~a,gm!, ~114!

the total energy of field and matter together goes to2` as
R→0. Therefore, in thestatic approximation, without the
account of the electric field energy, the energy of the system
decreases with decreasingR. This does not show the insta-
bility against the spontaneous creation of a magnetic field
yet, since the full treatment has to take the dynamics and the
magnetic moment form factors into account. Nevertheless,
the discussion shows that the case ofgm.2 is different with
respect togm<2. In three space dimensions, the function
X(a,gm) is replaced byX(a,gm)/L, with L the length of the
flux string, and one has to discuss the density of states for a
long flux ring @50#.

Note, in passing, that in the relativistic quantum-
mechanical treatment@4# one finds that the system is stable.
The reason is as follows: for spin-up electrons the magnetic
moment coupling introduces a repulsive interaction and,
hence, there is no natural way to obtain a spectrum with
bound states as there was for spin-down electrons in which
case this interaction is attractive. To obtain a bound state in
the spectrum, an attractive potential 2V(r ) has to be put
inside the flux tube by hand. This is the principal reason why
in the case of the Dirac electron~a ‘‘pair’’ of the spin-up and
spin-down Schro¨dinger electrons! the magnetic moment cou-
pling cannot produce a bound state in the spectrum no matter
how large or small the magnetic moment is@4#. However,
there is one exception and this occurs when the gauge field is
the Chern-Simons field@51#. Indeed, it has recently been
discussed by Hosotani@52# that in the full-fledged quantum-
field theory model with the Chern-Simons gauge field@51# a
magnetic field can be spontaneously generated. The Chern-
Simons field is somewhat pathological with respect to the
discussion in this section, for in this case the density of mat-
ter acts as the source of the AB gauge field, and all particles
carry a flux@51#. In this respect one has ‘‘spontaneous mag-
netic field generation’’ whenever the particle density is dif-
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ferent from zero. The discussion that led us to the stability
condition ~114! remains reasonable even in this case. Since
the energy of the Chern-Simons field is zero, there is nothing
to impede the formation of a magnetic field. Regarding
massless charged particles, note that the result of Gribov@53#
concerning an instability of massless charged particles shows
that the ratio of the rest energy to the electromagnetic energy
is an important parameter in field theory, and a condition
similar to ~114! must hold. The massless charged particles
were claimed by Gribov not to exist in nature, since they are
completely screened locally in the process of their formation.

IX. THE HALL EFFECT IN THE DILUTE VORTEX LIMIT

As has been discussed in Sec. IV, the differential scatter-
ing cross section~63! for a generic self-adjoint extension is
asymmetric with regard tow→2w. One can show that the
asymmetry can have important experimental consequences:
in contrast to the conventional symmetric differential cross
section~57!, the asymmetric differential cross section~63!
can give rise to the Hall effect. Indeed, if the incident wave
function is normalized to unit current density, the differential
scattering cross section,ds(k,w), is nothing but the transi-
tion probability between the incident scattering state and the
scattering state that propagates in a directionw with respect
to the incident wave@43#. In other words, the differential
scattering cross section gives the fraction of particles from
the incident beam that are scattered off to the anglew. Now,
let us consider electrons propagating with the Fermi momen-
tum kF in a sample in a direction singled out by an applied
electric field. If vortices are randomly distributed throughout,
the sample the electrons will be scattered. In what follows,
the dilute vortex limit will be considered, in which the
multiple-scattering contributions are neglected. Results con-
cerning the Hall effect are then obtained by summing over
the single-vortex contributions. The asymmetric differential
scattering cross section~63! of an electron from a vortex
means that, generally, there is a net surplus of the electrons
propagating in one of the transverse directions, i.e., either to
the right or to the left~see Fig. 4!.

The quantity that measures the fraction of the electrons
moving in a transverse direction is sin(w)ds(kF ,w). There-
fore, if the density of vortices isnv , the Hall current, in the

dilute vortex limit, is proportional to

nvE
2p

p

dw sinw
ds

dw
~kF ,w!. ~115!

By inverting the conductivity tensor one finds that the Hall
resistivity,rxy , is

rxy5rH
0 kF

a E
2p

p dw

2p
sinw

ds

dw
~kF ,w!, ~116!

which was obtained by Nielsen and Hedegaard@54#. In the
latter case the result~116! was obtained by solving~in the
dilute vortex limit! Boltzmann’s equation, which relates the
scattering and the transport properties. Here,rH

0 5Bc/nee is
the Hall resistivity in a uniform magnetic fieldB, ne is the
density of electrons, ande is the electronic charge. The uni-
form magnetic fieldB is obtained by averaging over the field
produced by vortices with the densitynv ,

B5nvaF0 . ~117!

Fortunately, because of the sinw factor in Eq.~116!, the dif-
ferential scattering cross section is only needed forwÞ0 to
determine the Hall resistivity. When the differential scatter-
ing cross section~63! is inserted in Eq.~116! one finds that
only the last term contributes and

rxy5
4nv
ne

hc2

e2
sin~pa!@sinD2ncos~D2n2pa!

1sinD2n21cos~D2n211pa!#. ~118!

Equation~118! shows that one needs more than the asymme-
try of the differential scattering cross section for the Hall
resistivity to be different from zero. In fact, the Hall resistiv-
ity, rxy , vanishes whenever~modulop)

D2n52D2n21 . ~119!

However, as has been discussed in Secs. VI and VII, in any
realistic situation relation~119! is not general and the Hall
effect will appear. For example, in the case where the phase-
shift flip occurs only in thel52n channel, i.e.,D2n5hp
andD2n2150, one finds

rxy5
4nv
ne

hc2

e2
sin~pa! sin~hp! cos~pn!. ~120!

In this case it is easy to check that if the vorticitya in-
creases,rxy does not change its sign. Our result~118! shows
that the Hall resistivity is proportional to the density of vor-
tices and depends on their vorticity via trigonometrical func-
tions. As a self-consistency check, the Hall resistivity~118!
vanishes whenevera is an integer. In the case of vortices in
a type II superconductor@10#, if the magnetic field increases,
the vorticity of each vortex remains constant, and only their
densitynv changes linearly with the applied field. Therefore,
the dependence of the Hall resistivity,rxy , on the magnetic

FIG. 4. The differential scattering cross sectionds(k,w) gives
the fraction of an incident currentJ which is scattered to the angle
w. In the case of an asymmetric differential scattering cross section
there is generically a surplus of particles flowing in one of the
transverse directions.
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field is linear in the dilute vortex limit@11#. Obviously, if the
magnetic field is sufficiently large, the dilute vortex limit
ceases to be valid and deviations appear@10#. Nevertheless,
measurements of the Hall effect on a single isolated vortex is
now almost experimentally possible@10,15#, and the above
results for the Hall resistivity can be tested. Note that, pro-
vided the resonance~72! is close to the Fermi energyEF , an
interesting effect may appear because the Hall resistivity be-
comes very sensitive to the changes ofEF .

X. PERSISTENT CURRENT OF FREE ELECTRONS
IN THE PLANE PIERCED BY A FLUX TUBE

The persistent current in a finite~ring! geometry was first
discussed in Ref.@55#. It is reminiscent of the edge currents
~see discussion in Ref.@56# on their existence! that arise in
the presence of a magnetic field even in the absence of the
electric force. In the case of a bounded system, the energy
levels are discrete and the persistent current induced by a
flux tube with fluxF, carried by thej th eigenstate, is@55#

i j52
dEj~F!

dF
• ~121!

In the case of an unbounded system the spectrum will have
both a discrete and a continuous part. The persistent current
carried by an isolated eigenstate~from a point spectrum! is
still given by formula~121!. The contribution of scattering
states to a persistent current is then determined by the for-
mula

dI~E,a!5~2p i !21]F@ ln detS~E,F!#dE, ~122!

derived by Akkermanset al. @6#. Here S(E,F) is the on-
shell scattering matrix in the presence of a flux tube, and
dI(E,F) is the differential contribution to the persistent cur-
rent at energyE. The persistent current was defined with
respect to a point. It was given by the total current through a
line that extends from that point to infinity, in the absence of
currents through the external leads. Now, by the Krein-
Friedel formula~66!, ln detS(E,F) is directly related to the
change DNa(E) of the IDOS, and hence~by using
F5aF0) we have

dI~E,a!5
e

hc
]a@DNa~E!#dE. ~123!

As has been shown in Sec. V,DNa(E) is a symmetric func-
tion of a. Therefore, a persistent current is an antisymmetric
function of a ~see Figs. 4 and 5!. One can show that the
formula ~123! reduces to~121! in the case of the discrete
spectrum, and in fact, the formula is valid for both continu-
ous and discrete parts of the spectrum. In the latter case, the
DOS is formally given byr(E,F)5( jd„E2Ej (F)…, where
the summation is over all discrete levels. Hence

dr~E8,F!

dF
52(

j
d8„E2Ej~F!…

dEj

dF
• ~124!

Therefore,

EEdr~E8,F!

dF
dE852 (

j ,Ej,E
d„E2Ej~F!…

dEj

dF
• ~125!

Now, by substituting the result into Eq.~123! and after inte-
grating up to the Fermi energyEF , one recovers the sum
over all contributions of single levels, as given by the for-
mula ~121!, below the Fermi energyEF .

For spinless fermions neither bound states nor a phase-
shift flip occur and the change in the DOS is given by~22!.
Therefore, when all states below the Fermi energyEF are
occupied, one finds@5# that the persistent current of spinless
fermions around the origin, which is pierced by a flux tube,
is

I5
eEF
hc

~h21/2!. ~126!

The current depends linearly onh ~cf. Ref. @6# where it is a
constant! as it does in small one-dimensional metal rings
@57#. In contrast to Ref.@6#, the current is antisymmetric not
only about the valuesa5n, wheren is an integer, but also
about the valuesa5n11/2 where it vanishes~see Fig. 5!.
The latter values ofa are such as the former values ofa
where time invariance is preserved.

In the case of spin one-half fermions, the contribution of
spin-up fermions to the persistent current is still given by
formula ~126!. The contribution of spin-down fermions de-
pends on their magnetic momentgm . At the critical value of
gm52, either the phase-shift flip or a bound state can occur.
The most general expression for the contribution of scatter-
ing states toDNa(E) for E>0, which includes the situation
where bound states or a phase-shift flip are present, is given
by Eq.~70!. The persistent current in this case is obtained by
substituting the result~70! for DNa(E) directly in Eq.~122!.
Here, one must not forget that the bound state energies also
depend on flux@15#. In the case in which the phase-shift flip
occurs in thel52n channel, the contribution of spin-down
fermions to the persistent current is given by the formula

I5
eEF
hc

~h11/2! ~127!

@see Fig. 6~a!#. Therefore, the total persistent current of spin
one-half fermions in the plane when a phase-shift flip occurs
is

I52
eEF
hc

h ~128!

FIG. 5. Characteristic dependence of a persistent current of free
spinless fermions in the plane on the fluxa ~arbitrary units in they
direction!.
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@see Fig. 6~b!#. This is another important difference from
Ref. @6#, where they obtained a result that the total current is
zero. The result is consistent with general requirements@6# of
periodicity with regard toa→a61, and antisymmetry with
respect toa→2a.

Provided that the phase-shift flip occurs both in the
l52n and l52n21 channels, the contribution of spin-
down fermions to the persistent current is the same as that of
spin-up fermions. However, as has been extensively dis-
cussed in Secs. VI and VII, the latter case of the phase-shift
flip in two channels is less probable than that of the phase-
shift flip in a single channel.

Observations of the persistent current may finally reveal
the resonance~72! in the AB scattering, since near it the
current becomes very sensitive to the change of the Fermi
energyEF and of the flux. The similarity between the scat-
tering in the presence of the AB potential and in the field of
a cosmic string naturally suggests that a similar current
should occur in the field of a cosmic string, too.

XI. THE SECOND VIRIAL COEFFICIENT
OF NONRELATIVISTIC ANYONS

Anyons are usually represented as either bosons or fermi-
ons threaded by the flux tube with the fluxF. Noninteracting
anyons are described by the Hamiltonian

H5(
i , j
iÞ j

N S pi2 e

\c
A i j D 2

2m
, ~129!

whereN is the number of anyons, andA i j5A(r i2r j ) is
nothing but the AB potential~1! centered at the position of
the j th particle,

A i j5
F

2pur i2r j u2
z3~r i2r j !52A j i , ~130!

written here in a slightly different form withz the unit vector
in the direction of the flux. In what follows we shall consider
anyons in the presence of a pairwise interactionU(r2r 8),

U~r2r 8!52l
2p\2

m
ad~2!~r2r 8!

52l
\2

m

a

ur2r 8u
d~ ur2r 8u!. ~131!

By transforming as usual to the center of mass and relative
coordinates (r ,w), and leaving aside the free motion of the
center of mass, the relative Hamiltonian takes the form
@7,46,58#

H rel52
\2

m F] r21 1

r
] r2

1

r 2
~2 i ]w1a!2G1U~r2r 8!,

~132!

where, as above,a5F/F0 . The form of the relative Hamil-
tonianH rel corresponds@59# to that used in Refs.@27# and
@28#. One neglects the electrostatic forces between anyons by
assuming the limite→0 with a fixed. The relative wave
function is parametrized as exp(iLw)f(r), whereL is stan-
dard, namely,L52l for bosons and 2l11 for fermions. Af-
ter parametrization, the relative HamiltonianH rel takes a
form similar to that ofHl ~4!, provided the substitutions
l5gm and sz521 are made, and the reduced mass
m̄5m/2 is used. Due to the parametrization of the relative
wave function, the parametern is now

n52l1a ~133!

provided one starts from the bosonic end, or

n52l111a ~134!

when one starts from the fermionic end@7,57#.
The equation of state of a real gas expanded in powers of

the density,m5N/V, is

PV5
N

b
~11a2m1a3m

21••• !, ~135!

where theaj stand for the virial coefficients~see, for ex-
ample, Ref.@60#!. Here,P is the pressure,V is the volume,
and b51/kT. The calculation ofa2(T) only requires a
knowledge of two-body interaction. We shall show that the
results of preceding sections~with a slight modification! can
be directly applied to the calculation of the second virial
coefficienta2(T) of the gas of anyons. Let us first consider
the noninteracting casel50. By using the Krein-Friedel for-
mula one can calculate the change of the DOS in a way
similar to that used in Sec. V. In the case of bosons one finds

FIG. 6. ~a! The contribution of spin-up electrons to the persis-
tent current as a function of the fluxa, provided that the phase-shift
flip occurs in a single channel.~b! Persistent current of spin one-
half fermions as a function of the fluxa.
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ln detS5 (
l52`

`

2id l5 ip (
l52`

`

~ u2l u2u2l1au!52p i F(
l51

`

l2s2(
l50

`

~ l1ha!
2s2(

l51

`

~ l2ha!
2sG U

s521

52p i @2zR~s!2zH~s,ha!2zH~s,12ha!# U
s521

522p iha~12ha!, ~136!

and hence

Dra
b~E!52ha~12ha!d~E!. ~137!

Now, in the case of anyons,ha is the fractional part ofa/2. Note that formally, if the sum in Eq.~67! is restricted to evenl
only, the result~137! is twice that in the AB potential with unrestrictedl . In the case of fermions~hereha is supposed to be
within the rangeuhau,1/2),

ln detS5 (
l52`

`

2id l5p i (
l52`

`

~ u2l11u2u2l111au!

52p i F(
l50

`

~ l11/2!2s1(
l51

`

~ l21/2!2s2(
l50

`

~ l1ha11/2!2s2(
l51

`

~ l2ha21/2!2sGU
s521

52p i @2zH~s,1/2!2zH~s,ha11/2!2zH~s,1/22ha!# U
s521

52p iha
2 , ~138!

and hence

Dra
f ~E!5ha

2d~E!. ~139!

Now, the two-body interaction partition functionZint(b) can
be calculated from

Zint
b, f~b!5E e2bEDra

b, f~E!dE. ~140!

Note thatZint(b) vanishes forha50 when interactions~in-
cluding the AB interaction! are switched off. The integration
here runs over the whole spectrum. However, since there are
no bound states,Dra(E) is zero forE,0 and the integral
reduces to the Laplace transform. By inserting Eqs.~137!
and~139! into Eq.~140! one finds that the partition functions
do not depend on the temperatureT @7#,

Zint
b 52ha~12ha!, Zint

f 5ha
2 . ~141!

a2(T) can be directly expressed in terms of the two-body
partition function and has the form

a2
b~T!52

pb

2m
@118Zint

b # ~142!

in the case of bosons, and

a2
f ~T!5

pb

2m
@128Zint

f # ~143!

in the case of fermions@7#. The prefactor in the last two
expressions can be written aslT

2/4, wherelT5A2pb/m is
the thermal length. Now Eqs.~141!, ~142!, and~143! imply
that the second virial coefficients are periodic with respect to

ha→ha61, i.e., with respect toa→a62 @27#. In case of
bosons one finds for 0,a,2 that

a2
b~T!52

lT
2

4
~124a12a2!5

lT
2

4
@122~a21!2#. ~144!

Similarly, in the case of fermions one obtains for
21,a,1 that

a2
f ~T!5

lT
2

4
~122a2!52

lT
2

4
@124~a11!12~a11!2#.

~145!

The result for other ranges ofa is obtained by using the
periodicity. The second virial coefficientsa2

b(T) anda2
f (T)

are written in two equivalent forms. The second form clearly
shows that ifa is raised toa11, thena2

b(T)→a2
f (T). Simi-

larly, if a is lowered by 1, thena2
f (T)→a2

b(T).
So far, we have only reproduced the known results for the

second virial coefficients of noninteracting anyons@7,27#. In
the presence of an interaction~as may be the case for anyon-
antianyon interaction! the virial coefficients will change. The
results for the DOS in the AB potential then enable us to
calculate them in the special case of the potential
U(r2r 8). The analysis is similar to that of Sec. V. There-
fore, provided the parameterlÞ2 in Eq. ~131!, no bound
state is present in the spectrum and the second virial coeffi-
cientsa2

b, f(T) are still given, respectively, by Eq.~144! or
Eq. ~145!. They exhibit quite a lot of rigidity with respect to
the interaction and they start to change only at the critical
coupling lc52 when the phase-shift flip or a bound state
may occur~at an energy that depends on the details of the
limit when the radius of the flux tube shrinks to zero!. The
only change with regard to the AB scattering discussed in
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previous sections is that the parametern changes here by 2
and hence a bound state or the phase-shift flip can only occur
in a singlechannel. Then the change of the IDOSDNa(E) is
given either by

DNa~E!5N ~ha!1
1

p
arctanS sin~hp!

cos~hp!2~ uE2nu/E!hD
~146!

or

DNa~E!5N ~ha!2
1

p
arctan

3S sin~hp!

cos~hp!1~ uE2n21u/E!~12h!D , ~147!

where eitherN (ha)52ha(12ha) orN (ha)5ha
2 depend-

ing on n and whether one starts from the bosonic or the
fermionic end. To calculateZint(b) in this case one integrates
by parts the general formula~140! and rewrites it in terms of
the changeDNa(E) of the IDOS@61#. Now a bound state is
present and one obtains in general

Zint~b!5(
b

e2bEb1bE
0

`

e2bEDNa~E!dE, ~148!

where the sum here in principle runs over all bound states.
Note that at the critical coupling, the partition function de-
pends onT. Eventually, the second virial coefficients are
obtained by inserting the result in either~144! or ~145!. In
Table I the results are presented for the partition function,
and the second virial coefficient for bosons and fermions in
the case when the phase-shift flip occurs forn5@a# irrespec-
tive of whether odd (n5no) and even (n5ne). The results
are presented in terms ofh. Providedn is even,h is added to
~subtracted from! Zint(b) in the case of bosons~fermions!.
The reason is that in the former case the condition
0,unu,1 is satisfied for the onlyl given by 2l52n
(2l52n22), which implies that the parametern takes the
value h @2(12h)#. When n is odd, the situation is re-
versed andh is subtracted from~added to! Zint(b) in the
case of bosons~fermions!. The calculation can be performed
straightforwardly, but care has to be taken with regard to the
range of ha : 0,ha,1 in the case of bosons and
uhau,1/2 in the case of fermions.

The results presented in Table I, apart from the periodicity
of the second virial coefficients, demonstrate clearly that the
second virial coefficients interpolate between the fermionic
and bosonic case asa changes by unity. Namely, the second

virial coefficient in thenoB case~bosonic end withn5no
odd! is the same as that in theneF case~fermionic end with
n5ne even!, and similarly the result for the second virial
coefficient in thenoF case is the same as that in theneB
case. The reason is that in the respective cases, the partition
functionsZ int

b, f receive the same contribution. This is not re-
stricted to the case where the contribution is given by the
phase-shift flip only, but holds in the general case@~147! and
~148!# when the bound state is present. Then, according to
Eqs.~142! and ~143!, the changes in the second virial coef-
ficients are identical. Therefore, the interpolation between
different statistics asa→a61 holds both with and without
the short-range interaction~131!. There is, however, one dis-
tinguishing feature of the second virial coefficients at the
critical coupling observed in Ref.@28#, namely, theirdiscon-
tinuity. Since a discontinuity in the virial coefficient implies
a discontinuity in the free energy, to the same order of ap-
proximation this points to some kind of phase transition@28#.
It has already been mentioned that at the critical coupling
lc52, the scale invariance is generally broken and one ex-
pects a different physics in this case.

Our results cover naturally the case of the spin one-half
anyons@28#, too. In the latter if we ignore the anomalous part
of the magnetic moment, but add a Zeeman interaction, an
anyon-anyon potentialU(r2r 8) arises which has the form

U~r2r 8!5
\2

m
~s11s2!

a

ur2r 8u
d~ ur2r 8u!, ~149!

wheres1561 ands2561 are spin projections on the di-
rection of the flux tube@28#. Provided that at least one of the
spins does not have an orientation opposite to the orientation
of the magnetic field, then, depending on the statistics, the
result for the second virial coefficient is given either by Eq.
~144! or Eq. ~145!, in accord with@28# and with previous
results@7,27#: the interaction does not have its critical value
and one should recover the noninteracting case. If both spins
are opposite to the direction of the magnetic field, the critical
potential withlc52 arises and, provided the phase-shift flip
takes the place, the results for the second virial coefficient of
anyons can be read off from Table I. Our result in thenoF
case agrees with that of Blumet al. @28#. In theneF they did
not take into account the contribution of the phase-shift flip
as they assumed that in the AB scattering the phase-shift flip
cannot occur in thel52n21 channel. Therefore, not sur-
prisingly, in Ref.@28# they obtained the same result~145! for
the second virial coefficient in theneF case as in the absence
of the interactionU(r2r 8). As has been discussed in Sec.
VI, it is more difficult to create a bound state in the

TABLE I. The partition functionZint(b) and the second virial coefficient for bosons and fermions in the
presence of the phase-shift flip forn5@a# odd and even.

n Zint
b (b) a2

b(T) Zint
f (b) a2

f (T)

even 1
4 (2h1h2)

lT
2

4
@122(h11)2#

1
4 (24h1h2)

lT
2

4
(118h22h2)

odd 2
1
4(114h2h2)

lT
2

4
(118h22h2)

1
4 (h11)2

lT
2

4
@122(h11)2#
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l52n21 channel, and the phase-shift flip in this channel
may possibly not occur. If this happens, then our result for
the second virial coefficient coincides with that of Ref.@28#.

For the case of an unpolarized system, the complete
ā2
f (T) is obtained by averaging over four spin states. Pro-

vided that there is no phase-shift flip in theneF case,
a2
f (T) is the same in all four cases and is given by Eq.~145!.

In the presence of the phase-shift flip, one of the values
a2
f (T) is then given by Table I. In thenoF case, three values

of a2
f (T) are the same and given by Eq.~144!, because of the

interpolation between fermionic and bosonic statistics. The
remaining value ofa2

f (T) under the presence of the phase-
shift flip is again taken from Table I. Finally, one obtains

ā2
f ~T!5

lT
2

4 H ~122h2!, neFcase without the phase-shift flip

~112h22h2!, neFcase with the phase-shift flip

~2112h22h2!, noFcase.

~150!

It is worth noting that anyons with a short-range pairwise
attractive interaction occur in the nonrelativistic limit, taken
up to the terms of orderv2/c2, of the topologically massive
planar electrodynamics@51# defined by the action

S5Smatter1
1

L2E S 2 1
4FabF

ab1
1

2R
eabgA

a]bAgDdt d2r ,
~151!

with a nonminimal coupling@25,26#

Smatter5Smatter
0 2 (

a51

N E J~a!
m ~x!@jaAm~x!

2 1
2gaL

22emnsF
ns#dt d2r . ~152!

Here,uRu represents the screening length of the electromag-
netic interaction,L is the arbitrary scale parameter,ja stands
for the ath particle’s charge in units ofL, J(a)

m denotes the
standard one-particle current normalized to the unit charge,
andN is the number of the pointlike particles. In the model
the photon is massive with a massM5\/cuRu. Note that
F12 is actually a magnetic field, and the nonminimal cou-
pling term that is peculiar to 211 dimensions@25,26# is in
this instance the familiar Pauli magnetic moment coupling
that exists here even in the absence of a spin. It has been
shown by Stern@25# that, provided

ga5L2Rja , ~153!

rCdx
iAi becomes a topological invariant,

R
C
dxiAi5gn. ~154!

The screening length remains nonzero, and the electric
charge and magnetic moment balance each other in such a
way that the radiation isabsent. At the tree level, the theory
at the critical coupling~153! can be exactly reexpressed as a
simpleeffective action at a distancewithout the usual com-
plications associated with the retardation, etc.@25#. The situ-
ation is analogous to that in pure Chern-Simons~CS! theory,

SCS5
1

2QE eabgA
a]bAgdt d2r , ~155!

which is recovered in the limitL2→`, R→0, keeping fixed
the parameter

Q5L2R. ~156!

In the latter case the absence of radiation is simply because
the photon gets infinitely heavy.

XII. DISCUSSION OF THE RESULTS
AND OPEN QUESTIONS

The nonrelativistic scattering in the AB potential has been
analyzed. The DOS and scattering cross sections have been
calculated and various applications have been discussed. De-
spite the fact that the single-particle Green function is not a
periodic function ofa, it gives rise to the DOS which is a
periodic and symmetric function of the flux and it depends
only on the distance from the nearest integer. It has been
shown that the Krein-Friedel formula@8# is not restricted to
potentials of a finite range and can have a wider range of
applicability. The Krein-Friedel formula may be used even
for long-ranged potentials when the sum over phase shifts is
properly regularized. In the case of the Aharonov-Bohm po-
tential it is thez-function regularization that gives the correct
answer. By means of the Krein-Friedel formula the change of
the DOS induced by the Aharonov-Bohm potential has been
calculated for different self-adjoint extensions which corre-
spond to different physics inside the flux tube. For the con-
ventional setup, i.e., with zero boundary conditions at the
boundary of the flux tube, our result for the DOS~22! con-
firms the expectation of Comtet, Georgelin, and Ouvry@7#
that the change of the DOS is concentrated at the zero en-
ergy. Whenever a bound state is present it is always accom-
panied by a resonance at an energy proportional to the abso-
lute value of the energy of the bound state. In the presence of
a bound state or a phase-shift flip, the symmetry of the spec-
trum with respect to the changea→a61 is broken. Never-
theless, scattering cross sections continue to be periodic with
respect to the substitutiona→a61.

In the case of a regular flux tube of a finite radiusR, the
question of the number of bound states has been clarified. It
has been shown that the number depends not only on the
total flux but also on the energy of magnetic field. It means
that one has to be careful in the choice of the regularization
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when discussing the physics with anomalous magnetic mo-
mentgm>2 or with a short-range interaction inside the flux
tube. When the AB vortex arises by some physical mecha-
nism such as vortices in the superconductor of type II do,
then the profile of a magnetic field is determined by the
condition of the minimum of energy. Our considerations
have only been quantitative. The open question which re-
mains is what is the qualitative dependence on the energy
and whether~and if then, how! the number of bound states
depends on higher moments*Bn(r )d2r of the magnetic field
B(r ), wheren>3. We have shown that a bound state in the
l52n21 channel can exist provided 12h is sufficiently
small. In the discussion of theR→0 limit, the existence of a
critical couplinggm52 was established. Provided the cou-
pling with the interior of the flux tube is smaller or greater
than the critical one, or when the coupling is not renormal-
ized, the limit coincides with that of the impenetrable flux
tube. Thereby, the result of Ref.@49# for gm50 is general-
ized. The Aharonov-Casher theorem about the number of
zero modes has been corrected. It has been shown that they
merge with the continuous spectrum in theR→0 limit. The
origin of the phase-shift flip has been investigated. It was
shown that the phase-shift flip@14# may occur even in the
absence of spin. The conditions for the phase-shift flip for-
mulated in Refs.@14,22# have been found necessary but not
sufficient. In particular, provided no bound state is in the
l52n21 channel forRÞ0, then the phase-shift flip will
not occur at theR→0 limit.

A quantum-mechanical and nonrelativistic criterion of sta-
bility ~114! in 211 dimensions has been discussed that only
involves fundamental parameters of matter. Despite that this
criterion was derived under very restrictive hypotheses, it
was shown to be compatible with other, quantum-field theory
treatments@52,53#. An open question remains regarding what
will happen if the dynamics of the shrinking of the radius of
a flux tube is included. Another open question is what field
configuration actually optimalizes the right-hand side of Eq.
~114!, i.e., what is the infimum of the right-hand side of Eq.
~114! with respect to variations of magnetic fieldB(r ), sub-
ject to the constraint~89!.

It has been shown that in the presence of bound states or
a phase-shift flip, the differential scattering cross section be-
comes asymmetric with respect to the substitutionw→2w,
and gives rise to the Hall effect. The Hall resistivity has been
calculated@see Eq.~118!#. The persistent current of free elec-
trons in the plane has been discussed and the results of Ref.
@6# have been extended. In contrast to Ref.@6#, we have
found that the total persistent current in the spin one-half
case is different from zero, and the persistent current of both
the spinless and the spin one-half fermions depends linearly
on h. The formal similarity between the scattering of elec-
trons in the AB potential and that in the field of a cosmic
string suggests that a persistent current will also appear in
the latter case.

The known results for the second virial coefficients of the
nonrelativistic anyons@7,27# were reproduced and their val-
ues were calculated for the case when anyons interact via a
short-range attractive potential,U(r2r 8), proportional to
the Diracd function given by Eq.~131!. The case considered
here is complementary to the case of a long-range potential
g/r 2, considered by Loss and Fu@62#. In the present case, the

second virial coefficients were shown to be remarkably
stable when such an interaction is switched on. They do not
change when the interaction is switched on until the coupling
constant reaches its critical strength. At the critical coupling
the second virial coefficients becomediscontinuousas a
function of a but their periodicity with respect to
a→a62 and the interpolationa2

b, f(a61)5a2
f ,b(a) be-

tween different statistics still holds. These results were ob-
tained by using thez-function regularization which has an
obvious advantage with regard to other finite box or har-
monic potential regularizations. By using thez-function
regularization one avoids the necessity of a discretization of
energy levels for computing the partition function. Our re-
sults naturally generalize those of Blumet al. @28# for non-
relativistic spin one-half anyons for the case of an anomalous
magnetic moment and when a bound state occurs in the spec-
trum.

Our results have been formulated in terms of self-adjoint
extensions. A self-adjoint extension is the rigorous limit
R→0. Therefore, in the case of a flux tube of finite radiusR,
our results can be applied when the radiusR is negligibly
small when compared to all other length scales in the system
under consideration. The parametersD2n andD2n21 of the
relevant self-adjoint extension are then determined from
bound state energies in thel52n and l52n21 channels.
Hence, to check some of our results experimentally it is not
necessary to use a singular magnetic field. By using the du-
ality discussed in Sec. VII the physics in the presence of an
almost singular flux tube can be tested in experiments with
slow electrons scattered off a general rotationally invariant
two-dimensional magnetic fieldB(x,y) that obeys the finite-
flux condition~89!. From the experimental point of view we
stress the following experiments that should be performed.

~i! Measurement of the phase shift flip in thel52n21
channel. Depending on the flux it may or may not occur in
this channel.

~ii ! Measurements of the Hall resistivity either in the di-
lute vortex limit or for the single vortex.

~iii ! Measurements of the resonance.
A hypothetical setup for observing the resonance is to

study the transmission through a single flux tube. A realistic
physical realization is that suggested originally by Rammer
and Shelankov@11# and later realized experimentally by
Bending, Klitzing, and Ploog@10# ~see Fig. 1!. When homo-
geneous magnetic field is switched on, the conventional su-
perconductor is penetrated by vortices of flux witha51/2,
i.e., exactly that flux at which the resonance is at infinity.
Recent measurements on YBCO-delta rings with three grain-
boundary Josephson junction@63#, however, reported the ob-
servation of vortices that carry a fluxa51/4 which issmaller
than the standard flux quantumhc/2e ~corresponding to
a51/2! in the superconductor. Therefore, when the high-Tc
yttrium-barium-copper oxide~YBCO! film is used as a gate
on top of the heterostructure containing 2DEG, the resonance
is at some finite energy and could in principle be observed.
Another possibility is to measure energy dependence of
phase shifts and~as a precursor of the resonance! the time
delay ~76!.

An interesting open problem concerns the shape of the
resonance~73! in the AB scattering that is not of the Breit-
Wigner form. The latter is a general consequence of theana-
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lyticity of scattering amplitudes that is usually taken as an
equivalent tocausality. However, the rigorous proof of the
equivalence requires precise localization in time and in the
energy for the incident wave packet. This is, however, im-
possible due to the uncertainity relations@64#. We have un-
dertaken the analysis of the problem in terms of the Jost
functions. However, we have not found the origin of this
behavior and we postpone the solution to this problem. The
discussion might in principle shed some light on the analyt-
icity principle usually adopted in the axiomatic quantum-
field theory as a substitute for causality.

Another interesting problem is to find the analog of the
Levinson theorem~see Ref.@65# and Ref.@41#, p. 356! and
the generalization of Bargmann’s inequalities@66# for singu-
lar potentials. In the case of regular potentials of finite range
one knows, thanks to this theorem, that if the phase shifts are
normalized so thatd l(E)50 for E→`, thend l(0) gives the
number of bound states in the channell . In the case of the
AB potential the phase shifts~7! essentially do not depend
on the angular momentuml and on the energyE. In the case
of a,1 they are either2pa for positive l or pa for nega-
tive l . It is impossible in general to normalize phase shifts in
the singular case in the same way as for regular potentials,
since they do not depend on the energy.
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APPENDIX A: SOME USEFUL INTEGRALS

To perform the integral in Eq.~14! one uses the result that

Jn~kry!5 1
2 @Hn

~1!~kry!1Hn
~2!~kry!# ~A1!

and deforms the integration contour as in Fig. 1.H (1) and
H (2)(z) are the Hankel functions,

H ~1!~z!5
i

sinnp
@e2np iJn~z!2J2n~z!#. ~A2!

For real arguments,

H ~1!~x!5H ~2!~x!* ~A3!

@see Ref.@34#, relations ~9.1.3! and ~9.1.4!#. The integral
with Hn

(1)(kry) is now deformed to the contourC1 while that
with Hn

(2)(kry) is deformed to the contourC2 . Note that
Hn
(1)(z)@Hn

(2)(z)# is exponentially decreasing in the upper
~lower! half of the complex plane~see Appendix B!. Since it
is assumed thatr x,r y the integrand in Eq.~14! is exponen-
tially decreasing as well. Now, the contributions of any of the

two integrals from the imaginary axis do not vanish. How-
ever, by using the identities~9.1.35! and ~9.1.39! from Ref.
@34#,

Jn~ze6p i !5e6np iJn~z!, ~A4!

Hn
~2!~ze2p i !52enp iHn

~1!~z!, ~A5!

Hn
~1!~zep i !52e2np iHn

~2!~z!, ~A6!

one can show that

E
i`

0 zdz

q22z2
Jn~zrx!Hn

~1!~zry!

52E
2 i`

0 zdz

q22z2
Jn~zrx!Hn

~2!~zry!, ~A7!

i.e., the integrals on the imaginary axis cancel in the sum.
Thanks to~A5! one has forn50

H0
~2!~ze2p i !52H0

~1!~z!, ~A8!

and the same applies to the integral in Eq.~12!, too. Once the
integrals in Eqs.~12! and~14! are represented as the sum of
two contour integrals in the complex plane they can be sim-
ply taken by the residue theorem.

In order to calculate TrDGa(x,x,M ) note that

TrDGa~x,x,M !5E
R2

DGa~x,x,M !d2x

52
sinhp

2pM2E
2`

`

dqE
2`

`

dv

3
1

~coshv1coshq!2
eh~q2v!

11eq2v . ~A9!

To perform the integral here one makes the substitution@67#

x5
q1v

2
, y5

q2v

2
, ~A10!

with a Jacobian equal to 2. After some manipulations one
finds

E
2`

`

dqE
2`

`

dv
1

~coshv1coshq!2
eh~q2v!

11eq2v

5E
0

` dx

cosh2x E0
` cosh~2h21!y

cosh3y
dy. ~A11!

According to formula~3.512.1! of Ref. @34#

E
0

` cosh~2h21!y

cosh3y
dy52B~11h,22h!, ~A12!

whereB(x,y) is the Euler beta function,

B~x,y!:5
G~x!G~y!

G~x1y!
, ~A13!
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and G(x) is the Euler gamma function@34,36#. Since
B(1,1)51,

E
0

` 1

cosh2x
dx51. ~A14!

Now, G(3)52 and

2B~11h,22h!5G~11h!G~22h!

5h~12h!G~h!G~12h!. ~A15!

Therefore, by using~B6!,

E
0

` cosh~2h21!y

cosh3y
dy5p

h~12h!

sinph
• ~A16!

APPENDIX B: CYLINDRICAL FUNCTIONS
AND THE EXTERIOR SOLUTION

The asymptotic behavior of Bessel functions and their de-
rivatives at infinity asz→` can be found directly in Ref.
@34#. The asymptotic behavior of the Bessel functionJn(z)
and their derivatives at the origin asz→0 is determined by
relation~9.1.10! of Ref. @34#. The asymptotic behavior of the
Hankel function at the origin forunu,1 can be calculated
from the asymptotic behavior ofJn(z) by using relation
~9.1.3! of Ref. @34#,

Hn
~1!~z!5

1

i sinnp (
m50

`
~2z2/4!m

m! F ~z/2!2n

G~12n1m!

2e2np i
~z/2!n

G~11n1m!G , ~B1!

H0
~1!~z!512

2

p i F lnS z2D1gG1O~z2lnz!, ~B2!

where g is Euler’s constant. The asymptotic behavior of
Kn(z) for n,1 whenz→0 is determined with the help of
the last two formulas and relations~9.6.4! and~9.6.6! of Ref.
@34#, that hold for2p,argz<p/2. Therefore,

K0~z!;2g2 ln~z/2!1O~z2lnz! ~B3!

and

Kn~z!;
1

2 sinnp

p

G~12n! F S z2D
2n

2
G~12n!

G~11n! S z2D
nG

1O~z22n!

5 1
2G~n!F S z2D

2n

2
G~12n!

G~11n! S z2D
nG1O~z22n!,

~B4!

Kn8~z!52 1
4G~11n!F S z2D

2n21

1
G~12n!

G~11n! S z2D
n21G

1O~z12n! ~B5!

otherwise. Here we have used the identitynG(n)
5G(11n) together with

G~n!G~12n!5
p

sinnp
• ~B6!

The wave function outside the flux tube is

c l~r ,w!5K u l1au~k l r !eil w. ~B7!

For its logarithmic derivativerK n8(r )/Kn(r ) one has in gen-
eral ~see formula 9.6.26 of Ref.@34#!

z
Kn8~z!

Kn~z!
52n2z

Kn21~z!

Kn~z!
5n2z

Kn11~z!

Kn~z!
• ~B8!

Its asymptotic behavior asz→0 depends whethern is less
than, equal to, or greater than 1. One has

z
Kn8~z!

Kn~z!
;2n22n

G~12n!

G~11n! S z2D
2n

1O~z4n! ~B9!

for 0,n,1/2,

z
Kn8~z!

Kn~z!
;2n22n

G~12n!

G~11n! S z2D
2n

1O~z2! ~B10!

for 1/2<n,1,

z
Kn8~z!

Kn~z!
;211

1

G~2!
z2lnz1O~z2! ~B11!

for n51, and

z
Kn8~z!

Kn~z!
;2n2

1

2~n21!
z21O~z2n,z4! ~B12!

for n.1. At infinity as r→`

r
Kn8~r !

Kn~r !
;2r2 1

21O~r21!. ~B13!

APPENDIX C: HYPERGEOMETRIC FUNCTION
AND THE INTERIOR SOLUTION

In the case of homogeneous field regularization, the wave
function inside the flux tube of radiusR at the energyE is
given by ~cf. Ref. @43#, p. 458!

c~r !5e2j/2j u l u/2M S u l u1 l

2
2

«~r !

2
2 1

2k
2l B
2 ,u l u11,j Deil w.

~C1!

Here j is the flux within the radiusr in units of the flux
quantumF0 , j5 l B

2r 2/25F(r )/F0 , l B5(\c/ueuB)1/2 is the
magnetic length,k252mE/\2, and the magnetic moment
coupling has been assumed inside the flux tube. Since we are
interested in bound states, the parameterx5kR will be in-
troduced in analogy with Ref.@39# where, as above,
k5A2muEbu/\2, Eb being the bound state energy. One can
show that
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x2

2a
52

2mEb
\2 l B

2 . ~C2!

The logarithmic derivative of~186! at the flux tube radius
r5R is then

r
c~r !8
c~r !

U
r5R

52a1u l u12a
a

b

M ~a11, b11, a!

M ~a,b,a!
,

~C3!

wherea andb are given by Eq.~87!.
The Kummer functionM (a,b,z), frequently denoted by

1F1(a,b,z) @34#, is defined by

M ~a,b,z!511
a

b
z1

a~a11!

b~b11!

z2

2!
1•••1

an
bn

zn

n!
1•••,

~C4!

where

an5a~a11!•••~a1n21!,

bn5b~b11!•••~b1n21!. ~C5!

Due to the formula 13.4.8 of Ref.@34#

d

dz
M ~a,b,z!5

a

b
M ~a11, b11, z!. ~C6!

Using the simple fact that, providedb.0,

a,b⇒ a

b
,
a11

b11
, ~C7!

one finds for realz5c.0

M ~a,b,c!,M ~a11, b11, c!. ~C8!

Note that in the cases discussed here@see Eqs.~81! and~87!#
one has not onlyb.0 but evenb>1. Moreover, provided
there is neither magnetic moment coupling nor an attractive
potential inside the flux tube one also hasa.0 @see Eq.
~81!#, and Eq.~82! holds. However, one cannot maintain

M ~a,b,c!.0 ~C9!

when an attractive potential of whatever origin is inside the
flux tube. For example, for gm2252«,4 and x
P@0,A2a«) @see Eq.~87!# one has21,a,0. In this case

a11.0 and M (a11, b11, c).0. From the definition
~C4! of M (a,b,c) one finds easily for sucha that

M ~2uau,b,c!522M ~ uau,b,c!. ~C10!

Therefore, if the relation

M ~ uau,b,c!.2 ~C11!

is satisfied, one findsM (a,b,c),0. Hence,

M ~a11, b11, c!

M ~a,b,c!
,0. ~C12!

The ratio atx50 is nothing but a parametera1 of Ref. @37#.
It is here where the error@45# in Ref. @39# is made since they
claimeda1 to be positive for whatever are the parametersa,
b, andc. For our purposes it is more important to discuss the
property of the ratio given in Eq.~82! in place of~C12!. Note
that the ratio stays positive,

2a

b

M ~a11, b11, a!

M ~a,b,a!
.0, ~C13!

provided Eq.~C11! holds. Therefore, at those values ofx @it
enters Eq.~C11! via a# it is impossible to satisfy Eq.~84!
with the homogeneous field regularization.

APPENDIX D: z FUNCTIONS

The Riemannz function is defined by

zR~s!:5(
l51

`

l2s. ~D1!

It is an analytic function with a simple pole ats51. The
Hurwitz zH(s,x) function, x¹Z, is a generalization of
zR(s),

zH~s,x!:5(
l50

`

~ l1x!2s. ~D2!

For s521

zR~21!52 1
12 , ~D3!

and

zH~21, x!5 1
2x~12x!2 1

125 1
2x~12x!1zR~21!. ~D4!
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