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Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are
analyzed and the single-particle density of states for different self-adjoint extensions is calculated. The single-
particle density of states is shown to be a symmetric and periodic function of the flux, which depends only on
the distance from the nearest integer. The Krein-Friedel formula for this long-range potential is shown to be
valid when regularized with thé function. The limit when the radiuR of the flux tube shrinks to zero is
discussed. ForR#0 and in the case of an anomalous magnetic momgpt-2 (note, e.g., that
Om=2.002 32 for the electrgrthe coupling for spin-down electrons is enhanced and bound states occur in the
spectrum. Their number does depend on a regularization and generically does not match with the number of
zero modes in a given field that occur whgp=2. Provided the coupling with the interior of the flux tube is
not renormalized to a critical one, neither bound states nor zero modes survive the-lir@itThe Aharonov-

Casher theorem on the number of zero modes is corrected for the singular field configuration. Whenever a
bound state does survive tiie—0 limit it is always accompanied by a resonance. The presence of a bound
state manifests itself in the asymmetric differential scattering cross section that can give rise to the Hall effect.
The Hall resistivity is calculated in the dilute vortex limit. The magnetic moment coupling and not the spin is
shown to be the primary source for the phase-shift flip that may occur even in its absence. The total energy of
the system consisting of particles and field is discussed. An application to persistent currents in the plane for
both spinless and spin one-half fermions is given. Persistent currents are also predicted to exist in the field of
a cosmic string. The second virial coefficient of anyons with a short-radgaction interaction is calculated.

The coefficient is shown to be remarkably stable when such an interaction is switched on. Several suggestions
for new experiments are given.

PACS numbds): 03.65.Bz, 03.80tr, 05.30—d, 73.50—h

[. INTRODUCTION to all other length scales in the system. Therefore, both a flux
tube with a nonzero and the zero radius will be considered.

In this paper we will report on several physical phenom-In the case wher®&>0, we shall allow generally for some
ena and calculate several quantities in the presence of thaditional interaction inside a flux tube, since such an inter-
Aharonov-Bohm(AB) potential [1], which, in the radial action arises, for example, in the case of the magnetic mo-

gauge, is given by ment coupling. The limitR—0 will then depend on the
physics inside the flux tube. In a rigorous mathematical
_ _ @ _«a sense, different physics inside the flux tube will be described
A=0 A= ot = 2 o @

by different Hamiltonians given as a certain self-adjoint ex-
tension of a formal differential operator.
Usually, ® = a® is the total flux through the flux tube and  First we shall concentrate on the calculation of the single-
@, is the flux quantum®,=hc/|e|. The AB potential will  particle density of stateOS). The reason is that the DOS
be considered here in a more general sense since formally the the quantity of basic interest and provides an important
same potentialof nonmagnetic originis generated around a link between different physical quantities. Knowledge of the
cosmic string. The paramete® is then 1Qus,  DOS determinegvia the Laplace transform, see EG40
a=e/Q yiggs, and®y=2m/e in the unitshi=c=1 with e  below] the partition functiorz(3), virial coefficients, and in
and Quiggs being, respectively, the charge of a test particlethe case of the Dirac equation a relation between effective
and the charge of the Higgs parti¢2]. Experimentally, the energy, induced fermion number, and the axial anomaly
situation of an infinitely thin flux tube is realized when a flux [3,4]. It has been use[b] to calculate the persistent current
tube has a radiuR which is negligibly small when compared of free electrons induced in the plane by the AB poteri6al

The DOS will be calculated in two different ways: first, di-

rectly through the resolvent and second, by only using the
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relativistic AB scattering in this case are summarized. There

are neither bound states nor zero modes and the DOS is

determined solely in terms of the continuous spectrum. The T B
single-particle DOS is calculated there directly from the re- | |
solvent. One finds that for integerresolvents do differ by a
phase factor. However, when the arguments coincide they are
identical and they do have the same trace and yield a DOS
identical to that in free space. We shall confirm the expecta- GaAs
tion of Comtet, Georgelin, and Ouvfy] that the change of
the DOS is concentrated at the zero enefgge Eq.(22)

beloy\/]. o ' ' FIG. 1. Black layer is a superconductor of type Il put on top of
Different Self-adJOIl’l'_E extensions In the case of a Pen-the heterostructure containing the two-dimensional electron gas
etrable flux tube are discussed in Sec. lll. Let the couplingshaded region Homogeneous magnetic field can only penetrate

constant be negativee= —|e|. Then different self-adjoint the superconductor in Abrikosov vortices. Therefore, electrons in
extensions arise because, in the channlels—n and the inverse layer of the heterostructure do not move in the homo-
|=—n—1, wheren is the integer part ofr, there are two geneous magnetic field but in the field of a penetrable flux tube.
linearly independent square integrable at zero solutions of an
eigenvalue equation. These two channels are also the onfiefinitely do have a nonzero radius. Another realistic realiza-
two channels where a bound state can occur. Bound statéion of the penetrable flux tube is that suggested originally by
are shown to parametrize different self-adjoint extensiondfammer and Shelankdi1] and later realized experimen-
and the change in the conventional phase shifts. Calculatiotally by Bending, Klitzing, and Ploofl0], i.e., to put a type
of the change), is reviewed. Knowledge of the phase shift Il superconducting gate on top of the heterostructure contain-
is then used in Sec. IV to calculate tBanatrix and scatter- ing the two-dimensional electron gé2DEG) (see Fig. 1
ing cross sections. TH&@matrix is shown to depend nontrivi- When a magnetic field is switched on, the conventional
ally on o and not to be a periodic function of. Neverthe- superconductor is penetrated by vortices of flux with1/2.
less, theS matrix gives rise to differential and transport Therefore, electrons from the heterostructure do not move in
scattering cross sections which are periodic functionsrof the homogeneous magnetic field but in the field of a pen-
with period 1. In the presence of a bound state, one finds igtrable flux tube. Electrons can penetrate to their core, in
contrast to the case of the impenetrable flux tube that thehich case the potential arises as the result of the magnetic
differential scattering cross section ceases to be symmetrimoment coupling. If the gyromagnetic ratig, is less than 2,
with respect to the substitutiap— — ¢ [see Eq(63)], where  gn<2, the coupling with magnetic field is not sufficiently
¢ is a scattering angle. The asymmetry is easy to understargirong to form bound states. If the gyromagnetic ratipis
becauséfor a=0) bound states are only formed in the chan-exactly equal to Zi.e., the magnetic moment is not anoma-
nels for whichl<0. The results are then used in Sec. Vlous) zero modes may occur in the spectr{ih2,13. Their
where the validity of the Krein-Friedel formu[8,9] for the =~ number equals, respectively;-1 or n, wheren is the inte-
DOS is established for a singular potential. It is shown thager part ofa, depending on whether or not the flux is an
the Krein-Friedel formula when regularized with thidunc-  integer. There is no zero mode far<1 [12,13. In the re-
tion gives the correct DOS. This enables us to calculate thgion g,>2, i.e., exactly where the gyromagnetic ratio of
DOS for different self-adjoint extensions. The Krein-Friedel electron ¢,,=2.002 32) lies, the coupling with magnetic
formula gives the DOS as the sum over phase sfsfte Eq. field is enhanced and bound states do occur. In contrast to
(66)] and thereby relates the DOS directly to the scatteringzero modeg12], one finds that the number of bound states
properties. It is therefore very useful to have its extension taloesdependon a regularization. For example, in the case of
singular (especially Coulomp potentials. One finds that the cylindrical shell regularizatiofil4] their number is gen-
whenever a bound state is present in the spectrum it is akrally higher than for the homogeneous field regularization
ways accompanied byrasonancgEq. (72)]. Rather surpris- [see Eq(104)]. The differences are attributed to the different
ingly, the shape of the resonar{ggven in Eq.(73)] is notof ~ energies of magnetic field inside the flux tube. In any case,
the Breit-Wigner form. Since the latter is a direct conse-however, the number of bound states does not match with the
guence of analyticity it poses an interesting question on th@umber of zero modes. The question about the existence of a
analytic structure of scattering amplitudes for singular potenbound state in the= —n—1 channel is discussed. Although
tials. The existence of theesonances quite unexpected. It generically it is true that only one bound state is present for
will influence the transport properties of electrons in the curO<a<1, provided -« is sufficiently small, the second
rently almost accessible experimental regifd@], and the bound state does appe@f. Ref.[15]).
persistent current of free electrons in the pldbg In the An interpretation of different self-adjoint extensions and
limit of a zero energy bound state the resonance goes to zerthe R—0 limit are studied in Sec. VII. The existence of a
too, where it merges with the bound state into the continuousritical coupling is established. In the case of the magnetic
spectrum leaving behind the phase-shift flip. moment interaction with the interior of the flux tube, the
In Sec. VI the calculation of the number of bound statescritical coupling corresponds to the case of the normal mag-
for a flux tube of finite radiufR+# 0 is given. The situation is netic moment with the gyromagnetic ratip,= 2. Provided
considered where a short-range potential is placed inside tHee coupling with the interior of the flux tube is weaker,
flux tube. The motivation is that vortices that can be realizedbound states do not form at all. If the coupling is stronger
in real experiments, such as in a superconductor of type Iithan the critical value, then, although bound states do exist
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for any R#0, theydisappearin the limit R—0. Although it Starting with the next section, applications to the total
might seem surprising at first, the fact is a translation of theenergy of the systenfparticles and a magnetic figldthe
result of Berezin and Faddegl6] established more than 30 Hall effect, a persistent current, and the second virial coeffi-
years ago that the nontrivi®—0 limit of a potential for-  cients are considered. We shall show that our results are not
mally given by the Dirac delta functiod(r) requires a only of academic but also of practical interest thanks to the
renormalizationof the coupling with the interior of the flux recent developments in the fabrication of microstructures and
tube(see Ref[17] for more details Referencg18] provides in mesoscopic physicésee Ref[23] for a recent review
some other examples when one encounters the necessity offae total energy of the system and its stability against mag-
renormalization in the quantum mechanics. At first sight thenetic field creation are discussed in Sec. VIII. In general, the
renormalization might seem to be artificial and only a math-diamagnetic inequalitf24] tells us that that the matter is
ematical obscurity. However, one knows that the anomaloustable The latter was proven under the assumption of mini-
magnetic moment always has a form factor that does depenglal coupling that implicitly assumes a normal magnetic mo-
on the energy19]. Therefore, in the realistic situation the ment. In our calculations we shall allow for speculation that
renormalization is provided by nature itself. the magnetic moment is independent of momenta. We shall
The point spectrunj20] at the critical coupling is also ignore the fact that the anomalous magnetic moment has a
considered. One finds that in the liniR— 0 there are no form factor that vanishes at high momenta. Under these hy-
zero modes in the AB potential for arty. The Aharonov- potheses one can show that in the nonrelativistic case in
Casher and the index theorerft2,13,2] are corrected in 2+ 1 dimensions, a window may exist for the magnetic mo-
the sense that they do not give, respectively, the actual nunmentg,,> 2 in which the inequality iziolated The reason is
ber of zero modes in a given finite-flux background butthe formation of bound states that decouple from the Hilbert
rather an upper bound. In the presence of a singular fielgpace by taking away negative energy. Although the dynam-
configuration such as the AB potential, the square integrabilics, return fluxes, and the form factor must all play an im-
ity of solutions must also be checked at the position of aortant role in the fulllquantum-field theorydiscussion of
singularity of the field. It is shown that at such a point thethe stability, our relatiorf114) is nevertheless interesting be-
square integrability fails. Another argument showing why itcause it gives the stability condition in terms of the ratio of
happens is to note that the only two channels infhe0  the rest and the electromagnetic energies.
limit where the spectrum can differ from the conventional In Sec. IX we shall examine consequences of the asym-
one arel=—n and |=—n—1. However, forR#0, zero metry of differential scattering cross sections. The asymme-
modes[see Eq.(90)] only occur in channels®8l=—-n+1, try has important consequences as it gives rise to the Hall
and hence they are never present in those described aboveffect. The Hall resistivity is then calculated in the dilute
In the presence of a bound state the conventional phassrtex limit[see Eq(118)], i.e., when the multiple-scattering
shift (7) acquires a generally energy dependent contributiortontribution is ignored. In Sec. X the results are applied to
(37). In the limit R—0 bound states are possible in two the persistent current of free electrons in the plane pierced by
different channels|=—n and|=—-n—1. However, when a flux tube. Both the spinless and the spin one-half cases are
R+#0, the bound state does not occur generally in thalicussed. The above mentioned resemblence between the
I=—n—1 channel. Therefore, it is natural to expect that theelectromagnetic AB potential and the field produced by a
phase-shift flip occurs generally only in the —n channel.  cosmic string 2] will enable us to conclude that the persis-
According to this discussion the conditions for the occur-tent current might appear in the latter case, too. Once again
rence of the phase-shift flip given by Hagli#l] are neces- condensed matter physics both gives the motivation and pro-
sary but not sufficient. Moreover, since the origin of the at-vides a test laboratory for a phenomenon that can occur at
tractive potential inside the flux tube can be arbitrary, ourdifferent length scales in the Universe. Finally, in Sec. XI,
calculation showgEgs. (35) and (70)] that the phase-shift the second virial coefficient of anyons interacting with a
flip occurs even in the absence of the spin. Also, in the caspairwise interaction proportional to the Diratfunction is
of particles with a spin it is not the spin but the magneticcalculated. Note that such an interaction appears in the non-
moment coupling that is the primary source for the phaserelativistic limit of planar field theorie$25,26. It will be
shift flip. A nice interpretation of the phase-shift flip appearsshown that the second virial coefficients are remarkably
if the bound state energy is renormalized to zero. The phasestable when the interaction is switched on. The calculation is
shift flip then occurs as the result of merging the bound statperformed directly in the continuum without any use of the
and the resonance into the continuous spectrum. Althougbustomary devices that makes the energy levels discrete,
the observation of the phase-shift flip is usually attributed tosuch as a finite boj27] or harmonic potential regularization
Hagen[14], it was observed earlier in a complementary situ-[7,28]. We shall show that the use of ti§efunction regular-
ation: in the scattering of a general two-dimensional magization reproduces the correct answer for the second virial
netic field satisfying the finite-flux condition in the long- coefficients of noninteracting anyofi,27], and generalizes
wavelength limit(see Ref[21], pp. 437 and 438 A duality  results of Blumet al. [28] for nonrelativistic spin one-half
can be observefsee Eq(111)], important from the experi- anyons.
mental point of view. Imagine two flux tubes with different  Note that one has the unitary equivalence between a spin
radii which are otherwise negligibly small when compared to1/2 charged particle in a two-dimension@D) magnetic
other length scales in the system. Then the scattering progiield and a spin 1/2 neutral particle with an anomalous mag-
erties of the flux tube with a radiu®; at momentunk,; are  netic moment in a 2D electric fiel®9]. In our presentation
the same as that of radil® at momentunk,, provided that we confine ourselves essentially to the nonrelativistic Schro
kiR1=ksR,. dinger and Pauli equations. The results for the Dirac and the
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Klein-Gordon equations, the induced fermion number, theof (5) are square integrable at infinitpr at zerg: the so-
relation between the phase-shift flip and the axial anomalygalled limit circle case(see Ref[32], p. 153. In general,
and the DOS in the spacetime of a gravitational vortex insquare integrability takes the place of boundary conditions at
2+1 dimensiond30] are discussed elsewhef4]. For the infinity (or at zerg if one of the solutions of5) is notsquare
problems related to the gauge transformations that are ndmtegrable at infinity(or at zerg: the so-callediimit point

discussed here we refer to the review of Ruijsenfais case(see Ref[32], p. 152. From the rigorous point of view,
one can speak about an impenetrable flux tube only provided
Il. IMPENETRABLE FLUX TUBE that « is not an integer. Then all wave functiogg (6) are
AND THE DENSITY OF STATES zero at the origin. Sincdy(0)=1, this is not the case for a

_ o ) flux tube with an integer flux and the physics may be differ-

Let us start with the nonrelativistic case and an impenent from that in free space. In what follows, we shall ignore

e |2 ¥, (6) is in the spectrum, and even in this case we shall call

(p— —A) the flux tube an impenetrable flux tube.

H= hc B @) The AB potential(1) is long-rangedand the conventional
2m KB phase shiftss)'s [1],
where u=pud's is the magnetic moment operatérjs the S=3m(l|—|l+al), @

spin operator, and is the magnitude of the particle spin. For

an electronu.= —gy|€|fi/dmc= — ugg/2, Whereug is the  aresingular. they do not depend on the energy and do not
Bohr magneton and,, is the gyromagnetic ratio that char- decay to zero foE— . Relation(7) can be intuitively un-
acterizes the strength of the magnetic monj&e{. Naively,  derstood as follows. The AB potential creates “vorticity”
Om=2 but one knows that within quantum electrodynamics—«, and positive and negative angular momentum wave
e acquires radiative corrections which depend on the findunctions “go around” the origin, respectively, in the coun-
structure constan ggp (=1/137). Within this framework terclockwise and the clockwise directiof&il].

we have[see Eq(118.9 of Ref.[19]] The DOS will be calculated directly from the resolvent
. 5 (the Green functionG,(x,y,E+ie€) according to the for-
_ € ¥QED @ QED mula
,LLe——sz 1+ > 0.32877—2 . €)
1 .
By separating the variables and assuméng—|e|, the total po(E)=——IMTIG,(x,x,E+ie). 8

Hamiltonian is written as a direct suid,= & H,, of channel

E‘i‘dsiel‘]' HamiltoniansH, in the Hilbert spacd*[(0),rdr]  The integrated density of stathk,(E) is then as usual given
1 L] by

Ho— d2 1d 2 5 4 E
=—g2 rar 2t mysA0). (4) Na(E):f_ po(E")IE'. (€)

Herev=|l+a|, a is the total fluxd in the units of the flux ) _ ) )
quantum®,=hc/|e|, ands,=*1 is the projection of the T.he eigenfunction expansion for the resolvent in polar coor-
spin on the direction of the flux tuj@,31]. The Schrdinger ~ dinatesx=(ry,¢,) is [33]
equation is recovered upon settisg=0.

In the case of the impenetrable flux tube the spectra of (xy.E)= ij” kdk
both the Pauli and the Schiimger equations are identical. o XY wh?)o g2 —k?
Let us first consider the conventional setup where wave func-

tions are zero at the position of the flux tube. There are % (e ou)

neither zero modes nor bound states in this case, as they are X|=7OO e J|I+a\(er)‘]||+a|(kry)-

incompatible with the boundary conditions. To discuss the

spectrum, note that for positiveegative energies the eigen- (10

value equation in théth channel reduces to thenodified _ )

Bessel equation of the ordet=|l + a/, By using Eq.(8), one can check that the resolveéh6) gives

the two-dimensional free density  of  states

H o =k2y,, (5)  po(E)=(m/27k%)V for a=ne7Z, i.e., whena is an integer,

with V= fd?r being the infinite volume. In the latter case,
with k=+2mE/%. The boundary condition selects only the sum in Eq(10) can be taken exactly by means of Graf’s
regular solutions at the origin and the “spectrum” is given addition theoren(Ref. [34], relation 9.1.79

by
D(r,@)=Jjis o (kr)e'e, (6) l;w e e (Kry)Jpi o (KTy)

Generally, specifying the boundary conditions at infir(iby '
at zero is necessary only for thodefor which all solutions =e Nexmey) 3o (k|x—y)). (11
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y partial resolvents|” in the lower half of the complex plane
(the Fourier transform of the advanced Green fungtisithe
complex conjugate of" [35],

m )
@ 55’f(x,y,E)=iWe"'<‘Px*‘Py)JV(qu)H(f)(qry). (16)

Note that the total Green functidd,(x,Y,E) in the presence
of an integer fluxn#0 [see Eq. (13)] differs from
Go(x,Y,E) by a phase factor. However, to calculate the DOS

C2 one needs the value @,(x,y,E) at ¢,= ¢, and hence the
result for the integer flux will be the same as@atn=0.
The limiting value of the resolvent operator on the lower side
of the cut is the complex conjugate @f3), the discontinuity
across the cut

—

FIG. 2. Contours of integration in the complex plane. Gh(%,X,E;)—Gp(X,X,E_)=—i(m/A?), a7

By taking the integral in Eg.(10) (assuming that and

q°=0g°+ie, andr,<r,) one finds
—(Um)IMGy(x,x,E) =m/(27#?) (18)

» kdk T )
fo WJO(HX_yD: —15Hg (alx=yl). (12 which confirms our normalization.
Whenevera ¢ 7, Graf’s theorem cannot be used. To pro-

Therefore, ceed further with this case we use the fact tiad) has an
analytic continuation on the imaginary axis in the complex
m momentunplane
Gn(x.y,E)=—i 5z MO H (glx—y]). (13

fw k—ko kryJ,(k —WiJ iqr ) HY(
One can also perform the integral 0 g°+k? o(Kn)Jukry) = 5, (iaroH, “(iary)

=1, (ar)K,(ary), (19

= kdk i 1
f m‘]v(er)‘lv(kry): - 7Jy(qfx)H5, '(ary)
0 14 wherel , andK , are modified Bessel functiofi84]. One can
(14 obtain this result either by performing the integral directly or

first and then take the remaining sum with the same resulpy Performing the analytic continuation {#4). To sum over
(13). Note that Eq(14) is also valid for nonintegrab. The | one uses the integral represe_ntauon of these functions
Bessel functions are analytic functions and the integrals ih32-34. Following the steps given in Reff37] one can sepa-
Egs.(12) and (14) are taken simply by the residue theorem rat€ thea-dependent contribution
gﬁduiggeigiiltg?le contour in the complex pldeee Fig. 2 AG (X X.E) =G, (x:x,M)— Go(Xx.x.M)
From the “formal scattering” point of view, taking the m sin(pm) (=
residue atk=|q|+ie corresponds to choosing outgoing =— F(ZT)ZJ dd
boundary conditions. From the point of view of "”
L2[(0%),rdr], it corresponds to taking the boundary value o e(I—w)
of the resolvent operator on the upper side of the cut at xf dwe‘M'x(COSh’*COSh")W,
[0,) in the complex energy plari®5]. Note that - €
(20)
[ E)=—i m ”(‘Px_‘Py)J H(l) (15)
STy B)=—igme AaqnoH,7(ary) whereM = —i\2mE/% and 7 is the nonintegral part of,
0= < 1. After taking the trace over spatial coordinates, us-
is the resolvent oH, in the upper halfof the complex plane ing formulas 3.512.1 and 8.334.3 of RE36] (see Appendix
of q [35]. J,(qr,) is square integrablén the measuredr)  A), and returning back to the real momentum axis, one fi-
near the origin, andi{"(qr,) is square integrable near in- nally finds
finity. Obviously, the resolvent is not defined for real positive
g since there is no solution of the Bessel equation that is
square integrable at infinity for such[35] (see also asymp-
totic formulas in Appendix B The point spectrum in a strict
sense is empty. The spectrum is purely continuous and liedence, the changap,(E)=p,(E) —po(E) of the DOS in-
on[0) where the partial resolver;” (the Fourier trans- duced by the AB potential in thehole spacés concentrated
form of the retarded Green functipias a cut[35]. The at zero energy where it is proportional to thdunction,

TrAGa(x,x,E)=—77(1—77)%~ (21)
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1 discussion is repeated as follows. Formal differential opera-
Apa(B)=——IMTrAG,(X,X,E.) =~ 3n(1—7)8(E). tor H, in L[ (0¢),rdr] is real and hence commutes with the
(22) involution operator(complex conjugation in the Hilbert
space. Therefore, by the von Neumann theorsee Ref.
This result is similar to the resu{.37) that was obtained in [32], p. 143, whenH, is defined as a symmetric operator on
the context of anyonic physidd] (see also Sec. XI below a dense set ih2[(0,%),rdr] such asC;(0») (the set of
The same term has been obtained by B§B8] as the lead- infinitely differentiable functions that are zero at the origin
ing term in the semiclassical approximation to the change ofind decay exponentially at infinjtyit always can be ex-
the DOS for the AB(circular, heart shaped, and Africa tended to a self-adjoint operator. According to theorem X.11
shaped quantum billiards. Thereby, the semiclassical ap-of Ref. [32], except for the channels with+ «|<1, the
proximation turns out to be exact in tRe— limit, whereR  operators H, are already essentially self-adjoint on
is the characteristic length of the billiards. Cg(0)[their deficiency indices are (0,p)Only the opera-
Let us now take the case whedeis negative and of the tors H, with ||+ a|<1, i.e., withl=—n,—n—1, admit a
form a=—n—»<0 wheren=0 is a positive integer and nontrivial one-parametric family of self-adjoint extensions
7 (the fractional part ofe) satisfies B<7<1. One can [31,3 (their deficiency indices are (1,131]). Therefore, in
readily repeat the same procedure to obtain the change in thBese two cases the Hamiltonian as a self-adjoint operator in
DOS. The result is exactly the same aq22), the Hilbert space is not defined uniquely. Different self-
adjoint extensions give different Hamiltonians which corre-
Ap-o(E)=Ap,(E)=—37(1~ 1) &(E). (23 spond to different physics inside the flux tube and different
boundary conditions at its boundafsee an example in Ref.
[32], pp. 144 and 146
To identify the particular self-adjoint extension one starts
with the finite flux tube of radiuR and takes the limit
E{*)O (see Sec. VII. We shall consider the situation with

Therefore,Ap,(E) as a function ofe is a symmetric func-
tion under the transformation— — «. Moreover, one can
show thatAp,(E) as a function ofx is only a function of a
distance from the nearest integer. Indeed, under the substit

tion bound states of enerdy,= — (%2%/2m) K|2 in thel=—-n and
7'=1-79 (24) |=—n—1 channels, and witm=[«] denoting the nearest
integer smaller than or equal tox. This happens when a
one finds thatAp,(E) is form invariant, namely, sufficiently strong attractive short-range potential is placed

inside the flux tube. In the nonrelativistic case for spin-down
Apo(B)=—27(1-n)8E)=—27"(1-7")8(E). (25  fermions this is the case when their magnetic moment ex-
ceeds the value 2, such as in the case of the electron which

ll. PENETRABLE FLUX TUBE hasg,,=2.002 324,39]. For negative energy, the eigenvalue

AND SELF-ADJOINT EXTENSIONS equation withH, leads to the modified Bessel equation and

. - . , the wave function is given by
Physically, self-adjoint extensions in the presence of an

Aharonov-Bohm potential can be understood as follows. In B|(f,<P)=K\|+a|(K|r)ei"°- (26)
channels with|l+«|>1, one has a unique choice for the

resolvent ofH, in L?[(0),rdr]. Apart from Jj 4(kr), K|i+a(xir) decreases exponentially for—c and for
there does not exist any other linearly independent solutionﬂ +a|<1 itis in L?[(0%),rdr], although it is singular at
of Eq. (5) which is square integrable at the origin. Similarly, the origin (see Appendix B Nevertheless, if we want the

apart fromH |(|lfi|(kr), there does not exist any other linearly bound state to be in the Hilbert space the scattering stétes
independent solution of E@5) which is square integrable at in the channelé= —n andl=—n—1 have to be modified.

infinity in the upper(lower) complex half-plane ok. In this  They become a combination of the regular and singular

case, the HamiltoniaHl, is said to be in the limit point case Bessel functions,

at both infinity and the origii32], and the square integra- _

bility takes the place of boundary conditions. An ambiguity 1//|(r,<p):[J“+a‘(kr)—A,J,||+a|(kr)]e"*". (27

in defining the resolvents; [see Eqs(15) and (16)] of H,

arises only in the channels withl+a«|<1, i.e., with  This is becausél, has necessarily to be a symmetric opera-

| =—n,—n—1. There are exactly those values dor which  tor. This means that the radial pan¢r) of any two states

Eqg. (5) has two linearly independeiiand hence allsquare  #1(r) andg,(r) in the Hilbert space have to satisfy

integrable at the origin solutions. These solutions can be

taken to belj,, andJ_ ... Then, if Iy (ary) is re-  rLdxT(Nx2(r)—x1(Ndx2(r)]=rWx7 ,x21—0 (28

placed in eithen15) or (16) by any linear combination of

Jji+4/(ary) andJ_j ;4 (qr,), one obtains a well defined re- in the limit r —0, whereW[,] denotes thewronskian The

solvent ofH, . To any particular choice of the linear combi- condition (28) is nothing but the boundary condition at the

nation corresponds a particular self-adjoint extension obrigin: in the limit r—0 the logarithmic derivative

H,. For these values df, the AB potential is said to be in rx’(r)/x(r) of any state in the given Hilbert space takes a

the limit circle case at zerdgsee Ref.[32], p. 152, and fixed value[40]. This is a translation of the mathematical

boundary conditions at the origin must be specified to defin@nalysis in terms of deficiency indic€31] into more physi-

a resolvent uniquely. cal terms. Obviously, the Wronskian will vanish when the
From the formal mathematical point of view the aboveasymptotic forms for —0, up to orderO(r), of any two



53 SINGLE-PARTICLE DENSITY OF STATES, BOUND STATES, ... 675
states are identical. For the general scattering soluah sin(|l + a|7)
i A= .
for 0<wv<1 one hagsee Appendix B |=arctal cos|l +alm) AT (37
J,(kr)—AJ_ (kr)~— L (H) Here we have tacitly assumed thigt—0 as »—0. For the
I'(l1-v)[\ 2 discussion of this point see the end of Sec. VI. Note that
1T(1—v) [kr\” when the bound state energy is chandégh~E;, and con-
TAT(AE 2 +0(r?7 7). sequentlyk— «’, then the phase shif6 (k) in the corre-
(1+v) sponding channel at momentuk equals to g (k'), the
(29 phase shift in the same channel when the bound state energy

. _ _ is E{, provided that
The asymptotic form 0f26) is then determined by that of

K.,(2) [see Eq.(B4) of Appendix B K'
k'=—Kk (38
Ku(2)~3T( )(Z) V F(1_”)(Z)V+O< ). (30 )
2)~3 5] - 5 7).
! 22 F(1+v)\2 The energy of the bound state breaks the classical scale in-

variance and sets a scale to the problem. Equa88nthen
expresses the scaling transformation under which the prob-
lem is invariant.

One sees again that the most pronounced influence on the
phase shift is in the limi€,10. ThenA, *=0,

Therefore, the conditiofi28) determinesA; in the channels
|=—n andl=—-n—-1 to be

A_n=(KlKk_n)?"=(E/|E_q])7,

A=Kk )T P=(EIE_ )7 (3D s=1a(l|+|1+al), (39)
i.e., energy dependenfccording to(27) and(31) the bound  and one has the phase-shift flip when compared to the con-
state energy determines the spectrumHgfin the Hilbert  ventional phase shiff7). Using the fact that phase shifts are
space that is different for different bound state energiesonly defined modular one finds
Therefore, in physical terms, it is the bound state energy that
parametrizes different self-adjoint extensions.

Quite surprisingly, the influence of the bound state on the
wave function(27) is most pronounced in the limE,— 0.

Then A—< and the regular wave function changes to the

S_n=3m(n—n)=—3ma—37a,

(40)

S_p_1=3m(n+p)=3ima——3ma.

singular one,

U(r,0) =4 o (kn)e" = yn(r,@)=J_) 1 y(kr)e'?. (32

IV. THE S MATRIX
AND SCATTERING CROSS SECTIONS

Once phase shifts are calculated, the form of scattering

On the other hand, in the limit of a bound state with infinite amplitudes, theS matrix, and cross sections can be dis-

bound energyA,—0 and

(0, @) =[ )14 o (KN = AJ |14 o (KT T — (1, )

=J)4q(kr)e"e. (33

By using the formula9.2.5 of Ref.[34] one finds that the
radial part of the general solutid@27) behaves for —« as
follows:

) 1_Aei7r||+a| ) .
Ry(r)~consix e ikry 1—A|la‘”7 - e im(ll+al+12gikr |
(34

By comparing with its behavior forr=0 one finds thdth
channel $matrix to be $=e?? with
s=8(E)=zm([l|=[l+al)+A(E). (35

The change\,= A (E) of the conventional phase shiff) is
determined by the equation

_ i+ af
20| _ 1 A|e

e mﬂﬁ[ y (36)

with the solution given by

cussed. The scattering amplitutig, ¢) in two space dimen-
sion is defined as the coefficient in front &f'/r2 in the

asymptotic expansions as—0 of the wave function(see

Ref.[41] for a more rigorous definition

ikr
h(r..0 )~ e f (K o—¢') g, (A1)
where ¢’ is the direction of the incident plane wave. The
scattering amplitudé(k, ¢) is related to thes matrix,
(S=1)(k, )= (ik/2m) " (k, ), (42)

where 1 stands here for the unit operator. In the partial-wave
expansion one has

f(k,<p)=(2wik)‘1’2|2 (€290 _1)ele. (43

which expresses the scattering amplitude in terms of the
phase shift$ (k). The differential scatteringross sectiors
given by

do B )
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In conventional AB scattering, the phase shifiss are By repeating the above procedure leadind48), one finds
given by Eq.(7). One then finds that that theS matrix in the present case is

—iTa

sinm|a|
208 _

| n 0 _ . ;
€ eiﬂ-a, l<—n (45) S,‘a‘((p)—ﬁ((p)COSTrla'|+l e’ Pe—,i(pTl' (52

This result fors(l‘a‘(qo) can be verified independently by

where, as above) stands for the integer parfta], of a. , , . ,
taking the inverse Fourier transform and using the formula

Therefore, thes matrix, sg(cp), in the AB potential is given

by ™ eik(P T, k$ - 1
P =

—a, k=0.

T Wdtpe——m (53
Sg(qo)i=2— 2 e2id+ile - -

Tl=-e A comparison of relation$48) and (52) shows that, under
the transformationv— — «,

_cogma) ~ il
T 2m = 2 |a(@) =S50y (— ). (54)
sinra) [ & ] According to Eq.(42), the scattering amplitude is given
H— e el > —> [ele, (46) by
1= =0

— e\ 1/2
where the superscript 0 means that we are dealing with con- Falk @) =(2m/lk) ™ s, ~ 11k, )- 9
ventional AB scattering. Now, the sum in the first term in Eq.For ¢+ 0 one finds
(46) gives theé function §(¢). Providede#0 the second _
SINT®) i1

sum in Eq.(46) (as well as the first suptan be taken exactly 0 _ D12
[42] and one finds that the term in parentheses gives Falk, @)= (1/2mik) sin( ¢/2) (56)
. 1 1 1 Hence, providedp+# 0, one has by using E¢44)
¢ e 1 g 2ge-1 “7)
dUO)(k )= 1 sir(7a) 57
It is obviously singular atp=0. Therefore, care has to be de | %' 2mk sif(gl2)

taken to define the sum at this point. One has to resist th
temptation to extrapolate the result from thosepat0 be-
cause the result is not continuousgat 0. One can show that
the result is given by31]

Sla‘he total scattering cross section is infinite ferx 7 and
vanishes fora e Z [31]. For the purpose of the experiment,
note that the differential scattering cross sectidn is sym-
metric underp— — .

When bound states are present in tke—n and in the

sinma .
s2(¢)=¥8(¢) cosma+i g ine Poe—t (48) I=—n—1 channels, th& matrix and the scattering ampli-
€ tudef ,(k,¢) are modified. First one finds that
where P denotes an analog of the principal value. Formally, s, =L +As, (59)
1 1 1 where

1 :
P——=lim >

(49
ev-1 2

§F (1-e) T @°_(1te]

—-n

As(¢)= | :Z,l [e2(5+4) _ g2i5)elle

The result(48) can be verified by taking the inverse Fourier

transform and using the formula n

. aike m, k=1 :2i|:_2n_1 e2iatiditiloginy (59
S e |
Here, A, is the changd€37) of the conventional AB phase

Note that there is nothing particular about thefunction Sh‘(‘;t (7) in the channell. Similarly, one introduces
term in theS matrix in the presence of an AB potential. In Afa(kie) as

fact, S(¢) = 8(¢) is the S matrix in free spacdin the ab- _£0 LAfO

sence of any scattepems can be checked directly by substi- falki@)=Talki@) + ATo(kie). (60
tuting «=0 in Eq. (46). The 6 function in Eq.(48) simply  According to Eq.(55) one has

means that a fraction ces of an incident beam passes
through the flux tube without being scattered.

—-n

In the case of negative= —|a| the analog 0f45) is Afg(k,cp)=(2i/77k)1/2|:_2n_l e?ortibitilesing (61)
N L Nevertheless, th 4) of the S matrix still holds and
o210 — _ (51) evertheless, e propert§4) of the S matrix still holds an

e-ilel  |<n, even in the presence of bound states one has
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Sf|a|(§0) = S\a\( -0). (62) V. THE KREIN-FRIEDEL FORMULA
AND THE RESONANCE

To prove this it is sufficient to show that a phase shift Now we shall show that to calculate the change of the
8/(E) in thel=—n (I=—n—1) channel fora=0 is the integrateddensity of state¢IDOS) in the whole space, one
same as that in the=n (I=n+1) channel fore<0. Inthe  can use the Krein-Friedel formul@]. The latter gives the
case of conventional phase shifts one can check for this progontributionAN ,(E) of the scattering states to the change of
erty directly from Eqs(45) and(51). Since bound state en- the IDOS induced by the presence of a scatterer, directly as
ergies andl + a| remain invariant under the transformation the sum over phase shifts,
a——a andl— —1, according to Eq(37), A, and hence L
the phase shift35), remains invariant, too. _ . N

Note that ifa changes by*- 1, theS matrix [see Eqs(48) AN, (E)= . E| S\(E)=(2mi)""In des, (66)
and(58)] as a function ofe is not a periodic function ofy
and changes nontrivially. This is analogous to the fact that, ag being the total on-shel matrix. As has been shown in
was shown in Sec. II, the Green’s function also depends norsec. IV, theS matrix (48) is singular as a consequence of the
trivially on «. However, such as in the latter case when thesingularity of phase shift€35) which in general do not decay
Green’s function gave the single-particle DOS which waswhenE— . Therefore, theS matrix (48) or (58) cannot be
periodic ine with respect to the substitution—a 1, theS  supstituted directly into the Krein-Friedel formuié6). This
matrix will be shown to give scattering cross sections thaican also be seen from the fact that the si@® over phase
are periodic inx with the same period, too. In the absence ofshifts is not absolutely convergent. We remind the reader that
bound states this follows immediately from E&7). In the  the sum of a series that is not absolutely convergent is am-
presence of bound states, the differential scattering cross segiguous in a conventional sense. If suitably rearranged, the

tion for ¢+ 0 is calculated by using Eq#4) and(61), (conventional sum of such a series can take any prescribed
value. Thus, to deal with such a series, care must be taken. In
do do® 8y " the present case of the AB potential we have found that it is
(_) (k,p)= <_> (K, @) +— 2 SirPA, the ¢-function regularization which gives the correct answer
de de Ki1=5h-1 (22). In the absence of bound states
N 4 Sin(ﬂ'a)[ A gA o) w o
— — SinA _,cogA_,,—
K sin(/2) n T maTe IndeS= >, 2is=im > (|[I|-[1+a])
|=—c |=—o0

+sinA _,,_1CogA_,_1+ma—¢/2)]. (63

© © -n—1
|_

zlz > (I+a)+ Z; 1+ a)

=1 I=—n

=i

The periodicity of the differential cross section with respect
to the substitutione— a*1 then follows from Eq.(63). w w w
Note that in the presence of bound states, the differential :iw{zz |—s_2 (|+7])—s_2 (1—7)s
cross section becomessymmetricwith regard top— — ¢ =1 =0 =1

(what is equivalent, with regard ta— — «). The origin of s

the asymmetry is easy to understand as bound states for )

=0 are formed only in channels with<0. =17 20r(S) = Ln(S, )~ ¢n(s,1= )]

For completeness we also give the result for the so-called s=-1

transportscattering cross sectian,, defined by =—imn(l-7), (67)

- do where /g and ¢, are the Riemann and the Hurwigzfunc-
U'tr::J' (1—cos<p)d—dzp (64)  tions(see Appendix [ Thus, by using Eq(66), the change

- ¢ of the DOS is

[see Ref[43], Eq.(139.7]. One finds Ap(E)=—n(1—n)d(E)/2. (68)

B This result is exactly22). Therefore, despite the AB poten-
1672 2 tial being long-ranged, the Krein-Friedel formula can still be
K |=—En—1 SIn°A, used when regularized with thefunction. In the case where
a is negative and equals-n— 7, the calculation of the

87 . . change of the DOS is essentially the same. The only change
—Tsm(am)[smA,nsm(A,n—rra) is that now

—SiNA_,_;SINA_,_1+7a)]. (65) | | l+a, I=n+1
|+ a|=

2
=1 sirf(ma)+

(69

—|— e, I<n.
As is the differential scattering cross section, the transport

scattering cross section is also periodic with respect to th8y using the Krein-Friedel formula one again reproduces the
substitutiona— a* 1. result(23).
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are in both thd = —n andl=—n—1 channels. As we shall
see in Sec. VI, it is generally easier to form the bound state
in thel = —n channel than in the= —n—1 channel. There-
fore, unlessy is sufficiently large, only the bound state in
I=—n is present and the above considerations have to be
appropriately modified. The above discussion also shows that
even in the generic case, when bound states are present, the
DOS still depends only on the distance from the nearest in-
teger. Equatior(72) shows that if the energy of the bound
state goes to zerd;,10, the resonance also approaches zero
energy,E,.| 0. Therefore, in the limitt,10 the resonance
merges with the bound state. As will be discussed in more

FIG. 3. Typical energy dependence of the phase shift in thedetail in Sec. VII both the resonance and a bound state dis-

channel with a bound state.

appear from the point spectrum and leave behindpthese-
shift flip.

As has been discussed in Sec. Ill, under the influence of Having calculated phase shift85) for a generic self-
bound states the phase shifts are changed only in two chaadjoint extension, one can calculate the time delayasso-
nels,|=—n andl=—n—1. Therefore, the contribution of ciated with the energy derivative of the phase sphift],

scattering states to the change of the IDOS is then

sin( nr) )
cog nm)—(|E_,[/E)”

1
AN (E)=—3n(1—7)+ - arctar(

1 ) sin( par)
7 &N Cod m) + (JE_y_1J/E) T 7

) . (70)

whereE_,, and E_,_; are the binding energies in=—n

and|=—n—1 channels. By using the arguments given in
the proof of relation(62) one finds that the presence of
bound states does not spoil the propé#y) of the DOS, and

the IDOS is still a symmetric function af,

AN_|4(E)=AN|4(E). (71
Note that for 0< 7<<1/2 theresonanceappears at
E_
Ed -

= >0.
= [eos ym) 1P

The phase shif6_,(E) (35 changes byr in the direction of
increasing energy and the integrated density of stals
has a sharp increase by(&ee Fig. 3 The profile of the
resonanc¢the argument of arctan in E(B5)] is given by

E"tanpm r
= , (73
E"-E., E"-E[
wherel is the width of the resonance,
I'=E/tany. (74

Note that the profild73) is not of the Breit-Wigner form,

r
E- Eres

(75

(see Ref[41], para. 145
For 1/2< <1 the resonance is shifted to the —n—1

channel.n=1/2 is a special point since resonances occur in
both channels at infinity. Therefore, the contribution of the

arctan terms in70) does not vanish aE—, but instead

at=2 22
t=2h =g

(76)

One sees immediately that if is different from —n and
—n—1, then the time delay iat=0. The time delay76)

can be nonzero only in the channéls —n andl=—n—1,

and at the energy corresponding to the resonance the time
delay is infinite.

VI. REGULARIZATION

To identify the physics that underlies different self-adjoint
extensions we have considered the situation where the AB
flux tube is regularized by a flux tube of a finite radiRs
and the magnetic fielB inside it satisfies the constrai(@9).

This situation was discussed first in Ref4]. The discussion

of this case has direct relevance to experiment since vortices
usually realized in experiments are not singular and do have
a nonzero radiu$10,11,23. In order for a bound state to
exist, the matching equation for logarithmic derivatives of
the exterior(see Appendix Band interior(see Appendix €
solutions in thdth channel must have a solution. The loga-
rithmic derivative of the exterior solutio(26) is given by

K|,|+a‘(x)
A(x) =x B <
10 XK||+a\(X)

It depends only on the flux and not on a particular regu-
larization of the interior of the flux tube. Here, parametés
given by

—|l+al.

(77

V2m[Ey|

x=kR=——F—"R,

7 (78)
where E,, is the bound state energy.,(x) decreasesrom
—|l+a| to — asx—x (see Appendix B Therefore,

p —a+|l], |=—-n
(X)) =< 79
=1 1=—n-1 79

In contrast, the logarithmic derivative of the interior solu-

gives the value- 1. Here, we have assumed that bound statetion depends on botk and the particular distribution of the
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magnetic field inside the flux tube. For example, in the casenagnetic moment is not anomalous, dr€0. In this case
of a homogeneouseld regularization(see, e.g., Refl39])  the matching equatiof84) does have a solution at=0 for
and in the absence of the magnetic moment couplind=|=—n. If one substitutes the value af into either the

(gn=0) or any other additional interaction inside the flux exterior (26) or the interior(C1) solution one would obtain
tube the logarithmic derivative of the interior solutig®l) is nonsense: “solutions” that do not dependofin the case of
the exterior solution the limik—0 is in fact singulay. A

()= —a+|I] +og M(a+1, b+1, @) (80 More subtle method is needgt?] to show that in this case

b M(a,b,a) ' zero modes do appear. Since the magnetic field is not singu-
) ~lar anymore the Aharonov-Casher theorgh2,13 applies.
where M(a,b, ) is the Kummer hypergeometric function The Aharonov-Casher theordih?] tells us that in a general

[34], and finite-flux magnetic fieldB(r), for which
[+1+1 24 L
= — 2 =
a 2 T (xT4a)=3, f B(r)d?r=®=const, (89)
Q
b=|l|+1=1. (81

the 2D Pauli Hamiltonian af,,=2 has exactly §[ —1 zero
For those values ol andb one obtains, by using EGC8), modes

2a M(a+1, b+1, a) — (1) — (1) . — (1) . n—-1
- e , € (X1—iX5), ... e (Xg—ixy)" " (90
b M(a.b.a) >0. (82 171Xz 171Xz
Hence Here, Jo[ stands for the nearest intedarger than or equal
' to @, and, for a given magnetic fiel@(r), the function
L(X)>—a+|l|=—|l+«a] (83  ¢(r) is defined by
and it is impossible to get a bound state in this case because e
the matching equation, d(r)= he 2In|r—r’|B(r’)d2r’. (91
R
A(x)=1(x), (84)

If « is an integern, then the number of zero modes is
cannot be satisfied for any. Since n—1; if not, their number isn=[«a]. For a<1 no zero
mode is present in the spectrum?2,13. The proof of the
M(0, b, @)=1, (89 theorem uses the fact that the Pauli Hamiltoniandigr=2
can be written as the square of the Euclidean two-
dimensional massless Dirac operaf@®]. The result only
depends on the total flux and not on a particular distribu-
tion of a magnetic field. The source of the attractive po-
tential (86) inside the flux tube is not important to the for-
mation of zero modes.
h2 o Now, if £>0, i.e.,g,>2, the parametea can even be-
V()| <g=— >m r2¢(R), (86) come negative. One haa<0 for I<0, £>0, and x
e[0,y2ae). We shall show that there are at least 1

andV(r)=0 otherwise. This amounts to changir§f4« in bound states for any finitR in this case. In other words, if
(81 to x%/4a—cl4. If one writes c(R) as c(R) the attractive potential86) is situated inside the flux tube,

one finds that Eq(84) might have a solution provideal=0
andx=0. Now, our purpose will be to break the constraint
(81) on a which implies(82). In particular, one can show
that parametea can becomeaegativeif an attractive poten-
tial V(r) is placed inside the flux tube,

=2[1+¢(R)] one finds the coupling with the interior of the flux tube becomes suf-
ficiently strong for the particle to be confinédn the cyclo-
H+1  x%2 &(R) tron orbif) insideit: the wave function(26) of the bound state
T2 44 2 decays exponentially outside the flux tube. In what follows
we shall confine ourselves te=0. The reason is that in order
b=|l|+1. (87) that a be negative for =1, we must choose

On=2+2&>6. This is the value of},,, that is out of experi-
The attractive potential can be either put in by hand, or, if themental interest. Obviously, I>1, then the minimal value of
Pauli Hamiltonian(2) is used, as arising from the magnetic g,, that doesa negative is proportional tband hence larger
moment coupling of the electrons with the spin opposite tahan the minimal value af,,, for | =1. The number of bound
the direction of magnetic fieldB. In the latter case states is given by the number of channels in which the
g(r)=const is determined by the anomalous part of the magmatching equation(84) can be satisfied with a solution
netic moment, x;>0. The matching equatio(84) implies that the ratio in

Eq. (82 has to benegative

e=(gm—2)/2. (89

\

Equation (87) shows that the critical value af=0 corre- aM(atl, b+l a) - 0, !
sponds to the case whems,=2, i.e., the case where the b M(a,b,a) —[l+a, |

-n
-n—1. (92)

I\
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This can be satisfied for®8l=—-n and —1<a<O0 only if  satisfied for 1= —n. However, apart from these values of

(see Appendix ¢ I, Eq.(98) can be satisfied fdr below| = —n provided that
<2.
M(lal.b,a)<2 (93 I-a< (99

The latter constraint on the valuesafdoes not impose any
physical restrictions since it allows f@,,e[2,6), i.e., for Note again that wheh=—-n—1, one does not generally
almost all realistic values dj,,. Since Eq.(85) holds, itis have a bound state, as is also the case of the cylindrical shell
clear from Eq.(87) that Eq.(93) can always be satisfied. It is regularization. However, if
sufficient to look for a bound state enerBy having roughly

the form[see Eqs(78) and(87)] 1-ne/2

1> Tr e (100

2m
|Eb|:2aw(8—t), (94 a bound state does appear in the—n—1 channel. As is
seen from Eq(99), whenn increases, this bound state ap-

wheret (0<t<e) is some small positive number. Therefore, Pears for ever smalle. Eventually, for

one concludes that there are at leastl bound states at any _

finite R (cf. Refs. [39,45). To satisfy Eq. (92 for n=no=]2/e[ (100
I<-n-—1is more difficult because the condition becomeshe restriction(99) on 7 disappears. Moreover, in this case

more restrictive. Indeed, it is sometimes stated in the literapound states can appear, even for a positiverovided that

ture that forn=0 and homogeneous regularization only one

bound state can exigsee, e.g., Ref$15] and[39]). We shall ae

show that although generally it is true, in some circum- |<7, (102

stances then(+2)th bound state in the=—n—1 channel

doesappear. It is clear from Eq92) that the condition to be or, equivalently, that

satisfied gets weaker as-1 gets smaller. In particular, one

always can choose such that forpe (1—0,1], 0<o<1, o= 4 ) (103
Om—2

However, by taking into account that for the electron
[see Eq(85)], where 0<y<1 is some small number. Then gn—2=0.002 32, the flux has to be of order2000 for this

for these values of and 7, the left-hand side of Eq92) is  to be the case. To conclude, according to Eg8) and(102
uniformly bounded, the number of bound states’, in the cylindrical shell regu-
larization is

M(lal, b, a)<2-y (95

aM(a+l, b+1, @)
b M(ab,a)

~5<0. (96) . Jy=1+n+[a(gy—2)/4]+[a(gn+2)/4—n]. (104

. . ~ ~ Here [ ] denotes the integer part. The num34) of bound
Since a—|I|—0 when 7—1, there exists ar, 0<o<0,  gtates in the cylindrical shell regularization is generally
such that Eq.(92) is safisfied for a givenx and 7  pigher than that in the homogeneous field regularization.
€(1—0,1) in thel=—n—1. Therefore, the actual number one can understand the physical origin of this difference in a
of bound states can, in principle, be higher threhl since  gimple way. In the cylindrical shell regularization, the energy
the condition (92) can be safisfied even for some g_ ot magnetic field ignfinite for anyR+0 and in this sense

|<—n—1. Anillustrative example is provided byaylindri- 4o magnetic field inside the flux tube is much stronger than,
cal shillregularlzat|or[14,39] in which the magnetic field is o example, in the homogeneous field regularization when
given by

2

a Ee=—B?R?=-—;
- S(r— 2 27R
B(r)= > R S(r—R). (97
staysfinite for any nonzerdR. Therefore, in contrast to the
As has already been discussed, the exterior solU@6his  number of zero modes given by the Aharonov-Casher theo-
the same as in the homogeneous field regularization. Onlgem [12,13, the number of bound statees dependhot
the interior solution changes. We shall denote its logarithmionly on the total fluxa but on a particular distribution of the
derivative by the superscrit By using the results of Ref. magnetic fieldB, and hence on the energy of the magnetic
[39] it can be shown that the matching equation takes thdield, also. A similar check with the d/regularization(see
form Ref.[39]) allows us to make the hypothesis that their number
is less than or equal to/"}, and that the bound is saturated
when one uses the cylindrical shell regularization of the AB
potential.
In two dimensions folR#0 and\ arbitrarily small, the
whereb is as defined by Eq(81) or Eq. (87). As in the  Schralinger equation always has a bound state in the poten-
previous case, the matching equati®8) for g,,>2 can be tial A\V(r) (86) in the absence of the AB potentig3]. For

(105

‘ 1
AX)=1{(X)=—a+|l|-ae+ %XZ‘FO(XA): (98)
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R+ 0 the potentiahV(r) is not singular and the wave func- that of an impenetrable flux tube are the channels with
tion of the bound state is not singular, either. Now, if the ABl=—n andl=—n—1. However, for anyR+ 0, zero modes
potential is put on top oA V(r) the bound state in general never occur in these two channels. Instead, they are in chan-
disappearsn its presence. Therefore, the discussion in thisnels with =1=—-n+1 [12,13. If one suspects that zero
section implies that, generally, the AB potential has amodes can appear in some channels different from those
deconfiningeffect on the bound statel5]. Provided\=2 given in Eq.(90), one can check directly that for whatever

and in the presence of the AB potential the wave function othe functions given by Eq(90) are not square integrable

a bound stat€26) is singular and the phase shiffsee Eq. either at infinity or at the origin. Therefore, in the limit
(35)] are changed. Then, in the limji— 0, the singular wave R—0 the symmetry of the spectrum under the substitution
function (26) becomes the regular one and the phase shiftee— @+ 1 is again recovered. The best method of illustrating
must have their conventional valu€g). Only the singular this point is to consider a situation whgp,—2=2¢>0 and
bound state wave function necessitates the change of phastays constant @&8— 0. Wheneveg,,>2 [or g,,=2 with an
shifts. This explains why,—0 in (27) as —0, which has  attractive potentialV(r)=—¢/R?, >0 arbitrary small

already been used above in the calculatior\pf bound states occur in the spectrum. They correspond to so-
lutions x,>0 of Eq. (84). Note that the solutions are only a
VIl. THE R—0 LIMIT AND THE INTERPRETATION function of «. They do not change wher changes. Since
OF SELE-ADJOINT EXTENSIONS is given by Eq.(78) one finds that aR— 0 the bound state

. . , ) . energyE,, scales as
In this section we shall examine the linitt—~0 subject to

the condition(89). In the case when the flux tube is exterior h2x?

to the system and particles are not allowed to interact with its E=——" (109

o HE Sl tIES dl : 2mR2

interior, theR—0 limit is trivial as there are neither zero

modes nor bound states. Therefore, in what follows we shaIIIP other words, in addition to the breaking the symmetry

confine ourselves to the case when the flux tube is a part Ol . =1 of the spectrum, in the presence of bound states

the system and particles do interact with its interior. In the . : :
. X . : : the scale invariance is also brokigt6,47. Nevertheless, one
rigorous mathemetical sense the lirRit-0 is described by 7

some self-adjoint extension, and we shall discuss a corr
spondence between tiie~ 0 case and the limiting case.

In the limit R—0 the potentialV(r) as defined by Eq.
(86) goes formally to thes function,

finds that bound statedecouplein the R—0 limit from the
Hilbert spacel?[(0%),rdr] and take away th@onperiod-
icity of the spectrum{undera— a=*1) that persists for any
finite R. What is left behind is nothing but th@nventional
AB problem with the change of the density of states given by

72 o (22). To show this, note thah,— 0 in the general scattering

V(r)|,<g— —[1+(0)] — —&(r). (106)  solution(33) in the limit k—o0. Hence, in the limit the regu-
mr lar state(6) is recovered. Another argument is to note that the
bound staté26) is a function ofxr and decays exponentially
as kr—o. Therefore, sinc&c—» asR—0, the wave func-
jon goes to zero and thereby disappears from the spectrum.

he electron is confined inside a flux as in a black hole and
ceases to communicate with an outside world.

As has been shown above, until the magnetic monggnt
reaches its critical valug,,= 2, nothing is changed with re-
spect to the case of the impenetrable flux tube, and the lim
R—0 is again trivial. The limit becomes nontrivial at the

critical coupling when §[ — 1 zero mode$90) exist[12,13. : ' - .
: : The above fact might at first be surprising, however it has
In this case the symmetry of the spectrum with regard tqbeen demonstrated gy Berezin and Fpa ddf IgEg more than

a—a*xl is lost. Then, aR—0 we shall show that zero IR ;
. ; 30 years ago that a nontrivial limR—O0 for a §-function
modes(90) disappear from the point spectrum and merge

with the continuous spectrum. Indeed, in the liRit:0 the potential exists only if the coupling constanté&hormalized
L > o ' ' The latter is necessary for a proper mathematical definition
magnetic fieldB(r) is given by y brop

of the Schrdinger operator with thes-function potential
B(r)=2mad(r). (107) [15,1'6].' In othe_r yvords, in order to obtain the bound state in
the limit R—0 it is necessary that

In this case,¢(r) defined by Eq.(91) can be calculated
exactly. One finds e(R)—0 (110

d(r)=a In|r|. (1089 asR—0 in Eq. (86) [39,46,48. The actual energy of the
bound state then depends on the details of the interaction and

The zero mode€90) are then obviously singular at the origin the details of renormalization. Obviously, in this case the
and they are not elements bf[(0),rdr]. AsR—0, zero  symmetry of the spectrum under— =1 is broken. Since
modes(90) get more and more singular at the position of thethe spectrum and phase shifts do not change until the attrac-
flux tube and eventually, at the limit, they become noninte-ive potential inside the flux tube is renormalized to its criti-
grable and merge with the continuous spectrum. In the lattetal strength and a bound state is formed, this generalizes the
case one has to check for square integrability not only atesult of Ref[49] that the AB scattering in the case of open
infinity but at the position of singularities of the field, too. It boundary conditions at the flux tube boundary coincides with
is here where the theorems fail. Another argument for thehe AB scattering with Dirichlet boundary conditions. In
disappearing of zero modes at tRe~0 limit is to note that  other words, provided the attractive potential inside the flux
the only two channels at which the spectrum can differ fromtube is not renormalized to its critical value and remains
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either weaker or stronger than the critical potential, then th& %[ (0,»),rdr] [A,—0 in Eq. (27) in the limit] and take
flux tube remains impenetrable in the linft— 0. away the nonperiodicity of the spectrum with regard to

If a bound state is present, the phase shift in a correspondr— o= 1 that persists for any finitR. What is left behind is
ing channel acquires an energy dependent t&3@. The  nothing but theconventionalAB problem with a change of
latter, in the limit of zero bound energy, gives rise to thethe density of state€2?2).
phase-shift flip. Therefore, it is natural to assume that the In what follows the homogeneous field regularization will
change(37) of the phase shift or the phase-shift flip will be used. Note that the homogeneous magnetic field optimizes
occur in the limitR—0 only in these channels where the the energy functional
bound state occurs fdR# 0. When the phase-shift flip takes
place, the symmetrg— o+ 1 is again broken. Our calcula-
tion [see relations(35) and (39)] shows clearly that the
phase-shift flip[14] is not connected to the spin but may
occur in its absence as well. subject to the constraii89). Bound state solutions for the

As has been mentioned, solutions of the matching equahomogeneous field regularization determine the function
tions are only functions of the fluxy andx (=«R). Onthe  X(a,9.),
other hand, scattering solutions are functions of the &x
the ratiok/ k [see Eq.(31)], andkr. From the experimental
point of view it is useful to remark the followinduality: the
physics at a given radiug; of the flux tube and at momen-
tumk, is identical to that aR, andk,, provided By comparing the coefficients in front ofR? in Eqgs. (105

and (109, one finds that whenever the ratio of the rest en-

E= f B2(r)d?r (112
Q

X(a,gm)=(4m2)*l§|) x2(a,gm)=0. (113

_kiRy ergy to the electromagnetic energy is less thdn,g,,),
k,= R (111
? m
When Eq.(112) holds, then the relative combination of the e? < X(a.gm), (114

regular and the singular Bessel functions in E2j7), and

hence the phase shift, are the same. Therefore, provided otiee total energy of field and matter together goes-te as

has only a vortex of a finite radiuR, at disposal, one can R—0. Therefore, in thestatic approximation, without the
examine the physics of almost singular vortices with a radiusiccount of the electric field energy, the energy of the system
R,<R; by performing experiments at vesmall momenta decreases with decreasii®y This does not show the insta-

k, i.e., such thaR;<1/k. It is in the latter situation where bility against the spontaneous creation of a magnetic field
the phase-shift flip has been establish2®]. Moreover, itis  yet, since the full treatment has to take the dynamics and the

easier to realize experimentally. magnetic moment form factors into account. Nevertheless,
the discussion shows that the casegpf>2 is different with
VIIl. ENERGY CALCULATIONS respect tog,,<2. In three space dimensions, the function

' _ _ _ X(a,gm) is replaced byX(«,g,)/L, with L the length of the
In this section we shall assume thigt is a fixed constant  flux string, and one has to discuss the density of states for a
and that no renormalization @f, occurs. The energy of the |ong flux ring[50].

system consisting of particles and field will be evaluated for Note, in passing, that in the relativistic quantum-
a sequence of flux tubes of decreasing radii subject to thghechanical treatmefit] one finds that the system is stable.
constraint that the total fluxb (89) is the same in each. The reason is as follows: for spin-up electrons the magnetic
Therefore, dynamical phenomena such as the induction ghoment coupling introduces a repulsive interaction and,
the electric field and return fluxes will be ignored. One rea-hence, there is no natural way to obtain a spectrum with
son for this rough approximation is that we do not knowhound states as there was for spin-down electrons in which
better. case this interaction is attractive. To obtain a bound state in
Let us now discuss the cases wherg is, respectively, the spectrum, an attractive potential/@) has to be put
less than, equal to, or greater than 2. It has been alreadyiside the flux tube by hand. This is the principal reason why
shown that up tog,=2 no bound state is present in the in the case of the Dirac electrd@a “pair” of the spin-up and
spectrum and the change of the density of the scatteringpin-down Schidinger electronsthe magnetic moment cou-
states is still given by E¢(22). Zero modes which occur for  pling cannot produce a bound state in the spectrum no matter
dm=2 atR+#0 are regular at the origin and do not changehow large or small the magnetic moment[#. However,
phase shifts aR—0. Because the energy of the magneticthere is one exception and this occurs when the gauge field is
field (105 tends to infinity adR— 0 the system consisting of the Chern-Simons field51]. Indeed, it has recently been
particles and field is definitelgtablewith respect to sponta- discussed by Hosotafb2] that in the full-fledged quantum-
neous creation of the AB field. field theory model with the Chern-Simons gauge fi@d] a
When g,,>2, then bound states occur in the spectrum.magnetic field can be spontaneously generated. The Chern-
Their energy is given by Eq109 and scales to-» when  Simons field is somewhat pathological with respect to the
R—0, in the same wayas 1R?) that the magnetic field discussion in this section, for in this case the density of mat-
energy(105 does to+c. As has been shown in Sec. VI, ter acts as the source of the AB gauge field, and all particles
provided e(R) is not renormalized in the limiR—0, the carry a flux[51]. In this respect one has “spontaneous mag-
bound states decouple in the limit from the Hilbert spacenetic field generation” whenever the particle density is dif-
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dilute vortex limit, is proportional to

J \ / n, f:_rdgo Singog—;-(kF ). (115
@
/ \

By inverting the conductivity tensor one finds that the Hall
resistivity, pyy, is

oke (" de  do
pr:pHE 77% Slngp@(ka(P)! (116)

, ) . . ) which was obtained by Nielsen and Hedegadd]. In the
FIG. 4. The differential scattering cross sectibm(k,¢) gives  |atter case the resultl16) was obtained by solvingin the
the fraction of an incident curredtwhich is scattered to the angle dilute vortex limit Boltzmann's equation, which relates the
¢. In the case of an asymmetric differential scattering cross sectiogCatterin and the transport properties l’_| E@‘: Bo/n.e is
there is generically a surplus of particles flowing in one of the g and the | port prop - FIPeS €
N the Hall resistivity in a uniform magnetic field, n, is the
transverse directions. . . . .
density of electrons, anel is the electronic charge. The uni-

ferent from zero. The discussion that led us to the stabilitfO'™ magnetic field3 is obtained by averaging over the field

condition (114) remains reasonable even in this case. Sinc@roduced by vortices with the density,

the energy of the Chern-Simons field is zero, there is nothing

to impede the formation of a magnetic field. Regarding B=n,ad,. (117
massless charged particles, note that the result of GfE&lv

concerning an instability of massless charged particles showsortunately, because of the giffactor in Eq.(116), the dif-
that the ratio of the rest energy to the electromagnetic energfgrential scattering cross section is only needed¢fer0 to

is an important parameter in field theory, and a conditiondetermine the Hall resistivity. When the differential scatter-
similar to (114 must hold. The massless charged particlesng cross sectiori63) is inserted in Eq(116) one finds that
were claimed by Gribov not to exist in nature, since they areonly the last term contributes and

completely screened locally in the process of their formation.

4n, he? _
IX. THE HALL EFFECT IN THE DILUTE VORTEX LIMIT Pry=" gz SiNTa)[sinA _cogA_,— 7a)
e
As has been discussed in Sec. 1V, the differential scatter- +SiNA_,,_1C08A_,,_1+ 7a)]. (118

ing cross sectiori63) for a generic self-adjoint extension is

asymmetric with regard t¢— — . One can show that the Equation(118) shows that one needs more than the asymme-
asymmetry can have important experimental consequencegy of the differential scattering cross section for the Hall
in contrast to the conventional symmetric differential crossresistivity to be different from zero. In fact, the Hall resistiv-
section(57), the asymmetric differential cross secti®d) iy, Py, Vanishes wheneveémodulo )
can give rise to the Hall effect. Indeed, if the incident wave
function is normalized to unit current density, the differential
scattering cross sectiodg(k, @), is nothing but the transi-
tion probability between the incident scattering state and th
scattering state that propagates in a directiowith respect
to the incident wavd43]. In other words, the differential
scattering cross section gives the fraction of particles frony, ... .. . - . -
the incident beam that are scattered off to the aggl&low, "Shift fip oceurs only in the =—n channel, i.e.A_,=7m
. ) . ; andA_,_;=0, one finds
let us consider electrons propagating with the Fermi momen-
tum kg in a sample in a direction singled out by an applied
electric field. If vortices are randomly distributed throughout, _4n, he? .
the sample the electrons will be scattered. In what follows, Pxy= Ne r4 sin(wa) sin(ym) cog). (120
the dilute vortex limit will be considered, in which the
multiple-scattering contributions are neglected. Results conn this case it is easy to check that if the vorticigy in-
cerning the Hall effect are then obtained by summing ovecreasesp,, does not change its sign. Our resdit8 shows
the single-vortex contributions. The asymmetric differentialthat the Hall resistivity is proportional to the density of vor-
scattering cross sectiof63) of an electron from a vortex tices and depends on their vorticity via trigonometrical func-
means that, generally, there is a net surplus of the electrori®ns. As a self-consistency check, the Hall resistiyity8)
propagating in one of the transverse directions, i.e., either tsanishes whenever is an integer. In the case of vortices in
the right or to the lef{see Fig. 4. a type Il superconductgd.0], if the magnetic field increases,
The quantity that measures the fraction of the electronghe vorticity of each vortex remains constant, and only their
moving in a transverse direction is s@fo(k-,p). There-  densityn, changes linearly with the applied field. Therefore,
fore, if the density of vortices is, , the Hall current, in the the dependence of the Hall resistivipy,, on the magnetic

Ag=—A_, ;. (119

?—|owever, as has been discussed in Secs. VI and VI, in any
realistic situation relatior{119 is not general and the Hall
effect will appear. For example, in the case where the phase-
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field islinear in the dilute vortex limif 11]. Obviously, if the ‘ ' '
magnetic field is sufficiently large, the dilute vortex limit / | / /
ceases to be valid and deviations apdd#]. Nevertheless, : :
measurements of the Hall effect on a single isolated vortex is V’“z 5_1 -2 Vllz 51/3/2 2 e
now almost experimentally possibJ&0,15, and the above ' '

results for the Hall resistivity can be tested. Note that, pro-

vided the resonand@?) is close to the Fermi enerdg, an FIG. 5. Characteristic dependence of a persistent current of free
interesting effect may appear because the Hall resistivity bes_pinless fermions in the plane on the flaxarbitrary units in they

comes very sensitive to the changed=ef. direction).
X. PERSISTENT CURRENT OF FREE ELECTRONS
IN THE PLANE PIERCED BY A FLUX TUBE JEdp(E’,q)) i 2 SE_E (0 dEj "
The persistent current in a finiteng) geometry was first do i Ele ( i(®) do (129

|
discussed in Ref55]. It is reminiscent of the edge currents

(see discussion in Ref56] on their existencethat arise in ~ Now, by substituting the result into E¢L23) and after inte-
the presence of a magnetic field even in the absence of thgrating up to the Fermi energs:, one recovers the sum
electric force. In the case of a bounded system, the energyver all contributions of single levels, as given by the for-
levels are discrete and the persistent current induced by mula(121), below the Fermi energi .

flux tube with fluxd, carried by theth eigenstate, i§55] For spinless fermions neither bound states nor a phase-
shift flip occur and the change in the DOS is given(B9).
dE;(®) Therefore, when all states below the Fermi enelgyare
== do (121 occupied, one findg5] that the persistent current of spinless

fermions around the origin, which is pierced by a flux tube,

In the case of an unbounded system the spectrum will havié
both a discrete and a continuous part. The persistent current

carried by an isolated eigenstafeom a point spectrupnis eEr

still given by formula(121). The contribution of scattering = 4o (n=12. (126
states to a persistent current is then determined by the for-

mula

The current depends linearly op(cf. Ref.[6] where it is a
constant as it does in small one-dimensional metal rings
[57]. In contrast to Ref[6], the current is antisymmetric not
only about the values=n, wheren is an integer, but also
bout the valuesr=n+1/2 where it vanishegsee Fig. 5.
he latter values ok are such as the former values of
where time invariance is preserved.

dI(E,a)=(2mi) 194[In deS(E,®)]dE, (122

derived by Akkermanst al. [6]. Here S(E,®) is the on-
shell scattering matrix in the presence of a flux tube, an
dI(E,®) is the differential contribution to the persistent cur-

rent at energyE. The persistent current was defined with In the case of spin one-half fermions, the contribution of

respect to a point. It was given by t_he_ tptal_current through a5pin—up fermions to the persistent current is still given by
line that extends from that point to infinity, in the absence 0fformu|a(126) The contribution of spin-down fermions de-

currents through the external leads. Now, by the Krein- : : -

) S ’ pends on their magnetic momemy,. At the critical value of
Er?:r?; erI\Tlélgg%;’f Intr?gsfgbq;) 'Saggeﬁgng(%t;djgi;ge Om=2, either the phase-sh?ft flip or a bounc_i state can occur.
D ol a h ' The most general expression for the contribution of scatter-

=a®,) we have ing states taAN(E) for E=0, which includes the situation

where bound states or a phase-shift flip are present, is given
dI(E,a)= Eaa[ANa(E)]dE. (123 by Eq.(70). The persistent current in this case is obtained by
hc substituting the resulf70) for AN (E) directly in Eq.(122).
. ) . Here, one must not forget that the bound state energies also
As has been shown in Sec. ¥N,(E) is a symmetric func-  depend on fluf15]. In the case in which the phase-shift flip
tion of a. Therefore, a persistent current is an antisymmetriggccurs in the = —n channel, the contribution of spin-down

function of a (see Figs. 4 and)5One can show that the fermions to the persistent current is given by the formula
formula (123 reduces to(121) in the case of the discrete

spectrum, and in fact, the formula is valid for both continu- E
ous and discrete parts of the spectrum. In the latter case, the | = E(,ﬂ_ 1/2) (127)
DOS is formally given by (E,®) =% ;5(E—E;(®)), where hc

the summation is over all discrete levels. Hence ) ] )
[see Fig. €)]. Therefore, the total persistent current of spin

, one-half fermions in the plane when a phase-shift flip occurs
M__E 5'(E—E-(<D))E~ (124 is
ab 4 ! dd

e
Therefore, =29 (128
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e 2
// | (pi_ %Aij)

: B 2m
-2 -t ° 1 2 ¢ where N is the number of anyons, andl;=A(r;—r;) is

nothing but the AB potentiall) centered at the position of
the jth particle,

Aij=27T|ri_rj|22X(ri_rj)=_Aii’ (130

: (129

N
i
P#]

a
) written here in a slightly different form with the unit vector

in the direction of the flux. In what follows we shall consider
anyons in the presence of a pairwise interactigfm—r"),

2mh?
il adP(r—r")
m

hZ

o
- =—)\Em5(|r—r |) (131)

U(r—r')=—-X\

By transforming as usual to the center of mass and relative
coordinates I, ¢), and leaving aside the free motion of the
center of mass, the relative Hamiltonian takes the form
[7,46,58

ﬁz 2 1 i 2 ’
. Hre|=—m &r+Far—r—2(—|a¢+a) +U(r—r’),
) (132

FIG. 6. (a) The contribution of spin-up electrons to the persis- where, as abovey=®/®,. The form of the relative Hamil-
tgnt current_as af_unction of the flux prpvided that the pha;e-shift tonian H,, correspond$59] to that used in Refd.27] and
flip occurs in a single channelb) Persistent current of spin one- [2g] One neglects the electrostatic forces between anyons by
half fermions as a function of the flux. assuming the limite—0 with « fixed. The relative wave

function is parametrized as exp{)f(r), whereL is stan-

[see Fig. @)]. This is another important difference from dard, namelyl. =2l for bosons and 2+ 1 for fermions. Af-
Ref.[6], where they obtained a result that the total current iger parametrization, the relative Hamiltoniah,, takes a
zero. The result is consistent with general requiremggitef ~ form similar to that ofH, (4), provided the substitutions
periodicity with regard tov— a*+ 1, and antisymmetry with A=0n and s,=—1 are made, and the reduced mass

respect toa— — a. m=m/2 is used. Due to the parametrization of the relative
Provided that the phase-shift flip occurs both in theWave function, the parameteris now
I=—n and|I=-n—1 channels, the contribution of spin- v=2l+a (133

down fermions to the persistent current is the same as that of
spin-up fermions. However, as has been extensively disprovided one starts from the bosonic end, or
cussed in Secs. VI and VI, the latter case of the phase-shift
flip in two channels is less probable than that of the phase-

shift flip in a single channel. when one starts from the fermionic efit}57).

Observations of the persistent current may finally reveal The equation of state of a real gas expanded in powers of
the resonancé72) in the AB scattering, since near it the the densityu=N/V, is

current becomes very sensitive to the change of the Fermi N
energyEg and of the flux. The similarity between the scat- PV=—(1+ayu+agu’+--), (139
tering in the presence of the AB potential and in the field of B

a cosmic string naturally suggests that a similar currenyhere thea; stand for the virial coefficientssee, for ex-
should occur in the field of a cosmic string, too. ample, Ref[60]). Here, P is the pressureV is the volume,
and B=1KkT. The calculation ofa,(T) only requires a
knowledge of two-body interaction. We shall show that the
Xl. THE SECOND VIRIAL COEFFICIENT results of preceding sectiofwith a slight modification can
OF NONRELATIVISTIC ANYONS be directly applied to the calculation of the second virial
coefficienta,(T) of the gas of anyons. Let us first consider
Anyons are usually represented as either bosons or fermthe noninteracting case=0. By using the Krein-Friedel for-
ons threaded by the flux tube with the fldx Noninteracting mula one can calculate the change of the DOS in a way
anyons are described by the Hamiltonian similar to that used in Sec. V. In the case of bosons one finds

v=2l+1+a (134
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DTS (+p) =2 (I—72) 78
=1 =0 =1

IndetS= >, 2is=im > (|21|—|21+a|)=27i
|=—o |=—w

s=-1

=27 73(1- 7a), (136)

s=-1

=2mi[2{r(S) = {n(Sima) — {n(S,1— 7,) ]

and hence
Ap2(E) =~ 7a(1~ 72) 8(E). (137

Now, in the case of anyons;, is the fractional part of/2. Note that formally, if the sum in Eq67) is restricted to eveh
only, the resuli(137) is twice that in the AB potential with unrestrictédIn the case of fermionéere 7, is supposed to be
within the rangg »,|<1/2),

IndeS= >, 2is=mi > (|21+1]—|2l+1+a|)
|=—w |=—o

=27 |—Eo (14+1/2) "3+ IZI (I —1/2)*3—2‘,O (14 pa+ 1/2)*5—2l (1= 9a— 1/2)5}

s=-1

= 2mi[2814(S,1/2) — En(S, mat 112) — £(S,112— 72) ] =2min?, (139

s=-1

and hence na— na* 1, i.e., with respect tax— a+2 [27]. In case of

bosons one finds forQa<?2 that

Api(E)=73(E). (139 ,

A2 A2
Now, the two-body interaction partition functic,(8) can  a(T)=— 7 (1-4at 2a%)= 2 [1-2(a- 1)%]. (144
be calculated from
Similarly, in the case of fermions one obtains for

Zibn'tf(ﬂ)=f e FEApY(E)dE. (140 —1<a<1 that
i : e A A2
Note thatZ;(B) vanishes forp,=0 when interactionsin- al(T)= 7(1_2“2): -l a(a+ 1)+ 2(ar 2.

cluding the AB interactionare switched off. The integration (145
here runs over the whole spectrum. However, since there are
no bound stateshp(E) is zero forE<0 and the integral Tne result for other ranges af is obtained by using the
reduces to the Laplace transform. By inserting BAS7)  periodicity. The second virial coefficiens(T) and ab(T)
and(139) into Eq. (140 one finds that the partition functions e written in two equivalent forms. The second form clearly
do not depend on the temperatdrg 7], shows that ife is raised tow+1, thenag(T)—>af2(T). Simi-
yANCES (141) larly, if « is lowered by 1, themb(T)—a5(T).

So far, we have only reproduced the known results for the
a,(T) can be directly expressed in terms of the two-bodySGCOI’ld virial coefficients of noninteracting any¢@s27]. In
partition function and has the form the presence of an interacti¢as may be the case for anyon-
antianyon interactionthe virial coefficients will change. The
results for the DOS in the AB potential then enable us to

Zb == 7a(1-7,),

b _ TP b
ap(T)=— ﬁ[“'SZim (142 calculate them in the special case of the potential
U(r—r’). The analysis is similar to that of Sec. V. There-
in the case of bosons, and fore, provided the parameter+#2 in Eq. (131, no bound

state is present in the spectrum and the second virial coeffi-
cientsad(T) are still given, respectively, by Eq144) or

Eq. (145. They exhibit quite a lot of rigidity with respect to
the interaction and they start to change only at the critical
in the case of fermion§7]. The prefactor in the last two coupling\.=2 when the phase-shift flip or a bound state
expressions can be written a§/4, whereht=y27B/mis  may occur(at an energy that depends on the details of the
the thermal length. Now Eq$141), (142, and(143) imply limit when the radius of the flux tube shrinks to zgréhe

that the second virial coefficients are periodic with respect tanly change with regard to the AB scattering discussed in

a5(T)= 22 (182, (143
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TABLE I. The partition functionZ;(8) and the second virial coefficient for bosons and fermions in the
presence of the phase-shift flip for=[ «] odd and even.

n Zp(B) a3(T) Zi(B) ajy(T)
A2 A2
even 129+ 79 7[1—2(77+1)2] i (—4n+n?) 7(1+8n—2772)
1 2 )\% 1 2 )\'ZF
odd —i(1+4n—7) 7 (1+879=277) 7(n+1) 7 [1-2(7+1)7]

previous sections is that the parametechanges here by 2 virial coefficient in then,B case(bosonic end withn=n,
and hence a bound state or the phase-shift flip can only occadd) is the same as that in theF case(fermionic end with
in asinglechannel. Then the change of the ID@S8I(E) is n=n, evern, and similarly the result for the second virial

given either by coefficient in then,F case is the same as that in thgB
L i) case. The reason is that in the respective cases, the partition
SI v ; b,f : . . .. i
AN(E)=1 (7 + — arctarﬁ Y ) fur?ctlonsZInt receive the same contr|.but|.on. Thl; is not re
T cog nm)—(|E_,|/E)” stricted to the case where the contribution is given by the

(146  Phase-shift flip only, but holds in the general chet?) and
(148] when the bound state is present. Then, according to
Egs. (142 and (143, the changes in the second virial coef-
1 ficients are identical. Therefore, the interpolation between
AN_(E)=./(n,) — — arctan different statistics ase— @£ 1 holds both with and without
™ the short-range interactidd31). There is, however, one dis-
( sin( ) ) tinguishing feature of the second virial coefficients at the

or

(147 critical coupling observed in Ref28], namely, theidiscon-
tinuity. Since a discontinuity in the virial coefficient implies
: o _ 2 a discontinuity in the free energy, to the same order of ap-
where either/ (77,) = = 7a(1= 7a) Or./ (7a) = 75 depend- o imation this points to some kind of phase transifid].

ing onn and whether one starts from the bosonic or thejt pag aiready been mentioned that at the critical coupling
fermionic end. To calculatBy(8) in this case one integrates \.=2, the scale invariance is generally broken and one ex-
by parts the general formuld40 and rewrites it in terms of pects a different physics in this case.

the change\N,,(E) of the IDOS[61]. Now & bound state is = o results cover naturally the case of the spin one-half
present and one obtains in general anyong 28], too. In the latter if we ignore the anomalous part
" of the magnetic moment, but add a Zeeman interaction, an
Zint(ﬁ)zz e*,BEb-{-Bf e PEAN,(E)dE, (148 anyon-anyon potentidl (r—r’) arises which has the form
b 0

cog 7m) +(|E_n-a|/[E)* 7

where th m here in principle runs over all bound states. _/_ﬁ_z _* _y!

ere the sum here in principle runs over all bound states U(r—r')=—(sy+s))—8(r—r'[), (149
Note that at the critical coupling, the partition function de- m Ir=r’|
pends onT. Eventually, the second virial coefficients are
obtained by inserting the result in eithék44) or (145. In  wheres;==*1 ands,==*1 are spin projections on the di-
Table | the results are presented for the partition functionrection of the flux tubg28]. Provided that at least one of the
and the second virial coefficient for bosons and fermions irspins does not have an orientation opposite to the orientation
the case when the phase-shift flip occursrfer[ «] irrespec-  of the magnetic field, then, depending on the statistics, the
tive of whether odd it=n,) and even f=n.). The results result for the second virial coefficient is given either by Eq.
are presented in terms gf Providedn is even,y is added to  (144) or Eqg. (145), in accord with[28] and with previous
(subtracted fromZ;,(B) in the case of bosondermions.  results[7,27]: the interaction does not have its critical value
The reason is that in the former case the conditiorand one should recover the noninteracting case. If both spins
0<|v|<1 is satisfied for the onlyl given by 2=—n  are opposite to the direction of the magnetic field, the critical
(21=—n-2), which implies that the parametertakes the potential withx.=2 arises and, provided the phase-shift flip
value » [—(1—7n)]. Whenn is odd, the situation is re- takes the place, the results for the second virial coefficient of
versed andy is subtracted fromadded to Z;(B) in the anyons can be read off from Table I. Our result in thé
case of bosonéermiong. The calculation can be performed case agrees with that of Bluet al.[28]. In then.F they did
straightforwardly, but care has to be taken with regard to thenot take into account the contribution of the phase-shift flip
range of n,: 0<p,<1 in the case of bosons and asthey assumed that in the AB scattering the phase-shift flip
| 72/ <1/2 in the case of fermions. cannot occur in thé=—n—1 channel. Therefore, not sur-

The results presented in Table |, apart from the periodicityprisingly, in Ref.[28] they obtained the same res(1#5) for
of the second virial coefficients, demonstrate clearly that théhe second virial coefficient in the,F case as in the absence
second virial coefficients interpolate between the fermionioof the interactionU(r—r'). As has been discussed in Sec.
and bosonic case aschanges by unity. Namely, the second VI, it is more difficult to create a bound state in the
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|=—n—1 channel, and the phase-shift flip in this channelln the presence of the phase-shift flip, one of the values
may possibly not occur. If this happens, then our result foral(T) is then given by Table I. In the,F case, three values
the second virial coefficient coincides with that of R&X8].  of af(T) are the same and given by Ha44), because of the

. For the case of an unpolarized system, the completgerpolation between fermionic and bosonic statistics. The
a,(T) is obtained by averaging over four spin states. Pro‘remaining value ohfz(T) under the presence of the phase-

vifded .that there !s no phase-shift f"P ip thefF case,  gpif flip is again taken from Table I. Finally, one obtains
a,(T) is the same in all four cases and is given by 8¢.5).

, [((1=297), n.Fcase without the phase-shift flip
2

ay(T)= vy (1+29—2%%,  n.Fcase with the phase-shift flip (150
(—1+29—-2%%), n,Fcase.

It is worth noting that anyons with a short-range pairwisewhich is recovered in the limit?—, R—0, keeping fixed
attractiveinteraction occur in the nonrelativistic limit, taken the parameter
up to the terms of ordes?/c?, of the topologically massive

planar electrodynamid$1] defined by the action 0=L%R. (156
1 1 iation is Si
_ | L pesy — A?IBAY 2 In the latter case the_ absence of radiation is simply because
S= Sttt sz 4% ap oR Capy\'? )dt a, the photon gets infinitely heavy.
(153)
with a nonminimal coupling25,26] XII. DISCUSSION OF THE RESULTS
AND OPEN QUESTIONS
N
—g0 f JX (OTEA (X The nonrelativistic scattering in the AB potential has been
Smatter™ Smatter agl (@)L EaAu(X) analyzed. The DOS and scattering cross sections have been
1 -2 o 2 calculated and various applications have been discussed. De-
20aL "€, F 1AL AT (152 spite the fact that the single-particle Green function is not a

periodic function ofe, it gives rise to the DOS which is a

Here, |R| represents the screening length of the electroma o . . .
IR| rep 9 ong gper|0d|c and symmetric function of the flux and it depends

netic interactionl is the arbitrary scale parametég, stands ; .
- y P ek only on the distance from the nearest integer. It has been

for the ath partlcle_s charge in units di Ja denote; the shown that the Krein-Friedel formu[&] is not restricted to
standard one-particle current normalized to the unit Chargepotentials of a finite range and can have a wider range of
andN is the number of the pointlike particles. In the model 9 9

. . . = applicability. The Krein-Friedel formula may be used even
thlez photon IS massive W'th a masb=7#/c|R). N.ot'e that for long-ranged potentials when the sum over phase shifts is
F*< is actually a magnetic field, and the nonminimal cou-

oling term that is peculiar to 21 dimensiong25,26 is in properly regularized. In the case of the Aharonov-Bohm po-

Lo - ; X . tential it is thel-function regularization that gives the correct
this instance the familiar Pauli magnetic moment coupling . :

. . . answer. By means of the Krein-Friedel formula the change of
that exists here even in the absence of a spin. It has be

. $he DOS induced by the Aharonov-Bohm potential has been
shown by Ster25] that, provided calculated for different self-adjoint extensions which corre-

9.=L2RéE,, (153 spond to different' physi'cs inside the flux tube. For the con-
. ventional setup, i.e., with zero boundary conditions at the
$cdX'A; becomes a topological invariant, boundary of the flux tube, our result for the DQ&) con-

firms the expectation of Comtet, Georgelin, and OuN#y

that the change of the DOS is concentrated at the zero en-
ergy. Whenever a bound state is present it is always accom-
panied by a resonance at an energy proportional to the abso-
The screening length remains nonzero, and the electritute value of the energy of the bound state. In the presence of
charge and magnetic moment balance each other in suchagbound state or a phase-shift flip, the symmetry of the spec-
way that the radiation iabsent At the tree level, the theory trum with respect to the change— a1 is broken. Never-

at the critical coupling153) can be exactly reexpressed as atheless, scattering cross sections continue to be periodic with
simple effective action at a distanosithout the usual com- respect to the substitutiom— o+ 1.

plications associated with the retardation, €2&]. The situ- In the case of a regular flux tube of a finite radRisthe
ation is analogous to that in pure Chern-Simé@$s) theory,  question of the number of bound states has been clarified. It
has been shown that the number depends not only on the
total flux but also on the energy of magnetic field. It means
that one has to be careful in the choice of the regularization

é dxAj=gn. (154)
c

1
Scs=5g f €ap, A% PPATL dr, (155
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when discussing the physics with anomalous magnetic mosecond virial coefficients were shown to be remarkably
mentg,,=2 or with a short-range interaction inside the flux stable when such an interaction is switched on. They do not
tube. When the AB vortex arises by some physical mechaehange when the interaction is switched on until the coupling
nism such as vortices in the superconductor of type Il doconstant reaches its critical strength. At the critical coupling
then the profile of a magnetic field is determined by thethe second virial coefficients becondiscontinuousas a
condition of the minimum of energy. Our considerationsfunction of « but their periodicity with respect to
have only been quantitative. The open question which ree—a=2 and the interpolatioral(a+1)=al®(a) be-
mains is what is the qualitative dependence on the energween different statistics still holds. These results were ob-
and whether(and if then, how the number of bound states tained by using the-function regularization which has an
depends on higher moment8"(r)d?r of the magnetic field obvious advantage with regard to other finite box or har-
B(r), wheren=3. We have shown that a bound state in themonic potential regularizations. By using thefunction
I=—n—1 channel can exist provided—lz is sufficiently  regularization one avoids the necessity of a discretization of
small. In the discussion of tieR— 0 limit, the existence of a energy levels for computing the partition function. Our re-
critical couplingg,,=2 was established. Provided the cou- sults naturally generalize those of Bluet al. [28] for non-
pling with the interior of the flux tube is smaller or greater relativistic spin one-half anyons for the case of an anomalous
than the critical one, or when the coupling is not renormal-magnetic moment and when a bound state occurs in the spec-
ized, the limit coincides with that of the impenetrable flux trum.
tube. Thereby, the result of Rd#9] for g,,=0 is general- Our results have been formulated in terms of self-adjoint
ized. The Aharonov-Casher theorem about the number adxtensions. A self-adjoint extension is the rigorous limit
zero modes has been corrected. It has been shown that thRy— 0. Therefore, in the case of a flux tube of finite radiys
merge with the continuous spectrum in tRe-0 limit. The  our results can be applied when the radRiss negligibly
origin of the phase-shift flip has been investigated. It wassmall when compared to all other length scales in the system
shown that the phase-shift flil4] may occur even in the under consideration. The parametdrs, andA_,,_; of the
absence of spin. The conditions for the phase-shift flip forrelevant self-adjoint extension are then determined from
mulated in Refs[14,22 have been found necessary but notbound state energies in the —n andl=—n—1 channels.
sufficient. In particular, provided no bound state is in theHence, to check some of our results experimentally it is not
|=—n—1 channel forR+0, then the phase-shift flip will necessary to use a singular magnetic field. By using the du-
not occur at theR— 0 limit. ality discussed in Sec. VII the physics in the presence of an
A gquantum-mechanical and nonrelativistic criterion of sta-almost singular flux tube can be tested in experiments with
bility (114 in 2+ 1 dimensions has been discussed that onlyslow electrons scattered off a general rotationally invariant
involves fundamental parameters of matter. Despite that thiswvo-dimensional magnetic field(x,y) that obeys the finite-
criterion was derived under very restrictive hypotheses, iflux condition(89). From the experimental point of view we
was shown to be compatible with other, quantum-field theonstress the following experiments that should be performed.
treatment$52,53. An open question remains regarding what (i) Measurement of the phase shift flip in the —n—1
will happen if the dynamics of the shrinking of the radius of channel. Depending on the flux it may or may not occur in
a flux tube is included. Another open question is what fieldthis channel.
configuration actually optimalizes the right-hand side of Eq. (ii) Measurements of the Hall resistivity either in the di-
(114, i.e., what is the infimum of the right-hand side of Eq. lute vortex limit or for the single vortex.
(114) with respect to variations of magnetic fielt{r), sub- (iii) Measurements of the resonance.
ject to the constrain(89). A hypothetical setup for observing the resonance is to
It has been shown that in the presence of bound states &tudy the transmission through a single flux tube. A realistic
a phase-shift flip, the differential scattering cross section bephysical realization is that suggested originally by Rammer
comes asymmetric with respect to the substitutier — ¢, and Shelanko11] and later realized experimentally by
and gives rise to the Hall effect. The Hall resistivity has beerBending, Klitzing, and Ploo@l10] (see Fig. 1. When homo-
calculated see Eq(118)]. The persistent current of free elec- geneous magnetic field is switched on, the conventional su-
trons in the plane has been discussed and the results of Rglerconductor is penetrated by vortices of flux with1/2,
[6] have been extended. In contrast to Ré&f], we have i.e., exactly that flux at which the resonance is at infinity.
found that the total persistent current in the spin one-halRecent measurements on YBCO-delta rings with three grain-
case is different from zero, and the persistent current of bothoundary Josephson junctip®3], however, reported the ob-
the spinless and the spin one-half fermions depends linearlyervation of vortices that carry a flux=1/4 which issmaller
on 7. The formal similarity between the scattering of elec-than the standard flux quantuimc/2e (corresponding to
trons in the AB potential and that in the field of a cosmic @=1/2) in the superconductor. Therefore, when the high-
string suggests that a persistent current will also appear igttrium-barium-copper oxid€éYBCO) film is used as a gate
the latter case. on top of the heterostructure containing 2DEG, the resonance
The known results for the second virial coefficients of theis at some finite energy and could in principle be observed.
nonrelativistic anyon§7,27] were reproduced and their val- Another possibility is to measure energy dependence of
ues were calculated for the case when anyons interact viaghase shifts andas a precursor of the resonaptke time
short-range attractive potentidlJ(r—r’), proportional to delay(76).
the Diracé function given by Eq(131). The case considered An interesting open problem concerns the shape of the
here is complementary to the case of a long-range potentiasésonancé73) in the AB scattering that is not of the Breit-
g/r?, considered by Loss and [F62]. In the present case, the Wigner form. The latter is a general consequence ofiee
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lyticity of scattering amplitudes that is usually taken as artwo integrals from the imaginary axis do not vanish. How-
equivalent tocausality However, the rigorous proof of the ever, by using the identitie®.1.395 and (9.1.39 from Ref.
equivalence requires precise localization in time and in th¢34],

energy for the incident wave packet. This is, however, im-

possible due to the uncertainity relatiof€]. We have un- J(ze"™)=e"""],(2), (Ad)
dertaken the analysis of the problem in terms of the Jost ) )

functions. However, we have not found the origin of this HP(ze ™) =—e""H!D(2), (A5)
behavior and we postpone the solution to this problem. The

discussion might in principle shed some light on the analyt- HY(ze™)=—e "H?(2), (AB)
icity principle usually adopted in the axiomatic quantum-

field theory as a substitute for causality. one can show that

Another interesting problem is to find the analog of the

Levinson theorenisee Ref[65] and Ref.[41], p. 356 and 0 zdz
(1 [65] [41], p G — JV(er)H(Vl)(Zry)

the generalization of Bargmann'’s inequalit[&$] for singu- i Q

lar potentials. In the case of regular potentials of finite range

one knows, thanks to this theorem, that if the phase shiftsare _  [© 3 H(@ A7
normalized so tha#,(E) =0 for E—, theng,(0) gives the Y B WZroH,7(zry), (A7)

number of bound states in the chanheln the case of the

AB potential the phase shifts) essentially do not depend i.e., the integrals on the imaginary axis cancel in the sum.
on the angular momentumand on the energk. In the case  Thanks to(A5) one has forv=0

of a<1 they are either- 7w« for positivel or 7« for nega-

tive . It is impossible in general to normalize phase shifts in HP(ze ™ =—-H{Y(2), (A8)
the singular case in the same way as for regular potentials,
since they do not depend on the energy. and the same applies to the integral in E®), too. Once the

integrals in Eqs(12) and(14) are represented as the sum of
two contour integrals in the complex plane they can be sim-
ply taken by the residue theorem.
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1 en(d-w)
X .
(coshw+cosh)? 1+e? @

(A9)

APPENDIX A: SOME USEFUL INTEGRALS To perform the integral here one makes the substityiaf

To perform the integral in Eq14) one uses the result that
I+ w I—w (A10)

X: A y: A

3,(kry)=3[H{P(kry) +HZ(kr,)] (A1) 2 2

and deforms the integration contour as in Fig.H(Y and with a Jacobian equal to 2. After some manipulations one

H®)(z) are the Hankel functions, finds
| [ o[ o
HW(z)= sinmr[eim‘l”(z)_‘]’”(z)]' (A2) — —»  (coshw+coshy)c 1+ev"
For real arguments, = fowcods)i;x fw cos::(j;;?;l)ydy‘ (A11)
D(x)=HZ(x)* (A3)  According to formula(3.512.1 of Ref.[34]
Wit HE (Kt is now deformed 1 the contols while et [ ay=an14n2- ), (A12

with H(z)(kry) is deformed to the contouE,. Note that

HM(2)[H{?(2)] is exponentially decreasing in the upper whereB(x,y) is the Euler beta function,

(lower) half of the complex planésee Appendix B Since it

is assumed that,<r, the integrand in Eq(14) is exponen- B(x.y): = Fe)ry) (A13)
tially decreasing as well. Now, the contributions of any of the ' r'ix+y) "’
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and I'(x) is the Euler gamma functiori34,36. Since
B(1,1)=1,

f:cosﬁxdxz 1. (A14)
Now, I'(3)=2 and
2B(1+ 52— n)=I(1+9I'(2-7)
=n(1-nI'(nI'(1l-7). (AlD)
Therefore, by usingB6),
J, Sy oy w9

APPENDIX B: CYLINDRICAL FUNCTIONS
AND THE EXTERIOR SOLUTION

The asymptotic behavior of Bessel functions and their de-

rivatives at infinity asz—o can be found directly in Ref.
[34]. The asymptotic behavior of the Bessel functityfz)
and their derivatives at the origin as-0 is determined by
relation(9.1.10 of Ref.[34]. The asymptotic behavior of the
Hankel function at the origin fofr|<1 can be calculated
from the asymptotic behavior od,(z) by using relation
(9.1.3 of Ref.[34],

1 L (=AHM (27"
(L))o
N (D= i mE:O mt [F(1—v+m)
—vi (Z/Z)V
& Tarerm)| .
2 z
H?kazl—ﬁ'm§)+y+ou%v% B2)

where y is Euler's constant. The asymptotic behavior of
K,(2) for v<1 whenz—0 is determined with the help of
the last two formulas and relatioK8.6.4 and(9.6.6 of Ref.
[34], that hold for— r<<argz=< /2. Therefore,

Ko(2)~ — y—In(z/2) + O(Z?Inz) (B3)
and
T (z)” r(1—-v)(z\”
KD~ s T(1=»)| 2] ~ T+ E)
+0(2277)
T(1- v
(B4)
I'l—v)

K!\(2)=—iT(1+v)

E

]

(BS)

Ty
+0(2 )
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otherwise. Here we have used the identiyl (v)
=I'(1+») together with
Fr(»Mr(l-v)= e (B6)
The wave function outside the flux tube is
B(r,@) =K1 q(ir)e'e. (B7)

For its logarithmic derivativeK | (r)/K,(r) one has in gen-
eral (see formula 9.6.26 of Ref34])

Ki(2)
K

Kv—l(z)

B L Kea(2
TR '

K.(2)

(B8)

Its asymptotic behavior a8—0 depends whether is less
than, equal to, or greater than 1. One has

K.(2) ) F(1-v)(z\? oA (B9
2K TV T a2 teE (B9
for O<w<1/2,
K.(2) F(1-v)(z\? X
2D T a2 TeE) (B0
for 1/2<sv<1,
Ki(2) 2 2
Zm~—1+ mz Inz+0(z°) (B11)
for v=1, and
_K’l’(z) 2 2v 4
z K,,(Z)N_ - 2(V_l)z +0(z7%,2%) (B12)
for v>1. At infinity asr—
K, (1) L
rKV(r)~—r—5+O(r ). (B13)

APPENDIX C: HYPERGEOMETRIC FUNCTION
AND THE INTERIOR SOLUTION

In the case of homogeneous field regularization, the wave
function inside the flux tube of radiuR at the energ\E is
given by(cf. Ref.[43], p. 458

e(r)

2

I +1 .
y(r)=e" 22y L K2AZ (1| +1¢]ee.

(CY

Here & is the flux within the radiug in units of the flux
quantumd,, £=13r2/2=®(r)/®,, 1g=(fc/|e|B)*?is the
magnetic lengthk?=2mE/#2, and the magnetic moment
coupling has been assumed inside the flux tube. Since we are
interested in bound states, the parameterxR will be in-
troduced in analogy with Ref[39] where, as above,
k=+2m|Ey|/%2, E, being the bound state energy. One can
show that
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NG 2mE, , a+1>0 and M(a+1, b+1, c)>0. From the definition
2u_ hz e (C2)  (C4) of M(a,b,c) one finds easily for such that

The logarithmic derivative 0f186) at the flux tube radius M(—lal,b,c)=2-M(|a],b,c). (C10

r=Ris then Therefore, if the relation
p(r)’ B aM(a+1, b+1, a) M(|al,b,c)>2 (C11)
r ) r=R__a+|||+2aB M(a,b,a) ) - B |
(C3) s satisfied, one findM(a,b,c)<0. Hence,
wherea andb are given by Eq(87). M(a+1, b+1, ¢ C12
The Kummer functionM (a,b,z), frequently denoted by M(a,b,c) (€12

1F1(a,b,z) [34], is defined by
) ] The ratio atx=0 is nothing but a parameter; of Ref.[37].
M(a.b,z)= 1+ Ez+ a(a+1) z & z It is here where the errd#5] in Ref.[39] is made since they
T b™ b(b+1) 2! b, n! ' claimeda;, to be positive for whatever are the paramegers
(C9 b, andc. For our purposes it is more important to discuss the

property of the ratio given in E¢82) in place of(C12). Note

where that the ratio stays positive,
a,=a(a+1)---(a+tn-1), 2a M(a+1, b+1, a)
5 V(ab >0, (C13
b,=b(b+1)---(b+n—1). (C5) (a,b,a)
Due to the f la 13.4.8 of Relf34 provided Eq.(C11) holds. Therefore, at those values»ofit
ue fo the formuia of Ref34] enters Eq(C11) via a] it is impossible to satisfy Eq(84)
d a with the homogeneous field regularization.
d_zM(a’b’Z)ZBM(a+l’ b+1, z). (Co)

APPENDIX D: ¢ FUNCTIONS

Using the simple fact that, providdu>0, The Riemanry function is defined by

<b a<a+1 7 -
a<b= —<——r0,
b b+1 (r(s)i=2 175, (D1)
I=1
one finds for reak=c>0
It is an analytic function with a simple pole at=1. The
M(a,b,c)<M(a+1, b+1, c). (C8  Hurwitz y(s,x) function, x¢Z, is a generalization of
S ’
Note that in the cases discussed Heee Eqs(81) and(87)] ¢R(S)
one has not onhb>0 but evenb=1. Moreover, provided *
there is neither magnetic moment coupling nor an attractive gH(s,x):=2 (I4+x)73. (D2)
potential inside the flux tube one also has0 [see Eq. 1=0
(81)], and Eq.(82) holds. However, one cannot maintain Fors=—1
M(@.b.c)=0 (©9 t(-D=—1%, (D3)

when an attractive potential of whatever origin is inside theand
flux tube. For example, forg,—2=2e¢<4 and x
€[0,y2ae) [see Eq.87)] one has—1<a<0. In this case {y(—1, X)=3x(1—X)—5=3x(1—Xx)+{r(—1). (D4)
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