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The basic requirement that, in quantum theory, the time evolution of any state is determined by the action of
a unitary operator, is shown to be the underlying cause for certain ‘‘exact’’ results that have recently been
reported about the time dependence of transition rates in quantum theory. Departures from exponential decay,
including the ‘‘quantum Zeno effect,’’ as well as a theorem by Khalfin about the ratio of reciprocal transition
rates, are shown to follow directly from such considerations. At sufficiently short times, unitarity requires that
reciprocity must hold, independent of whetherT invariance is valid. IfT invariance does not hold, unitarity
restricts the form of possible time dependence of reciprocity ratios.
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I. INTRODUCTION

The Weisskopf-Wigner theory@1# of decaying states has
been used with great success in a wide variety of applica-
tions. Nevertheless, since it is an approximate theory, it is not
surprising that there should be circumstances in which one
expects@2–4# departures from the predictions of the theory.
Some of these issues have acquired renewed interest because
of advances in experimental methods@5#; others arise from
the expected@6,7# deviation from time-reversal symmetry in
weak interactions. The question of the correct treatment of
unstable particles also arises in the application of current
gauge theories of weak interactions, where the instability of
intermediate bosons and fermions cannot always be ne-
glected@8#. In this paper, we show that many of these cor-
rections can be directly traced back to the fundamental re-
quirement of unitarity, which is satisfied only approximately
in the Weisskopf-Wigner method.

In the Weisskopf-Wigner approximation, which can be
generalized@9# to the case of decays arising from two or
more states, certain initial states are singled out for special
attention. Transitions from these distinguished states to other
states deplete the population of these initial states. The
Weisskopf-Wigner approximation allows for this by replac-
ing the matrix elements of the exact~full ! Hamiltonian, in
the subspace spanned by those states, by a non-Hermitian
submatrix. For a single unstable state, the~negative! imagi-
nary part of the complex ‘‘energy’’ assures that the probabil-
ity decreases exponentially with time. While this prescription
accounts for the ‘‘leakage’’ of probability in terms of the rate
of transitions out of the initial states, the detailed analysis
outlined below shows that the Weisskopf-Wigner procedure
cannot satisfy unitarity exactly. The circumstance@2# that the
‘‘law’’ @10# of exponential decaycannotbe exactly right in
quantum theory can be directly related to the fact that the
exponential ansatz is incompatible with the unitarity require-
ment, which is essential for the basic interpretation of the

theory. In this paper, the general condition imposed on tran-
sition amplitudes by the restriction of unitarity is explicitly
stated. When applied to a theorem about tests of reciprocity
originally given by Khalfin@11#, one obtains not only a sim-
pler and more direct proof of the theorem but also a stipula-
tion on the nature of the variation whose occurrence Khalfin
could infer, but not specify further. The present formulation
of the unitarity conditions could be used to explicitly take
account of this constraint in possible future attempts to im-
prove on the Weisskopf-Wigner approximation.

Section II presents the unitarity conditions that the exact
transition amplitudes must satisfy, and shows how these lead
to useful results, in addition to providing a simpler proof of
Khalfin’s theorem. Section III summarizes our conclusions.

II. UNITARITY CONSTRAINT
ON TRANSITION AMPLITUDES

Theorem.If Akj(t) is the exact transition amplitude for a
state initially prepared in the statej to be found in the statek
after a lapse of timet, unitarity requires that

Ajk* ~2t !5Akj~ t !. ~1!

Correspondingly, if f k j(t)5Akj(t)/Ajk(t), the function
f k j(t) should satisfy the relation

f k j* ~2t ! f k j~ t !51. ~2!

Proof.By general principles of quantum mechanics~using
units\51),

Akj~ t !5^kuexp~2 iHt !u j & ~3!

for any two statesk and j , whereH is the complete Hamil-
tonian governing the time evolution of the system.

Hermiticity of H assures that the operatorU(t)
[exp(2iHt) is unitary since @exp(2iHt)#† 5 exp(iHt ).
Thus

^kuUu j &[^kuexp~2 iHt !u j &

5^ j uU†uk&*5^ j uexp~1 iHt !uk&* .
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From Eq.~3!, the conjugated quantity on the right-hand side
~rhs! is justAjk(2t). Consequently,

Akj~ t !5Ajk* ~2t !

for transitions induced by any Hermitian HamiltonianH,
which is exactly Eq.~1!. This may be regarded as the unitar-
ity constraint on transition amplitudes. If we rewrite Eq.~1!
in the form

f jk[
Ajk* ~2t !

Akj~ t !
51, ~4!

which must be valid for anyj ,k, then the condition
f jk5fk j leads to

Ajk* ~2t !

Akj~ t !
5
Akj* ~2t !

Ajk~ t !
,

which is equivalent to Eq.~2!.

Q.E.D.

Our first application of the theorem will be to use it to
show that the decay probability of an unstable state must be
anevenfunction of time. Settingj5k in Eq. ~1!, we obtain

Pj j ~2t !5uAj j ~2t !u25uAj j* ~ t !u25Pj j ~ t !. ~5!

Therefore, the probability for a quantum system to remain in
its initial state, and consequently also the complementary
probability to make transitions to other states, must be an
even function of time. This result has been known for some
time, even though it has not yet found its way into many
textbooks. The symmetry ofPj j undert→2t is even more
apparent if one writes

Pj j ~ t !5Aj j* ~ t !Aj j ~ t !5Aj j ~2t !Aj j ~ t !, ~6!

making use of Eq. ~1!. Provided that Pj j (t) is
differentiable—a condition that is assured if^H& exists for
the given initial state att50, it follows that Ṗj j (t), which
must correspondingly be an odd function of time, must van-
ish at t50. We can explicitly verify this by calculating

Pkj~ t !5uAkj~ t !u25Akj* ~ t !Akj~ t !5Ajk~2t !Akj~ t !. ~7!

Then

Ṗk j~ t !5Ȧjk~2t !Akj~ t !1Ajk~2t !Ȧk j~ t !, ~8!

and, if we substitute the explicit expressions from Eq.~3!, we
obtain

Ṗk j~ t !5 i ^ j uHeiHt uk&Akj~ t !2 iAk j* ~ t !^kuHe2 iHt u j &, ~9!

and thus

Ṗk j~0!52 Im~^ j uk&^kuHu j &!, ~10!

which yields@12#

(
k

Ṗk j~0!52 Im^ j uHu j &50. ~11!

This constraint has been called@13# the quantum Zeno effect.
Observation@5# of the expected nonlinear time dependence
at short times, for the closely related process ofinducedtran-
sitions, can be regarded as evidence to support the effect.

A corollary statement is that, since exp(2gt) doesnot
have a vanishing derivative att50, the hypothesis of expo-
nentially decaying states isinconsistentwith the requirement
of unitarity. The deviations from exponential decay, both at
very short times and at very long times, have been exten-
sively studied by many authors@2,4#.

Our next use of the theorem will be to provide a simpler
proof of Khalfin’s theorem@11#: that if the ratio of the tran-
sition amplitudes for two reciprocal@14# transitionsa→b
and b→a is constant, then the only possible value for the
modulusR of that constant is unity. We have seen that
f k j(t), defined after Eq.~1!, must satisfy

f k j~ t ! f k j* ~2t !51.

Thus, if we are given thatf k j(t)5z5const for all t>0, it
follows from above thatf k j* must also be constant for all
t<0. Continuity ofu f jku at t50 requires that

R[uzu51, ~12!

which is Khalfin’s theorem. Since Khalfin arrived at this con-
clusion by a more complicated argument, we should like to
note that the proof presented here required little@15# more
than the assumption of unitarity. In particular, no assumption
is required about the positivity of the spectrum ofH, viz., the
assumption SpecH>0, made in Khalfin’s proof, appears to
be unnecessary.

Our next application of these ideas will be to prove that
reciprocity must hold~independent of the question of time-
reversal invariance! at very short times, as a consequence of
unitarity alone. From Eq.~1!,

Pjk~0!5uAjk~0!u25uAkj* ~0!u25Pkj~0!, ~13!

which states that a kind of reciprocity is exactly valid at
t50. This can be understood directly as follows. For small
values oft, let us expand the rhs of Eq.~3! in a power series,

Akj~ t !5^ku12 iHt1•••u j &. ~14!

If the statek is not orthogonal toj , the value of the rhs of
Eq. ~14!, for t50, is the complex conjugate of, and therefore
has the same magnitude as,^ j uk&. Therefore,Pkj(0) and
Pjk(0) must be equal in that case. Ifk is orthogonal@16# to
j , we must go to the term linear int in Eq. ~14!, and we find
that the transition amplitude is proportional toHkj . But,
sinceH must be Hermitian, this is the complex conjugate of
the matrix elementHjk for the inverse transition, and we
recover the result, reported in many textbooks@17#, that in
lowest-order perturbation theory, reciprocity follows from
the Hermiticity of the interaction Hamiltonian. This require-
ment of reciprocity, independent of theT invariance or oth-
erwise of the HamiltonianH, at early timest→0, can be
stated more precisely by expanding thePkj(t) as a power
series int:
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Pkj~ t !5Pkj~0!1 Ṗk j~0!t1
1

2
P̈k j~0!t21O ~ t3!. ~15!

We have already seen thatPkj(0)5u^ku j &u2 and Ṗk j(0), Eq.
~10!, both vanish if^ku j &50. By direct calculation, we find

P̈k j~0!52u^kuHu j &u222 Re@^ j uk&^kuH2u j &#, ~16!

which shows explicitly that reciprocitymustbe preserved if
^ku j &50, to ordert2, solely as a consequence of the Hermi-
ticity of H, viz., of the requirement of unitarity for the time-
evolution operator.

By an application of this result to the argument which led
to the ‘‘quantum Zeno’s paradox,’’ we can conclude that any
departure from reciprocity, which would be expected ifT
invariance is not a symmetry of the underlying Hamiltonian,
will be reduced or suppressed if the system undergoing
change is monitored too closely. Thus, for example, frequent
observation, amounting to a measurement of its strangeness,
of a neutral kaon state, could reduce the inferred value of the
CP- andT-violating parameter« ~under the assumption of
TCP invariance! relative to the one measured for ‘‘free’’
kaons. Possible implications of the corresponding quantum
Zeno effect for baryogenesis in the Universe will be dis-
cussed elsewhere.

From his theorem Khalfin could conclude that, if reci-
procity is not satisfied,R must vary with time, although
nothing further could be said about the nature of that varia-
tion. The general solution for a function satisfying the uni-
tarity condition~2! can be written as

f jk~ t !5 exp@g~ t !1 ih~ t !#, ~17!

whereg(t) andh(t) are real functions oft, which must be
odd andeven, respectively, undert→2t. Any phenomeno-
logical representation ofAjk(t), and correspondingly of
f jk(t), to take account of possible deviations from reciproc-
ity, which conforms to Eq.~17!, will automatically satisfy the
requirement of unitarity. The Weisskopf-Wigner formalism,
as extended to the case of interfering@9# decaying states, was
applied by Lee, Oehme, and Yang@18# to the K02K̄0

system—in a form that can accommodate possibleT
noninvariance—and appears to adequately represent the data
obtained thus far. Notwithstanding its great success, our fore-
going discussion has shown that this description is not
strictly compatible with unitarity of the exact theory@19,20#.

Knowledge of the spectral content of the initial state, and
thereby of the spectrum ofH, determines@21#, in principle,

the complete time evolution of the system through decompo-
sition of its state vector into a complete set of eigenvectors of
H. Even in the absence of such detailed knowledge, any
additional information about the spectrum ofH, which could
be expressed as further constraints@22# on the functionsg(t)
and h(t)—beyond the conditions ong(t) mentioned
already—would obviously help to define the admissible
forms of time dependence.

We have already seen above that the Weisskopf-Wigner
exponential ansatzcannotexactly satisfy unitarity. Equation
~17!, with possible supplementary conditions, offers a natural
point of departure for a new phenomenology satisfying exact
unitarity.

III. CONCLUSIONS

In this paper, we have shown that the existence of certain
puzzling and unexpected phenomena, such as the quantum
Zeno effect or deviations from Rutherford’s law of exponen-
tial decay, can be directly traced back to theunitarity condi-
tion, that is required in quantum theory for a consistent de-
scription of any ~isolated! dynamical system. Further
consequences that are expected in principle, in addition to
the Khalfin theorem mentioned already, include an analog of
the Zeno effect for the comparison of rates of reciprocal
transitions. Whereas these rates arenot directly related un-
lessT invariance is imposed onall relevant interactions, uni-
tarity alone requires that a test of reciprocitymustyield a
result conforming to theT-invariant expectationif the mea-
surements are made sufficiently rapidly. This means, for ex-
ample, that even if we accept the usual interpretation@6# that
the observedCP noninvariance observed in neutralK-meson
decays is associated with aT-noninvariant interaction, the
corresponding expected@7# departure from reciprocity in
K0
K̄0 transitions would be suppressed, and indeed disap-
pear, if the comparison were made at shorter and shorter
times. Such asymmetries have been invoked@23# to explain
the observed baryon asymmetry of the Universe; possible
implications of this ‘‘CP andT quantum Zeno effect’’ will
be discussed elsewhere.
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